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Abstract
Purpose The purpose of this study is to evaluate the Radiomics and Machine Learning Analysis based on MRI in the assess-
ment of Liver Mucinous Colorectal Metastases.Query
Methods The cohort of patients included a training set (121 cases) and an external validation set (30 cases) with colorectal 
liver metastases with pathological proof and MRI study enrolled in this approved study retrospectively. About 851 radiom-
ics features were extracted as median values by means of the PyRadiomics tool on volume on interest segmented manually 
by two expert radiologists. Univariate analysis, linear regression modelling and pattern recognition methods were used as 
statistical and classification procedures.
Results The best results at univariate analysis were reached by the wavelet_LLH_glcm_JointEntropy extracted by T2W 
SPACE sequence with accuracy of 92%. Linear regression model increased the performance obtained respect to the univari-
ate analysis. The best results were obtained by a linear regression model of 15 significant features extracted by the T2W 
SPACE sequence with accuracy of 94%, a sensitivity of 92% and a specificity of 95%. The best classifier among the tested 
pattern recognition approaches was k-nearest neighbours (KNN); however, KNN achieved lower precision than the best 
linear regression model.
Conclusions Radiomics metrics allow the mucinous subtype lesion characterization, in order to obtain a more personalized 
approach. We demonstrated that the best performance was obtained by T2-W extracted textural metrics.
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Introduction

Colorectal cancer (CRC) is the third most frequent world-
wide cancer, accounting for 10% of new tumour cases 
in 2020[1]. Moreover, its prevalence is supposed to rise 
quickly to > 3 million cases per year by 2040 [2, 3]. Meta-
static disease represents the main cause of death and the 
liver is the mainly metastasis site [4–8]. At the primary 
tumour diagnosis, liver metastases (CRCLM) are pre-
sent in about 20% of patients, whereas almost 40–50% of 
patients will develop metastases during follow-up [8–16]. 
In addition, about 60% of patients will develop new liver 
lesions even after a R0 resection of the primary metasta-
ses. Several risk factors for liver recurrence have been rec-
ognised, as T3/T4 CRCs, node positive of the primary can-
cer, synchronous and more than 3 liver lesions [17, 18]. On 
the other hand, the adjuvant chemotherapy administration, 
with a complete or partial response of the CRCLM, has 
been associated a lower recurrence rate [19]. With regard 
to histological sub-types, there are few data on patient 
outcome. The most common sub-type is adenocarcinoma 
not otherwise specified (NOS), followed by mucinous one, 
which represents 5–15% of all CRCs. Mucinous adeno-
carcinoma is associated a greater burden of mutations in 
KRAS and BRAF genes, a higher rate of microsatellite 
instability and a higher rate of CpG island methylator phe-
notype high (CIMP-H) tumours [21, 22], so that mucinous 
sub-type causes an increased risk of metastases and worse 
overall survival (OS) so as a decreased response to con-
ventional chemotherapy based on fluorouracil, oxaliplatin 
and irinotecan [20–22]. So, it is evident that a proper liver 
mucinous metastases characterization consents a better 
patient selection to avoid superfluous treatments [23–29].

Today, Radiomics analysis is a new tool in imaging 
setting, allowing to assess tissue at microscopic level, in 
order to obtain quantitative data that could be employed as 
biomarkers to increase diagnostic, prognostic and predic-
tive accuracy in oncological setting [30–39]. The Radiom-
ics key-targets are the rise of the tumour detection rate, a 
proper prognosis assessment and the detection of patients 
who are responsive to specific therapy [27, 40–47]. In 
this context, Radiomic is conceived to be applied in deci-
sion support of precision medicine, using standard of care 
images that are routinely acquired in clinical practice [38, 
39, 48–54].

Although, several researches have assessed the role of 
Radiomics in CRCLM patients [55–57], at the best of our 
knowledge, no study have assessed the ability of Radiom-
ics features, obtained by MRI, in mucinous liver metasta-
ses characterization. The purpose of this study is to evalu-
ate the Radiomics and Machine Learning Analysis Based 
on MRI in the assessment of mucinous CRCLM.

Materials and methods

Local Ethical Committee board accepted this retrospective 
study renouncing to the patient informed consent.

