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Abstract
Artificial intelligence (AI) is entering the clinical arena, and in the early stage, its implementation will be focused on the 
automatization tasks, improving diagnostic accuracy and reducing reading time. Many studies investigate the potential role 
of AI to support cardiac radiologist in their day-to-day tasks, assisting in segmentation, quantification, and reporting tasks. 
In addition, AI algorithms can be also utilized to optimize image reconstruction and image quality. Since these algorithms 
will play an important role in the field of cardiac radiology, it is increasingly important for radiologists to be familiar with 
the potential applications of AI. The main focus of this article is to provide an overview of cardiac-related AI applications 
for CT and MRI studies, as well as non-imaging-based applications for reporting and image optimization.
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Introduction

The concept of artificial intelligence (AI) has first been 
mentioned in the 1950s [1, 2]. The field of AI has made 
tremendous progress since then, especially in the last few 
decades due to technological innovations in computing 
power and increased availability of data. Along with these 
technological developments, there has been a significant 
increase in attention to AI research and development by 
government, academic, and private sectors resulting in an 
increase in investment of resources [3–7]. In recent years, 
the medical community has joined these efforts to develop 
and implement AI applications for medical-related purposes. 
Radiology has especially proven to be an excellent field for 
AI applications, with one of its major focuses being pattern 
recognition. AI is well on its way to become an integral 
part of daily clinical practice and has the ability to reduce 

workload and cost while increasing efficiency and improv-
ing patient care.

Within radiology, and especially cardiac radiology, there 
has been a steep increase in the volume of radiological 
imaging exams per day. The clinical acceptance and rec-
ommendations for the standardized use of coronary com-
puted tomography angiography (CCTA), calcium scoring, 
and interest in screening programs [8–14] are expected to 
further increase the number of cardiac examinations. This 
increased workload puts a heavy demand on the radiologist, 
where studies estimate that an average radiologist may have 
to interpret up to one image every 3–4 s over an 8-h workday 
[15, 16].

Current cardiac AI applications are mostly designed to 
be integrated in the current radiology workflow, with the 
main goal being to assist radiologists with routine tasks, 
reducing workload, and increasing efficiency of patient care. 
Recently, a variety of studies have been published on AI 
applications for cardiac imaging purposes. AI can offer solu-
tions for several parts of the imaging workflow, see Fig. 1. 
While AI-based applications can play a role in many differ-
ent steps of the radiology workflow, currently they cannot 
simply replace it a radiologist entirely. Dependent on the 
application, human support or supervision is needed [17].

This article will provide an overview of cardiac-related 
AI applications for analysis of CT and MRI images, as 
well as some general applications for reporting and image 
optimization. The main focus of this article is to give an 
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overview of the status of AI in the field of cardiac imaging 
in order to pave the road to clinical implementation of these 
applications.

Basic AI principles

To optimally understand the function of AI applications, 
some basic knowledge of the core pillars of AI is highly 
desired. The core ingredients of AI are computing resources 
and infrastructure, data, and algorithms.

Computing resources and infrastructure

The amount of computational power available for AI devel-
opment and training has doubled every 3.4 months since 
2012 [18]. The development of the field of AI has been 
made possible by the availability of faster CPUs, the use of 
graphics processing units (GPU), and overall better software 
infrastructure for distributed computing. In addition, when 
on-site computing power is not available, cloud computing 
services are now available for off-site training.

Data

In order to create clinically relevant AI algorithms, it is essen-
tial to have access to large datasets. Particularly imaging-
related tasks require large amounts of data to reach good 
accuracy. The ideal dataset should include data from all manu-
facturers, scanner systems, and clinical settings (e.g., hospitals 
and outpatient imaging centers) and be a good representation 
of the clinical population to allow for generalization over mul-
tiple centers, cities, and countries. For the training phase, it 
is essential that these images are labeled according to their 

reference standard. Currently, there are no specific guidelines 
for this labeling process.

Ideally, a training, validation, and test set is used for AI 
application development. The training dataset is used to 
learn the parameters of the algorithm and form the general 
structure of the algorithm. After training the algorithm, the 
validation set is used to optimize the learning behavior of the 
algorithm. The test set is used to evaluate the performance of 
the optimized algorithm. Often only a training and test set is 
used, where 70–80% is used for model training (training and 
validation set combined) and 20–30% is used for performance 
evaluation. It is essential that the test set is independent of 
the data used for training and validation without overlapping 
observations [19].

Algorithms

A term commonly used in AI-related research is machine 
learning (ML), which refers to the ability of machines to 
“learn.” In recent years, the term deep learning (DL) has been 
introduced in the field of AI. DL itself can be considered as a 
subset of ML. DL is the next step in the evolution of AI, devel-
oped to accomplish ML. ML requires features to be manually 
provided to the algorithms, whereas DL can automatically cre-
ate these features. DL approaches require considerably larger 
amounts of data and computing power. For a more elaborate 
overview of AI algorithms, tasks, and development, we refer 
to the following review paper [20].

