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Abstract
Purpose  To assess the efficacy of radiomics features obtained by T2-weighted sequences to predict clinical outcomes fol-
lowing liver resection in colorectal liver metastases patients.
Methods  This retrospective analysis was approved by the local Ethical Committee board and radiological databases were 
interrogated, from January 2018 to May 2021, to select patients with liver metastases with pathological proof and MRI study 
in pre-surgical setting. The cohort of patients included a training set and an external validation set. The internal training 
set included 51 patients with 61 years of median age and 121 liver metastases. The validation cohort consisted a total of 30 
patients with single lesion with 60 years of median age. For each volume of interest, 851 radiomics features were extracted 
as median values using PyRadiomics. Nonparametric test, intraclass correlation, receiver operating characteristic (ROC) 
analysis, linear regression modelling and pattern recognition methods (support vector machine (SVM), k-nearest neighbours 
(KNN), artificial neural network (NNET) and decision tree (DT)) were considered.
Results  The best predictor to discriminate expansive versus infiltrative front of tumour growth was obtained by wavelet_
LHL_gldm_DependenceNonUniformityNormalized with an accuracy of 82%; to discriminate high grade versus low grade or 
absent was the wavelet_LLH_glcm_Imc1 with accuracy of 88%; to differentiate the mucinous type of tumour was the wave-
let_LLH_glcm_JointEntropy with accuracy of 92% while to identify tumour recurrence was the wavelet_LLL_glcm_Cor-
relation with accuracy of 85%. Linear regression model increased the performance obtained with respect to the univariate 
analysis exclusively in the discrimination of expansive versus infiltrative front of tumour growth reaching an accuracy of 
90%, a sensitivity of 95% and a specificity of 80%. Considering significant texture metrics tested with pattern recognition 
approaches, the best performance was reached by the KNN in the discrimination of the tumour budding considering the four 
textural predictors obtaining an accuracy of 93%, a sensitivity of 81% and a specificity of 97%.
Conclusions  Ours results confirmed the capacity of radiomics to identify as biomarkers, several prognostic features that 
could affect the treatment choice in patients with liver metastases, in order to obtain a more personalized approach.
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Introduction

Colorectal cancer (CRC) is one of the most habitually 
diagnosed tumour worldwide and metastatic disease is 
the main cause of death for patients with CRC. The liver 
is the most common site of distant metastases. A proper 
identification and characterization of liver lesions allows 
a better patients selection to avoid unnecessary treatment, 
so that the radiologist plays a crucial role in the multidis-
ciplinary team of colorectal patients with liver metastases 
[1, 2]. Although computed tomography (CT) is usually the 
diagnostic method utilized for staging and surveillance, 
magnetic resonance imaging (MRI) is the main appreci-
ated diagnostic tool in liver assessment thanks to its ability 
to provide morphological and functional data that improve 
the lesion characterization [1.2]. Radiomics is an encour-
aging field that explores medical images to acquire quanti-
tative data that could be utilized as biomarkers to evaluate 
pathological processes at microscopic levels in order to 
increase diagnostic, prognostic and predictive accuracy 
in oncological setting [1–8]. The primary endo-point of 
radiomics is to improve the detection rate of tumours, 
which is accompanied by the need for a correct estimate 
of the prognosis and the identification of patients who are 
responsive to a specific treatment [9–14]. In this context, 
radiomic is conceived to be applied in decision support 
of precision medicine, using standard of care images that 
are routinely acquired in clinical practice, without bur-
dening the costs of a radiological examination, both for 
patients and for health facilities [15–18]. Moreover, this 
tool, providing prognostic and/or predictive biomarker, 
offers a low-cost and repeatable instrument for longitudi-
nal observing [19, 20].

Radiogenomics, that is the correlation of radiomics with 
patient molecular data, improves treatment, in the view of 
medicine adapted to the patient. Even if several studies 
have evaluated the radiogenomics in hepatocellular car-
cinoma, only few researches have assessed the radiomics 
in colorectal cancer liver metastases [1–3]. Imaging plays 
a crucial role in the management of patients with liver 
metastases having to guarantee not only an early diagno-
sis, but also a correct assessment post therapy, in order to 
avoid treatments that are harmful [21–24]. Although com-
puted tomography (CT) is the diagnostic tool most often 
used during staging and follow-up, magnetic resonance 
imaging (MRI) is the only technique that allows to assess 
morphological and functional data of lesions, providing 
quantitative data that increase the characterization and the 
assessment after treatment [21–24].

