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Abstract
Background  This study aimed to develop and validate radiomics and deep learning (DL) signatures for predicting distal 
metastasis (DM) of non-small cell lung cancer (NSCLC) in low-dose computed tomography (LDCT).
Methods  Images and clinical data were retrospectively collected for 381 NSCLC patients and prospectively collected for 114 
patients at the Fifth Affiliated Hospital of Sun Yat-Sen University. Additionally, we enrolled 179 patients from the Jiangmen 
Central Hospital to externally validate the signatures. Machine-learning algorithms were employed to develop radiomics 
signature while the DL signature was developed using neural architecture search. The diagnostic efficiency was primarily 
quantified with the area under receiver operating characteristic curve (AUC). We interpreted the reasoning process of the 
radiomics signature and DL signature by radiomics voxel mapping and attention weight tracking.
Results  A total of 674 patients with pathologically-confirmed NSCLC were included from two institutions, with 143 of 
them having DM. The radiomics signature achieved AUCs of 0.885, 0.854, and 0.733 in the internal validation, prospec-
tive validation, and external validation while those for DL signature were 0.893, 0.786, and 0.780. The proposed signatures 
achieved a promising performance in predicting the DM of NSCLC and outperformed the approaches proposed in previous 
studies. Interpretability analysis revealed that both radiomics and DL signatures could detect the variations among voxels 
inside tumors, which helped in identifying the DM of NSCLC.
Conclusions  Our study demonstrates the potential of LDCT-based radiomics and DL signatures for predicting DM in NSCLC. 
These signatures could help improve lung cancer screening regarding further diagnostic tests and treatment strategies.

Keywords  Non-small cell lung cancer · Low dose computer tomography · Deep learning · Radiomics · Cancer screening · 
Tumor metastasis
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Background

Lung malignancy is the second most common cancer and one 
of the most deadly cancers in the world [1], in which non-small 
cell lung cancer (NSCLC) occupies around 85% [2]. Accu-
rate staging plays a crucial role in guiding treatment strategies 
and predicting prognosis in the management of NSCLC [3]. 
Nevertheless, staging NSCLC remains challenging due to the 
inability of conventional imaging modalities to meet clinical 
requirements [4].

Low-dose computed tomography (LDCT) is the most com-
mon modalities recommended for cancer screening. It has been 
shown to significantly reduce mortality from lung cancer [5]. 
Nevertheless, LDCT has limited diagnostic performance in 
identifying tumor metastasis. To complement LDCT, addi-
tional examinations, such as 18F-FDG-PET/CT or endobron-
chial ultrasound-guided transbronchial needle aspiration are 
recommended [6]. Among these additional examinations, 
18F-FDG-PET/CT is the preferred modality for diagnosing 
distal metastasis (DM) in NSCLC due to high accuracy [7]. 
However, it comes with the drawback of being costly and time-
consuming due to the need for a whole-body scan. This cre-
ates a clinical demand for convenient, economical, and reliable 
non-invasive imaging parameters that can improve preliminary 
screening for DM in NSCLC patients [8].

Recently, there has been a growing interest in utilizing radi-
omics and deep learning (DL) techniques to analyze medi-
cal images. These methods have demonstrated their ability to 
learn and decipher the representative radiologic phenotypes 
of tumors [9–12]. Notably, previous studies have highlighted 
their success in predicting lymph node metastasis in various 
cancers, including lung [13, 14], breast [15], gastric [16], and 
thyroid [17]. Despite these achievements, both radiomics and 
DL methods have shown limited efficacy in predicting DM 
in patients with NSCLC [18]. Moreover, the learning pattern 
and mechanism underlying the prediction of these methods 
remain unclear. Unraveling these mechanisms could contribute 
to enhancing the practical applicability of artificial intelligence 
in real clinical settings.

Herein, the aim of this study was to develop and validate 
LDCT-based radiomics and DL signatures to improve the 
preliminary screening for DM in patients with NSCLC using 
LDCT images. Furthermore, we sought to investigate the 
learning pattern and mechanism involved underlying these 
prediction methods.

