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Abstract
Purpose  Development of a fully automatic algorithm for the automatic localization and identification of vertebral bodies 
in computed tomography (CT).
Materials and methods  This algorithm was developed using a dataset based on real-world data of 232 thoraco-abdominopel-
vic CT scans retrospectively collected. In order to achieve an accurate solution, a two-stage automated method was developed: 
decision forests for a rough prediction of vertebral bodies position, and morphological image processing techniques to refine 
the previous detection by locating the position of the spinal canal.
Results  The mean distance error between the predicted vertebrae centroid position and truth was 13.7 mm. The identification 
rate was 79.6% on the thoracic region and of 74.8% on the lumbar segment.
Conclusion  The algorithm provides a new method to detect and identify vertebral bodies from arbitrary field-of-view body 
CT scans.
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Introduction

In clinical routine practice dealing with spinal abnormalities 
and pathologies, the localization and identification of the 
vertebral bodies is a crucial step for an appropriate clinical 
diagnosis, surgical planning and follow-up assessment. This 
task is time-consuming, hindering the radiologists’ work-
flow. Manual labeling and measuring of all vertebrae are fre-
quently performed to calculate the vertebra height ratios in 
order to evaluate fractures and to determine the CT-derived 
bone mineral density when dealing with osteoporosis.

The first approaches developed with these purposes were 
thought from a semi-automatic view [1–3]. Despite they did 
not require a high computational burden, they required some 
anatomical landmarks.

The main difficulties to create a fully automated system 
to robustly locate and identify the vertebral bodies in CT 
images are related to the similarity among anatomical land-
marks of the spinal column, variability in spine curvature 
and shape, possible artifacts caused by metal implants, the 
presence of different bone abnormalities and pathologies and 
restrictions in the z-axis field of view (FOV) with acqui-
sitions not covering all vertebrae in the longitudinal axis, 
based on the specific region of interest being studied. Addi-
tionally, the use of real-world data (RWD), that is, the use of 
studies coming directly from the hospital image repository, 
acquired with the inherent variability and biases of daily 
practice conditions, is a key point to develop a methodology 
directly applicable in clinical routine.

Some previous methods were focused on specific regions 
of the spine [4–6] or relied on prior knowledge about which 
region was examined and visible [7]. Therefore, these might 
not be able to be used for general universal applications 
where no assumptions of the visible region are made.
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There are some other methods that are applied to arbitrary 
FOVs; however, these methods are based on mathematical 
models for vertebrae localization [8, 9]. The main problem 
with these methods relies on those abnormal cases, which 
make difficult the labor of implementing a model on which 
all the variability in both vertebra’s shape and appearance 
among population is taken into account.

In recent years, some learning-based methods, applied 
to arbitrary FOV CT images, have been developed. Glocker 
et al. [10] proposed a supervised machine learning method 
based on random regression forests (RRF) combined with 
a refinement step based on hidden Markov models. How-
ever, some problems related with the narrow FOV on those 
pathological cases were found. For that reason, Glocker 
et al. [11] proposed a new method based on random-clas-
sification forests, which allowed obtaining higher perfor-
mance on abnormal and pathological cases. In 2015, Suzani 
et al. introduced a similar methodology by using the same 
image features extraction steps as in [10, 11]; however, a 
novelty on the classification task was introduced, and it was 
used a feed-forward deep neural network (DNN). However, 
DNN does not take advantage of all the spatial informa-
tion contained within the images as the convolutional neural 
networks (CNN) do. A DNN needs a prior feature extrac-
tion step; however, CNN is designed to include this feature 
extraction on its architecture. Prior to the fully connected 
layers, with classification purposes, there are several layers 
based on convolutional filters extracting from very simple 
features, such as brightness and edges, to most complex fea-
tures that uniquely define the image. Some algorithms based 
on CNN have also been proposed for the automatic localiza-
tion and identification of vertebrae in spine CT. Chen et al. 
[13] introduced a hybrid method based on the combination 
of a random forest classifier to roughly locate vertebra can-
didates with a joint convolutional neural network (J-CNN) 
for a more accurate vertebra localization. Yang et al. [14] 
developed a method based on a deep image-to-image net-
work (DI2IN) to initialize vertebra locations combined with 
a sparsity regularization refinement step. Recently, Liao 
et al. [15] proposed a method which combined a 3D fully 
convolutional neural network (FCN) to extract short-range 
contextual information around the target vertebra, with a 
bidirectional recurrent neural network (Bi-RNN) to extract 
long-range contextual information to encode the spatial and 
contextual information among the vertebrae of the whole 
FOV.