Fig. 1  Simplified schematic 
overview of the radiology work-
flow where AI applications offer 
assistance
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Non‑imaging applications

Workflow and image reconstruction

Several AI algorithms have been developed with the main 
goal of optimizing image quality and reconstruction. In 
these algorithms, a diagnostic-quality or “clean” data sam-
ple is the desired output, while a corrupted data sample is 
given as input.

Image reconstruction applications utilizing AI can opti-
mize image quality from images taken with lower quality 
settings (e.g., a low-dose CT acquisition). For example, 
Wolterink et al. trained a generator convolutional neural 
network (CNN) to make image quality from low-dose 
CT images nearly equivalent to those of regular dose CT 
images with the use of an anthropomorphic phantom, non-
contrast cardiac CT images taken at 20% and 100% of 
normal radiation dose [21]. They showed excellent results 
and were able to perform accurate calcium analysis on the 
AI-reconstructed images. Shan et al. designed a modular-
ized neural network for the reconstruction of low-dose CT 
acquisitions and compared it with commercial iterative 
reconstruction methods from three leading CT vendors. 
Their study confirms that their AI approach performs 
either better or comparably in terms of noise suppression 
and structural fidelity and is much faster than commercial 
iterative reconstruction algorithms [22].

For cardiac magnetic resonance imaging (MRI), these 
algorithms mainly focus on the reconstruction of undersam-
pled images and the detection of corrupted or incorrectly 
segmented data. Qin et al. developed a convolutional recur-
rent neural network (CRNN) architecture which reconstructs 
high-quality cardiac MR images (cardiac cine MRI SSFP 
acquisitions) from highly undersampled k-space data, which 
outperformed current MRI reconstruction methods in terms 
of reconstruction accuracy and speed [23, 24] Using these 
types of AI applications may allow for substantially acceler-
ated cardiac MRI acquisitions.

In cardiac MRI, image quality and acquisition time are 
dependent on the ability to optimize acquisition parame-
ters according to the individual patient, which in turn helps 
prevent or reduce artifact from cardiac and respiratory 
motion. Tarroni et al. propose an AI-based quality control 
pipeline application for cardiac MRI, specifically validated 
on 2D cine SSFP short-axis images. Their algorithm per-
forms heart coverage estimation, inter-slice motion detec-
tion, and image contrast estimation in the cardiac region, 
which are all aspects important for quality control. The 
results show the capability to correctly detect incomplete 
or corrupted scans. This will allow timely exclusion of 
these scans and can trigger the need for a new acquisition 
within the same examination [25].

Reporting

With increasing imaging volumes and complexity, there is a 
significant clinical interest optimizing the reporting process 
in order to improve workflow efficiency. Thus, it reduces 
time spent on reporting.

Considering the increasing numbers of CCTA, and the 
high pretest probability showing that prevalence of coro-
nary artery disease (CAD) is extremely low [26–28], this 
will result in a huge number of could be negative for CCTA 
images for CAD evaluation. It would be beneficial to reduce 
the amount of time radiologist spends on reporting CCTA. 
Additionally, there is an increasing utilization of structured 
reporting for all modalities in order to improve communica-
tion to referring providers and management guidance. For 
this purpose, the Coronary Artery Disease-Reporting and 
Data System (CAD-RADS) was developed by the Society of 
Cardiovascular Computed Tomography (SCCT), the Ameri-
can College of Radiology (ACR), and the North American 
Society for Cardiovascular Imaging (NASCI) in 2016. CAD-
RADS has been endorsed by the American College of Car-
diology (ACC) [29].

Therefore, in the next future, we see and expect a further 
focus of AI application to optimize reporting and reduce 
time needed for this process.

Accordingly, research and development of AI applications 
aimed at optimizing CAD-RADS reporting have been pub-
lished. Muscogiuri et al. developed a deep learning-based 
AI algorithm allowing to discriminate patients without CAD 
(CAD-RADS 0) and patients with CAD (CAD-RADS > 0) in 
1.40 min. Results show an excellent performance with a sen-
sitivity, specificity, negative predictive value, positive pre-
dictive value, accuracy, and area under curve of 66%, 91%, 
92%, 63%, 86%, 89% [30]. Therefore, the authors speculate 
that in the future, this approach could be helpful in clinical 
practice allowing preselect CCTA acquisitions that need to 
be reported in detail for positive CAD findings [30].