Patients were selected by radiological database consider-
ing the period from January 2018 to June 2021, according 
to the following inclusion criteria: (1) Liver pathological 
proven metastases; (2) MRI study of high quality in pre-
surgical setting and (3) A follow-up Computed Tomography 
(CT) study of at least six months after surgery. The exclusion 
criteria were: (1) Discordance among the imaging diagnosis 
and the pathological one, (2) No MRI study with hepatospe-
cific contrast agent (EOB-MRI).

The patient cohort included a training set and an external 
validation set. The internal training set was formed by 51 
patients (18 women and 33 men) with 61 years of median 
age (range 35–82 years) and 121 liver metastases. The vali-
dation cohort, from “Careggi Hospital”, Florence, Italy, was 
formed by 30 patients with single lesion (10 women and 20 
men) and 60 years of median age (range 40–78 years). The 
patient characteristics are summarized in Table 1.

MR imaging protocol

MR studies were performed with two 1.5 T MR scanners: 
Magnetom Symphony (Siemens, Erlangen, Germany) and 
Magnetom Aera (Siemens). The images were acquired 
before and after an intravenous (IV) contrast agent (CA) 
injection.

The MRI study protocol included conventional sequences, 
T1 weighted (W), without contrast medium administra-
tion, and T2-W, Diffusion Weighted Imaging (DWI) with 
seven b values in order to obtain functional parameters with 
mono-exponential model, and T1-W sequences after the 

Table 1  Characteristics of the study population (81 patients)

Patient description Numbers (%)/range

Gender Men 53 (65.4%)
Women 28 (34.6%)

Age 61 y; range: 35–82 y
Primary cancer site
Colon 52 (64.2%)
Rectum 29 (35.8%)
Prior chemotherapy 81 (100%)
Hepatic metastases description
Patients with single nodule 52 (64.2%)
Patients with multiple nodules 29 (35.8%)/range: 2–13 metastases
Nodule size (mm) mean size 36.4 mm; range 7–58 mm
Mucinous carcinoma 25 (30.9%)
RAS mutation 42 (51.9%)
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administration of contrast medium. In Table 2 we reported 
MR study protocol.

According to the different phase of patient management, 
our study protocol includes the possibility to administrate 
a liver-specific contrast (in pre-surgical setting) and a non-
liver-specific contrast (in characterization and staging 
phase).

In this study, we assessed images obtained employing a 
liver-specific agent (0.1 mL/kg of Gd-EOB-BPTA-Primov-
ist, Bayer Schering Pharma, Berlin, Germany). The VIBE 
T1-W sequence was acquired with two different flip angle 
(10 and 30 degrees). A power injector (Spectris Solaris® 
EP MR, MEDRAD Inc., Indianola, IA, USA) was used to 
administrate the CA at an infusion rate of 2 mL/s.

After contrast medium administration, VIBE T1-weighted 
FS (SPAIR) sequences were acquired in different phases: 
arterial (35 s delay), portal/venous (90 s), transitional phases 
(120 s), and hepatospecific phase (20 min).

MRI post‑processing

For each volume of interest (VOI), 851 radiomics features 
were extracted as median values using open-source PyRa-
diomics python package [58] and as reported previously in 
[76]. The extracted features are in compliance with feature 
definitions as described by the Imaging Biomarker Stand-
ardization Initiative (IBSI) [59] and as reported in [https:// 
readt hedocs. org/ proje cts/ pyrad iomics/ downl oads/ Accessed 
on 21 December 2021]. Median values of radiomics features 
were considered for each segmented VOI.

Reference standard

Histopathologic data, from routine report, were used as 
reference standard for determining metastasis histological 
subtype.

Statistical analysis

Statistical analysis includes both univariate and multi-
variate approaches performed considering a per-lesion 
analysis.

The assessment of observer variability was performed 
by calculating the intraclass correlation coefficient. A non-
parametric Kruskal–Wallis test was performed to identify 
differences statistically significant of radiomics metrics of 
two groups (mucinous type versus non-mucinous type).

Receiver operating characteristic (ROC) analysis was 
performed using the Youden index to calculate the opti-
mal cut-off for each metric and then the area under the 
ROC curve (AUC), sensitivity, specificity, positive pre-
dictive value (PPV), negative predictive value (NPV) and 
accuracy.