In this setting, the opportunity to correlate radiom-
ics data obtained by MRI to recurrence, mutational sta-
tus, pathological characteristics (mucinous and tumour 

budding) and surgical resection margin offers significant 
benefits with respect to qualitative assessment, allowing 
useful treatment selection in the perspective of person-
alized medicine. In the present study, we assessed the 
efficacy of radiomics features obtained by conventional 
T2-weighted (W) sequences-MRI to predict clinical out-
comes following liver resection in colorectal liver metas-
tases patients.

Materials and methods

Dataset characteristics

Local Ethical Committee board accepted this retrospective 
study renouncing to the patient consent signature for nature 
of the study.

Patient selection was made from January 2018 to May 
2021 considering the following inclusion criteria: (1) liver 
pathological proven metastases; (2) MRI study of high qual-
ity in pre-surgical setting and (3) a follow-up CT scan of at 
least six months after surgery. The exclusion criteria were: 
(1) discordance among the imaging diagnosis and the patho-
logically ones, (2) no MRI studies. An external validation 
patient dataset was considered using data from “Careggi 
Hospital”, Florence, Italy. Therefore, the patient cohort 
included a training set and an external validation set. The 
internal training set included 51 patients (18 women and 33 
men) with 61 years of median age (range 35–82 years) and 
121 liver metastases. The external patient cohort consisted 
of 30 patients with single lesion (10 women and 20 men) 
with 60 years of median age (range 40–78 years).

As prognostic features we considered data obtained by 
pathological lesions assessment: (1) front of tumour growth: 
expansive versus infiltrative; (2) tumour budding: high grade 
versus low grade or absent; (3) mucinous type and clinical 
data obtained by follow-up; and 4) presence of recurrence.

The characteristics of the patients and their metastases 
are summarized in Table 1.

MR imaging protocol and images post‑processing

A Magnetom Symphony (Siemens, Erlangen, Germany) and 
Magnetom Aera (Siemens) equipped with an eight-element 
body and phased array coils were used to acquire MRI study 
protocol that includes breath-hold fat-saturated and not fat-
saturated T2-weighted (T2-W) turbo spin-echo sequence, 
in- and opposed-phase T1-weighted (T1-W) gradient-
echo sequence and fat-saturated (FS) T1-W gradient-echo 
sequence before and after contrast agent injection.

In this study, the radiomic features extraction was made 
considering the SPACE (sampling perfection with applica-
tion-optimized contrasts using different flip angle evolution) 
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fat suppressed sequences. Detailed data regarding the MR 
imaging parameters are summarized in Table 2.

Regions of interest (ROIs) were manually drawn slice-by-
slice on SPACE images by two expert radiologists with 22 
and 15 years of abdominal imaging experience, first sepa-
rately and then together and in accordance with each other. 
Radiomics features were extracted as median values by the 
volumes of interest obtained by the consensus of two radi-
ologists. No registration techniques to decrease movements 
artefacts were applied; however, the use of median value of 
metrics reduce the influence by artefacts.

The ROIs definition was made using segmentation tool 
of 3DSlicer [https://​www.​slicer.​org/].

Radiomic Features were extracted using PyRadiomics 
[https://​pyrad​iomics.​readt​hedocs.​io/​en/​latest/​featu​res.​html] 
that includes First Order Statistics (19 features); Shape-
based (3D) (16 features); Shape-based (2D) (10 features); 
Gray Level Cooccurence Matrix (24 features); Gray Level 
Run Length Matrix (16 features); Gray Level Size Zone 
Matrix (16 features); Neighbouring Gray Tone Difference 
Matrix (5 features); Gray Level Dependence Matrix (14 
features).

The features are calculated according to the definitions 
of the Imaging Biomarker Standardization Initiative (IBSI). 
Details about radiomics features are reported in [https://​readt​
hedocs.​org/​proje​cts/​pyrad​iomics/​downl​oads/] [22, 25].