Imaging applications

CT

Calcium scoring

Coronary artery calcium (CAC) scoring is a robust tech-
nique for CAD identification and risk stratification and is 
considered as an independent predictor of adverse cardio-
vascular events [31–36]. The amount of CAC volume can be 
quantified using the Agatston scoring method when applied 
to non-contrast ECG-gated coronary CT images. The CAC 
Agatston score increases with increased calcification vol-
ume and/or density [37]. Semiautomatic segmentation and 
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quantification of Agatston scores, calcium volume, and mass 
are a time-consuming process, but automatic quantification 
is not always accurate and reproducible [38]. Moreover, 
image quality can be deteriorated by image noise, motion 
artifacts, or blooming artifact from extensively calcified ves-
sels or devices. In total, the CAC scoring process is often 
a time-consuming process, making it an ideal candidate for 
time-saving AI applications.

Excellent results were reported in the study performed 
by Sandstedt et al. describing the application of AI-based 
automatic calcium score evaluation on non-contrast CT 
images, compared to semiautomatic software as references 
in 315 patients [39]. Excellent agreement was described for 
Agatston score, volume score, mass score, and the number 
of calcified coronary lesions with an ICC of 0.996, 0.996, 
0.991, and 0.977, respectively. Zhang et al. [40] described 
the application of a deep convolutional neural network 
(CNN) trained on CT images in a phantom study to cor-
rect motion artifacts. Three artificial calcified coronaries 
were installed in a moving robotic arm and Agatston score 
taken as output. An accuracy of 88.3 ± 4.9% was reported for 
heavy calcified plaques, and the sensitivity increased from 
65 to 85% for the detection of calcifications using this AI 
approach. Thus, CNN showed the ability to classify motion-
induced blurred images and correct calcium scores, reducing 
Agatston score variation. A study by Išgum et al. showed an 
automated method for coronary calcium detection for the 
automated risk assessment of CAD on non-contrast, ECG-
gated CT scans of the heart. They reported a detection rate of 
73.8% of coronary calcification. After a calcium score was 
calculated, 93.4% of patients were classified into the correct 
risk category [41].

Calcium score may be also used as an initial step for CAD 
distribution. Raw data from calcium score acquisitions were 
also used to predict the severity of plaque burden and to 
exclude the presence of obstructive plaques. From a training 
population of 435 patients with low-moderate risk of CAD, 
Glowacki et al. [42] created a gradient boosting machine 
(GBM) to predict obstructive CAD, validating the algorithm 
on a control population of 126 consecutive patients. Sensi-
tivity and a specificity of 100% and 69.8% were reported, 
while the NPV and PPV were 100% and 38%, respectively.

Although previous studies used dedicated calcium scor-
ing scans, with the increasing numbers of non-gated chest 
CT for lung cancer screening, several studies have shown 
the feasibility of CAC scoring in non-cardiac scans as well. 
Takx et al. applied a machine learning approach that iden-
tified coronary calcifications and calculated the Agatston 
score using a supervised pattern recognition system with 
k-nearest neighbor and support vector machine classifiers 
in low-dose, non-contrast enhanced, non-ECG-gated chest 
CT within a lung cancer screening program. Their results 
show that their fully automated CAC scoring algorithm was 

able to perform CAC scoring in non-gated chest CTs with 
acceptable reliability and agreement. However, the abso-
lute calcium volume was underestimated when compared 
to dedicated ECG-triggered CAC score acquisitions [43].

Additionally, calcium score quantification can be per-
formed on coronary CT angiography (CCTA) images using 
AI algorithms. Wolterink et al. [44] described a supervised 
learning method to directly identify and quantified calci-
fied plaques in 250 patients. Both calcium scoring CT and 
cardiac CT angiography (CCTA) acquisition were avail-
able. The first step was to create a bounding box algorithm 
employing a combination of three CNNs, each detecting 
the heart in a different orthogonal plane (axial, sagittal, 
coronal) on a training dataset of 50 patients. The remaining 
200 patients were divided into training (100) and valida-
tion (100) sets to evaluate the model for calcium detection. 
The best performance obtained a 72% sensitivity, whereas 
the interclass correlation between calcium scoring CT and 
CCTA was 0.944. This approach might reduce radiation 
exposure by deriving calcium information directly from CT 
angiographic acquisition.

A recent study by van Velzen et al. [45] evaluated the 
performance of a DL method, using two consecutive CNNs, 
for automatic calcium scoring across a wide range of CT 
examination types. The study included 7240 participants 
who underwent various types of non-enhanced cardiac/chest 
CT examinations including CAC scoring CT, PET attenu-
ation correction CT, radiation therapy treatment planning 
CT, and low-dose and standard-dose CT of the chest. They 
showed that, independent of the type of scan acquisition, 
their AI approach showed good correlation with manual 
CAC scoring, with ICC ranging between 0.79 and 0.97 
[45]. This study indicates that AI algorithms can assist in 
the quantification of coronary calcium in a clinical setting 
using a wide variety of Ct acquisitions, proving its clinical 
potential.