Given the high number of textural features, a first selec-
tion of variables was made based on the results obtained 
from the univariate analysis: significant at nonparametric 
Kruskal–Wallis test and with an accuracy ≥ 80%. A linear 
regression modelling was used to assess the best linear 
combination of significant textural features.

Pattern recognition techniques including support vector 
machine (SVM), k-nearest neighbours (KNN), artificial 
neural network (NNET), and decision tree (DT)) were per-
formed to calculate the diagnostic performance consider-
ing the significant features [60]. The best model was iden-
tified calculating the highest area under ROC curve and 
highest accuracy. Each classifier was trained with a 10-k 
fold cross validation. Moreover, an external validation 
cohort was used to validate the findings of the best clas-
sifier. McNemar test was used to evaluate that the results 
of the dichotomy tables were statistically significant. A p 
value < 0.05 was considered as significant. The statistical 
analyses were performed using the Statistics and Machine 
Toolbox of MATLAB R2021b (MathWorks, Natick, MA, 
USA).

Table 2  MR acquisition protocol

TR Repetition time, TE Echo time, FA Flip angle, AT Acquisition time, ST Slice thickness, FS Fat suppression, SPAIR Spectral adiabatic inver-
sion recovery

Sequence Orientation TR/TE/FA (ms/ms/deg.) AT (min) Acquisition Matrix ST/Gap (mm) FS

Trufisp T2-W Coronal 4.30/2.15/80 0.46 512 × 512 4 / 0 Without
HASTE T2-W Axial 1500/90/170 0.36 320 × 320 5 / 0 Without 

and with 
(SPAIR)

HASTE T2w Coronal 1500/92/170 0.38 320 × 320 5 / 0 Without
SPACE T2W FS Axial 4471/259/120 4.20 384 × 450 3/0 With (Spair)
In–Out phase T1-W Axial 160/2.35/70 0.33 256 × 192 5 / 0 without
DWI Axial 7500/91/90 7 192 × 192 3 / 0 Without
Vibe
T1-W

Axial 4.80/1.76/30 0.18 320 × 260 3 / 0 With (SPAIR)

https://readthedocs.org/projects/pyradiomics/downloads/
https://readthedocs.org/projects/pyradiomics/downloads/
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Results

On univariate analysis, a variable number of metrics 
were statistically significant, which were distinctive when 
extracted from the diverse MR sequences: 15 significant pre-
dictors extracted from T2W SPACE; 13 significant predic-
tors extracted from the arterial phase; 12 significant predic-
tors extracted from the portal phase; 12 significant predictors 
extracted from the EOB-phase.

The best results at univariate analysis were reached by 
the wavelet_LLH_glcm_JointEntropy extracted by T2W 
SPACE sequence with accuracy of 92%, a sensitivity of 
83%, a specificity of 94%, a PPV and a NPV of 78 and 95%, 
respectively, with a cut-off value of 4.61 (Table 3).

Linear regression model increased the performance 
obtained respect to the univariate analysis (see Table 4). 

The best results were obtained by a linear regression 
model of 15 significant features extracted by the T2W 
SPACE sequence with accuracy of 94%, a sensitivity of 
92%, a specificity of 95%, a PPV and a NPV of 83 and 
98%, respectively.

These results were statistically different from the results 
of univariate analysis and compared to the results of met-
rics extracted by other MR sequences (p value < 0.01 at 
McNemar test).

Table 5 reported the coefficients of metrics and inter-
cept of the best linear regression model. The ROC of this 
linear regression model was reported in Fig. 1.

The best classifier among the tested pattern recogni-
tion approaches was KNN; however, KNN achieved lower 
precision than the best linear regression model (Table 5).

All results of the dichotomy tables were statistically 
significant (p value < 0.01 at McNemar test).

Table 3  Univariate analysis 
results to predict mucinous type

T2W SPACE Arterial phase Portal phase EOB-phase

wavelet_LLH_
glcm_JointEn-
tropy

wavelet_HLH_glszm_
LargeAreaHighGrayLev-
elEmphasis

wavelet_LLL_
glcm_Cluster-
Tendency

Wavelet_HHL_
glszm_Zone-
Variance

AUC 0.85 0.59 0.70 0.63
Sensitivity 0.83 0.35 0.38 0.46
Specificity 0.94 0.99 1.00 0.96
PPV 0.78 0.90 1.00 0.75
NPV 0.95 0.85 0.86 0.87
Accuracy 0.92 0.85 0.87 0.85
Cut-off 4.61  − 0.02 408.22 1,289,505