Statistical analysis

Univariate and multivariate analysis were performed using 
the Statistics and Machine Learning Toolbox of MATLAB 
R2021b (MathWorks, Natick, MA, USA).

The assessment of observer variability was made calcu-
lating the intraclass correlation coefficient. The nonpara-
metric Kruskal–Wallis test was performed to identify dif-
ferences statistically significant among clinical parameters 
and radiomic metrics of two groups (front of tumour growth: 
expansive versus infiltrative; tumour budding: high grade 
versus low grade or absent; mucinous type; and presence 
of recurrence).

Receiver operating characteristic (ROC) analysis was 
made and the Youden index was used to individuate the opti-
mal cut-off value for each feature and area under the ROC 
curve (AUC), sensitivity, positive predictive value (PPV), 
negative predictive value (NPV) and accuracy. McNemar 
test was used to demonstrate difference statistically signifi-
cant in the performance results of dichotomy tables. A p 
value < 0.05 was considered as significant for each statisti-
cal test.

Table 1   Characteristics of the study population (81 patients)

Patient description Numbers (%)/range

Gender Men 53 (65.4%)
Women 28 (34.6%)

Age 61 y; range: 35–82 y
Primary cancer site
 Colon 52 (64.2%)
 Rectum 29 (35.8%)

Prior chemotherapy 81 (100%)
 Hepatic metastases description
 Patients with single nodule 52 (64.2%)
 Patients with multiple nodules 29 (35.8%)/range: 2–13 metastases
 Nodule size (mm) Mean size 36.4 mm; range 

7–58 mm
Front of tumour growth
 Expansive 30 (37.0%)
 Infiltrative 51 (63.0%)

Tumour budding
 Absent 12 (14.8%)
 Low grade 14 (17.3%)
 High grade 55 (67.9%)

Mucinous carcinoma 25 (30.9%)
Recurrence 19 (23.5%)
RAS mutation 42 (51.9%)

Table 2   MR Sequence parameters

TR = Repetition time, TE = Echo time, FA = Flip angle, AT = Acquisition time, ST = Slice thickness, FS = Fat suppression, SPAIR = Spectral adi-
abatic inversion recovery, HASTE = Half Fourier single-shot turbo spin-echo, SPACE = Sampling perfection with application-optimized con-
trasts using different flip angle evolution

Sequence Orientation TR/TE/FA (ms/ms/deg.) AT (min) Acquisition matrix ST/Gap (mm) FS

Trufisp T2-W Coronal 4.30/2.15/80 0.46 512 × 512 4 / 0 Without
HASTE T2-W Axial 1500/90/170 0.36 320 × 320 5 / 0 Without 

and with 
(SPAIR)

HASTE T2w Coronal 1500/92/170 0.38 320 × 320 5 / 0 Without
SPACE T2W FS Axial 4471/259/120 4.20 384 × 450 3/0 With (SPAIR)
In–Out phase T1-W Axial 160/2.35/70 0.33 256 × 192 5 / 0 Without
Vibe T1-W Axial 4.80/1.76/12 0.18 320 × 260 3 / 0 With (SPAIR)

https://www.slicer.org/
https://pyradiomics.readthedocs.io/en/latest/features.html
https://readthedocs.org/projects/pyradiomics/downloads/
https://readthedocs.org/projects/pyradiomics/downloads/
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To identify the combinations of variables with the 
best results in the prediction of the clinical outcomes, a 
multivariate analysis was performed. Clinical outcome 
considered were: (1) front of tumour growth: expansive 
versus infiltrative; (2) tumour budding: high grade versus 
low grade or absent; (3) mucinous type; and (4) presence 
of recurrence.

A first selection of variables was made based on the 
results obtained from the univariate analysis considering 
only the features that at univariate analysis had an accu-
racy superior a threshold reported in Table 3.

A linear regression modelling was used to assess the 
best linear model of textural features considered as pre-
dictors for each outcome. ROC analysis with Youden 
index was used to identify the optimal cut-off value of 
the linear model and to obtain sensitivity, specificity, PPV 
and NPV.