CCTA stenosis degree and plaque morphology

The role of CCTA in the evaluation of coronary stenosis has 
been extensively investigated both quantitatively and func-
tionally [46–50]. The analysis of CCTA scans for manifesta-
tions of coronary artery disease allows excellent visualiza-
tion of the coronary arteries with high spatial resolution, but 
nevertheless, its analysis can also be time-consuming and 
susceptible to inter-observer variability.

The recent development of AI-based algorithms in car-
diac applications, including plaque characterization, may 
accelerate the clinical implementation of quantitative auto-
mated imaging technology aiding the diagnosis and prog-
nosis of CAD.

The management of patient with CAD may differ based 
on plaque morphology and percent stenosis. Zreik et al. 
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used a 3D convolutional neural network to extract coronary 
artery features by using 98 patients for the training and 65 
patients for the validation sets [51]. Then, two simultane-
ous multi-class classification tasks were created to detect 
and characterize the type of the coronary artery plaque and 
determine the anatomical significance of stenosis, returning 
an accuracy of 0.77 and 0.80, respectively [51].

Utsunomiya and colleagues [52] used a random forest 
algorithm to identify the ischemia-related lesions. Differ-
ent quantitative features were analyzed, such as severity of 
stenosis, lesion length, CT attenuation value, and calcium 
quantification. These were all significantly associated with 
ischemia-related features on univariate analysis, whereas 
only severity of stenosis and lesion length were significantly 
associated with ischemia on a multivariate analysis, with an 
AUC of 0.95 for random forest analysis [52].

Kang et al. [53] developed an automated method for 
detecting coronary artery lesions, utilizing a two-step algo-
rithm that relied on support vector machines. The automated 
method was then used to detect coronary stenosis and com-
pared against three experienced readers in 42 CCTA data-
sets, showing promising results for coronary stenosis detec-
tion with a sensitivity, specificity, diagnostic accuracy, and 
AUC of 93%, 95%, 94%, and 0.94 [53].

ML-based approaches could reduce inter-operator vari-
ability in stenosis detection. Recently, Yoneyama et  al. 
investigated the detection of stenosis detection by using an 
artificial neural network (ANN) in a hybrid study combin-
ing CCTA and myocardial perfusion SPECT [54]. Results 
showed that the model was similar to an experienced reader 
in diagnostic accuracy, with a sensitivity and specificity of 
84.7% and 72.2%, respectively [54].

Besides the detection and quantification of coronary sten-
oses, plaque characterization parameters for the prediction of 
hemodynamical significance of stenosis are another applica-
tion that is highly time-consuming and operator-dependent. 
In a study by Hell et al., they utilized an AI-based software 
(AUTOPLAQ) to derive the contrast density difference 
(CDD), defined as the maximum percent difference of con-
trast densities within an individual lesion to help predict the 
hemodynamic relevance of a given coronary artery lesion 
[55]. They found that CDD was significantly increased in 
hemodynamically relevant lesions and could predict hemo-
dynamical significance of the lesions with a specificity of 
75% and negative predictive value of 73% when compared 
to invasive FFR. Using the same software, another group 
used imaging features provided to a LogitBoost algorithm 
to generate an integrated ischemia risk score to predict 
hemodynamic significance of coronary stenoses [56]. Their 
approach resulted in higher AUC (0.84) compared to manual 
CCTA analysis of individual features.

Another approach for the evaluation of stenosis signif-
icance was shown by Van Hamersvelt et al. [57]. In this 

study, the authors analyzed the myocardium for the detec-
tion of hemodynamically significant stenosis using FFR as 
a reference. The authors highlight the possibility to detect 
ischemia using a rest CCTA acquisition with high diagnostic 
accuracy compared to standard anatomical stenosis evalu-
ation on CCTA (AUC 0.76 vs. 0.68) [57]. This finding is 
interesting because it changes the paradigm of ischemia 
detection based on anatomical evaluation of coronaries using 
a rest CCTA acquisition.

Currently, several vendors are developing AI-based soft-
ware package for comprehensive cardiac CT evaluation, 
including CAC scoring and stenosis evaluation, see Fig. 2. 
Although vendor specific, these packages offer workflow 
integrated options for fully automated quantitative analysis.

CT‑FFR

Invasive fractional flow reserve (FFR) performed during 
invasive coronary angiography is considered the reference 
standard for assessing the hemodynamic significance of 
coronary lesions. FFR derived from CCTA images (CT-
FFR) is gaining an important role by providing anatomic and 
functional information in a single noninvasive examination 
[58–61]. In addition, CT-FFR, in combination with plaque 
morphology and composition, can add additional diagnostic 
value [62, 63].