Table 4  Linear regression and Pattern recognition analysis with significant features

Linear regression of significant 
features extracted by

AUC Sensitivity Specificity PPV NPV Accuracy Cut-off

T2W SPACE 0.96 0.92 0.95 0.83 0.98 0.94 0.26
Arterial phase 0.93 0.77 0.99 0.95 0.94 0.94 0.37
Portal phase 0.88 0.77 0.96 0.83 0.94 0.92 0.36
EOB-phase 0.26 1.00 0.04 0.64 1.00 0.64  − 0.17

The best classifier (KNN) 
results with significant features 
extracted by

Dataset AUC Accuracy Sensitivity Specificity Train-
ing time 
[sec]

Model Type and parameters

T2W SPACE Training set 0.92 0.89 0.96 0.65 3.2 Weighted KNN; number of 
neighbours:10; distance 
metric: Euclidean; distance 
weight: squared inverse

Validation set 0.83 0.89 0.93 0.71
Arterial phase Training set 0.87 0.88 0.97 0.56 8.55

Test set 0.91 0.91 0.96 0.73
Portal phase Training set 0.89 0.93 0.8 1 11.8

Test set 0.92 0.91 0.99 0.62
EOB-phase Training set 0.93 0.91 0.96 0.73 7.51

Validation set 0.89 0.88 0.89 0.8
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Discussion

To date, the prognosis of mucinous CRC remains highly 
debated, mainly because of the treatment strategy devia-
tion for metastatic disease [20–22]. Although this sub-type 
lesion has a greater propensity for peritoneal dissemina-
tion, the liver is still the most common metastatic site and 
accounts for up to 50% of all metastases [2]. Manage-
ment mucinous CRCLM has long been controversial. One 
important reason is that liver metastases are frequently 
accompanied by metastases of other sites, thus, a large 
proportion of these metastases are considered unfit for 

surgical resection. However, the relatively poor response to 
chemotherapy, indicates that surgery may occupy a more 
important role in the treatment of these patients, although 
the probability of recurrence remains high. In this context, 
it is evident that a proper lesions identification during pre-
surgical imaging setting is the crucial element that should 
allow an appropriate treatment approach. Also, consid-
ering the idea that the mucinous subtype lesion has an 
adverse prognostic impact compared to non-mucinous sub-
type, since, mucinous subtype is correlated to the idea that 
it has a higher risk of metastases, worse overall survival 
(OS) and an impaired response to conventional chemother-
apy [20–22], it is clear that radiologists should correctly 
recognize mucinous metastases. However, the presence of 
mucin substantially characterizes the lesions’ pattern on 
imaging studies that could suggest a diagnosis of benign 
lesions as hepatic cysts or haemangiomas, so that the cor-
rect diagnosis remains a challenging. At the best of our 
knowledge few studies have assessed the radiological fea-
tures of mucinous colorectal metastases [55–57], and no 
one has evaluated the Radiomics and Machine Learning 
Analysis Based on MRI in the assessment of liver muci-
nous colorectal metastases.

In this study, we found that several metrics were statis-
tically significant to characterize mucinous sub-type: 15 
extracted from T2W SPACE; 13 from the arterial phase; 
12 from the portal phase and 12 from the EOB-phase. The 
best results at univariate analysis were reached by the wave-
let_LLH_glcm_JointEntropy extracted by T2W SPACE 
sequence with accuracy of 92%, a sensitivity of 83%, a 
specificity of 94%, a PPV and a NPV of 78 and 95%, respec-
tively, with a cut-off value of 4.61. Also, linear regression 
model increased the performance obtained with a linear 

Table 5  Linear regression 
model to predict mucinous type

Features Coefficients P value

Intercept  − 2.42 0
original_gldm_SmallDependenceEmphasis 3.77 0.77
original_firstorder_RobustMeanAbsoluteDeviation 0 0.54
original_firstorder_90Percentile 0 0.89
original_glszm_ZonePercentage  − 1.79 0.85
wavelet_HLL_gldm_DependenceNonUniformityNormalized 18.81 0
wavelet_LLH_gldm_SmallDependenceEmphasis 5.18 0.74
wavelet_LLH_gldm_DependenceNonUniformityNormalized 6.79 0.28
wavelet_LLH_glcm_JointEntropy  − 1.35 0.04
wavelet_LLH_glcm_DifferenceEntropy 1.17 0.25
wavelet_LLH_glcm_SumEntropy 1.24 0.09
wavelet_LLH_glcm_DifferenceAverage 1.17 0.06
wavelet_LLH_firstorder_90Percentile 0.01 0.14
wavelet_LLH_glszm_ZonePercentage  − 12.59 0.28
wavelet_LLL_firstorder_90Percentile 0 0.99
wavelet_LLL_glszm_ZonePercentage  − 3.36 0.02

