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software, whereas for the intersoftware reproducibility the 
value ranged from 0.311 to 0.577, suggesting fair to moder-
ate agreement; Bland–Altman analysis showed high disper-
sion of data, thus confirming these findings. Comparisons 
of different VIF estimation methods for DCE biomarkers 
resulted in ICC of 0.636 for Ktrans and 0.662 for Vp; com-
parison of two deconvolution algorithms in DSC resulted in 
an ICC of 0.999.
Conclusions The use of single software ensures very good 
intraobserver and interobservers reproducibility. Caution 
should be taken when comparing data obtained using dif-
ferent software or different postprocessing within the same 
software, as reproducibility is not guaranteed anymore.

Keywords Gliomas · Perfusion weighted MRI · Dynamic 
susceptibility contrast MRI (DSC) · Dynamic contrast-
enhanced MRI (DCE) · Reproducibility of findings · 
Vascular input function (VIF)

Abbreviations
DSC  Dynamic susceptibility contrast
DCE  Dynamic contrast-enhanced
Vp  Plasma volume
Ktrans  Volume transfer constant
VIF  Vascular input function
SVD  Singular value decomposition
ICC  Intraclass correlation coefficient

Introduction

Dynamic susceptibility contrast MRI (DSC) and Dynamic 
contrast-enhanced MRI (DCE) can be useful tools in the 
diagnosis and follow-up of brain gliomas. Most studies 
published on this topic used perfusion-derived biomarkers 

Abstract 
Purpose Dynamic susceptibility contrast MRI (DSC) and 
dynamic contrast-enhanced MRI (DCE) are useful tools in 
the diagnosis and follow-up of brain gliomas; nevertheless, 
both techniques leave the open issue of data reproducibil-
ity. We evaluated the reproducibility of data obtained using 
two different commercial software for perfusion maps cal-
culation and analysis, as one of the potential sources of var-
iability can be the software itself.
Methods DSC and DCE analyses from 20 patients with 
gliomas were tested for both the intrasoftware (as intraob-
server and interobserver reproducibility) and the intersoft-
ware reproducibility, as well as the impact of different post-
processing choices [vascular input function (VIF) selection 
and deconvolution algorithms] on the quantification of per-
fusion biomarkers plasma volume (Vp), volume transfer 
constant (Ktrans) and rCBV. Data reproducibility was evalu-
ated with the intraclass correlation coefficient (ICC) and 
Bland–Altman analysis.
Results For all the biomarkers, the intra- and interobserver 
reproducibility resulted in almost perfect agreement in each 
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for gliomas grading [1–5], patients’ outcome prediction [6–
11] and differentiation of tumor recurrence from treatment-
related effects like radionecrosis and pseudoprogression 
[12–16].

However, reproducibility is still an open issue for both 
techniques: no standardized protocol for acquisition and 
analysis of perfusion techniques is still available and, 
consequently, different research groups have used differ-
ent protocols, generating a wide range of results [17–22]. 
Recently some steps towards standardization have been 
made, with the publication of an evidence- and consensus-
based standards document for DCE [23] and a white paper 
for DSC [24].

One of the potential sources of variability is the software 
chosen for perfusion map calculation and analysis [25–32] 
since each software implements different analysis tools [i.e. 
leakage correction for DSC maps or automatic detection 
of vascular input function (VIF)] and sometimes different 
algorithms.

The aim of this study was to test the reproducibility of 
data obtained from studying the same cohort of patient 
with two commercial software, which were chosen based 
on the rationale that they could be used independently from 
the MR machine available for the acquisition, thus reduc-
ing data spread and improving standardization of perfu-
sion analysis. We tested both intrasoftware (including the 
intraobserver and interobservers reproducibility) and inter-
software reproducibility and the impact of different post-
processing choices, such as VIF selection methods and 
deconvolution algorithms, on the quantification and repro-
ducibility of perfusion biomarkers obtained from DSC and 
DCE analyses.

Methods

Patients

DCE and DSC data derived from 20 patients (mean age 
51 years; range 16–76 years; 10 M/10 F) with histologi-
cally confirmed gliomas (8 WHO II, 4 WHO III and 8 
WHO IV) were retrospectively evaluated. This study was 
approved by the ethical committee of our Institution.

