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IC.  Txt5Energy significantly decreased (p = 0.002). Dis-
criminant analysis on pretreatment parameters illustrated 
that  Txt5Energypre was the best parameter to use to cor-
rectly classify CR and PR patients. This was followed 
by  Txt9Percentile75pre,  Txt1Meanpre, and  Txt2Standard 
 Deviationpre.
Conclusions Our results suggest that heterogeneity metrics 
extracted from ADC-maps in metastatic lymph nodes, before 
and after IC, can be used as supplementary IC response 
indicators.
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Introduction

Nasopharyngeal carcinoma (NPC) originates from epi-
thelium of the nasopharynx. Approximately two-thirds of 
NPC cases present with involved regional lymph nodes 

Abstract 
Purpose To evaluate whether the pretreatment apparent 
diffusion coefficient (ADC) heterogeneity parameters and 
their alterations, after one cycle of induction chemotherapy, 
can be used as reliable markers of treatment response to 
induction chemotherapy in patients with nasopharyngeal 
cancer.
Materials and methods Ten patients were recruited and 
received induction chemotherapy (IC). Diffusion-weighted 
imaging was performed prior to, during, and after IC. The 
first-order ADC histogram parameters at the intra-treatment 
time-point were compared to the baseline time-point in the 
metastatic lymph nodes (LNs). Some ADC pretreatment 
parameters were combined with each other, employing dis-
criminant analysis to achieve a feasible model to separate 
the complete response (CR) from the partial response (PR) 
groups.
Results For ten patients, significant rise in Mean and 
 Txt1Mean (p  =  0.048 and 0.015, respectively) was 
observed in the metastatic nodes following one cycle of 
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[1]. Induction chemotherapy (IC) is an effective treatment 
decision used to control subclinical metastasis in locally-
advanced NPC patients. The use of IC prior to chemo-radia-
tion therapy reduces the rate of distant metastasis, especially 
for patients with a gap between diagnosis and the start of 
chemo-radiation therapy [2].

If outcome can be predicted during an early treatment 
stage, patients could be spared from ineffective treatment 
toxicity [3–5]. Studies have shown that computed tomogra-
phy (CT) has a high negative predictive value (NPV) of up to 
95%, with a low positive predictive value (PPV) of 35%, for 
assessing the lymphadenopathy response to chemo-radiation 
therapy [6]. Ultrasound (US) is preferred for evaluation of 
intra-nodal architectural changes, but unreliable informa-
tion of deeper lymph nodes is a major challenge of US [7]. 
Other imaging modalities (e.g., single photon emission-CT 
(SPECT) and positron emission tomography (PET)) are lim-
ited by low spatial resolution for treatment response, espe-
cially shortly after initiation of treatment [8].

Conventionally, assessment of treatment outcome in lym-
phadenopathy by CT and conventional magnetic resonance 
imaging (cMRI) is based on measurement of short axis of 
the lymph nodes, according to RECIST criteria. This method 
cannot be used within a short duration after the start of treat-
ment, because morphological changes have not occurred yet 
[9].

Diffusion-weighted (DW) magnetic resonance imaging 
(MRI) and its derived apparent diffusion coefficient (ADC)-
map provide physiological information about tumorous tis-
sues [10]. By quantifying water diffusivity within the tumor, 
changes in tumor cellularity, which may occur due to chemo-
therapy, radiotherapy or adjuvant chemo-radiation therapy, 
can be traced by DWI [10–13].

In this study, a heterogeneity analysis was applied on an 
ADC-map of the metastatic nodes at the baseline, after one 
cycle of IC and after two cycles of IC, with the aim of estab-
lishing two hypotheses: firstly, pretreatment heterogeneity 
measures have potential to classify complete response (CR) 
patients from partial response (PR) patients, and secondly, 
the alterations of LN’s internal microenvironment after one 
cycle of IC could be detected by the heterogeneity param-
eters. The present study was performed to test the defined 
hypotheses in ten patients.