Materials and methods

Study population

This study was approved by our institutional review 
board. For patients in the retrospective cohort, the written 
informed consent was waived while those of patients in 
the prospective cohort were obtained in this study. Patients 
who underwent the LDCT examination and 18F-FDG PET/
CT scan from November 2017 to July 2020 were retro-
spectively recruited from the Fifth Affiliated Hospital of 
Sun Yat-Sen University. The included patients should sat-
isfy the demand for (1) pathologically-confirmed primary 
NSCLC; (2) single lesion; (3) no histories of other can-
cers; (4) the interval time from CT examination to 18F-
FDG PET/CT scan within 2 weeks. The exclusion criteria 
were as follows: (a) prior puncture biopsy, chemotherapy, 
or radiotherapy before PET/CT scanning; (b) unsatisfac-
tory image quality; (c) inability to delineate the lesion on 
CT; (d) incomplete clinicopathologic data. Stratified ran-
dom sampling was performed to allocate the study popu-
lation into the development cohort (n = 337) and internal 
validation cohort (n = 44) at a ratio of 7:3 based on the 
case group. Samples in the control group within the inter-
nal validation cohort were allocated equally to those in the 
case group to balance the data.

Following the same admission criteria, eligible patients 
at the Fifth Affiliated Hospital of Sun Yat-Sen University 
from August 2020 to October 2022 were prospectively col-
lected to form a prospective validation cohort (n = 114). 
Additionally, we recruited patients from January 2020 to 
July 2022 from the Jiangmen Central Hospital to create 
an external validation cohort (n = 179). The flowchart 
illustrating the patient recruitment process is presented 
in Fig. 1.

Clinicopathological characteristics, such as age, gender, 
smoking history, pathologic type, TNM staging, and 18F-
FDG PET/CT parameters were extracted from the medical 
records. The status of DM was confirmed based on the 
diagnostic report of the 18F-FDG PET/CT examination.

Acquisition of CT images and interpretation 
of radiologic signs

The imaging process and acquisition parameters of the 
CT scanner and PET scanner are detailed in the Supple-
mentary Information. Radiologic signs were manually 
extracted, including tumor size and location, pleural tag, 
pleural lesions, air bronchogram, calcification, cavitation, 
well-defined, lobulation, spiculation, vessel convergence, 
and vascular involvement. Detailed definitions of these CT 
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radiologic signs and the interpretive process can be found 
in the Supplementary Information. The average of con-
tinuous variables was calculated as the final value, while 
for categorical variables, consensus was reached through 
discussion in the event of any discrepancies. Cohen's 
Kappa coefficient or intraclass correlation coefficient was 
calculated for each radiologic sign, and the interobserver 
agreement distribution is presented in Table S1.

Signature development and interpretation

Machine-learning (ML) algorithms were utilized to develop 
the radiomics signature while the DL signature was devel-
oped using neural architecture search (NAS) [19]. The 3D 
region of interest of the primary tumor was delineated from 
LDCT using ITK-SNAP software (Version 3.8.0) and the 
procedure was detailed in Supplementary Information. Fig-
ure 2 provides an abstract representation of the development 
workflows.

For the development of radiomics signature, radiom-
ics features were extracted from the 3D region of interest 
of tumors using PyRadiomics [20] and further selected by 
the random forest regressor. A total of 7 ML algorithms 
(Logistic Regression, BernoulliNB, KNeighborsClassifier, 
RandomForestClassifier, XGBClassifier, DecisionTreeClas-
sifier, SVM) were trained to constitute the radiomics signa-
ture. To interpret the reasoning process, we used radiomics 
voxel mapping to reflect the contribution of each voxel to the 
calculation of a certain radiomics feature. The whole devel-
opment process is detailed in Supplementary Information.

Based on NAS, we selected and trained the top 10 DL 
architectures to construct the DL signature. To track the 

attention weight of each voxel in the reasoning process, con-
volutional block attention modules [21] were added. The 
detailed development process is described in Supplementary 
Information.

For both signatures, an ensemble strategy was used. Radi-
omics signature was determined by averaging the predicted 
probabilities generated by the seven ML algorithms, while 
the DL signature was determined by averaging the predicted 
probabilities generated by the 10 candidate DL classifiers. 
To verify the ensemble strategy, n models were randomly 
picked to perform an ensemble prediction. For the radiomics 
signature, n ranged from 1 to 7, and for the DL signature, n 
ranged from 1 to 10. The progress was repeated 10 times, 
and the average performance indices were calculated.

Construction of the clinical‑radiologic model 
and combined models

In the development cohort, the logistic regression model was 
used to construct a clinical-radiologic (CR) model by incor-
porating clinical characteristics and radiologic signs. Based 
on CR model, additional combined models were constructed 
by integrating the radiomics and DL signatures with CR 
model. The aim of constructing the combined models was 
to investigate the ability of the signatures to improve the CR 
model and identify the optimal prediction model.