MR imaging

MR imaging was performed on a 3T scanner (Achieva, 
Philips Healthcare, Best, The Netherlands) equipped with 
80 mT/m gradients using a phased-array head 8 channel-
coil. Online Resource 1 summarizes the imaging param-
eters of the MRI sequence protocol.

DCE–MRI was performed with a dynamic gradient-echo 
T1-weighted sequence using the following parameters: 

TR/TE 3.9/1.8 ms; flip angle 15°; matrix 96 × 84; FOV 
230 × 201 mm; section thickness, 2.5 mm; in-plane acqui-
sition voxel size, 2.4 × 2.4 mm. Seventy dynamic scans 
were performed with a temporal resolution of 5.1 s. The 
total acquisition time for DCE–MRI was 6 min and 10 s. 
DCE–MRI was preceded by a variable flip angle (VFA) 
axial sequence for T1 mapping.

DSC–MRI was performed with an axial gradient-
echo T2*-weighted EPI sequence using the following 
parameters: TR/TE 1500/40 ms; flip angle 75°; matrix 
96 × 77 mm; FOV 230 × 230 mm; section thickness, 
5 mm; in-plane acquisition voxel size, 2.4 × 2.9. Eighty 
dynamic scans were performed with a temporal resolu-
tion of 1.5 s. The total acquisition time for DSC–MRI was 
2 min and 4 s.

A cumulative fixed dose of 10 ml of gadobutrol 
(Gadovist, 1 mmol/ml; Bayer Schering Pharma, 6 Berlin, 
Germany) was administered, splitted in two boluses of 
5 ml. The first bolus of 5 ml was injected 50 s after the start 
of the DCE sequence using a power injector (Spectris Sola-
ris MR injector; MedRad, Indianola, Pennsylvania) at a 
rate of 2 ml/s, immediately followed by a 20 ml continuous 
saline flush at the same injection rate. The second bolus of 
5 ml was injected 16 s after the start of the DSC sequence 
using the same power injector at a rate of 5 ml/s, followed 
by a 20 ml saline flush at the same injection rate. Thus, the 
contrast administration during DCE sequence pre-saturated 
the tissue for the following DSC–MR imaging.

Preprocessing

Perfusion MR analysis was performed using Olea Sphere 
(v. 2.3, Olea Medical Solutions, La Ciotat, France) and 
NordicIce (v. 2.3.12, NordicNeuroLab, Bergen, Norway). 
In both software, preprocessing steps included automatic 
motion correction by a rigid-body registration, automatic 
spatial smoothing and background segmentation.

DCE analysis

For DCE analysis, patient-specific baseline T1 maps were 
derived from VFA axial sequences (see Online Resource 1 
for acquisition details).

In both software DCE analysis was based on the 
extended Tofts model [33]. In NordicIce, a venous VIF 
was obtained by manually drawing a ROI in the superior 
sagittal sinus (SSS). In Olea Sphere both a manual venous 
VIF and an automatic one were obtained; the venous one 
was obtained from the SSS, while the automatic one was 
obtained using a tool implemented in the software [34], 
which selected both arteries and veins as sources of input. 
Parametric maps of volume transfer constant (Ktrans) and 
plasma volume (Vp) were then obtained.
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DSC analysis

In both software, DSC analysis was performed using the 
singular value decomposition (SVD) algorithm for decon-
volution [35]. However, while Olea Sphere offers different 
methods for SVD, and both the standard truncated SVD 
(sSVD) and oscillation-index cSVD (oSVD) were used for 
analysis, in NordicIce only sSVD was available. An arte-
rial VIF was obtained in Olea Sphere using an automatic 
method [34] while in NordicIce it was obtained semi-auto-
matically: the observer selected the axial slice of interest 
and then the software searched for a valid vascular signal. 
Leakage correction was not applied during the postprocess-
ing since it was already obtained with the contrast adminis-
tration during the DCE acquisition, which served as a pre-
bolus. Parametric maps of cerebral blood volume (CBV) 
were then obtained.

A fixed hematocrit value of 0.45 was set in both 
software.

Image analysis

All the parametric maps were independently analyzed by 
two observers (GMC, with 3 years experience in perfusion 
analysis, NA with 7 years experience in perfusion analysis).