Recently, novel approaches utilizing AI methods for 
the computation of CT-FFR based have been described as 
“machine-learning based” CT-FFR (CT-FFRML), see Fig. 3 
[63–66]. Initial results of CT-FFRML were described in the 
retrospective multicenter MACHINE registry study, where 
a machine learning approach was performed on 525 ves-
sels from 5 sites in the USA, Europe, and Asia. The results 
showed higher diagnostic accuracy and sensitivity of CT-
FFR compared to CCTA alone (78% vs 58% and 76% vs 
38%, respectively) [66]. After the MACHINE registry 
results were published, several studies investigated the 
potential application of CT-FFRML. One such study from 
Tesche et al. [63] compared CT-FFRML to coronary CT 
angiography and quantitative coronary angiography (QCA), 
showing a per-lesion sensitivity and specificity of 79% and 
94%, respectively. Von Knebel Doeberitz et al. [67] aimed 
at investigating the deep machine learning-based fractional 
flow reserve to identify lesion-specific ischemia using inva-
sive FFR as the reference standard. One-hundred and three 
plaques were identified, and of these, 32/103 (31.1%) lesions 
were hemodynamically significant. A CT-FFRML of ≤ 0.80 
was significantly associated with lesion-specific ischemia 
(OR 0.81, p < 0.01), returning an AUC of 0.89 to discrimi-
nate significant from nonsignificant plaques, with a sensitiv-
ity, specificity, PPV, and NPV of 82%, 94%, 88%, and 92%, 
respectively.
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A machine learning approach may also guide therapeu-
tic decision-making and correlate with patient outcomes. 
Qiao et al. [68] investigated the impact of CT-FFRML on 
treatment decision and patient outcomes in 1121 consecu-
tive patients and showed a superior prognostic value of CT-
FFRML for severe stenosis (HR, 6.84, p < 0.001) compared 
to CCTA (HR 1.47, p = 0.045) and ICA (HR 1.84, p = 0.002). 

In addition, a change in the proposed therapeutic manage-
ment was seen in 167 patients (14.9%) after CT-FFRML 
results, concluding that CT-FFRML may guide therapeu-
tic decision-making and potentially improving the utiliza-
tion of ICA [68]. Following these results, Kurata et al. [69] 
demonstrated the improved diagnostic accuracy of machine 
learning CT-FFR compared to standard CCTA from 66 to 
85% [30]. From a per-vessel analysis, AUC was significantly 
greater for CT-FFR than for CCTA stenosis ≥ 50% or ≥ 70% 
[69].

Combining CT-FFR with machine learning provides ana-
tomical and functional information that may increase diag-
nostic accuracy for hemodynamically significant stenoses 
and CAD severity in a single noninvasive test. It should be 
mentioned that AI-based CT-FFR is currently only used as 
prototypes in a research setting and is mostly vendor spe-
cific, hampering widespread use. The use of a local soft-
ware solution allows for user-variation and can influence per 
center accuracy, depending on user experience.

Prognosis

Besides quantification and automatization tasks, AI can also 
play a role in the prognostication of cardiovascular outcomes 

Fig. 2  Comprehensive AI analysis of cardiac CT images including coronary calcium scoring (left), and automatic quantitative stenosis (right top 
and bottom) analysis using AI software from Siemens Healthineers

Fig. 3  Example of CT derived FFR using AI (Siemens CT-FFR pro-
totype). The left CCTA image shows a LAD lesion corresponding to 
a significant drop in CT-FFR (0.54)
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based on imaging data combined with clinically available 
risk predictors.

Motwani et al. [70] evaluated an AI-based approach for 
prognostication in a large population consisting of 10,030 
patients with suspected CAD who underwent CCTA imag-
ing and 5-year follow-up, with mortality as a main outcome 
of interest. Selected clinical and imaging parameters were 
used in an iterative LogitBoost algorithm to generate a 
regression model. Their AI-based prediction method showed 
higher AUC (0.79) compared to the Framingham Risk Score 
(0.61) or CCTA severity scores alone (0.62–0.64) in the pre-
diction of 5-year mortality rate. Van Rosendael et al. [71] 
used the multicenter CONFIRM registry, which included 
8844 patients with complete CCTA risk score information 
and at least 3-year follow-up for myocardial infarction and 
death. A boosted ensemble method was used to predict mor-
tality using multiple CCTA risk scores. The AUC was sig-
nificantly better for the AI-based approach (0.77) compared 
to individual risk scores (ranging from 0.69 to 0.70).