Materials and methods

Patients

Institutional review board (IRB) approval was obtained 
from the local institution at Shahid Beheshti University of 
Medical Science for performing serial MRI acquisitions on 
patients with nasopharyngeal cancer who showed lymph 

node involvement. Twenty patients with histologically con-
firmed primary nasopharyngeal cancer who were treated 
between Jan 2013 and July 2014 at our institution (Jorjani 
Radiotherapy Center, Imam Hosein Hospital) participated 
in this study. Among the enrolled patients, 10 patients were 
excluded for the following reasons: (1) one patient had claus-
trophobia and could not continue the serial MRI examina-
tion; (2) the image quality of three patients was poor and 
not sufficient for the analysis; (3) two patients didnot have 
a metastatic lymph node; and (4) four patients decided to 
continue with their treatment at another institution. Full MR 
imaging sessions were carried out on the 10 patients who 
filled out the informed consent form. Table 1 summarizes 
the patient demographics.

Treatment protocol included two cycles of IC (cisplatin: 
75 mg/m2 in day 1 and 5-FU: 1000 mg/m2 in days 1–4), 
followed by a full dose of radiotherapy (70 Gy) to the pri-
mary and gross nodal disease and a prophylactic dose to the 
uninvolved neck regions (60 Gy) using a three-dimensional 
conformal technique (3DCRT). Radiotherapy was prescribed 
concurrently with cisplatin (cisplatin: 100 mg/m2 in days 1 
and 29) [4]. Patients were categorized as complete response 
(CR) patients (with no evidence of disease; n = 5) and par-
tial response (PR) patients (with evidence of residual disease 
or disease relapse; n = 5), based on RECIST criteria.

MRI technique and data analysis

MRI protocol

MR imaging was performed on a 1.5  T MRI scanner 
(Avanto, Siemens Medical Systems, Germany). Con-
ventional images included T1-weighted images (TR/
TE = 692/8 ms) and T2-weighted spin-echo images (TR/
TE = 4550/116 ms) in axial planes, with slice thickness 
=6 mm, spacing between slices =6.6 mm, field of view 
(FOV) =256 × 256 mm2 and flip angle =90◦. Diffusion-
weighted images were obtained using a spine echo-planar 

Table 1  Patient’s demographics

Patient Age Sex Tumor staging Response

1 44 M T2N3 CR
2 43 M T1N1 PR
3 58 M T2N3 CR
4 33 F T2N1 CR
5 42 M T2N3 CR
6 41 F T1N2 PR
7 49 M T1N2 CR
8 46 M T1N2 PR
9 32 F T2N1 PR
10 32 F T2N2 PR
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imaging (EPI) pulse sequence in the axial plane before 
contrast administration, with slice thickness =5 mm, FOV 
=192 × 192 mm2, and TR/TE =1020/88 ms. The diffusion 
sensitizing gradients were applied in all three orthogonal 
planes (X, Y, Z) with three b-values (0, 500, and 1000) s/
mm2.

Imaging time points were 1 week before, 10 days after 
the initiation of injection in first cycle of IC and 2 days after 
the end of second cycle of IC. Clinical MRI sessions were 
performed every 2 months after the end of chemo-radiation 
therapy (Fig. 1).