In both software, perfusion maps were automatically co-
registrated with FLAIR and/or post-contrast T1 images by 
performing a rigid transformation of the datasets.

For each parametric map, multiple circular ROIs, 
25–30 mm2 in area, were drawn in the tumor area that 
showed the highest value of perfusion biomarkers, then 
the one showing the highest mean value for each perfusion 
biomarker was selected. To normalize CBV values, a sin-
gle elliptic ROI, 250–300 mm2 in area, was drawn in the 
contralateral normal appearing white matter (NAWM) in 
the centrum semiovale (nCBV). The ratio (rCBV) between 
the tumor-CBV and nCBV was then considered. The anal-
ysis was repeated after one month to assess intraobserver 
reproducibility.

From DCE analysis, for each parametric map and each 
observer three datasets were obtained: one with the auto-
matic VIF selection (Olea automatic) and two with the man-
ual VIF selection (Olea Manual and NordicIce); from DSC 
two datasets (Olea automatic and NordicIce) were obtained.

Moreover, to avoid any possible variability due to dif-
ferent ROIs positioning between observers, intersoftware 
reproducibility was re-tested drawing the ROIs in the same 
tumor area in the two software. To do so, co-registered 
anatomical series were used as reference to guarantee the 
same ROIs positioning in the two software. Mean value of 
selected ROIs was then used for the comparison.

To test the impact of different postprocessing options on 
the quantitative data, additional analyses were performed 
using Olea Sphere: for DCE, the reproducibility of data 
obtained using the automatic and the manual VIF selection 
and for DSC the data obtained using the sSVD and oSVD 
methods. For all these analyses, the ROIs positions were 
kept constant.

Statistical analysis

Intraclass Correlation Coefficient analysis (ICC) selecting 
a two-way random effect model was performed to assess 
intra- and intersoftware reproducibility using SPSS (SPSS 
20.0 for MacOSX, IBM, Chicago, IL, USA) and inter-
preted as follows: 0–0.2 indicates poor agreement, 0.3–0.4 
indicates fair agreement, 0.5–0.6 indicates moderate agree-
ment, 0.7–0.8 indicates strong agreement and >0.8 indi-
cates almost perfect agreement.

Additionally, to compare data obtained with the two 
software and with the different postprocessing options, 
Bland–Altman analysis was performed using Graph Pad 
Prism 6 (GraphPad Software, La Jolla, California, USA, 
http://www.graphpad.com).

Results

Intrasoftware reproducibility

Intraobserver reproducibility resulted in an ICC always 
superior than 0.8 except for two comparisons (Table 1). 
Similar results were obtained for interobservers agreement 
(Table 1).

Intersoftware reproducibility

Intersoftware reproducibility resulted fair to moderate for 
all perfusion biomarkers (Table 2): ICC ranged from 0.354 
to 0.577; similar result was found drawing the ROIs in the 
same tumor area in the two software (Table 3). Selecting 
the same SVD algorithm in the two software only slightly 
improved reproducibility of rCBV (Table 3).

Graphs derived from Bland–Altman analysis are sum-
marized in Fig. 1; when comparing Olea Automatic and 
NordicIce, bias for Ktrans, Vp and rCBV were 0.0035, 
−0.8030 and −4.604 while 95% limits of agreement range 
were (−0.16, 0.17), (−8.6, 6.99), (−17.29, 8.07), respec-
tively; comparing Olea Manual and NordicIce, bias for 
Ktrans and Vp were 0.0210 and −0.4285 while 95% limits 
of agreement range were (−0.09, 0.13) and (−6.62, 5.76), 
respectively.

http://www.graphpad.com
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Impact of postprocessing options on reproducibility

Reproducibility of different VIF selection methods for 
DCE-derived biomarkers resulted in an ICC of 0.636 for 
Ktrans and 0.662 for Vp (Table 4). Regarding Bland–Altman 

analysis (Fig. 1), bias for Ktrans and Vp were −0.0175 
and −0.3745 while 95% limits of agreement range were 
(−0.16, 0.12) and (−6.50, 5.75), respectively.

Comparison of the two SVD methods for DSC resulted 
in an ICC of 0.999 for rCBV in the same software (Table 4).

