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Introduction

Gadolinium-based contrast agents (GBCA) are chemical 
compounds used in magnetic resonance imaging (MRI) to 
exploit their paramagnetic properties, i.e., their capability 
to regionally alter the MRI signal of the biological com-
partment in which they accumulate.

Gadolinium (Gd) is a paramagnetic lanthanide heavy 
metal, that, in its free ionic form  (Gd3+), can compete with 
 Ca2+ and become toxic in biological systems [1]; therefore, 
it must be chelated to an organic ligand. Commercially 
available GBCA contain Gd chelated in different forms, 
are usually administered intravenously, and have been 
used in over 100 million patients in the last 29 years [2] 
and in roughly 30–45% of all clinical MR studies today [3]. 
GBCA are credited with an excellent safety profile, as very 
few, and mostly mild, acute adverse reactions have been 
reported, despite the large and prolonged use (0.08–0.12%) 
[4, 5].

Once administered, GBCA are eliminated from the body 
through the urinary, and, to a lesser extent, biliary sys-
tem. In subjects with normal renal function, they are usu-
ally cleared from the blood in about 1.5 h, and completely 
recovered from the urine in 7 days (>90% in the first 12 h) 
[6].

GBCA can be divided into linear and macrocyclic types, 
the latter being considered more stable. Indeed, macrocy-
clic GBCA form cage-like structures with  Gd3+ enclosed in 
the cavity of the complex and tend to have lower dissocia-
tion constants [7]. The higher the dissociation constant, the 
more likely free Gd can be released into the circulation and 
tissues [8].

Between 2006 and 2009 a safety issue emerged for 
GBCA, as Nephrogenic Systemic Fibrosis (NSF), a 
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subacute/chronic disease associated with significant mor-
bidity, was described and put in relation to previous admin-
istration of some linear GBCA in patients with renal dys-
function [3]. However, once a careful evaluation of the 
renal glomerular filtration rate (GFR) has been imposed as 
a pre-requisite to perform a contrast-enhanced (CE) MRI 
scan, the incidence of new NSF cases has almost disap-
peared [9].

Since 2014, a new safety concern regarding the use 
of GBCA has spread over the scientific community: the 
evidence, and the possible consequences, of long-term 
retention of GBCA in the brain after multiple CE-MRI 
in subjects with normal renal function. In fact, there are 
consistent and ever-growing imaging and histopathologic 
findings of Gd accumulation in individuals with normal 
GFR who had received, even years earlier, multiple GBCA 
administrations.

In this review, we focused on original articles published 
in peer-reviewed journals in the last 3 years, aiming to: (I) 
summarize the latest evidence deriving from human and 
animal studies on Gd retention in the body, (II) evaluate the 
methodological aspects of the imaging findings reported so 
far and (III) critically address the issue of the possible clini-
cal consequences of the existing data. Finally, some sug-
gestions on the effects of this increased knowledge on our 
radiological daily practice are presented.

Gadolinium retention in the brain: imaging 
findings

Most CE-MRI brain acquisitions exploit the property of 
GBCA to shorten the T1 relaxation time of living tissues 
after extravasation in the interstitial space. In the central 
nervous system (CNS), this was initially believed to hap-
pen almost exclusively in areas with altered blood–brain 
barrier (BBB). However, it is now clear that intrave-
nously injected Gd can slowly pass an intact BBB, with 
mechanisms possibly involving transmetallation, specific 
metal transporters, or even a pathway through the CSF, 
perivascular spaces and the glymphatic system [3, 10]. In 
T1-weighted (T1w) images, contrast-enhancing lesions 
appear hyperintense respect to the surrounding, unen-
hanced brain. This signal change usually persists up to 
30 min, although sporadic extended persistence has been 
reported [11].

In the past 3 years, several papers reported the presence 
of spontaneous high signal intensity (SI) in unhenanced 
T1w images of the brain, mainly localized in deep gray 
matter structures such as dentate nuclei (DN) and globus 
pallidus (GP), in patients with normal renal function, all 
with a history of prior exposure to multiple GBCA admin-
istrations (Fig. 1).