Statistical analysis

Statistical analysis was performed using R software (ver-
sion 4.1.0) and SPSS software (IBM, version 23.0). Con-
tinuous data were compared using the Student's t-test or 

Fig. 1   Flowchart of the process of patient enrollment and grouping. Institution 1, the Fifth Affiliated Hospital of Sun Yat-Sen University, Institu-
tion 2, Jiangmen Central Hospital
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Kruskal–Wallis test. Categorical data were analyzed using 
the Chi-square test or Fisher's exact test. The Spearman 
correlation coefficient was used to evaluate the correlation 
between variables. The diagnostic efficiency of models was 
mainly quantified by the area under the receiver operating 
characteristic curve (AUC). The confidence interval (CI) 
of AUC was calculated using 10000 bootstrap replicates. 
DeLong test was employed to compare AUCs of different 
methods. Additional performance metrics including accu-
racy, sensitivity, specificity, positive predictive value, and 
negative predictive value were also reported. Net Reclassi-
fication Index and Integrated Discrimination Improvement 
were utilized to quantify the ability of signatures to improve 
the CR model. For all statistical tests, a P < 0.05 indicated a 
statistically significant difference.

Results

Baseline characteristics

A total of 674 patients were included in the study, divided 
into the development cohort (n = 337), internal validation 
cohort (n = 44), prospective validation cohort (n = 114) 
and external validation cohort (n = 179). The mean age 
of the study population was 60 years ± 11 (± standard 
deviation), and 51% (n = 343) of the patients were male. 

Adenocarcinoma (n = 592) accounted for 88% of the 
total population, while squamous cell carcinoma (n = 74) 
accounted for 11%. Among the patients, 21% (n = 143) had 
DM. The incidence rates of DM across different T-staging 
were as follows: T1 (9%), T2 (32%), T3 (37%), and T4 
(60%). The baseline characteristics of the patients are pre-
sented in Table 1.

The development of radiomics signature and DL 
signature

For the radiomics signature, we extracted a total of 1688 
features (Table S2). After applying the Gini importance 
ranking using a random forest regressor, we selected 20 
features (Fig. S1) for further analysis. These 20 features 
were used to train the seven classifiers, as described in the 
Supplementary Information. In the case of the DL signa-
ture, we employed the NAS approach to select and train 
the top 10 candidate model architectures, as explained in 
the Supplementary Information. The development cohort's 
AUC for each single model used to create the radiomics 
signature and DL signature is presented in Fig. 3a–b. It 
is evident that these single models exhibited varying per-
formance. However, as demonstrated in Fig. 3c–d, larger 
numbers of models used for ensemble prediction generally 
led to improved performance.

Fig. 2   Workflow of the radiomics and deep learning signatures 
building process. For radiomics signature, a total of 1688 features 
were extracted and the top 20 features were further selected by the 
random forest regressor. Following parameter adjustments, seven 
machine learning models were trained to create an ensemble predic-
tion. Regarding the deep learning signature, a 3D network architec-
ture search was conducted. The number of shifted frameworks ranged 

from 3 to 9 (3 ≤ E + F + G ≤ 9). The top 10 architectures that exhibited 
an excellent trade-off between performance and speed were selected 
and trained to make an ensemble prediction. As for the evaluation and 
interpretation, receiver operating characteristic (ROC) curves were 
used and the features selected to construct the radiomics and deep 
learning signatures were visualized
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Table 1   The distribution of clinicopathological characteristics and radiologic signs across the cohorts

Unless otherwise noted, values are numbers of patients and compared using the Chi-square test or Fisher’s exact test, with percentages in paren-
theses. LUL left upper lobe, LLL left lower lobe, RUL right upper lobe, RML right middle lobe, RLL right lower lobe, LUSC lung squamous car-
cinoma, LUAD lung adenocarcinoma, AJCC American Joint Committee on Cancer

Characteristic Development cohort 
(n = 337)

Internal validation cohort 
(n = 44)

Prospective validation cohort 
(n = 114)

External validation cohort 
(n = 179)

P Value

Age 0.051
 > 65 years 109 (32.3%) 22 (50.0%) 38 (33.3%) 73 (40.8%)
 ≤ 65 years 228 (67.6%) 22 (50.0%) 76 (66.7%) 106 (59.2%)
Mean age (y)* 60 ± 11 62 ± 11 60 ± 11 61 ± 11 0.375
Gender 0.673
 M 165 (48.9%) 24 (54.5%) 57 (50.0%) 97 (54.2)
 F 172 (51.1%) 20 (45.5%) 57 (50.0%) 82 (45.8)