Data analysis and quantification

The largest LNs, which were diagnosed as malignant nodes 
on a pre-therapeutic clinical and imaging assessment, were 
identified by an experienced radiologist. The regions of 
interest (ROI) were then overlaid on the corresponding 
ADC-maps with a visual guide reference of CE-T1 images 
using image-J software at three time points: before treat-
ment  (ADCpre), after one cycle of IC  (ADCintra), and at the 
end of IC  (ADCpost). The ROI masks were extracted and 
transferred to in-house programs in MATLAB V.7.12 (Math 
Works Inc.) for further analysis (Fig. 2). In addition, other 
sets of ROIs were drawn on CE-T1 images at three time 
points (i.e., CE-T1pre, CE-T1intra, and CE-T1post) to measure 
the whole LN volume. Several commonly-used quantitative 
parameters were calculated on the selected ROIs: mean-, 
max-, min-, and median-ADC. Furthermore, a first-order 
histogram texture analysis was performed to spatially quan-
tify the heterogeneity of the metastatic nodes. The param-
eters were calculated as follows: (1) mean—the mean of the 
tumor histogram, (2) standard deviation—the average con-
trast, (3) normalized variance—the measure of smoothness, 
(4) skewness—the third moment, (5) energy—a measure of 
uniformity or homogeneity, (6) entropy—a statistical meas-
ure of irregularities, (7) kurtosis—the fourth moment, (8) 
25th percentile—the smallest scores that are greater than, or 
equal to 25%, (9) 75th percentile—the smallest scores that 
are greater than, or equal to 75%, and (10) 95th percen-
tile—the smallest scores that are greater than, or equal to 
95%. The definitions of the quantitative parameters (QP) are 
presented in Table 2.

To assess whether the pretreatment LN volume (LNV) 
and their changes can be used as a macroscopic predictive 
marker (based on anatomical images) or not, the entire LN 
volume was calculated by multiplying the voxel size with 
the number of voxels, slice thickness, and inter-slice gap 
within specified ROIs.

Results

QPs were compared between pretreatment  (QPpre) and 
after one cycle of IC  (QPintra) using paired sample t tests 
for all patients. A p value of less than 0.05 was regarded 
as statistically significant. The Mean,  Txt1Mean, and 
 Txt5Energy measures indicated statistically significant 
differences at p < 0.05 (0.048, 0.015 and 0.002, respec-
tively). The evolution of these parameters before, intra (10 
days after first injection) and post IC (after the end of two 
cycle of IC) was depicted for all patients (Fig. 3a, c, e). 
Parameter changes were evaluated in CR and PR patients, 
showing that there were no significant differences between 
the two groups (Fig. 3b, d, f). The reduction in LNV fol-
lowing the first cycle of IC was not significant (p > 0.05) 
(Fig. 3g). The same insignificant downward trend was 
observed in the CR and PR groups (Fig. 3h).

A positive correlation was observed between 
 Txt5Energy with  LNVpre (p < 0.047) (Fig.4). A discrimi-
nant analysis was used to build a predictive model, based 
on a linear combination of the pretreatment parameters 
that provides the best discrimination between the CR 
and PR groups. Four parameters (i.e.,  QPspre;  Meanpre, 
 Txt5Energypre,  Txt2-STDpre, and  Txt8Percentile75pre) were 
combined to determine how well each parameter discrimi-
nates between the two groups. The discriminant analy-
sis allowed for the estimation of the linear discriminant 
function coefficients. Wilks’ lambda is a measure of QP’s 
potential, acquired in this analysis process (Table 3). To 
compare  QPpre at different scales, the coefficients of the 
linear function were standardized.

Fig. 1  Timeline of methodo-
logical steps in this study
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Discussion

Application of conventional imaging modalities (e.g., CT 
and MRI) for assessing the lymphadenopathy response 
to IC is based on LN size, whereas changes in size occur 
very late or after the end of the IC. Previous studies inves-
tigated the role of ADC parameters in predicting the treat-
ment response to therapy in head and neck squamous 
cell carcinoma (HNSCC) [6, 13]. The study results have 
shown that the  MeanADC before and during the treatment 
is useful for assessing the treatment effects. Hatakenaka 
et al. [2] reported that pretreatment ADC and T-stage are 
associated with the local failure of chemoradiotherapy or 
radiotherapy in HNSCC and achieved a significant positive 
correlation between T-stage and ADC. Sanjeev et al. [14] 
showed that pretreatment diffusion-weighted and dynamic 
contrast enhancement metrics of primary tumor and nodal 
mass are related to the response to treatment. Vandecaveye 
et al. [6] found that ∆ADC in primary lesion and lymphad-
enopathy 3 weeks after the end of chemoradiotherapy were 

correlated with tumor recurrence. Changes in the  MeanADC 
3 weeks after chemoradiotherapy, in comparison with the 
corresponding values before treatment, were reported as an 
indicator for loco-regional failure and loco-regional control 
by Matoba et al. and Hatakenaka et al. [2, 3].