The pioneering publication was a retrospective study in 
19 brain tumor patients, who underwent at least 6 exami-
nations with linear GBCA (gadopentate dimeglumine, 
 Magnevist® and/or gadodiamide,  Omniscan®), compared 
with 16 patients who received at least 6 unenhanced MRI 
[12]. In that study, only patients exposed to GBCA showed 
T1 shortening of deep gray matter nuclei, with an increase 
in the DN-to-pons (DNP) and GP-to-thalamus (GPT) SI 
ratios significantly correlated with the administered dose.

Afterwards, higher DNP SI after repeated administra-
tions of  Omniscan® has been described in relapsing–remit-
ting multiple sclerosis (RR-MS) and meningioma patients, 
even after <6 GBCA administrations, with a dose–response 
relationship [13, 14].

Later, DN T1 shortening was associated with prior 
repeated exposure to  Magnevist®, but not to the nonionic 
macrocyclic Gadoteridol  (ProHance®) [15]. This important 
difference between linear and macrocyclic GBCAs was 
confirmed by other studies that assessed DN and GP SI in 
patients undergoing multiple MRI scans with  Magnevist® 
or Gadobenate Meglumine  (MultiHance®) vs those receiv-
ing Gadoterate Dimeglumine  (Dotarem®) or Gadobutrol 
 (Gadovist®); again, a dose-dependent T1 shortening effect 
was observed only for linear GBCAs [16–20]. This dif-
ferent behavior of the two GBCA classes supports the 
hypothesis that the observed T1 shortening is related to dis-
sociation of the Gd ion from its chelating ligand molecule 
[21]. Table 1 lists the main features of the GBCA approved 
for CNS imaging along with the corresponding findings 
reported in imaging and pathology studies in humans and 
animals with a normal renal function.

Fig. 1  Change in dentate nuclei signal intensity after multiple CE-
MRI with linear Gadolinium-based contrast agents. Unenhanced 
coronal SE T1-weighted images in a patient with relapsing–remitting 
multiple sclerosis at diagnosis (a) and in a follow-up study 6 years 
later (b), after 6 injections of  Magnevist®. The cerebellar dentate 
nuclei, initially isointense to the surrounding brain, show homoge-
neous bilateral and symmetrical T1w-hyperintensity at the follow-
up scan. Also note worsening of the supratentorial demyelinating 
lesions, leading to increased axonal loss
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Since 2014, some conflicting findings have also been 
reported. For example, multiple injections of  MultiHance® 
were associated with significantly lower DN/middle cer-
ebellar peduncle and GPT T1w-SI ratios compared to 
patients who received (also)  Omniscan® [22, 23]. Con-
versely, in another study,  MultiHance® induced increased 
DNP T1w-SI ratio [20]. Possible explanations for this 
discrepancy may include differences in the amount of Gd 
given or in the image analysis. As for  Gadovist®, which has 
high kinetic stability coupled to a relatively low thermody-
namic stability [8, 24], one report claiming that increased 
DNP and GPT SI ratios were present in MS patients who 
received >4 injections [25] has been heavily criticized, and 
its findings were not replicated in other subsequent studies 
that analyzed SI changes after administration of this GBCA 
in humans [18, 19, 26–28] and animals [29].

The DN consistently represented the major site of 
increased SI in the brain after multiple linear GBCA 
administrations in several studies [12, 15, 19, 26, 28, 
30–36]. The reason for such susceptibility may be related 
to the fact that DN are preferential sites of accumulation 
of metallic ions and calcium [37, 38], as well as to their 
proximity to the choroid plexus of the fourth ventricle, 
which is known to sequester toxic heavy metals and met-
alloid ions [39]. One may thus speculate that a transport 
mechanism mediates the preferential accumulation of Gd 
in some brain regions, using the blood/CSF barrier as a 
passageway toward the interstitium [40].

The intriguing observation that, by increasing the admin-
istered GBCA volume, Gd accumulation becomes evident 
in other brain sites involved in the deposition of miner-
als and metallic ions also supports this hypothesis [41]. In 
fact, in 13 patients who received at least 35 doses of linear 
GBCA, a significant T1w hyperintensity was evident not 
only in DN and GP, but also in the substantia nigra, pos-
terior thalamus, red nucleus, colliculi, superior cerebellar 
peduncle and caudate nucleus [36]. Probably, higher doses 
can saturate the most common sites of deposits, resulting in 
a more complex Gd distribution [10]. In a patient who had 
undergone >80 CE-MRI with mixed (linear and macrocy-
clic) GBCA, T1w hyperintensity was observed not only in 
DN and basal ganglia, but also in the cortex around the cen-
tral and calcarine fissures [42]. Conversely, no evidence of 
significant T1 shortening was observed, both using “conven-
tional” SI [16, 43] and relaxometry [44] methods, even after 
massive cumulative doses of macrocyclic GBCA. However, 
it should be remembered that the T1 shortening detectable 
by MRI does not by any means linearly reflect the actual 
amount of Gd deposited in the brain, as, on one hand, some 
Gd may be present in a “magnetically inert” (i.e., insoluble) 
form, and, on the other hand, tiny amounts of Gd, likely 
without biologic effect, may induce striking MRI evidence.