Smoking history 0.907
 Ever smoke 106 (31.5%) 14 (31.8%) 32 (28.1%) 53 (29.6%)
 Never smoke 231 (68.5%) 30 (68.2%) 82 (71.9%) 126 (70.3%)

Tumor size (cm)* 2.60 ± 1.81 3.22 ± 2.19 2.15 ± 1.20 2.96 ± 1.65 < 0.001
Tumor location 0.003
 LUL 87 (25.8%) 7 (15.9%) 24 (21.1%) 35 (19.6%)
 LLL 47 (13.9%) 4 (9.1%) 22 (19.3%) 28 (15.6%)
 RUL 111 (32.9%) 14 (31.8%) 38 (33.3%) 52 (29.1%)
 RML 36 (10.7%) 5 (11.4%) 8 (7.0%) 9 (5.0%)
 RLL 49 (14.6%) 13 (29.5%) 22 (19.3%) 42 (23.5%)
 Central 7 (2.1%) 1 (2.3%) 0 (0%) 13 (7.3%)

Pathologic type 0.683
 LUSC 43 (12.8%) 4 (9.1%) 11 (9.6%) 16 (8.9%)
 LUAD 291 (86.4%) 39 (88.6%) 102 (89.5%) 160 (89.4%)
 Other 3 (0.8%) 1 (2.3%) 1 (0.9%) 3 (1.7%)

Radiologic signs
 Pleural tag 209 (62.0%) 31 (70.5%) 67 (58.8%) 61 (34.1%) < 0.001
 Pleural lesions 62 (18.4%) 12 (27.3%) 3 (2.6%) 32 (17.9%) < 0.001
 Air bronchogram 42 (12.5%) 2 (4.5%) 22 (19.3%) 46 (25.7%) < 0.001
 Calcification 3 (0.9%) 1 (2.3%) 0 (0%) 18 (10.1%) < 0.001
 Cavitation 63 (18.7%) 9 (20.5%) 17 (14.9%) 42 (23.5%) < 0.001
 Well defined 35 (10.4%) 4 (9.1%) 10 (8.8%) 40 (22.3%) < 0.001
 Lobulation 272 (80.7%) 35 (79.5%) 112 (98.2%) 68 (37.9%) < 0.001
 Spiculation 201 (59.6%) 26 (59.1%) 74 (64.9%) 77 (43.0%) < 0.001
 Vessel convergence 43 (12.8%) 6 (13.6%) 39 (34.2%) 48 (26.8%) < 0.001
 Vascular involvement 39 (11.6%) 7 (15.9%) 10 (8.8%) 29 (16.2%) 0.225

AJCC T stage < 0.001
 T1 208 (61.7%) 20 (45.5%) 89 (78.1%) 107 (59.8%)
 T2 57 (16.9%) 7 (15.9%) 17 (14.8%) 52 (29.0%)
 T3 29 (8.6%) 4 (9.1%) 6 (5.3%) 15 (8.4%)
 T4 43 (12.8%) 13 (29.5%) 2 (1.8%) 5 (2.8%)

AJCC N stage < 0.001
 N0 226 (67.1%) 21 (47.8%) 94 (82.5%) 94 (52.5%)
 N1 23 (6.8%) 2 (4.5%) 5 (4.4%) 17 (9.5%)
 N2 50 (14.8%) 4 (9.1%) 8 (7.0%) 18 (10.1%)
 N3 38 (11.3%) 17 (38.6%) 7 (6.1%) 50 (27.9%)

AJCC M stage < 0.001
 M0 287 (85.2%) 22 (50.0%) 107 (93.9%) 115 (64.2%)
 M1 50 (14.8%) 22 (50.0%) 7 (6.1%) 64 (35.7%)

18F-FDG PET/CT parameters*
 SUVmax 7.19 ± 7.43 8.08 ± 7.46 3.97 ± 4.76 6.66 ± 6.38 < 0.001
 SUVmin 0.37 ± 0.17 0.37 ± 0.19 0.31 ± 0.18 0.88 ± 1.39 < 0.001
 SUVavg 4.25 ± 4.29 4.90 ± 4.54 2.43 ± 2.91 2.82 ± 2.58 < 0.001
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Evaluation of the predictive efficiency 
of the signature

In the internal validation (Fig. 4a), radiomics signature 
achieved an AUC of 0.89 [95% CI 0.87, 0.90], which was 
comparable to the AUC of DL signature. For prospective 
validation (Fig. 4b), radiomics signature obtained an AUC 

of 0.85 [95% CI 0.80, 0.88], while DL signature yielded an 
AUC of 0.79 [95% CI 0.76, 0.83]. However, Delong test 
indicated no statistical difference (P = 0.184) between the 
two. In external validation (Fig. 4c), DL signature achieved 
a significantly higher AUC (0.78 [95% CI 0.75, 0.80]) com-
pared to radiomics signature (0.73 [95% CI 0.72, 0.77]) 
(P = 0.043).