Machine learning (ML) applications, as a branch of arti-
ficial intelligence (AI), have grown significantly in the last 
decade. Decision forests are a supervised ML technique 
composed by decision trees, the word supervised means 
that an associated set of output data is needed for each set 
of training data. Decision trees are known to suffer from 
over-fitting (high fitting to training data but poor predictive 

performance). In order to minimize high fitting bias, the 
parameters of each split node of the forest are optimized 
only over a randomly sampled subset of all possible fea-
tures. Not only that, the random sampling together with the 
ensemble of many trained decision trees yields a much better 
generalization. A significant advantage of ML over other AI 
techniques, such as deep learning (DL), is that they do not 
require high computational loads when training a model, 
and additionally, they offer better performance when leading 
with a small training dataset.

We aimed to propose a novel method for vertebrae cen-
troid localization and identification on CT images. The 
developed method will be based on a two-stage approach, 
combining supervised learning by random decision forests 
[16] with image processing techniques. The method might 
be able to predict the vertebral bodies position present on 
CT exams where no assumptions about the scanned region 
is made.

Materials and methods

Dataset

The dataset was collected retrospectively through an obser-
vational study approved by the Ethics Committee and waived 
from informed consent collection. The data finally included 
and used for the development of the algorithm consisted 
of 232 multi-detector CT scans acquired both with 64 and 
256 detector systems (Philips CT Brilliance and iCT, Best, 
The Netherlands) with different arbitrary field-of-views. The 
population series were patients that underwent either tho-
racic, abdominopelvic or cervical-thoracic-abdominopelvic 
CT examinations in a single longitudinal continuous acqui-
sition in a period of 12 months (May-2015 to May-2016), 
including patients between 18 and 80 years old. In order to 
reach the goal of the study, no pathological conditions were 
excluded to enrich the algorithm development process, and 
patients with spinal pathologies such as scoliosis or vertebral 
fusion were included.

All the reconstructed images had a matrix size of either 
512 × 512 or 768 × 768 with a pixel spacing ranging from 
0.55 to 0.97 mm2. The number of slices in each volume 
varied from 184 to 1629, with a slice thickness ranging from 
0.5 to 3 mm.

This dataset was split into two separate groups, and cases 
were randomly distributed, using 80% (186 CT scans) to 
train and 20% (46 CT scans) to test.

Centroid annotation

All CT volumes were reconstructed in the coronal and sag-
ittal orientations for annotation. The labeling was done, by 
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an expert in the radiological field, by selecting the centroids 
of all vertebrae present on the images. The set of annotated 
vertebrae was defined as C = {T1, …, T12, L1, …, L5, S1}, 
which contained both whole thoracic and lumbar regions and 
one additional sacrum vertebra.

For each image, the annotated centroids were stored in a 
matrix which included the absolute coordinates (ci ϵ ℝ3) and 
the specific label of each vertebra (Ci) present on the image. 
All these images were manually annotated by a radiology 
expert using an application designed ad hoc.

Methodology

The method was developed using both Python 3.5 and MAT-
LAB r2016a (Mathworks Inc., Natick MA, USA) in a scien-
tific computing server with an Intel i7 processor running at 
3.6 GHz and 54 Gb of RAM memory.