Imaging of gadolinium retention in the brain: 
methodological considerations

A better understanding of the Gd-related MRI changes in 
the brain requires the analysis of the imaging techniques 
used.

Most studies on SI changes evaluated T1w-hyperinten-
sity on Spin Echo (SE) sequences, with a slice thickness of 
4–5 mm, and compared DN SI to normal-appearing areas at 
the same level of the DN, such as pons or middle cerebellar 
peduncle. Similarly, studies analyzing GP SI changes have 
mainly used the thalamus as reference ROI. Although some 
Gd deposition is present also in these reference regions 
[45], this approach consistently proved that DN and GP SI 
increases with the increasing number of linear, but not mac-
rocyclic, GBCA administrations. Some authors also used 
CSF as a reference ROI [17, 20]; however, GBCAs have 
been shown to pass, at least temporarily, into CSF [29, 46] 
and, as previously mentioned, CSF may actually represent 
a pathway to reach deep GM structures.

It is currently agreed that SE and Gradient Echo 
(GrE)-T1w sequences cannot be used interchangeably for 
evaluating SI, with some authors even preferring the lat-
ter for qualitative analysis [47]. Tanaka et al. [48] showed 
that post-contrast SE-T1 sequences could be used instead 
of unhenanced SE-T1, if the latter is unavailable. Further-
more, no study has compared the effect of different field 
strengths on these SI measurements [49]. However, serial 
measurements should obviously be performed using the 
same sequence and the same field strength, possibly on 
the same MR scanner.

To obviate some of the limitations related to quali-
tative parameters like SI, quantitative approaches for 
measuring GBCA-induced T1 shortening have been 
proposed. In 74 RR-MS patients exposed to different 
GBCA subtypes, Tedeschi et al. [50], using a validated 
relaxometry method [51, 52], assessed the R1 (1/T1) and 
R2* (1/T2*) relaxation rates, i.e., quantitative MRI met-
rics intrinsically related to tissue microstructure and not 
affected by the entangled contrasts of the SI images, or 
by acquisition-related confounding factors [53]. It was 
thus demonstrated that DN T1 shortening in patients 
exposed to  Magnevist® is linked only to the number of 
previous GBCA administrations and not to R2*changes 
(and therefore possible iron build-up), nor to MS-related 
factors such as disease severity or duration. Using 
another relaxometry approach, other authors showed that 
global and regional T1 and T2 values correlate with the 
number and volume of prior  Magnevist® injections in 
different gray matter structures [54].

Recently, Quantitative Susceptibility Mapping (QSM) 
has been used to evaluate DN susceptibility changes 
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associated with Gd retention, showing significantly higher 
DN susceptibility values in patients exposed to GBCA 
compared to subjects with no history of GBCA admin-
istration [55]. In this study, the 5 patients of the GBCA 
group who received only macrocyclic agents showed 
QSM values close to those of the non-GBCA group.

Further, other clinical conditions such as Fahr dis-
ease, pseudohypoparathiroidism, post-radiation therapy 
changes, Wilson Disease, Hepatic encephalopathy, etc., 
may cause T1-hyperintensity in deep gray matter [56], 
somewhat resembling Gd deposition (Fig. 2). Quantita-
tive techniques such as QSM were shown useful for dif-
ferentiating accumulation of paramagnetic metals from 
calcifications [57].

Finally, regardless of the imaging technique [58], other 
sources of variability should be taken into account. These 
include the time interval between GBCA administration 
and MRI acquisition, patient’s characteristics such as age, 
type of disease, concurrent therapies [49], and the pos-
sible interactions between different classes of GBCA. 
For example, the DN T1w-hyperintensity due to multiple 
 Magnevist® injection was apparently reduced when patients 
were subsequently given macrocyclic GBCAs, potentially 
indicating a washout effect or precipitation of Gd [19].