*Data were presented as means ± standard deviations and compared using the Kruskal–Wallis test
Table 1   (continued)

Fig. 3   The performance of single models and the evaluation of the 
proposed ensemble method using different numbers of single models. 
a–b Receiver operating characteristic (ROC) curves of each single 
model used to create the radiomics signature and DL signature in the 

development cohort. a radiomics signature and b deep learning signa-
ture. c–d The trend of different criteria when using different numbers 
of models to make an ensemble prediction. c radiomics signature and 
d deep learning signature
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To comprehensively assess the diagnostic efficiency, 
the performance of the signatures was compared to that of 
SUVmax, a well-established 18F-FDG PET/CT parameter 
known to be strongly linked to tumor metastasis [22, 23]. 
As depicted in Fig. 4e–f, both signatures exhibited similar 
discriminability to SUVmax in predicting DM across valida-
tion cohorts. Additionally, radiomics signature demonstrated 
superior specificity, whereas DL signature displayed better 
sensitivity across validation cohorts.

Signature reasoning pattern interpretation

To elucidate the reasoning pattern of radiomics signature, 
we focused on the “Original first order Energy”, which 
demonstrated the strongest association with DM based on 
both the Gini importance ranking (Fig. S1) and Spearman 
correlation index (Fig. S2). By employing radiomics voxel 

mapping, we visualized the contribution of individual vox-
els in calculating this radiomics feature on the CT scan. 
Interestingly, we observed discrepancies in voxel-level 
contribution between patients with and without DM, with 
a higher number of voxels exhibiting substantial contribu-
tion in tumors of patients with DM (Fig. 5a). Furthermore, 
statistical analysis confirmed that patients with DM exhib-
ited significantly higher levels of the "Original first order 
Energy" (Fig. 5c).

To interpret the reasoning pattern of the DL signature, 
we extracted the voxel-level attention weights from the first 
convolutional block attention module layer of the trained DL 
models. As depicted in Fig. 5b, the tumor voxels of patients 
with DM exhibited higher attention weights compared to 
those of patients without DM. Additionally, the average 
voxel-level attention weights were significantly higher in 
tumors of patients with DM (Fig. 5d).

Fig. 4   Predictive performance of the radiomics and deep learning sig-
natures across the validation cohorts. a–c) Receiver operating char-
acteristic (ROC) curves of the radiomics signature in the a internal 
validation cohort, b prospective validation cohort, and c external vali-

dation cohort. d–f The comparison among radiomics signature, deep 
learning signature, and SUVmax on various performance indices in 
d internal validation set and e prospective validation cohort, and f 
external validation cohort
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These findings demonstrate that both radiomics and DL 
techniques have the capability to identify variations among 
voxels within CT.

Construction and evaluation of clinical‑radiologic 
models and combined models

To develop the CR model, we initially identified the candi-
date covariates that were significantly associated with DM 
through univariate analysis. The Spearman correlation coef-
ficients among the candidate covariates are shown in Fig. S3. 
Subsequently, the final model was constructed using mul-
tivariate logistic regression analysis (Table 2). Noted that 
pathological metrics and 18F-FDG PET/CT parameters were 
waived in model construction because of the inherent design 

for preliminary screening. The result of multivariate logistic 
regression analysis revealed Pleural invasion (OR: 5.00; 95% 
CI 1.92, 13.36; P = 0.001) and Cavitation (OR:0.18; 95% CI 
0.03, 0.65; P = 0.024) were two radiologic signs that were 
independent risk predictors for DM in patients with NSCLC.

The AUC for CR model in internal validation was 0.874 
[95% CI 0.862, 0.892], in prospective validation it was 
0.533 [95% CI 0.516, 0.537], and in external validation it 
was 0.712 [95% CI 0.670, 0.721] (Table 3). In internal vali-
dation, there was no statistical difference in the discrimi-
native abilities of the CR model, radiomics signature, and 
DL signature (P > 0.05). In prospective validation cohort, 
CR model performed inferiorly to both radiomics signa-
ture (0.533 vs. 0.854, P < 0.001) and DL signature (0.533 
vs. 0.786, P < 0.001). Moreover, in external validation, CR 

Fig. 5   The comparison between cases and controls on intra-nodular 
radiomics feature and deep learning attention weights at CT (axial 
view). a The radiomics voxel mapping technique visualized the most 
relevant radiomics feature, "Original first order Energy", in tumors of 
various sizes to identify distal metastasis (DM). b The visualization 
of attention weights of the deep learning approach in tumors of vari-

ous sizes facilitated the identification of DM. The color bar illustrated 
the strength of these features. c The comparison of the value of Origi-
nal first-order Energy between patients with DM or without. d The 
comparison of the average attention weights between patients with 
DM or without. ***P < 0.001
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model performed similarly to radiomics signature (0.712 vs. 
0.733, P = 0.398) but worse than DL signature (0.712 vs. 
0.780, P = 0.039).

