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Abstract
Purpose The purpose of this study is to develop a radiomics model for predicting the Ki-67 proliferation index in patients 
with invasive ductal breast cancer through magnetic resonance imaging (MRI) preoperatively.
Materials and methods A total of 128 patients who were clinicopathologically diagnosed with invasive ductal breast can-
cer were recruited. This cohort included 32 negative Ki67 expression (Ki67 proliferation index < 14%) and 96 cases with 
positive Ki67 expression (Ki67 proliferation index ≥ 14%). All patients had undergone diffusion-weighted imaging (DWI) 
MRI before surgery on a 3.0T MRI scanner. Radiomics features were extracted from apparent diffusion coefficient (ADC) 
maps which were obtained by DWI-MRI from patients with invasive ductal breast cancer. 80% of the patients were divided 
into training set to build radiomics model, and the rest into test set to evaluate its performance. The least absolute shrinkage 
and selection operator (LASSO) was used to select radiomics features, and then, the logistic regression (LR) model was 
established using fivefold cross-validation to predict the Ki-67 index. The performance was evaluated by receiver-operating 
characteristic (ROC) analysis, accuracy, sensitivity and specificity.
Results Quantitative imaging features (n = 1029) were extracted from ADC maps, and 11 features were selected to construct 
the LR model. Good identification ability was exhibited by the ADC-based radiomics model, with areas under the ROC 
(AUC) values of 0.75 ± 0.08, accuracy of 0.71 in training set and 0.72, 0.70 in test set.
Conclusions The ADC-based radiomics model is a feasible predictor for the Ki-67 index in patients with invasive ductal 
breast cancer. Therefore, we proposed that three-dimensional imaging features from ADC maps could be used as candidate 
biomarker for preoperative prediction the Ki-67 index noninvasively.
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Introduction

Breast cancer is a highly heterogeneous disease and the 
most common cancer in women [1]. 2011 St. Gallen panel 
suggests using immunohistochemical (IHC) biomarkers 
including estrogen receptor (ER), progesterone receptor 
(PR), human epidermal growth factor receptor 2 (HER2) 
and Ki-67 as substitutive molecular subtypes [2].

Ki-67 is a non-histone nuclear protein expressed during 
every active phases of the cell cycle, except G0, and also an 
important factor in the synthesis of ribosomes in dividing 
cells. It is considered to be one of the most reliable indicators 
to evaluate the degree of proliferation of malignant tumor 
cells [3]. For breast cancer, Ki-67 has been proposed as a 
clinically valuable marker to distinguish the two subtypes of 
ER-positive and HER2-negative breast cancers as Luminal 
A and Luminal B breast cancers. Luminal A subtypes were 
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less responsive to chemotherapy, whereas luminal B sub-
types were responsive not only to chemotherapy but also 
to endocrinotherapy plus molecular-targeted therapy [4]. 
Therefore, the Ki-67 index could be a potential indicator 
for the treatment of ER-positive and HER2-negative breast 
cancer patients. A meta-analysis conducted by Petrelli et al. 
from 41 studies (including 64,196 breast cancer patients) 
was reported that there was a distinct correlation between 
Ki-67 expression and disease-free survival and overall sur-
vival [5].

Therefore, early detection of such highly malignant breast 
cancer has great significance in aspects of patients’ progno-
sis, diagnosis and treatment. So far, the detection of these 
molecular markers relies mainly on immunohistochemical 
analysis from core needle biopsy or surgically removed sam-
ples which are only partial tumor tissue. Such method has 
certain limitation considering the heterogeneity of tumors, 
especially the larger ones. On the contrary, imaging can pro-
vide overall anatomical and functional properties of tumor 
tissue.

Diffusion-weighted imaging can use the diffusion motion 
of water molecule in vivo to display the spatial information 
and cell density in human tissues at molecular level [6]. The 
parameter apparent diffusion coefficient (ADC) is the most 
commonly used clinical parameter that reflects the degree of 
tissue distribution for the diffusion of water molecule. ADC 
 (mm2/s) is calculated based on at least two b-values, and 
then a corresponding parameter map (ADC map) is formed. 
Displaying the correlation between ADC values and cell 
density is one of the advantages of the ADC maps. Moreo-
ver, ADC values are related to the Ki-67 index according to 
previous studies [7].