The approach was developed on two stages by combining 
RRF with image-based algorithms. The first stage aims to 
detect all vertebrae centroid positions within the CT exam 
using a learning-based decision forests method. The sec-
ond phase points to refine the prior detection considering 
the spine morphology by obtaining the spinal cord position 
using voxel-wise operations.

Detection based on random regression forests

An initial approach to locate the centroids position of all 
the vertebral bodies present in the images was performed 
by training a RRF network. It was trained a single RRF for 
all vertebral centroids present on an image.

For the image labeling phase, an in-house software appli-
cation was developed to visualize and label the centroids 
of all vertebrae in the datasets of the study. Regarding the 
vertebrae localization and identification problem, intensity-
based features were used as training input data (fi ϵ ℝd). F 
features were extracted from each randomly selected voxel, 
and the distances from each randomly selected voxel to each 
annotated vertebra centroid were used as training output 
data. The goal was to learn a mapping function φ: ℝd → ℝ3.

For the feature extraction, N voxels (X ϵ ℝ3) were ran-
domly chosen within the FOV of the image, being their rela-
tive displacement (d ϵ ℝ3) the information to be predicted, 
i.e., their offset to each vertebra centroid: di = ci − Xi. The 
selection of partial data sets of voxels instead of the whole 
image series allowed to minimize computational burden. A 
graphical description of the process is appreciated in Fig. 1.

The problem to identify anatomical structures in CT 
images is that different human structures may share simi-
lar intensity values. Thus, local intensity information might 
not be sufficiently discriminative. To avoid this limitation, a 
3D cuboid [px, py, pz] was computed around each randomly 
selected voxel and divided into blocks of size [bx, by, bz] 

(Fig. 2). Then, from each block, the mean intensity was cal-
culated, having F intensity-based features associated with 
each training voxel.

The mean intensities over cuboidal regions are computed 
in a short time using the integral image [17]. The advantage 
of this technique is that the sum of the voxels over any sub-
volume can be calculated in constant time once the integral 
image over the whole CT volume is obtained, no matter how 
big the volume is. The integral image is an intermediate 
representation of an image, where each voxel (x, y, z) is the 
sum of the voxels immediately adjacent (left, front and up) 
to x′, y′, z′ in the original image. By definition:

where I(x′, y′, z’) is the original image and II(x, y, z) is the 
integral image. The mean intensity of any block can be com-
puted as:

where {a,…, h} ϵ ℝ3 are the eight vertices of the block and 
N is the number of voxels within de block.

For the testing stage, once the RRF is trained, given a new 
unseen image, M voxels (X′ ϵ ℝ3) were randomly selected 
on the image, and F intensity-based features (fj′ ϵ ℝd) were 
extracted in the same way as on the training stage. Through 
the learned mapping function φ, the predicted displacement 
was obtained: dj′ = φ(fj′). Knowing the location of the refer-
ence voxel and the predicted relative distance vector to the 
center of a specific vertebral body, the predicted location 
was computed as cj′ = dj′ + Xj’.

From each testing voxel, a predicted location was 
obtained. Therefore, for each specific vertebral body, M 
voxels were candidates to be its centroid. The probability 
of all M voxels to be the vertebra centroid was calculated by 
obtaining the probability density function of all candidates. 
This probability aggregation was obtained by using kernel 
density estimation (KDE). The global maximum of the den-
sity function was considered as the predicted location of the 
vertebral body centroid in the image.

Refinement based on voxel‑wise operations

Due to the expected population variability in spine curva-
tures, a refinement step was added in order to adapt the cen-
troid detection to the patient-specific spine morphology. For 
this purpose, we performed an image binarization, using a 
fixed 200 Hounsfield Units (HU) threshold. As the spinal 
canal is surrounded by cortical bone, the CT volume was 
dilated using a structuring element of cylindrical shape 
with a 3 mm radius and 10 mm height. After dilation, a 

II(x, y, z) =
∑

x�≤x,y�≤y,z�≤z

I
(

x�, y�, z�
)

E[X] =

(

IIg − IIe − IIh + IIf
)

−
(

IIc − IIa − IId + IIb
)

N



51La radiologia medica (2020) 125:48–56	

1 3

logical NOT operation was performed. At this point, the 
background was removed and the spinal canal was isolated 
removing regions with an area lower than 500 mm3 and add-
ing a boundary condition to detect the spinal canal only in 
the posterior region of the image. Finally, the spinal canal 
centerline was extracted in 3D space.