Gadolinium retention in the brain: histopathologic 
reports in humans and in animal models

Important information on tissue Gd deposition has also 
been provided by pathology studies. The first description 

of Gd retention in the brain of subjects without severe renal 
failure was a report on 30 biopsies and surgical resections 
of patients with brain tumors, and was firstly related to the 
loss of integrity of the BBB. This result provided indirect 
evidence of transmetallation and release of dechelated Gd 
in vivo, defined a different stability of GBCA (as Gd dep-
osition was significantly higher in patients that received 
 Omniscan® than in those exposed to  Multihance®) and 
showed that Gd accumulation was related to the number of 
GBCA administrations [59]. Later, Gd deposition has been 
assessed using inductively coupled plasma mass spectrom-
etry (ICP-MS) in post-mortem brain samples of subjects 
exposed to different linear GBCA [45, 60, 61].

In 13 autopsy subjects exposed in life to >4 admin-
istrations of  Omniscan®, McDonald et al. detected 0.1–
58.8 μg of Gd per gram of tissue in DN, GP, thalamus, 
and pons, with a significant correlation between dose and 
SI at MRI. Gd was deposited not only within the endothe-
lial wall, but also in the neural tissue, confirming that Gd 
can pass through the BBB. Notably, no signs of neuronal 
damage in the involved brain tissue were observed [45].

In 5 autopsy subjects with an history of >2 adminis-
trations of  Magnevist® and  Omniscan®, a significant Gd 
concentration was observed in DN, GP, cerebellar white 
matter, frontal lobe cortex, and frontal lobe white mat-
ter, highest in DN and GP. Interestingly, no Gd deposi-
tion was found in the non-GBCA-exposed control group. 
Finally, no abnormal macroscopic changes were detected 
in the analyzed regions [60].

More recently, the autopsy specimens from 9 
patients (five receiving 1–11  Prohance® injections, two 

Fig. 2  Examples of increased T1-wighted signal intensity in the 
dentate nuclei due to different clinical conditions. Axial unenhanced 
SE-T1 (a, c, e, g, i, k) and GE-T2* (b, d, f, h, j, l) images at the 
level of dentate nuclei (upper row) and basal ganglia (lower row) 
in a patient with Fahr’s syndrome (a–d), in a patient with neurode-
generation with brain iron accumulation (e–h), and in a patient with 
hypoparathyroidism (i–l), respectively. In all cases, the dentate nuclei 

display increased signal intensity (less prominent in e), associated 
with: T2*-w hypointense signal, due to symmetrical bilateral calci-
fications of the basal ganglia (c, d), T2*-w mild hypointense signal 
in the basal ganglia due to homogeneous iron deposition (g, h), and 
diffuse cerebral atrophy and strong signal reduction on T2*-w in the 
basal ganglia (k–l), with the T1 shortening effect dominating periph-
erally (i–k)
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receiving 1–2  Gadovist® injections, one receiving 1 dose 
of  Multihance®, and one receiving 10  Gadoxetate® injec-
tions) were studied by ICP-MS [61]. Variable Gd deposi-
tion was found in all subjects in DN, GP, putamen, cau-
date nucleus, white matter and pons, with higher levels in 
DN and GP. Comparing these data with those of Mc Don-
ald et al. [45], Gd deposition after  Prohance® was lower 
than after  Omniscan®. However, the population sample 
for the other GBCA tested in this study was insufficient 
for a formal statistical comparison. Moreover, some con-
founding factors could not be excluded by the authors, 
thus limiting the conclusions that can be drawn.

Several animal studies have also been conducted to 
evaluate Gd deposition after repeated administration of 
different GBCA using MRI and/or pathology metrics.

In healthy rats, Robert et al. [62, 63] evaluated the SI in 
the deep cerebellar nuclei (DCN) and the concentration of 
Gd, through ICP-MS, after repeated administrations of dif-
ferent GBCA  (Omniscan®,  Multihance®, and  Magnevist®) 
compared to  Dotarem® and saline. Both studies indicate that 
multiple injections of linear GBCA were associated with 
progressive and significant T1w-hyperintensity in DCN 
(highest after  Omniscan®), and with Gd deposition in the 
cerebellum, while no effects (either histologic or at MRI) 
were observed after  Dotarem® or saline administration.