At present, the technology of imaging has gradually 
developed toward the direction of automated analysis and 
high-throughput extraction of quantitative features which 
perfectly concluded the conception of radiomics [8–10]. 
Since the theoretical basis of radiomics is heterogeneities 
and genetic heterogeneity is ubiquitous in tumor tissues 
generating different imaging phenotypes. Radiomics is a 
procedure which is designed to extract a great number of 
quantitative features from digital images, and further, highly 
diversified statistical analysis is used to obtain the key infor-
mation from the data pool. The processed information can 
significantly facilitate the diagnosis and treatment of the dis-
ease. Recently, most studies on radiomics mainly focus on 
topics in respects of tumor molecular subtype [11], diagnosis 
[12, 13], stage classification [14], genetic phenotype pre-
diction [15], treatment selection [16] and tumor prognosis 
[17]. In a study by Liang, C, a radiomics classifier based on 
T2WI was an important predictor of Ki-67 index in breast 
cancer patients [18] which suggested that noninvasive evalu-
ation of the Ki-67 index can be performed preoperatively by 
radiomics.

No studies have been done so far to evaluate the cor-
relation between DWI-MRI and the Ki-67 index based on 
radiomics. Therefore, our work aims to assess the accuracy 
of ADC-based radiomics to noninvasively predict the Ki-67 
index in patients with breast cancer preoperatively.

Materials and methods

Patients

Our institutional review board approved this retrospective 
study and abandoned the informed consent requirement. 
A total of 128 selected patients with pathologically con-
firmed invasive ductal breast cancer at our hospital between 
April 2013 and December 2018 were included in this study. 
Inclusion criteria include: (1) All patients had undergone 
DWI-MRI; (2) No treatment received before surgery; (3) 
Pathologically verified invasive ductal breast cancer; (4) 
IHC examination including the Ki-67 index.

Ultimately, 128 patients were analyzed and randomly 
divided into the training dataset (n = 101) and the test data-
set (n = 27) by 80% and 20%.

Immunohistochemistry of Ki‑67

The expression status of Ki-67 was measured via standard 
IHC examinations. The Ki-67 proliferation index was ana-
lyzed by counting the percentage of positively stained malig-
nant cells. Less than 14% positive staining was identified as 
negative expression, while more than 14% positive staining 
was identified as positive expression [2].

MR data acquisition

Magnetom Verio 3.0T system (Siemens, Erlangen, Ger-
many) (81 patients) or a Discovery MR750w 3.0T system 
(General Electric Healthcare, GE, Milwaukee, USA) (47 
patients) was applied together with an eight-channel phased-
array breast coil which was placed under the patient in a 
prone position. The diffusion-weighted images’ parameters 
(for both equipments) are reported in Table 1. DWI images 
were acquired using two b-values (namely, 50, 800 s/mm2). 
The Siemens or GE workstation generates ADC maps 
automatically.

Tumor segmentation

Preoperative MRIs were analyzed by two radiologists with 
two- and ten-years’ experience. Because of the higher reso-
lution of DWI compared to ADC maps, the regions of inter-
est (ROI) were delineated on DWI with the b-value of 800 s/
mm2 at first and then copied to the corresponding ADC maps 
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on each slice. Then, the computer automatically generated 
the three-dimensional volume of interest (VOI).

Intensity normalization

The inconsistency in intensity information is unavoidable 
in imaging and storage of medical images. We normalized 
the intensity of the MRI image using the following formula 
to minimize the intensity inconsistency [f(x) the normalized 
intensity, x the original intensity, μ mean value, � variance, s 
optional scaling, by default, it is set to 1] [19].