In Fig. 3, the flow diagram for the spinal canal detection 
is shown.

Once the spinal canal was detected, the obtained curve 
was displaced 2 cm in the y axis in the posterior-anterior 
direction of the image, adapting the curve to the centerline 
of the spine. This displacement was defined after testing 

Fig. 1   Flow diagram of the proposed method. Both training (top) and testing (bottom) diagram blocks

Fig. 2   Workflow from block selection to feature extraction. The x 
dimension of both the patch (px) and blocks (bx) corresponds to the 
coronal view. This is an example of how to select the boxes around 
a selected voxel in an image, where intensity-based features are 

extracted. a CT volume. b Randomly selected voxel. c 3D cuboid. 
d Sub-division of the 3D cuboid into blocks. The distance from the 
selected voxels to a concrete vertebra used to train the forest is also 
represented
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several options, obtaining the best performance adjusting 
the displacement to 2 cm.

With the spine centerline detection, the previously 
obtained centroid coordinates (x, y, z) were transformed to 
the final (x′, y′, z′) coordinates. As a last refinement step, for 
each z = z′ point, its corresponding (x, y) coordinates were 
changed to (x′, y′), adapting each predicted vertebra centroid 
to the spine curvature.

Training

The parameters used in the training–testing stages can be 
appreciated in Table 1.

Therefore, considering the whole training dataset, the 
RRF was trained with 45.824 samples, having 256 features 
each one. All these features were used to train the RRF, with 
a total training time of 3 h.

Fig. 3   Refinement step flow diagram. a Original image. b Image thresholding at 200 HU. c Image dilation by applying a cylindrical structuring 
element. d Logical NOT operation. e Background removal. f Objects smaller than 500 mm3 removal. g Spinal canal centerline

Table 1   Parameters used in the 
training–testing steps

The upper rows show the parameters for the feature extraction step. The lower rows show the parameters 
used to build the RRF

Parameter Description Value

N Number of aleatory training points 30.000
M Number of aleatory testing points 50.000
[px py pz] Patch size (mm) 40 × 40 × 120
[bx by bz] Block size (mm) 10 × 10 × 30
F Number of extracted features from each aleatory-selected point 256
N. trees Number of trees 20
Max. features Number of features to consider when looking for the best split 16
Max. depth Maximum depth of the tree 24
Min. split node Minimum number of samples required to split an internal node 8
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Testing and performance evaluation

To test a new image, unseen on the training stage, 50.000 
random voxels were selected, with 256 features for each test-
ing voxel. Total testing time was 3 min.

To evaluate the performance of the network, the distance 
between the predicted position of each centroid and the real 
one, defined by previous expert annotations, as well as the 
identification rate was calculated. A vertebra was correctly 
identified if the estimated centroid was within 2 cm of the 
real one.

Results

An initial detection was performed applying decision forests. 
Then, the detected centroid position was refined by obtaining 
the position of the spinal canal (Fig. 4).

In Fig. 5, the localization error on each direction (x, y, 
z) can be appreciated. For all vertebrae, the median of the 
distance between the predicted centroid position and the real 
one is calculated. The minimum error is obtained on the x 
direction (left–right), and the maximum one is obtained on 
the z direction (head-feet). This occurs mainly because with 
the refinement step; the errors obtained on both the x and y 
(anterior–posterior) directions were minimized.

In Fig. 6, the localization error on each direction per ver-
tebra is detailed. It can be seen that the localization error on 
x direction is very similar for all vertebrae. However, the 
localization error for both the y and z directions depends on 
the corresponding vertebra.