MRI

Function

Cardiac MRI (CMR) function parameters are proven to serve 
an important role in a wide variety of settings for patients 
suffering from various cardiac diseases [72–76]. Cine 
images are considered fundamental sequences in CMR and 
allow evaluation of wall motion abnormalities, myocardial 
thickness, and ventricular volumes [73, 74, 77, 78]. Com-
monly, biventricular function is calculated by transferring 
the images to an offline workstation and manually segment-
ing the endocardial and epicardial borders [79]. However, 
this approach is extremely time-consuming, often requir-
ing 20–30 min for each patient [80, 81]. Semi-automated 
segmentation and training programs aim to increase the 
reader’s efficiency and reduce inter-operator variability [80, 
81]. There has been significant development in semi-auto-
mated and fully automated methods for analyzing cine CMR 
images [82–87].

In order to choose the best AI approach for automatic seg-
mentation, several recent competitions have been conducted 
[88]. For example, during the “Automatic Cardiac Diagnosis 
Challenge” (ACDC) that took place during the 20th Interna-
tional Conference on Medical Image Computing and Com-
puter Assisted Intervention (MICCAI), Isensee et al. [89] 
developed a 2D and three-dimensional (3D) U-net model 
that had the highest Dice coefficients for diastole of the left 
ventricle (0.96), right ventricle (0.94), and myocardium 
(0.90) in diastole and systole (0.89 – 0.93) [46]. Using the 
ACDC data, Bernard et al. [88] tested deep learning methods 
provided by nine separate research groups for the segmen-
tation task and four groups for the classification task. The 

results showed that the highest performing methods included 
a 0.97 correlation score for the automatic extraction of clini-
cal indices. However, they also mention that although the 
results obtained on the LV are competitive, the results for 
the right ventricle and the myocardium are still sub-optimal 
[88].

Despite the high accuracy of the methods tested during 
the MICCAI competitions, one of the major limitations is 
represented by the small sample size used for training of 
segmentation networks [88]. This main limitation during the 
MICCAI competitions was overcome by Bai et al. [90], who 
trained a segmentation CNN using the UK Biobank data. 
This large dataset allowed them to train a fully convolu-
tional network (FCN) on cine images of 4875 patients [90]. 
The FCN was obtained by manually drawing the ventricular 
contours and then exporting the annotations as XML (eXten-
sible Markup Language) files. A pixel-wise FCN image seg-
mentation method was trained and tested on 600 patients. 
These authors demonstrated high DICE coefficients for the 
left ventricle cavity (0.94), left ventricular myocardium 
(0.88), and right ventricle (0.90) [90]. Interestingly, a head-
to-head comparison of the trained FCN and manual seg-
mentation showed a difference between the two approaches 
in terms of left ventricle end-diastolic volume, left ventricle 
end-systolic volume, left ventricular mass, right end-dias-
tolic volume, and end-systolic volume (6.1 ml, 5.3 ml, 6.9 
grams, 8.5 ml, and 6.2 ml, respectively) [90].

A study by Tao et al. showed that a CNN, depending 
on dataset heterogeneity, is able to quantify LV function 
parameters with high accuracy compared to experts with a 
correlation of 0.98 and an average perpendicular distance of 
approximately 1 mm, which was comparable to intra- and 
inter-observer variability [91]. In this multivendor, multi-
center study, increasing the variability of the dataset dur-
ing the training phase increased the generalizability of the 
algorithms performance.

Regardless of the strategies adopted for the aforemen-
tioned methods, the common aim of these AI applications is 
to shorten reporting time without loss of diagnostic accuracy 
or reproducibility (Fig. 4).

Tissue characterization

Reliable tissue characterization represents one of the main 
advantages of CMR [92–94]. During recent years, tissue 
characterization with cardiac MRI was strictly confined to 
T1 or T2 black blood images and late gadolinium enhance-
ment (LGE) sequences [95–99]. T1 black blood (T1BB) 
images are useful for tissue characterization of cardiac 
masses and evaluation of myocardial fibrofatty infiltration 
or replacement [100, 101], while T2 black blood (T2BB) 
sequences are more often used for depiction of water content 
in cardiac masses or damaged myocardium [101, 102]. LGE 
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images are acquired 10–15 min after the administration of 
gadolinium-based contrast material [103, 104]. In appro-
priately acquired LGE images, the normal myocardium is 
black, the normal blood pool is bright, and damaged myocar-
dium shows enhancement. The latter reflects a slow accumu-
lation of gadolinium contrast agent in the damaged tissues 
and could be the expression of replacement fibrosis [105].

Despite the clinical adaptation of T1BB and T2BB 
sequences, these sequences are becoming less used. The 
major issues regarding the T1BB and T2BB sequences are 
their qualitative analysis of myocardial tissue abnormalities 
[95]. T1 mapping and T2 mapping techniques overcame this 
issue, providing a quantitative approach for myocardial tis-
sue characterization [95, 96, 106, 107]. Increased values of 
native T1 mapping can reflect an increase in extracellular 
space (amyloidosis, acute inflammation, replacement fibro-
sis), while decreases in native T1 mapping values are associ-
ated with myocardial diseases such as Fabry’s disease or iron 
overload [108]. Conversely, increased values of T2 mapping 
are extremely specific and sensitive for edema [109].