Radiomics feature extraction

A total of 1029 features were extracted and divided into 
three categories: first order statistic, shape-based and tex-
ture. The latter includes Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Run Length Matrix (GLRLM) and 
Gray Level Size Zone Matrix (GLSZM). All features except 
the shape-based also calculated on the original image and 
derived images obtained by applying several filters. Because 
the shape-based features were independent of gray value 
which extracted from the tumor mask. The filtering method 
includes wavelet, square, square root, logarithm and expo-
nential. The features were extracted using Radcloud platform 
(Huiying Medical Technology (Beijing) Co., Ltd) [20].

Statistical analyses

Statistical analysis of the characteristic of patients in the 
training and validation sets was assessed using SPSS soft-
ware (version 24, IBM). The continuous variables with 
normal distribution were shown as mean ± SD. An inde-
pendent t test was used for continuous variables when the 
data are normally distributed and the variance is homoge-
neity. Fisher’s exact test or the Chi-square test was used for 

f (x) =
s
(
x − �x

)

�x

comparing categorical variables between the two groups, 
as appropriate. A two-sided P value < 0.05 was used to 
indicate statistical significance.

All of the other analysis was performed using Radcloud 
platform (Huiying Medical Technology (Beijing) Co., Ltd) 
[20].

Least absolute shrinkage and selection operator 
(LASSO) controls the complexity of the model through 
a series of parameters to avoid overfitting. For example, 
it has a tuning parameter to control the penalty of the lin-
ear model, which guarantees the minimum penalty when 
obtaining a model with a smaller number of features, 
where the penalty is mean square error (MSE). In addi-
tion, another parameter controls the correlation of features, 
making the selected features less relevant. The optimiza-
tion goal of LASSO is

X the matrix of radiomic features, y the vector of the sample 
labels, n the number of samples, w the coefficient vector of 
the regression model, alpha∗ ∥ w ∥ , LASSO penalty.

The best parameter set was computed using a cross-
validation method with fivefolds. After feature selection, 
the logistic regression (LR) model was established using 
fivefold cross-validation. Logistic regression is a classi-
fication model that mainly solves the two-classification 
problem. The process of logistic regression is to establish 
a cost function for a regression or classification problem 
and then iteratively obtain the optimal model parameters 
through the optimization method.

The function of the logistic regression model is

Among them, g(z) = 1

1+e−z

The L1 regularized logistic regression solves the fol-
lowing optimization problem:

X the matrix of radiomic features, y the vector of the sample 
labels, w the coefficient vector of the LR model, C inverse 
of regularization strength.

The training data were randomly divided into five 
groups, of which every four groups were chosen as the 
training set and the remaining group as the validation 
set. The average value of the five results was adopted to 
assess the generalization of the classification models and 
the accuracy of the algorithm.
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Table 1  MRI Sequence parameters

Sequence parameter Siemens MRI 
(n = 81)

GE MRI (n = 47)

Matrix (pixels) 115 × 192 128 × 128
Field of view (mm) 340 × 340 400 × 400
TR (ms) 10,100 5075
TE (ms) 80 94
Slice thickness (mm) 4.0 4.0
Slice gap (mm) 1 1
NEX 2 2
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We evaluated the performance of selected features in 
classifying patients according to their Ki-67 level. We 
evaluated the performance of selected features in classi-
fying patients according to their Ki-67 level by receiver-
operating characteristic (ROC) analysis, and calculated the 
area under the ROC curve (AUC), accuracy, sensitivity 
and specificity.

Result

The radiomics workflow and study flowchart of the study 
are depicted in Fig. 1.

Patients’ characteristics

A total of 128 patients (53 ± 11 years) were recruited in this 
study. Among which, 25% were classified as Ki-67 negative, 
and 75% were Ki-67 positive. The detailed clinical charac-
teristics of patients in the training and validation sets are 
listed in Table 2.