Based on CR model, combined models were developed 
(Table  S3). In prospective validation, the CR-radiom-
ics model, CR-DL model, and CR-radiomics-DL model 
achieved an AUC of 0.876, 0.813, and 0.876, respectively. 
In external validation, the aforementioned combined models 
achieved an AUC of 0.707, 0.721, and 0.705, respectively. 
The analysis of the Net Reclassification Index and Integrated 
Discrimination Improvement showed CR model was sig-
nificantly improved by integrating radiomics and DL signa-
tures in the development cohort, internal validation cohort, 
and prospective validation cohort (Table S4). However, in 
external validation, there were only limited improvements 
observed for CR model, and all of the combined models 
performed inferiorly to DL signature (CR-radiomics model: 

0.707 vs. 0.780, P = 0.026; CR-DL model: 0.721 vs. 0.780, 
P = 0.046; CR-radiomics-DL model: 0.705 vs. 0.780, 
P = 0.020).

Discussion

In this study, we have several notable strengths. Firstly, we 
have developed two signatures that outperform previous 
methods in accurately predicting DM in NSCLC. Secondly, 
we have provided valuable insights into the interpretation 
of radiomics and DL signatures, shedding light on their 
capability to identify DM in NSCLC. Furthermore, these 
signatures were specifically developed using LDCT, suggest-
ing their potential for broad applicability as a preliminary 
screening tool for DM in NSCLC patients.

Table 2   Univariate and 
multivariable logistic regression 
analysis to construct the 
clinical-radiologic model for 
predicting distal metastasis

OR odds ratio, CI confidence interval, LUL left upper lobe, LLL left lower lobe, RUL right upper lobe, 
RML right middle lobe, RLL right lower lobe, LUSC lung squamous carcinoma, LUAD lung adenocarci-
noma, AJCC American Joint Committee on Cancer
* P < 0.05

Variables Univariate analysis Multivariable analysis

β OR (95% CI) P Value β OR (95% CI) P Value

Age 0.03 1.03 (0.99, 1.06) 0.065 – – –
Gender
 M 0.52 1.68 (0.91, 3.15) 0.099 – – –
 F − 0.52 0.59 (0.32, 1.09) 0.099 – – –

Smoking 0.53 1.70 (0.91, 3.14) 0.091 – – –
Tumor size (cm) 0.39 1.48 (1.29, 1.71) < 0.001* 0.07 1.08 (0.84, 1.37) 0.561
Tumor location
 LUL − 0.53 0.59 (0.26, 1.22) 0.179 – – –
 LLL 0.53 1.69 (0.75, 3.57) 0.181 – – –
 RUL − 0.38 0.68 (0.33,1.31) 0.267 – – –
 RML 1.09 2.97 (1.31, 6.39) 0.007* 0.69 2.00 (0.74, 5.11) 0.158
 RLL − 0.78 0.46 (0.13, 1.19) 0.152 – – –
 Central 1.51 4.53 (0.87, 21.19) 0.053 – – –

Radiologic signs
 Pleural tag 0.90 0.90 (0.49, 1.68) 0.737 – – –
 Pleural invasion 9.51 9.51 (4.93, 18.67) < 0.001* 1.61 5.00 (1.92, 13.36) 0.001*
 Air bronchogram 0.12 0.12 (0.01, 0.59) 0.041* − 1.95 0.14 (0.01, 0.83) 0.080
 Calcification 2.92 2.92 (0.13, 31.03) 0.386 – – –
 Cavitation 0.15 0.15 (0.02, 0.51) 0.010* − 1.74 0.18 (0.03, 0.65) 0.024*
 Well defined 0.32 0.32 (0.05,1.11) 0.128 – – –
 Lobulation 2.42 2.42 (1.00, 7.21) 0.073 – – –
 Spiculation 1.54 1.54 (0.82, 2.98) 0.185 – – –
 Vessel convergence 2.25 2.25 (1.02, 4.74) 0.037* − 0.16 0.86 (0.33, 2.12) 0.743
 Vascular involvement 4.71 4.71 (2.23, 9.79) < 0.001* − 0.72 0.49 (0.15, 1.51) 0.219