In some specific cardiomyopathies, the quantification of 
LGE could play a key role in determining their prognosis 
[110]; therefore, a correct quantification could be fundamen-
tal. Several strategies have been developed for accurate LGE 
quantification; however, all currently used strategies require 
manual segmentation and consequently a time-consuming 
approach.

The application of AI for tissue characterization is mainly 
focused on reducing the time of analysis and improving 
quantitation by optimizing the image acquisition and reduc-
ing artifacts [111–115]. Focusing on LGE quantification, 

Zabihollahy et al. [116] developed an algorithm based on 
3D CNN for segmentation of 3D LGE in the left ventri-
cle. The authors compared the results obtained from AI 
with manual segmentation, and they found a Dice similar-
ity coefficient (DSC) of 0.94 [116], confirming that a 3D 
CNN approach and manual segmentation provide similar 
results [116]. Moccia et al. [112] also developed two fully 
convolutional networks for automated LGE segmentation in 
an ischemic population. The authors, comparing the FCN 
with segmentation, found sensitivity, specificity, accuracy, 
and DSC of 88.1%, 97.9%, 96.8%, and 71.3%, respectively 
[112]. Another interesting approach of AI for LGE evalua-
tion has been described by Zhang et al. [117]. Whereas the 
two previous studies applied AI on segmentation of LGE 
images, Zhang derived LGE information from non-contrast 
cine images [117]. The authors extrapolated the LGE images 
from a single end-diastolic cine image and from the whole 
cine imaging dataset [117]. The depiction of LGE, using 
a fully connected CNN, showed a sensitivity, specificity, 
and AUC of 89.8%, 99.1%, and 0.94% on non-contrast cine 
images, while on a single non-enhanced cine image, a sen-
sitivity, specificity, and AUC of 38.6%, 77.4%, and 0.58 was 
seen [117]. Interestingly, the quantification of LGE in the 
infarcted area using cine images did not show any significant 
difference if compared with standard LGE. The possibility 
to obtain LGE images from non-contrast cine images could 
represent a cornerstone in the future of myocardial tissue 
characterization without the use of a gadolinium-based con-
trast agent.

Besides LGE in the left ventricle, another interesting 
application of AI is left atrial scar tissue segmentation [118, 

Fig. 4  A 52-year-old patient underwent cardiac magnetic resonance 
(CMR) after acute myocardial infarction. a The segmentation of both 
right and left ventricles using the deep learning approach in end-dias-

tolic phase. Manual segmentations are shown in part (b). The only 
significant difference between the manual (b) and AI segmentation 
(a) was the presence of hinge points
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119]. The association of left atrium scar and the develop-
ment of atrial fibrillation is well described [120], and there-
fore, the possibility to have an improved segmentation using 
AI may be useful in certain clinical scenarios. Li et al. [118] 
developed a network that was able to detect atrial scar with 
a mean accuracy of 0.86% ± 0.03% and a mean DSC of 
0.70 ± 0.07.

Baessler et al. [111] used a combined approach for the 
evaluation of hypertrophic cardiomyopathy (HCM) using 
machine learning, texture analysis, and T1 weighted images. 
The authors found that using a gray-level non-uniformity 
(GLevNonU) architecture, it was possible to distinguish 
patients with HCM from normal patients with a sensitivity 
and specificity of 94% and 90%, respectively [111]. Consid-
ering that the AI algorithm would be biased by the presence 
of LGE, the authors combined their AI algorithm with tex-
tural analysis, showing increased sensitivity and specificity 
of 100% and 90% for identification of HCM, being able to 
capture even subtle myocardial changes [111].

Prognosis

Cardiac MRI plays a fundamental role in the management 
of some cardiomyopathies [110, 121]. Evaluation of tissue 
characterization analysis combined with ventricular func-
tion can be used for the prediction and risk stratification 
of patients at risk of death and sudden cardiac events [121, 
122]. Similar to prognostication and risk stratification using 
CCTA imaging and combined with clinical risk factors, AI 
can also be used for prognostic purposes using cardiac MR. 
Dawes et al. [123] proposed an AI algorithm trained on 
patients with a known history of pulmonary hypertension 
to predict adverse events and patient mortality. The patients 
underwent cardiac MRI, right heart catheterization, a 6-min 
walking test and had a median follow-up of 4 years [123].