Discussion

One of the major limitations to the use of PWI in the diag-
nostic workflow of brain tumors is the lack of standardi-
zation of acquisition and analysis protocols [17–20]. This 
leads to highly heterogeneous findings among studies, thus 
decreasing reproducibility. Some of the known PWI analy-
sis variables are operator-dependent, such as the VIF selec-
tion [17, 18, 25, 26, 28] and ROI positioning [20].

Another source of variability is the choice of the PWI 
analysis software itself [25–32]: different FDA and CE-
approved software are available, such as the software 

Table 1  ICC values for 
intraobserver and interobserver 
reproducibility

Letters (A, B) refers to observers, numbers (1, 2) refers to the different timepoints

Ktrans volume transfer constant, Vp plasma volume, rCBV relative cerebral blood volume, ICC intraclass 
correlation coefficient, CI 95% confidence interval

Parameter Olea automatic Olea manual NordicIce

Ktrans

 Observer A1 vs A2 0.986 (CI 0.96–0.99) 0.980 (CI 0.95–0.99) 0.736 (CI 0.44–0.88)

 Observer B1 vs B2 0.999 (CI 0.99–1.00) 0.984 (CI 0.96–0.99) 0.923 (CI 0.81–0.96)

 Observer A1 vs B1 0.996 (CI 0.99–1.00) 0.970 (CI 0.89–0.99) 0.859 (CI 0.68–0.94)

 Observer A2 vs B2 0.984 (CI 0.96–0.99) 0.963 (CI 0.91–0.98) 0.829 (CI 0.61–0.92)

Vp

 Observer A1 vs A2 0.994 (CI 0.98–0.99) 0.966 (CI 0.91–0.98) 0.804 (CI 0.57–0.91)

 Observer B1 vs B2 0.993 (CI 0.98–0.99) 0.973 (CI 0.93–0.98) 0.935 (CI 0.84–0.97)

 Observer A1 vs B1 0.985 (CI 0.96–0.99) 0.924 (CI 0.81–0.96) 0.848 (CI 0.66–0.93)

 Observer A2 vs B2 0.994 (CI 0.98–0.99) 0.970 (CI 0.87–0.99) 0.849 (CI 0.66–0.93)

rCBV

 Observer A1 vs A2 0.891 (CI 0.74–0.95) – 0.702 (CI 0.38–0.87)

 Observer B1 vs B2 0.984 (CI 0.96–0.99) – 0.897 (CI 0.76–0.95)

 Observer A1 vs B1 0.919 (CI 0.78–0.96) – 0.903 (CI 0.77–0.96)

 Observer A2 vs B2 0.912 (CI 0.78–0.96) – 0.790 (CI 0.54–0.91)

Table 2  ICC values for intersoftware reproducibility

Ktrans volume transfer constant, Vp plasma volume, rCBV relative cer-
ebral blood volume, ICC intraclass correlation coefficient, CI 95% 
confidence interval
a NordicIce used with manual selection of VIF in SSS
b rCBV obtained with oSVD method in Olea Sphere and sSVD 
method in NordicIce

Parameter Olea automatic vs NordicIce Olea manual vs NordicIce

Ktrans 0.311 (CI −0.16–0.66)a 0.525 (CI 0.14–0.77)a

Vp 0.404 (CI −0.03–0.71)a 0.504 (CI 0.08–0.77)a

rCBV 0.577 (CI 0.12–0.81)b –

Table 3  ICC values for intersoftware reproducibility evaluated with fixed ROI

Ktrans volume transfer constant, Vp plasma volume, rCBV relative cerebral blood volume, ICC intraclass correlation coefficient, CI 95% confi-
dence interval
a NordicIce used with manual selection of VIF in SSS
b rCBV obtained with oSVD method in Olea Sphere and sSVD method in NordicIce

Parameter Olea automatic vs NordicIce Olea manual vs NordicIce Olea automatic (sSVD) vs NordicIce (sSVD)

Ktrans 0.354 (CI −0.11–0.69)a 0.514 (CI 0.09–0.78)a –

Vp 0.446 (CI −0.01–0.74)a 0.575 (CI 0.17–0.81)a –

rCBV 0.455 (CI −0.08–0.79)b – 0.582 (CI 0.005–0.843)
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platforms offered by all the major MR manufacturers, and 
some commercial software packages for advanced MR 
imaging analyses. Moreover, especially in neuroimaging, 
some groups analyze PWI datasets using non CE and FDA 
approved in-house software.