In a similar rat model, Jost et al. [29] compared 
 Omniscan®,  Multihance® and  Magnevist® (linear) with 
 Dotarem® or  Gadovist® (macrocyclic) and with saline. 
Rats that received macrocyclic GBCAs did not show an 
increased SI in the DCN or GP. In contrast, DCN/Pons 
SI ratio was increased after the administration of linear 
GBCAs, most pronounced after  Omniscan®, followed by 
 Multihance®.

Further studies with ICP-MS have shown that, by 
increasing the Gd load from linear GBCA (by either incre-
menting the dose or reducing the renal clearance), Gd dep-
osition is present not only in the DCN, but also in cerebral 
cortex, subcortical brain, brainstem, olfactory bulbs and 
pons, [40, 62, 64]. However, it was recently shown that, 
even after 12 mmol/kg of  Omniscan®, no histopathologic 
changes were observed in the rat brain, and only 0.00011% 
of the injected dose was retained at 20 weeks [65].

Gadolinium retention beyond the brain

Bone

Bone has long been known to be a preferential site of Gd 
deposition [66], and likely serves as a reservoir of Gd in the 
body [67]. Nevertheless, that was not common knowledge 
in the radiological community, likely because of the lack of 
association with signal abnormalities at MRI. It has been 

estimated that approximately 0.25–1% of the injected Gd 
may be released from the contrast agent and deposited in 
the bones, even in patients with normal renal function [68].

In particular, in the resected femoral heads of patients 
who underwent total hip arthroplasty 3–8 days after CE-
MRI with  Omniscan® or  ProHance®, the amount of Gd 
deposited in bone was 2.5–4 times higher in subjects who 
received the former GBCA [69, 70]. This difference was 
not replicated in another study, where resected femo-
ral head bone samples up to 8 years after  Omniscan® or 
 ProHance® exposure showed high concentrations of Gd, 
especially in the trabecular bone [68]. Recently, high 
levels of bone Gd deposition after macrocyclic GBCA 
administration were measured by ICP-MS in few dece-
dents with a normal GFR. Therefore, bone measures 
of Gd accumulation have been proposed as an indirect 
method to indicate approximate levels of Gd in brain [61].

Skin and other sites

Most of the information about Gd deposition in the skin 
comes from studies in patients with NSF, who showed 
increased Gd content both in affected and unaffected skin 
[71–73]. The first evidence of NSF was reported in 2006, 
showing skin fibrosis resulting from abnormal prolifera-
tion of fibroblasts and collagen in patients with severe renal 
impairment after GBCA administration [74]. It soon became 
clear that, in patients with renal failure, the highest risk of 
NSF was associated with previous administration of linear 
GBCA with an incomplete ring [75]. In an autopsy case of 
a patient who died of NSF, deposition of insoluble Gd-phos-
phate was observed in skin, liver, lungs, intestinal wall, kid-
ney, skeletal muscles and cerebellum [76]. However, while 
several studies suggest that impaired Gd clearance leads to 
tissue accumulation of dissociated Gd and promotes NSF 
development, only a tiny minority of patients with severe 
renal disease exposed to linear GBCA developed NSF [3].

More relevant for our purposes is the evidence of 
detectable Gd concentration also in the skin of subjects 
with normal GFR exposed to GBCA [73]. In a brain 
tumor patient with normal renal function who received 
61 injections of mostly linear GBCA, arm and leg biop-
sies of deep skin layers were performed because of severe 
generalized joint contractures. High levels of Gd were 
deposited in the skin of this subject, associated with signs 
of inflammation (as depicted by an increased numbers of 
fibrocytes or macrophages, as well as increased CD34 
immuno-reactivity in subcutaneous adipose tissue), in the 
absence of local skin alterations [77].

Using ICP-MS, Murata et al. detected a variable 
amount of Gd deposition in the skin (as well as brain and 
bone) in a series of autopsied patients with normal renal 
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function who had received macrocyclic or linear GBCA. 
Gd concentration was lower in skin tissue after  Prohance® 
than after  Multihance® [61]. Therefore, in contrast with 
previous knowledge [78], even in patients with normal 
renal function, in vivo clinical exposure to GBCA results 
in Gd accumulation into different body tissues such 
as skin, bone matrix or brain. Moreover, Gd retention 
increases with repeated GBCA exposure. Data from rat 
studies, which have long shown Gd accumulation in skin, 
liver, spleen, bone and brain [79, 80], recently confirmed 
the marked difference in tissue deposition between linear 
and macrocyclic GBCA [81]. However, the final form in 
which Gd is deposited in the tissues is still uncertain and 
little is known about the levels of Gd required to induce 
tissue structural changes and to achieve clinical signifi-
cance in humans [47].