Radiomics feature selection

In total, 1029 features were extracted from the ADC maps. 
Eleven features were selected by Lasso (Fig. 2). Finally, 
eleven features were confirmed, and they are

wavelet-LLL_firstorder_Skewness,
squareroot_firstorder_RobustMeanAbsoluteDeviation, 
exponential_glrlm_RunLengthNonUniformityNormal-
ized,
wavelet-HLH_firstorder_Skewness, wavelet-LHH_glcm_
Correlation,

Fig. 1  Radiomics workflow and study flowchart

Table 2  Characteristics of patients in the training and validation sets

Characteristic Training set Validation set P value

No. of patients 101 27 –
Age, mean ± SD, years 53 ± 11 50 ± 10 0.127
Gender, No. (%) 1.000
Female 98 27
Male 3 0
Ki67 index 0.900
< 14% 25 7
≥ 14 76 20
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exponential_firstorder_Median, original_firstorder_Mini-
mum,
original_shape_SurfaceVolumeRatio,
original_glcm_ClusterShade,
square_glcm_Idmn,
square_firstorder_Skewness (Table 3).

Radiomics‑based Ki‑67 prediction

The linear combination of the features and their correspond-
ing coefficients was as follows: Z = 0.22302

+ Wavelet-LLL_firstorder_Skewness × − 0.77799
+ Squareroot_firstorder_RobustMeanAbsoluteDevia-
tion × − 0.46000
+ Exponential_glrlm_RunLengthNonUniformityNormal-
ized × − 0.44454
+ Wavelet-HLH_firstorder_Skewness × − 0.47110
+ Wavelet-LHH_glcm_Correlation × − 0.20421
+ Exponential_firstorder_Median × − 0.04225
+ Original_firstorder_Minimum × − 0.02037
+ Original_shape_SurfaceVolumeRatio × − 0.09180
+ Original_glcm_ClusterShade × − 0.00001
+ Square_glcm_Idmn × 0.01408
+ Square_firstorder_Skewness × 0.278246

The radiomics classifier based on ADC map shows good 
performance for the classification of Ki-67 index with a ROC 
curve and is presented in Fig. 3. The classifier used eleven 
features to compute an AUC value of 0.75 ± 0.08 (95% CI 
0.696, 0.833) in the training dataset and an AUC value of 
0.72 (95% CI 0.495, 0.857) in the test dataset (Table 4).

Discussion

In this study, we investigated whether features derived from 
ADC maps of patients with invasive ductal breast cancer 
could be used as a preoperative predictor of the Ki-67 index. 
The radiomics classifier demonstrated high performance for 
differentiation between low and high Ki-67 index.

Many previous studies have mentioned immunohisto-
chemical expression of Ki-67 as a prognostic and predictive 
marker for breast cancer [21]. But as we mentioned, core 
needle biopsy testing only takes part of the tumor sample 

Fig. 2  Lasso algorithm on feature select. a Mean squared error 
(MSE) path, b Lasso path using Lasso model, 11 features which are 
correspond to the optimal alpha value were selected

Table 3  Description of the 
selected radiomic features

Radiomics feature Radiomic group Feature class filter

Skewness Firstorder Wavelet-LLL
RobustMeanAbsoluteDeviation Firstorder Squareroot
RunLengthNonUniformityNormalized Glrlm Exponential
Skewness Firstorder Wavelet-HLH
Correlation Glcm Wavelet-LHH
Median Firstorder Exponential
Minimum Firstorder Original
SurfaceVolumeRatio Shape Original
ClusterShade Glcm Original
Idmn Glcm Square
Skewness Firstorder Square
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tissue, the value of the Ki-67 index may be limited because 
it ignores the possible heterogeneity of tumors. While, imag-
ing can provide overall anatomical and functional proper-
ties of tumor tissue. Thus, there is room for radiological 
improvement to assist in assessing the actual Ki-67 index.