The issue of the reproducibility of data derived from 
different software seems to be independent from imaging 
technique and anatomical district: previous studies focused 
on data obtained using different software or different ver-
sions of the same software in both CT-PWI [27, 29, 30] and 
MR-PWI [25, 26, 28, 31, 32]. To our best knowledge, this 
study is the first reporting data on DCE reproducibility in 
brain imaging.

Intrasoftware reproducibility

Regarding the intrasoftware analysis, we found good 
reproducibility for all comparisons (Table 1). One of the 
two software, Olea Sphere, showed narrower and higher 
range of ICC values (Fig. 2). Better reproducibility was 
especially observed when the automatic selection of VIF 
was used, probably because this method avoids one of 
the possible observer-dependent variables. Neverthe-
less, our data shows that the manual selection of VIF 
also ensures a good intrasoftware reproducibility when 
selected in a fixed position (in our study, the superior 
sagittal sinus).

Slight differences were found in DCE and DSC repro-
ducibility: Vp and Ktrans showed slightly better results com-
pared to rCBV for both intraobserver and interobserver 
reproducibility (Table 1; Fig. 2); this may be due to the 
need of drawing two ROIs for rCBV estimation, one in the 
tumor area, and one in the NAWM, thus adding an addi-
tional variable compared to Ktrans and Vp.

Intersoftware reproducibility

Regarding the intersoftware analysis, the ICC values 
obtained suggest only fair to moderate reproducibility for 

Fig. 1  Summary of Bland–Altman analysis for Ktrans, Vp and rCBV. 
For each horizontal bar the central line corresponds to bias, while the 
left and right ends represent the limits of agreement. The bar length is 

proportional to the dispersion of data. OA Olea automatic, OM Olea 
manual, N NordicIce

Table 4  ICC values for impact of postprocessing options on repro-
ducibility. All analyses performed using the same software (Olea 
Sphere)

Ktrans volume transfer constant, Vp plasma volume, rCBV relative cer-
ebral blood volume, ICC intraclass correlation coefficient, CI 95% 
confidence interval

Parameter Automatic VIF vs manual VIF oSVD vs sSVD

Ktrans 0.636 (CI 0.29–0.83) –

Vp 0.662 (CI 0.31–0.85) –

rCBV – 0.999 (CI 0.98–1.00)

Fig. 2  ICC values of intrasoftware reproducibility for Ktrans, Vp and rCBV. Summary of ICC values obtained in all comparisons; upper and 
lower limits of the box represent the highest and lowest ICC value obtained; the central line represents the mean ICC value obtained
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both DSC and DCE parameters; moreover, the 95% con-
fidence interval for ICC values showed a wide range of 
results for all comparisons (Table 2). This ICC value dis-
persion suggests that even if the two software were used 
with similar parameters, some differences do exist in how 
the two software generate the perfusion maps, and are 
probably due to options inaccessible to the users.

Similar results were also obtained drawing the ROIs in 
the same tumor area in the two software, with only a slight 
improvement of ICC values, showing that ROIs positioning 
might not be a major issue for PWI reproducibility if the 
analysis is performed by trained readers (Table 3).

The Bland–Altman analysis confirmed this data, since 
the limits of agreement and the dispersion of data were 
too wide to define the results reproducible (Fig. 1); the 
automatic VIF selection seems to slightly underesti-
mate parameters if compared to the manual method; this 
may be due to the different composition of the input of 

the automatic method (see Sect. “VIF selection in DCE” 
paragraph).

Slight differences in DSC and DCE reproducibility 
were found when different methods of VIF selection were 
applied in the two software for DCE analysis, obtaining 
better results for rCBV (Tables 2, 3); these differences dis-
appeared when the manual selection of VIF was applied 
in both software for DCE analysis (Tables 2, 3), suggest-
ing that is important to use the same VIF selection method 
when performing perfusion analysis (see Sect. “VIF selec-
tion in DCE” paragraph).

To better clarify why these ICC values were obtained in 
intersoftware comparison, further analysis on the impact 
of different postprocessing options on data reproducibility 
were performed considering hypotheses and results of pub-
lished studies. In particular, the impact of deconvolution 
algorithms on DSC and VIF selection on DCE data repro-
ducibility were investigated.