Clinical concerns from gadolinium retention

After the almost complete disappearance of NSF by 
limiting or avoiding the use of GBCA in subjects with 
advanced renal failure and employing more stable 
GBCAs, the only unconfounded clinical events associated 
with GBCA administration were sporadic allergic reac-
tions [3].

Following the reports of Gd retention in the brain in 
2014, a variety of symptoms arising shortly after the 
administration of GBCA were described in patients with 
normal renal function. In some of these patients, the per-
sistence of Gd was demonstrated by its elevated concentra-
tions in urine, hair, or in the saphena vein [82, 83]. This 
presumed disease process, observed in subjects with nor-
mal (or borderline) renal function who develop symptoms 
unexplained by other preexistent or subsequent diseases, 
has been named “Gadolinium Deposition Disease” (GDD) 
[83, 84].

Alleged GDD symptoms include tightness or excruci-
ating pain of the arms and legs (like sharp pins and nee-
dles, cutting, or burning), typically in a distal distribution 
(like being fitted with extremely tight “glove-and-sock”), 
but also in the central torso or generalized in location. 
Bone pain and persistent headache with clouded mentation 
(“brain fog”) were also commonly reported [83, 84]. These 
symptoms usually appear from hours up to 2 months after 
the last CE-MRI (mostly within 1 month), with persistent 
pain in the extremities [83]. However, it should be noted 
that the clinical picture of the presumed Gd toxicity in 
these subjects was collected by one single research center, 
using an online anonymous survey where 42 patients self-
reported their symptoms, without a control group. Thus, 
this approach is heavily exposed to selection bias, as also 
stated by the authors themselves [83, 85].

In some patients, subcutaneous soft-tissue thickening 
(“Gadolinium-associated plaques”) may be observed. It 
appears spongy or rubbery, in contrast with the stiffness 
and redness typical of NSF lesions. Moreover, tendons and 
ligaments in a comparable distribution may also be thick-
ened and painful [84]. In 2 patients without NSF exposed 
to  Omniscan®, sclerotic bodies (eosinophilic, collagen-
ous, round or ovoid bodies, thought to be pathognomonic 
for NSF) were found at histopathologic examination of the 
skin [86].

The symptoms described might be considered as a toxic 
effect of Gd, resembling the development of NSF. Accord-
ing to a Team of Patient Advocates, which timely entered in 
the field, “the reported physical symptoms of Gd deposition 
disease are similar but not identical, and lesser in severity, 
to those observed in NSF” [84, 87]. However, the causal 
relationship between GBCA and chronic effects is not fully 
established, and only hypothesized [84, 88].

The reason why only a small percentage of patients 
develop symptoms after GBCA administration is unclear, 
as with NSF. An hypothesis is that less stable GBCA are 
more likely associated with symptoms, similarly to NSF, 
with other host factors, such as genetic susceptibility and/or 
adaptive immune response, likely playing a relevant role in 
determining the development of GDD [84]. However, these 
clinical findings were surprisingly reported even after one 
single administration of all GBCA, excluding  Dotarem® 
[82, 83]. Thus, a well-conducted, prospective evaluation 
of the real clinical incidence and pathogenesis of the pre-
sumed GDD is strongly warranted, especially due to the 
high impact of this topic not only in the scientific commu-
nity, but also in non-specialized media.

Gd neurotoxicity has been rarely described in early 
cases of presumed Gd-induced encephalopathy, in patients 
with renal dysfunction and other significant comorbidities 
[89–92]. It is actually unknown if the Gd retention in the 
brain has a clinical correlate, or leads to adverse neurologi-
cal effects. So far, no significant association between Gd 
exposure and the development of Parkinsonism or other 
movement disorders has been demonstrated [93, 94]. None 
of the imaging studies on Gd-induced T1w shortening 
reported neurological symptoms related to GBCA admin-
istration, and no signs of tissue damage were observed in 
human or animal pathology studies. However, due to the 
description of nonspecific symptoms, such as pain or cog-
nitive changes, after Gd exposure [47], further research is 
warranted to assess the long-term impact on public health 
and safety of deposition of Gd in the brain.