If the distance in all directions is considered, the verte-
brae with the minimum and maximum localization errors 
are easily obtained (Fig. 7). The minimum localization error 
is at the central thoracic vertebrae (T9–T11), and the maxi-
mum localization error is on the upper thoracic vertebrae 

Fig. 4   Vertebral bodies localization after the rough detection by 
applying decision forests (left) and after the refinement by detect-
ing the spinal cord position (middle). The predicted positions are 
compared with the annotation of an expert (right). Both coronal 
(top) and sagittal (bottom) views are shown (blue: rough detection; 

green: refinement; red: expert annotation). All centroids are shown in 
the same slice to provide a 2D visualization of the obtained results, 
although the real volume is 3D. It is a case of a patient with a signifi-
cant scoliosis; this is the reason why some vertebrae are not visible 
on the sagittal view
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(T1–T4). In the lumbar region, the localization error is very 
similar for all vertebrae.

The localization error and the identification rate obtained 
after rough detection and after refinement are summarized 
in Table 2.

In Table 2, it can be seen the improvement of both the 
distance between the predicted vertebrae position and the 
real one and the identification rate after refinement. The 
mean distance error decreases from 15.7 to 13.7 mm, and 
the identification rate increases from 72.22 to 77.99%. After 
the rough detection, the identification rate is similar both 
in thoracic and lumbar regions; however, after refinement, 

this rate increases in both regions, increasing mainly in the 
thoracic region.

Discussion

In this work, an approach for the automatic localization and 
identification of the vertebral bodies in CT scans has been 
proposed using RRF. The algorithm has been tested using 
a dataset including both healthy and pathological cases and 
where no assumptions about the visible region have been 
made, therefore working with arbitrary FOVs.

Fig. 5   Median localization error per axis of all vertebrae (blue), the thoracic region (orange) and the lumbar and sacrum region (gray)

Fig. 6   Median localization error in mm per vertebra and direction
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All the methodologies presented on [10–14] used the 
same dataset, presented by Glocker et al. in [10], both to 
train and to test their performances. However, this data-
set is built of spine-focused CT scans by using cropped 
images. Under our point of view, better clinical integra-
tion can be achieved by the use of the original images. CT 
scans are mostly acquired including the whole abdominal 
area, where, apart from the spine, additional anatomical 
structures are included. In this way, we gain spatial infor-
mation; however, the computational burden needed to 
process these images is higher. To integrate an algorithm 
into clinical routine, a key aspect is the use of RWD on 
its development and validation. This is the reason why we 
decided to use our own dataset, acquired directly from the 
PACS of a tertiary hospital.

Further improvements to this work are possible. Consid-
ering also the cervical region on the training stage to pre-
dict the location of these vertebrae in those images where 
this region is present. In our work, cervical region was not 
included because, from all the clinical scans collected, only a 
few of them included the cervical region. These images were 
not enough to train a RRF with high identification rate on 
these vertebrae; therefore, they were excluded. Therefore, in 
our method, cervical vertebrae can be present in the images 
under study; however, their position will not be predicted.

Conclusion

RRF allows a reliable vertebrae localization and identifica-
tion in real-world CT data. Due to the high variability in 
the field of view and anatomical landmarks between dif-
ferent CT scans, it might be very difficult to consistently 
obtain a high-accuracy prediction of vertebrae position. 
Therefore, future work will focus on further improving 
these results combining other AI techniques with decision 
forests and using more complex features in order to reduce 
the identification errors obtained in the present work.
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Fig. 7   Median localization error per vertebrae

Table 2   Localization errors 
in mm obtained after rough 
detection (left) and after 
refinement (right)

Region Rough detection Refined detection

Median Mean Std ID. rate Median Mean Std ID. rate

All 14.163 15.727 9.073 72.22% 10.335 13.734 10.318 77.99%
Thoracic 14.554 15.889 8.375 72.17% 10.172 13.045 9.478 79.56%
Lumbar + S1 12.836 15.403 10.337 72.33% 10.710 15.112 11.716 74.84%
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