Moreover, pattern recognition methods include sup-
port vector machine (SVM), k-nearest neighbours (KNN), 
artificial neural network (NNET), and decision tree (DT). 
The best model was chosen considering the highest area 
under ROC curve and highest accuracy. A 10-k fold cross 
validation approach was used to individuate the best 
classifier on the training set while the external valida-
tion cohort was used to validate the findings of the best 
classifier.

Results

The median value of intraclass correlation coefficients for 
features was 0.91 (range 0.86–0.95).

Among significant features to differentiate the front of 
tumour growth, 15 textural parameters obtained an accu-
racy ≥ 70% (Table 4). The best performance to discriminate 
expansive versus infiltrative front of tumour growth was 
obtained by wavelet_LHL_gldm_DependenceNonUniformi-
tyNormalized with accuracy of 82%, a sensitivity of 99%, a 
specificity of 53% and a PPV and a NPV of 78% and 96%, 
respectively, with a cut-off value of 0.06.

Among significant features to differentiate the tumour 
budding, four textural parameters obtained an accu-
racy ≥ 85% (Table 4). The best performance to discrimi-
nate high grade versus low grade or absent was the wave-
let_LLH_glcm_Imc1 with accuracy of 88%, a sensitivity of 
93%, a specificity of 71% and a PPV and a NPV of 90% and 
79%, respectively, with a cut-off value of -0.14.

Among significant features to differentiate the mucinous 
type of tumour, 15 textural parameters obtained an accu-
racy ≥ 87% (Table 4). The best performance to differentiate 
the mucinous type of tumour was obtained by the wavelet_
LLH_glcm_JointEntropy with accuracy of 92%, a sensitivity 
of 83%, a specificity of 94% and a PPV and a NPV of 78% 
and 95%, respectively, with a cut-off value of 4.61.

Table 3   (Sub)datasets, variables 
selection criteria and predictors 
combinations

Outcome variable Predictors used in 
multivariate analysis

Accuracy threshold on univariate analy-
sis in order to perform a feature selection

Dataset 1 Front of tumour growth 15 radiomic metrics  ≥ 0.70
Dataset 2 Tumour budding 4 radiomic metrics  ≥ 0.85
Dataset 3 Mucinous type 15 radiomic metrics  ≥ 0.87
Dataset 4 Recurrence presence 6 radiomic metrics  ≥ 0.80

Table 4   Findings by univariate analysis with ROC performance results

The best predictors at Uni-
variate analysis

Respect to tumour growth front Respect to tumour budding Respect to muci-
nous type

Respect to 
recur-
rences

Wavelet_LHL_gldm_DependenceNon-
UniformityNormalized

Wavelet_LLH_glcm_Imc1 Wavelet_LLH_
glcm_JointEntropy

Wave-
let_LLL_
glcm_Cor-
relation

AUC​ 0.67 0.77 0.85 0.63
Sensitivity 0.99 0.93 0.83 0.52
Specificity 0.53 0.71 0.94 0.97
PPV 0.78 0.90 0.78 0.84
NPV 0.96 0.79 0.95 0.85
Accuracy 0.82 0.88 0.92 0.85
Cut-off 0.06 -0.14 4.61 0.88
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Among significant features to identify tumour recur-
rence, six textural parameters obtained an accuracy ≥ 80% 
(Table 4). The best performance to identify tumour recur-
rence was obtained by the wavelet_LLL_glcm_Correlation 
with accuracy of 85%, a sensitivity of 52%, a specificity of 
97% and a PPV and a NPV of 84% and 85%, respectively, 
with a cut-off value of 0.88.

Linear regression model increased the performance 
obtained with respect to the univariate analysis exclusively 
in the discrimination of expansive versus infiltrative front of 
tumour growth while for the other predictions the univari-
ate analysis obtained the highest accuracy (see Tables 5 and 
6, Fig. 1). In the discrimination of the of expansive versus 
infiltrative front of tumour growth the linear model of the 
15 predictors reached an accuracy of 90%, a sensitivity of 
95%, a specificity of 80% and a PPV 89% and NPV of 90%, 
respectively.