The US Food and Drug Administration (FDA) and the 
National Institutes of Health (NIH) have recommended 
careful consideration about the indication of GBCA, by 
“limiting GBCA use to clinical circumstances in which 
the additional information provided by the contrast is 
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necessary” [95], and suggested the preferential use of mac-
rocyclic agents [96]. In January 2017, the European Medi-
cines Agency (EMA) has announced that its Pharmacovigi-
lance Risk Assessment Committee (PRAC) will continue to 
evaluate the risk of Gd deposition, and that, once PRAC’s 
recommendations will be issued, the agency’s Committee 
for Medicinal Products for Human Use will adopt a defi-
nite position. The European Commission will then com-
plete the review process by adopting a legally binding deci-
sion applicable in all European Union member states [97]. 
Regarding the presumed GDD, the Drug Safety Communi-
cation of the US-FDA declared that, despite patient’s self-
reports, to date there are no discernable clinical features 
reasonably linked to GBCA administration [95].

Thus, several clinical questions remain open [98]: does 
Gd retention affect the function of the tissues where it is 
deposited and lead to clinical consequences? Does GDD 
exist and, eventually, is it dose- or GBCA- dependent? Is 
the Gd deposition in the brain one manifestation of a more 
complex Gd deposition syndrome that may also encompass 
NSF? What is the role of immune system components and 
genetics in determining different symptoms?

For all these reasons, a systematic scientific approach is 
necessary to this delicate matter, which has manifold medi-
cal and legal implications [93]. Until additional informa-
tion is obtained, radiologists and clinicians should work 
together to monitor the development of NSF-like disease or 
toxicity symptoms allegedly related to GBCA administra-
tion in patients with normal renal function, without how-
ever scaremongering patients undergoing a CE-MRI scan. 
In such cases, a 24-h urine testing may be useful for con-
firming the presence of Gd > 30 days after the most recent 
GBCA administration [84].

Conclusions: what we can do

Some final considerations and practical suggestions may 
be summarized from this review of the available literature 
about Gd retention, while waiting for official guidelines 
and consensus statements developed by major national/
international scientific radiological societies or from an 
international strategy of cooperation, such as the recently 
established International Gadolinium Retention Evaluation 
Consortium, that involves several worldwide scientists [98].

First, in patients referred for a CE-MRI, we should try to 
obtain all information on possible previous GBCA admin-
istrations and evaluate the need of contrast administration 
even more critically than ever, especially in pediatric cases. 
In this respect, the idea of creating and updating an indi-
vidual GBCA administration passport is warranted [98].

Second, the preferential use of macrocyclic GBCAs, 
due to their higher stability over the linear types, is rec-
ommended. This is especially true in children and in 
subjects for whom multiple studies are anticipated (e.g., 
patients with Crohn disease or MS) [84]. However, if 
macrocyclic GBCAs are unavailable and a CE-MRI is 
clinically indicated, we believe that linear GBCA may be 
administered, since all GBCAs provide essential radio-
logical information with exceedingly positive risk/benefit 
ratio for the diagnostic challenge of individual patients.

Third, the presence of T1w hyperintensity in the DN 
(or in any other brain region) should always be described 
in our reports, and may prompt careful questioning of 
the patient about the history of prior Gd administration. 
However, interpretation errors should be avoided [99], 
and other possible causes of spontaneous T1w hyperin-
tensity should always be considered (Fig. 2).

Fourth, it should be borne in our mind that, despite 
some alleged symptoms (as discussed above), at the 
time of this writing there is no known disease associated 
with Gd deposition in the brain, and several millions of 
patients with normal renal function have received GBCA 
without incurring in any related health problems. There-
fore, we should not deny the patients a sure benefit in 
fear of a possible harm.

As radiologists we are given a delicate role in pro-
viding our patients balanced information on a largely 
unknown situation. A truly informed consent must be 
obtained from the patient or parent before GBCA admin-
istration, clearly explaining them the potential risk that 
Gd may be deposited in their body, with still unknown 
(but possibly unremarkable) clinical consequences. On 
the other hand, we should make clear that the diagnostic 
accuracy of many MR exams might be reduced if GBCA 
is not administered, with direct effects on the clinical 
management of the patients.
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