Fig. 1  ROC of linear regression model of significant features by T2W 
SPACE
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regression model of 15 significant features extracted by the 
T2W SPACE sequence with accuracy of 94%, a sensitivity 
of 92%, a specificity of 95%, a PPV and a NPV of 83 and 
98%, respectively.

To date, several researches have evaluated the Radiom-
ics in liver metastases, focussing attention on mutational 
status, prognosis and recurrence [32, 33, 47, 61–77]. The 
study by Andersen et al. demonstrated a correlation between 
homogeneity features and worse overall survival (OS) [62]. 
Lubner et al. showed that the skewness degree was inversely 
correlated to KRAS status while the entropy with OS [64]. 
The possibility of stratifying patients for recurrence in liver 
remnants has been shown BY Ravanelli et al. [69]. In our 
previous studies, we showed that radiomics features obtained 
by EOB-MRI phase, arterial and portal phase so as by T2-W 
sequences, allow to predict clinical outcomes following liver 
resection in Colorectal Liver Metastases [19, 76–83].

Radiomics is an evolving research field that enables quan-
titative metrics to be obtained within medical images in 
order to acquire lesion characteristics such as heterogeneity 
and shape and which can, alone or in combination with other 
relevant data, be used for the resolution of clinical questions.

Ours results confirmed the capacity of radiomics and 
machine learning analysis to identify as biomarkers, several 
features that could guide the treatment choice in patients 
with liver metastases, in order to obtain a more personal-
ized approach. In fact, the possibility to correlate radiomics 
parameters to mucinous sub-type offers notable advantages 
over qualitative assessment, allowing one to tailor cancer 
therapy to the patient, to predict response to treatment, to 
distinguish favourable subsets of patients from those with 
poor prognosis, to select patients that may benefit of surgi-
cal treatment.

Although many studies have shown that radiomics is 
very promising, there has been little standardization and 
generalization of radiomics analysis, which limits the use 
of this approach in the clinical setting. Clear limitations 
regarding data quality control, repeatability, reproducibil-
ity, generalizability of results and issues related to model 
overfitting [61–70, 84–86]. In fact, it is known that different 
aspects of data heterogeneity are due to variations in acqui-
sition parameters (e.g. numbers of iterations and subsets, 
reconstruction type and algorithm, and temporal and spa-
tial resolution) and image processing methods (segmenta-
tion method and gray-level discretization). Consequently, 
to allow the repeatability, reproducibility, generalizability 
of results, protocol studies should be optimized to obtain the 
standardization of protocols. In addition, depending on the 
software package for extracting features and the number of 
filters applied, the number of features extracted varies from 
a few to unlimited; reducing the number of features to build 
statistical and machine learning models is of crucial impor-
tance for generating valid and generalizable results [84].

This study has several limitations: (1) The small sam-
ple size, although the analysis was done on a homogene-
ous group and on all single lesion; (2) The retrospective 
nature, (3) A manual segmentation. Furthermore, we not 
evaluated: (4) The impact of chemotherapy on our data, 
while we assessed all single study protocol phase demon-
strating that the best performance was obtained by T2-W 
extracted metrics. These data open the opportunity to radi-
omics analysis also on abbreviated study protocol, when 
the patient is unfit for contrast administration [47, 72].

Conclusion

In the present study, radiomics metrics, obtained by EOB-
MRI study, allow to characterize mucinous subtype lesion, 
in order to obtain a more personalized approach. However, 
we did not assess the impact of chemotherapy, while we 
evaluated all single study protocol phase demonstrating 
that the best performance was obtained by T2-W extracted 
metrics. These data open the opportunity to radiomics 
analysis also on abbreviated study protocol, when the 
patient is unfit for contrast administration.
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