Considering significant texture metrics tested with pat-
tern recognition approaches, the best performance for the 
identification of the front of tumour growth was reached by 
a decision tree while for the discrimination of tumour bud-
ding, mucinous type and presence of recurrence by a KNN 
(Table 5, Fig. 2). The best accuracy was reached by the KNN 

in the discrimination of the tumour budding considering the 
four textural predictors (original_glcm_Idn; wavelet_HLL_
glcm_InverseVariance; wavelet_LHL_gldm_Dependen-
ceNonUniformityNormalized; wavelet_LLH_glcm_Imc1): 
(AUC of 0.93; an accuracy of 93%; sensitivity of 81%; and 
a specificity of 97%).

Significant difference in terms of accuracy among uni-
variate and multivariate analysis was obtained only in the 
prediction of tumour growth front both considering linear 
model and the decision tree and in the prediction of tumour 
budding considering the KNN compared to the accuracy 
obtained by the single best predictor at the univariate analy-
sis (p value < 0.05 at McNemar test).

Discussion and Conclusions

The present study demonstrated that radiomics analysis 
can be identified as biomarkers, several features that could 
impact on the therapeutic choice in colorectal liver metas-
tases patients. Our data were verified by external validation 
dataset.

Table 5   Linear regression and pattern recognition analysis with significant features

Linear regression with predictors 
identified at univariate analysis

AUC​ Sensitivity Specificity PPV NPV Accuracy Cut-off

Linear model respect to the tumour 
growth front

0.90 0.95 0.80 0.89 0.90 0.90 1.51

Linear model respect to the tumour 
budding

0.80 0.79 0.87 0.95 0.59 0.81 0.73

Linear model respect to the muci-
nous type

0.96 0.92 0.95 0.83 0.98 0.94 0.26

Linear model respect to the recur-
rence presence

0.66 0.87 0.50 0.38 0.92 0.60 0.18

Pattern recognition analysis 
with predictors identified at 
univariate analysis

Dataset AUC​ Accuracy Sensitivity Specificity Train-
ing time 
[sec]

Settings of model

Decision tree Training set 0.9 89.3 84 92 11.1 Fine Tree; Maximum number 
of splits:100; split criterion: 
Gini's diversity index; opti-
mizer options: Hyperparameter 
options disabled

Validation set 0.88 86.1 86 86
KNN Training set 0.93 92.6 81 97 8.9 Weighted KNN; number of 

neighbours:10; distance 
metric: Euclidean; distance 
weight: squared inverse

Validation set 0.86 91.7 67 100
Training set 0.92 89.3 96 65 3.2
Validation set 0.83 88.9 93 71
Training set 0.84 90.1 95 73 2.5
Validation set 0.9 91.7 93 87
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Fig. 1   ROC curves of linear regression analysis respect to the tumour growth front (A), the tumour budding (B), the tumour mucinous type (C) 
and the recurrence presence (D)

Table 6   Linear regression 
model parameters with respect 
to the tumour growth front

Features Coefficients P value

Intercept  − 10.99 0.01
Original_shape_SurfaceVolumeRatio  − 1.13 0.24
Wavelet_HLL_glcm_InverseVariance 13.96 0.01
Wavelet_HLL_firstorder_Median 0.14 0.06
Wavelet_HLL_glrlm_ShortRunEmphasis 38.72 0.00
Wavelet_HLL_glrlm_RunPercentage  − 38.39 0.00
Wavelet_LHL_gldm_DependenceNonUniformityNormalized  − 7.33 0.61
Wavelet_LHL_glcm_InverseVariance  − 3.19 0.51
Wavelet_LHL_firstorder_Kurtosis 0.01 0.04
Wavelet_LHL_glrlm_ShortRunEmphasis  − 24.29 0.21
Wavelet_LHL_glrlm_RunPercentage 46.40 0.00
Wavelet_LHL_glrlm_RunLengthNonUniformityNormalized  − 14.58 0.15
Wavelet_LLH_glcm_Imc1  − 0.31 0.87
Wavelet_LLL_firstorder_Uniformity 6.76 0.17
Wavelet_LLL_firstorder_Minimum 0.01 0.00
Wavelet_LLL_glrlm_GrayLevelNonUniformityNormalized  − 5.61 0.28
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We obtained a good performance considering the single 
textural significant metric in the identification of front of 
tumour growth (expansive versus infiltrative) and tumour 
budding (high grade versus low grade or absent), in the 
recognition of mucinous type and in the detection of 
recurrences.