DWI as a supplementary diagnostic sequence for breast 
lesions shows an important clinical role [22]. The pathologi-
cal mechanism of ADC value applied to breast tumors is that 
the proliferation of tumor cells can lead to an increase in cell 
quantity, a disordered tissue structure and the narrowing of 
extracellular space, which eventually result in a restricted 
motion of water molecules in the intercellular spaces of tis-
sues [23]. Tumors with lower ADC values have a higher cell 

density, proliferation index and more aggressive. In previous 
studies of invasive duct cancer, ADC showed negative cor-
relations with the Ki-67 index, as by Li, L and colleagues on 
124 patients, and Molinari and colleagues on 115 patients [7, 
24]. Supporting the potential of ADC value can be a great 
help to the development of predicting the Ki-67 index pre-
operatively. Another reason for us to compute the radiomic 
features on ADC maps is the ability to assess the motion of 
water molecules shows good reproducibility between dif-
ferent MR systems with same field strength and the same 
range of b-values [25, 26]. This characteristic indicates that 
they are useful in multicenter studies because the scanners 
are usually different.

The concept of radiomics was first proposed by Dutch 
scholar Lambin, the idea of which originated from tumor 
heterogeneity, in 2012 [27]. Compared with traditional pro-
teomics and genomics methods, radiomics can noninvasively 
evaluate tumors, their microenvironment and predict tumor 
genetic heterogeneity [28]. Breast cancer has a high degree 
of heterogeneity, and there are different image performance 
because of its different lesion size, shape, brightness and 
texture features values [29]. In our study, we used radiomics 
to quantitatively extract the characteristics of the tumor’s 
internal diffusion based on the ADC map, thereby reflecting 
the inhomogeneous characteristics of the tumor’s internal 
structure. Certain researches have indicated that radiomics 
can provide more detailed information on the correlation 
between images and Ki-67 expression level. Liang and Ma 
[18, 31] reported that the T2WI- and DCE-MRI-based radi-
omics classifier were an important predictor of the Ki-67 
index in breast cancer patients, with accuracy of 0.729 and 
0.757, respectively. The accuracy of this study in validation 
set is 0.70 and is very approaching to those two accuracy 
values above. But in these studies, they only performed 
two-dimensional analysis of the largest section, which may 
not fully assess the heterogeneity of breast cancer. In our 
research, three-dimensional analysis of the entire tumor was 
used, which can take full account of the heterogeneity of the 
breast cancer.

This study used LR to construct a radiomics model for 
predicting the ki67 index of invasive ductal breast cancer. 
LR is capable for small data sets; its algorithm is clear and 
distinct. Moreover, the probability of LR can be explained 
reasonably, which means that the fitted parameters can 
reflect the impact of each feature on the result. Therefore, 
this algorithm has a good interpretability. Previous studies 
have shown the advantage of LR algorithms in building use-
ful models for other tumors [32–34]. Fusco [30] reported 
that a multiple classifier system combining decision tree 
and Bayesian classifier can optimize the accuracy for breast 
lesion classification (twenty-six malignant and 22 benign 
breast lesions). However, only one common algorithm was 

Fig. 3  ROC curve of radiomic models in discrimination of patients 
with negative and positive Ki-67 index. a Training set, b Test set

Table 4  The predictive performance of radiomics classifier based on 
ADC maps

95% CI 95% confidence interval, AUC  area under curve, SEN sensi-
tivity, SPE specificity

AUC (95% CI) Accuracy SEN SPE

Training 0.75 ± 0.08 (0.696–0.833) 0.71 0.78 0.76
Test 0.72 (0.495–0.857) 0.70 0.71 0.70
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used in our study and more algorithms should be tested in 
future research.

The limitation of this study is that the number of patients 
is not large enough. External validation cannot be done due 
to insufficient data and the diagnostic accuracy might be 
overestimated. It must be emphasized that even if a radi-
omics classifier shows good results for a small number of 
patients, it must be validated with a larger sample before it 
can be extended to clinical use [35]. However, we believe 
that these data are sufficient enough to prompt a larger clini-
cal research on the value of radiomics based on ADC maps 
in the Ki-67 index, allowing better decisions on preoperative 
prediction indications. In the end, future studies are required 
to assess the value as well as feature repeatability of radiom-
ics biomarkers in independent and prospective validation 
cohorts by using larger sample size.

In summary, our ADC-based radiomics classifier can 
effectively predict Ki-67 index in patients with invasive 
ductal breast cancer before surgery. This radiomics classi-
fier may help to preoperatively predict Ki-67 index in breast 
cancer patients.
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