The results of our study will be discussed from the fol-
lowing two points of view:

Extraction of quantitative texture parameters 
from the ADC‑map for early detection 
of microstructural changes and treatment response 
of involved LNs to one cycle of IC

Most investigators extracted the  MeanADC to evaluate the 
early changes of tumor cellularity. The  MeanADC has some 
limitations in the evaluation of the response to treatment, 
due to tumor heterogeneity. Heterogeneity in the ADC signal 
is based on both tumor cellularity changes, as well as degen-
erative changes (hemorrhage, cystic or mucinous degener-
ation). Therefore, the focus of this study was to evaluate 

Fig. 2  CE-T1 images, ADC-
maps, and image analysis of 
a 42 years old patient. Images 
in each row are from three 
measurement time points: a CE-
T1pre, b CE-T1intra, c CE-T1post, d 
 ADCpre, e  ADCintra, f  ADCpost. 
Images were windowed to have 
similar image contrast. The 
arrows show same nodal meta-
static mass that was followed 
through the treatment course

D ADC pre E ADC intra F ADC post

(Quantitative Parameters)

Matlab

A CE-T1pre                          B CE-T1intra                            C CE-T1post
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metastatic lymph node changes using heterogeneity analysis 
to reveal their physiological behavior early after one cycle 
of IC.

In summary, there are two major differences between this 
ongoing study and the previous studies: first, the use of het-
erogeneity analysis for LN response assessment, and second, 
different MRI data acquisition time points and evaluation of 
response after one cycle of IC. To the best of our knowledge, 
the employment of texture analysis on ADC-maps for assess-
ing LN’s response to just one cycle of IC has yet to be docu-
mented. For this purpose, several quantitative metrics were 
explored to obtain the most accurate feature(s) as potential 
predictive biomarkers for the early response of the LN to 
IC. The initial results showed that some of these parameters 
could detect early changes in the intra-nodal microstructure.

In most studies, effective treatment is reflected by an 
increase in ADC-values. An elevation of the  MeanADC due 
to the effects of two cycles of IC or chemo-radiation therapy 
were investigated by Powell et al. [4], Kim et al. and Chen 
et al. [13, 15]. However, a significant increase in the Mean 
and  Txt1Mean of ADC following one cycle of IC was seen 
in this study. This result concurs with the effective treat-
ment. To investigate the changes of LN’s texture after one 
cycle of IC, heterogeneity parameters were also extracted. 
 Txt5Energy decreased significantly early after one cycle of 
IC for all patients, which could be a sign of early changes of 
the LN internal microenvironment. One must note that the 

evolution of this parameter over time in CR and PR patients 
were consistent with the same parameters in all patients. 
However, there was no correlation between the Mean,  Txt1 
Mean, and  Txt5Energy with the CR or PR groups, possi-
bly due to the small number of patients. These results sug-
gest that the previously-mentioned quantitative parameter 
could be used as a predictive biomarker for the therapeutic 
response in the early phase (only one cycle of IC) of the 
treatment in a larger number of patients.

The results of the volumetric measurements were indica-
tive of the inability of LNV’s changes to detect a response 
to one cycle of IC. Significant LNV changes were seen after 
two cycles of IC. These results agree with those of other 
studies. In addition, finding the microstructural changes of 
LN at the cellular level due to only one cycle of IC and using 
the heterogeneity parameters in this study can be considered 
a valuable method when visible morphological changes have 
not occurred yet.