AJCC T stage
 T1 or T2 0.11 0.11 (0.06, 0.22) < 0.001* – – –
 T3 or T4 8.79 8.79 (4.61, 17.13) < 0.001* 1.23 3.43 (1.20, 9.67) 0.020*
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Preoperative staging plays a crucial role in determin-
ing the appropriate management strategy for patients with 
clinical stage I NSCLC [24]. Our study population exhibited 
high incidence rates of DM in patients with T1 (9%) or T2 
(32%) tumors, as evidenced by their baseline characteristics. 
Consequently, additional evaluation, such as an 18F-FDG 
PET/CT scan, is essential in such cases [25]. Given that our 
signatures were developed and validated using a population 
comprising 83% (n = 557) of patients with T1 or T2 tumors, 
they could serve as a valuable tool for clinicians in conduct-
ing preliminary screening for DM using LDCT during lung 
cancer screening. This aids in triaging patients who require 
further examination.

The success of DL hinges on the efficacy of its carefully 
crafted neural architectures. These architectures are meticu-
lously designed by experts with extensive professional expe-
rience, involving a time-consuming process [26]. However, 
a new automated method called neural architecture search 

(NAS) has emerged, showcasing its superiority over manu-
ally designed architectures in various tasks [27–29]. Pre-
viously, radiomics served as the vital connection between 
medical imaging and personalized medicine [30]. It is 
commonly used in conjunction with ML algorithms for a 
range of tasks, and it's important to note that there is no 
universally applicable ML model that fits every specific task 
[31]. In this study, we employed an ensemble strategy to 
develop signatures that effectively leveraged the strengths of 
multiple algorithms, thus complementing each other. This 
fusion resulted in an improved performance of the ensemble 
prediction.

Early radiomics studies showed limited predictive capa-
bilities of primary tumor features for DM, with an AUC 
ranging from 0.64 to 0.71 [32, 33]. Even when DL methods 
were applied, they failed to significantly improve perfor-
mance, achieving an AUC ranging from 0.65 to 0.71 [18]. 
These studies also had notable limitations, such as lacking 

Table 3   Performance of all 
models constructed in this study 
in the development cohort, 
internal validation cohort, 
prospective validation cohort, 
and external validation cohort

CR clinical-radiologic, CI confidence interval, DL deep learning. The best cut-off pretest probability 
thresholds were identified in training cohort for each model, with 0.42 for Radiomics signature, 0.18 for 
DL signature, 0.22 for CR model, 0.38 for CR-radiomics model, 0.09 for CR-DL model, and 0.14 for CR-
radiomics-DL model

Models AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Development cohort
 Radiomics signature 0.983 (0.973, 0.989) 0.940 (0.880, 0.999) 0.951 (0.978, 0.999)
 DL signature 0.859 (0.824, 0.878) 0.940 (0.825, 0.984) 0.698 (0.641, 0.750)
 CR model 0.798 (0.783, 0.845) 0.700 (0.552, 0.817) 0.854 (0.807, 0.892)
 CR-radiomics model 0.985 (0.978, 0.993) 0.940 (0.825, 0.984) 0.976 (0.948, 0.989)
 CR-DL model 0.877 (0.843, 0.894) 0.920 (0.799, 0.974) 0.736 (0.681, 0.785)
 CR-radiomics-DL model 0.991 (0.980, 0.992) 0.980 (0.879, 0.999) 0.944 (0.909, 0.967)

Internal validation cohort
 Radiomics signature 0.885 (0.867, 0.899) 0.500 (0.289, 0.712) 0.857 (0.626, 0.962)
 DL signature 0.893 (0.869, 0.902) 0.864 (0.640, 0.964) 0.818 (0.589, 0.940)
 CR model 0.874 (0.862, 0.892) 0.727 (0.496, 0.884) 0.905 (0.682, 0.983)
 CR-radiomics model 0.883 (0.869, 0.897) 0.455 (0.251, 0.673) 0.952 (0.741, 0.997)
 CR-DL model 0.922 (0.913, 0.937) 0.864 (0.640, 0.964) 0.857 (0.626, 0.962)
 CR-radiomics-DL model 0.885 (0.863, 0.899) 0.500 (0.288, 0.712) 0.952 (0.741, 0.998)