Chen et  al. [124] used an AI-based approach for the 
prediction of 1-year mortality in dilated cardiomyopa-
thy patients. Their algorithm was built using clinical data 
(including pharmacological data), ECG data, cardiac MRI, 
and echocardiography images [124]. The prognostic accu-
racy of the AI algorithm was significantly higher, with an 
AUC of 0.88 compared to 0.59 for the MAGICC score [125] 
and 0.50 for LVEF [124]. Despite the promising results, this 
application is limited by the small sample size used in this 
study. However, a larger study is ongoing for the evalua-
tion of the prognostic value of AI in dilated cardiomyopathy 
[126]. Besides prognostication in cardiomyopathies, a recent 
article by Diller et al. shows the prognostic value of an AI-
based approach in patients with repaired tetralogy of Fallot 
[127]. They showed that the right atrial median area and 
right ventricular long axis strain were accurate predictors 
of outcome [127].

Beyond the classic imaging data useful for prognostica-
tion and risk stratification, the use of AI algorithms shows 
promise in providing a prognostic evaluation for myocardial 
diseases.

Future directions

As many times before, the field of cardiothoracic imaging is 
again faced with new technological developments that have 
the potential to fundamentally change the field. With the 
increased imaging volumes and new insight into quantita-
tive biomarkers, AI offers the possibility to improve radiol-
ogy workflow, providing pre-readings for the detection of 
abnormalities, accurate quantifications, and prognostication. 
However, it should be noted that many of the applications 
described above are currently only being used in a research 
setting and are still far from being implemented into standard 
care. As a result of the fast-developing AI technology, most 
algorithms are developed and validated by only one group 
before they move on to a new and improved AI approach. 
For the clinical use of these algorithms, thorough validation 
is essential. To achieve this, there are two pathways that AI 
development can follow. The first will use transfer learning, 
where the algorithm will be developed and trained on a spe-
cific dataset and then distributed to other centers where the 
algorithm can be trained further and be refined to optimize 
accuracy for that specific population. This approach will be 
especially convenient for situations where the differences 
in population are large, or when data sharing, due to, for 
example, privacy reasons, is difficult. The second pathway 
will, instead of sharing algorithms, share data. More and 
more, we see national and international collaboration for 
the creation of large, standardized, and accurately labeled 
open source databases. This will allow for the development 
of more accurate, generalizable algorithms.

However, for AI to truly play a role in the daily clinical 
practice of the cardiothoracic imaging community, several 
issues require attention. First, AI applications will need to 
be tested and validated in a clinical setting, while assess-
ing the true efficiency and accuracy in clinical workflows 
and a representative population. With the rise of AI appli-
cations in medicine in general, there also comes the need 
for stringent protection with regard to patient privacy and 
cybersecurity. The medical and AI communities are cur-
rently working together to optimize the legal framework for 
clinical AI applications.

Currently, in the USA, supporting AI applications that 
only assist in quantitative analysis tasks are covered by the 
U.S. Food and Drug Administration, only requiring a 510(k) 
approval [128, 129]. However, if an AI application is used 
for clinical interpretation of radiological images, it will 
require FDA pre-market approval (PMA), which requires 
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extensive proof of accuracy and safety from clinical trials. 
The European commission’s white paper on medical AI, 
published in February 20 [20, 130], understated that cur-
rent EU regulations already provide a high level of protec-
tion through medical device laws and data protection laws. 
Additionally, the EU commission for medical AI proposes 
to add specific regulations aimed for medical AI applications 
that include requirements on training data, record-keeping 
of used datasets, transparency, robustness and accuracy, and 
human oversight.

Additionally, there are some ethical considerations such 
as discrimination issues along the lines of race or economi-
cal groups due to disparities in the training populations. 
Effects AI can have on healthcare insurance. It is impera-
tive that the medical field learns to balance the benefits and 
risks that the AI technology brings and makes sure everyone 
these are equal for everyone. A statement of the Joint Euro-
pean and North American Multisociety task force discusses 
this in detail, emphasizing that more research is needed to 
investigate how to implement AI optimally in clinical prac-
tice [131].

Conclusion

In summary, AI is being increasingly used for cardiac 
radiological applications. Current applications, most only 
tested in a research setting, focus on workflow and image 
reconstruction optimization, biomarker quantification, and 
prognostication. While CT is on the forefront of these devel-
opments, mostly due to the rapidly increasing number of 
CCTA and calcium scoring examinations, cardiac MRI is 
rapidly following, with its main focus on segmentation and 
functional analysis. The future steps of cardiac AI applica-
tions should focus on clinical implementation by assessing 
clinical accuracy in relevant representative populations, 
cost-effectiveness, and clinical efficiency in reducing time. 
Cardiac imagers, together with AI specialists, are responsi-
ble for creating the optimal framework for the next steps of 
AI implementation, ensuring the optimal use of AI leading 
to optimal clinical workflows that benefit both radiologists 
and patients.
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