Finding a best combination of pretreatment texture 
parameters to achieve a model for predicting 
the response to IC

The correlation of  Txt5Energy with LNVpre for CR and 
PR groups on a scatter plot was representative of two 
facts; first, the  Txt5Energy value increased with progres-
sion of  LNVpre, and second, two CR and PR groups were 

Table 2  Definitions of heterogeneity quantitative parameters

Quantitative parameters Definition

Mean-ADC The average of ADC-values within the ROI
Max-ADC The maximum ADC-value within the ROI
Min-ADC The minimum ADC-value in the ROI
Median-ADC The median of ADC-values in the ROI
Txt1-Mean The mean of the tumor histogram
Txt2-STD The amount of variation from the mean of histogram. This feature is a measure of average contrast within the ROI
Txt3-NV The mean of the normalized squared distances of each of ADC-values within the ROI from histogram mean. This fea-

ture demonstrates the amount of dispersion of ADC-values around the mean and is a measure of smoothness within 
the image

Txt4-Skewness The amount of asymmetry between values of ADC-values around the mean. If the tail is longer on the left side than 
the right side, the histogram is negatively skewed and if the right-side tail is elongated, the histogram is positively 
skewed

Txt5-Energy The sum of squared ADC-values within the ROI, which is a measure of homogeneity within the ROI. Higher energy 
denotes higher homogeneity and lower energy represents heterogeneity

Txt6-Entropy The average amount of information within the ROI: more uncertainty requires more information for encoding ad has 
higher entropy. This measure shows the amount of irregularities within the ROI

Txt7-Kurtosis Amount of “peakedness” of the histogram within the ROI. Higher kurtosis reflects more distribution of the values 
towards the tails rather than the mean and lower kurtosis shows that the ADC-values are more concentrated around 
the mean

Txt8-Percentile25 The point on the horizontal axis such that 25% of the area under the histogram lies to the left of that point (and 75% to 
the right)

Txt9-Percentile75 The point on the horizontal axis such that 75% of the area under the histogram lies to the left of that point
Txt10-Percentile95 The point on the horizontal axis such that 95% of the area under the histogram lies to the left of that point
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quite distinct from each other, which was indicative of the 
potential of  Txt5Energy to classify CR from PR group. 
Based on these results, the best pretreatment parameters 
to classify CR from PR patients were sought. Discrimi-
nant analysis was used to find a linear combination of 

pretreatment variables to separate the groups. Wilks’ 
lambda values and standardized coefficients indicated 
the parameters’ potentials to discriminate between the 
two CR versus PR groups. A smaller Wilks’ lambda and 
the coefficients with large absolute values corresponded 
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to parameters with a greater discriminating ability. The 
Wilks’ lambda (Table 3) suggested that  Txt5Energypre 
was the best parameter to classify CR from PR patients. 
This was followed by  percentile75pre,  Meanpre, and  Sdpre. 
Therefore, a combination of these parameters was able to 
correctly classify CR from PR patients with high accuracy.

Our study had some limitations. The sample size was 
small. However, the results are sufficient to prove that 
DWI’s heterogeneity parameters can assess the early 
response of neck metastatic nodes to IC. Investigations for 
a larger patient population will provide more insight into 
the correlation between heterogeneity parameter altera-
tions and other variables to distinguish the CR from PR 
group. The author will conduct another study for a larger 
patient group to confirm the results of this pilot study.

Another limitation was poor quality of DW–MRI in 
head and neck region. In this study, ROI selection in pri-
mary nasopharynx tumor was unsuccessful, due largely to 
the magnetic field inhomogeneity (susceptibility artifact) 
at air-bone interfaces. Moreover, degradation of image 
quality at thoracic inlet regions did not allow for delinea-
tion of lymph nodes on ADC-map, for all slices, including 
the malignant LN. Imaging techniques could be improved 
using T2 W-BLADE suggested by Ohgiyain et al. [16]. 
This would result in higher quality images, so a better ROI 
selection will be possible in all areas of the head and neck 
for each patient.

Our preliminary results suggest that a heterogeneity 
analysis on metastatic LN before and early after IC yields 
valuable information about effect of IC.
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