With regard to the front of tumour growth, 15 textural 
parameters obtained an accuracy ≥ 70% and the best per-
formance was obtained by wavelet_LHL_gldm_Depend-
enceNonUniformityNormalized with accuracy of 82%, a 

sensitivity of 99%, a specificity of 53% and a PPV and a 
NPV of 78% and 96%, respectively, with a cut-off value 
of 0.06.

Regarding tumour budding, four textural parameters 
obtained an accuracy ≥ 85% and the best performance to 
discriminate high grade versus low grade or absent was the 
wavelet_LLH_glcm_Imc1 with accuracy of 88%, a sensitiv-
ity of 93%, a specificity of 71% and a PPV and a NPV of 
90% and 79%, respectively, with a cut-off value of −0.14.

Fig. 2   ROC curves of the best classifier respect to the tumour growth front (A), the tumour budding (B), the tumour mucinous type (C) and the 
recurrence presence (D)
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Among significant features to differentiate the mucinous 
type of tumour, 15 textural parameters obtained an accu-
racy ≥ 87%. The best performance was obtained by the wave-
let_LLH_glcm_JointEntropy with accuracy of 92%, a sen-
sitivity of 83%, a specificity of 94% and a PPV and a NPV 
of 78% and 95%, respectively, with a cut-off value of 4.61.

With regard to tumour recurrence, six textural param-
eters obtained an accuracy ≥ 80%. The best performance 
was obtained by the wavelet_LLL_glcm_Correlation with 
accuracy of 85%, a sensitivity of 52%, a specificity of 97% 
and a PPV and a NPV of 84% and 85%, respectively, with a 
cut-off value of 0.88.

Linear regression model increased the performance 
obtained with respect to the univariate analysis exclusively 
in the discrimination of expansive versus infiltrative front of 
tumour growth while for the other predictions the univariate 
analysis obtained the highest accuracy.

Several studies demonstrated the correlation between 
radiomics parameters and prognosis [26–39]. An association 
between homogeneity and worse overall survival (OS) was 
demonstrated by Andersen et al. [31]. According to Rah-
mim et al. radiomic parameters of heterogeneity obtained by 
FDG PET were predictors of lower OS [36]. Lubner et al. 
demonstrated that the degree of skewness was inversely 
correlated to KRAS while the entropy was related to OS 
[33]. In addition to the survival advantages, the possibility 
to predict recurrence in liver has been demonstrated [36–39]. 
According to our results, Ravanelli et al. related high CT 
uniformity and low OS and PFS in patients with CRC and 
liver metastasis [38].

Radiomics and radiogenomics are emerging tools with 
significant limits. The major limit is the heterogeneity of 
software employed in different studies, so as the variety of 
imaging devices in different clinics. This evidently ham-
pers the reading of different results in multicentre stud-
ies. In addition, the segmentation could affect the results 
[39–47].

The present study has several limitations: (1) the small 
population analysed, although the investigation was done 
on a homogeneous sample and on individual lesion; (2) the 
retrospective nature of the study; (3) a manual segmenta-
tion, that, although several researches support automatic 
segmentation to avoid inter-observer variability, in our 
opinion, the manual approach is more realistic. Moreover, 
we not assessed the impact of the different sequences as 
T1-W or diffusion weighted imaging so as the different 
phases of contrast study. Data that we plan to evaluate in 
a future study are shown in Table 6.

Ours results confirmed the capacity of radiomics 
to identify as biomarkers, several prognostic features 
that could affect the treatment choice in patients with 
liver metastases, in order to obtain a more personal-
ized approach. These results were confirmed by external 

validation dataset. We obtained a good performance con-
sidering the single textural significant metric in the identi-
fication of front of tumour growth (expansive versus infil-
trative) and tumour budding (high grade versus low grade 
or absent), in the identification of mucinous type and in 
the detection of recurrences.
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