Prospective validation cohort
 Radiomics signature 0.854 (0.806, 0.889) 0.857 (0.420, 0.992) 0.729 (0.633, 0.808)
 DL signature 0.786 (0.757, 0.822) 0.857 (0.420, 0.992) 0.589 (0.489, 0.682)
 CR model 0.533 (0.516, 0.537) 0.000 (0.000, 0.000) 0.907 (0.953, 1.000)
 CR-radiomics model 0.876 (0.849, 0.921) 0.857 (0.420, 0.992) 0.748 (0.653, 0.824)
 CR-DL model 0.813 (0.784, 0.841) 0.857 (0.420, 0.992) 0.673 (0.569, 0.753)
 CR-radiomics-DL model 0.876 (0.802, 0.887) 0.857 (0.420, 0.992) 0.710 (0.613, 0.792)

External validation cohort
 Radiomics signature 0.733 (0.722, 0.772) 0.343 (0.236, 0.467) 0.881 (0.808, 0.930)
 DL signature 0.780 (0.754, 0.798) 0.676 (0.553, 0.779) 0.738 (0.651, 0.810)
 CR model 0.712 (0.670, 0.721) 0.268 (0.173, 0.388) 0.897 (0.827, 0.942)
 CR-radiomics model 0.707 (0.689, 0.745) 0.296 (0.196, 0.418) 0.889 (0.817, 0.936)
 CR-DL model 0.721 (0.696, 0.747) 0.563 (0.441, 0.679) 0.786 (0.702, 0.852)
 CR-radiomics-DL model 0.705 (0.671, 0.724) 0.437 (0.321, 0.559) 0.865 (0.789, 0.917)
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external validation and producing unexplainable predic-
tions. In our study, we introduced cutting-edge radiomics 
and DL signatures that outperformed previous research in 
internal validation, achieving AUCs ranging from 0.786 to 
0.893. Furthermore, in external validation, our signatures 
demonstrated superior diagnostic efficiency with AUCs of 
0.73 and 0.78.

Based on our analysis of reasoning patterns, we discov-
ered the radiomics and the DL methods operate in a similar 
manner by identifying voxel-level differences within the 
tumor. These differences are then leveraged to assess the 
strength of correlation between individual voxels and DM. 
Notably, we found that tumors of NSCLC patients with DM 
tend to exhibit a higher prevalence of voxels demonstrat-
ing a strong association with DM. This finding validates 
the efficacy of radiomics and DL methods in detecting DM, 
surpassing what human observers can achieve. Additionally, 
our interpretation of reasoning pattern reveals that utilizing 
a 2D approach may not be appropriate for this task. This 
insight can help explain why previous DL studies, which 
mainly utilized a 2D approach, yielded underwhelming 
results.

The performance of radiomics and DL signatures in this 
study showed variability across the validation cohorts, which 
could be attributed to inherent differences in the baseline 
characteristics among these cohorts. Furthermore, the per-
formance might have been affected by variations in acquisi-
tion parameters across CT scanners from different vendors 
and institutions [34]. To improve the generalization of sig-
natures when applied to new situations, transfer learning has 
been proposed as a potential solution [35]. Notably, both 
signatures demonstrated superior generalization ability com-
pared to the CR model. When integrated with the CR model, 
these signatures significantly enhanced its discriminability. 
Ultimately, during external validation, the DL signature out-
performed other models in terms of performance and sen-
sitivity, suggesting its potential for optimizing the clinical 
workflow.

Our study has several limitations. Firstly, the data were 
collected from only two institutions, which resulted in a 
relatively small number of NSCLC patients with DM (143 
patients). To ensure the reproducibility and generalizability 
of the findings, further validation of the signatures with a 
larger, multi-institution study is necessary. Secondly, there 
is a possibility of overfitting during the model development 
phase. However, it's important to note that our signatures 
are integrated models comprised of multiple single models. 
This ensemble strategy helps to partially offset the impact of 
overfitting of the single models. Moreover, the performance 
of our models in the external validation set highlights their 
superior generalization ability. In addition, it is worth men-
tioning that a comprehensive explanation of the underly-
ing rationale behind these radiomics and DL signatures was 

not provided. Further investigation is required to enhance 
our understanding. For instance, exploring the involvement 
of specific genes or proteins may contribute to providing 
genomic biological interpretability for the signatures.

In conclusion, we developed and validated explainable 
LDCT-based radiomics and DL models for identifying DM 
in patients with NSCLC. Our models have demonstrated a 
high level of predictive efficiency, indicating their poten-
tial for effectively screening DM in NSCLC patients using 
routine LDCT scans in real-world clinical practice for lung 
cancer screening.
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