Fig. 3  Comparison of automatic and manual VIF selection in the 
same patient; in this case automatic VIF selection on DCE maps 
shows both arterial (a) and venous (b) input; manual VIF selection on 
DCE maps consists in venous input only (d); c, e Concentration time 

curves show different peaks, with the one derived from automatic VIF 
being lower. The curve derived from the manual VIF is the mean of 
four different input located around the pixel selected (e)
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Deconvolution algorithms in DSC

For DSC, one of the proposed factors that may affect repro-
ducibility is the choice of the deconvolution algorithm [27, 
30]. In our study DSC analyses were performed applying 
both different and same deconvolution algorithms in the 
two software, finding low intersoftware reproducibility, that 
only slightly increased from an ICC of 0.455–0.582 when 
selecting the same algorithm (sSVD) (Table 3). It is pos-
sible that the choice of a different algorithm per se does not 
introduce significant variability; this was proved comparing 
the data obtained using the two different SVD methods in 
the same software, resulting in an almost perfect agreement 
with an ICC of 0.999 (Table 4). Bland–Altman analysis 
confirmed this finding since the dispersion of data is very 
low (Fig. 1). This could mean that the two software apply 
the same algorithm in a different way or that the main 
source of variability may be due to other postprocessing 
options. Lastly, it must be noticed that we compared rCBV 

value, while some differences are expected in CBF when 
comparing oSVD and sSVD [36].

VIF selection in DCE

A possible source of variability for DCE analysis is the def-
inition of VIF, as proposed by Heye [25] and Beuzit [28]. 
Our data confirms their hypothesis, since different quan-
titative values and thus different reproducibility of DCE 
data according to different VIF estimation methods were 
obtained. In the intersoftware comparison, a better repro-
ducibility was obtained for both Ktrans and Vp when the VIF 
was selected manually in both software (Tables 2, 3). These 
differences may arise due to a different vessel selection in 
the two methods: the automatic selection of VIF selects 
both arteries and veins as a source of input, and this may 
determine a different peak characterization of the VIF curve 
(Figs. 3, 4); on the other hand, when performing the man-
ual VIF selection, only venous signal is chosen, making 

Fig. 4  Comparison of automatic and manual VIF selection in the 
same patient; in this case automatic VIF selection on DCE maps 
shows only venous input (a, b); manual VIF selection on DCE maps 

consists in venous input only (d); c, e Concentration time curves 
shows similar peaks. The curve derived from the manual VIF is the 
mean of four different input located around the pixel selected (e)
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the peaks of the curves probably more similar between the 
two software. Nevertheless, even considering this slight 
improvement, reproducibility still remains low. To pre-
cisely define the impact of different VIF on reproducibil-
ity, the two VIF estimation methods were compared in the 
same software (Figs. 3, 4). Our results show that this single 
change in postprocessing step has a significant impact on 
data as only moderate agreement was obtained, even if the 
ROIs were positioned in the same area and no other dif-
ferences exist between the datasets compared (Table 4). 
Probably the VIF selection itself cannot entirely explain the 
poor reproducibility but it seems to play a major role in it.

Our study confirms the recent findings by Orsingher 
[26], Milchenko [31] and Kelm [32], who also found low 
intersoftware reproducibility of DSC parameter CBV. 
Moreover, we confirmed its good interobserver reproduc-
ibility found by Kelm [32]. Very similar findings were 
found for DCE parameters. This has several consequences 
on the application of perfusion analysis.

The excellent intrasoftware reproducibility suggests that 
each software can be used in a reliable way even by multi-
ple readers. It must be said, however, that a thorough train-
ing is necessary to obtain this result and the acquisition and 
analysis protocol must be followed very strictly.

The poor intersoftware reproducibility and the impact of 
postprocessing options on data reproducibility have conse-
quences on the design of follow-up studies, on the applica-
tion of data published in literature and on the daily clinical 
routine use of perfusion analysis. Follow-up studies should 
be designed and performed using the same software and the 
same postprocessing options (i.e. VIF selection), otherwise it 
could be difficult to define if any observed variation in phar-
macokinetic parameters is a true biological phenomenon or it 
is simply related to the chosen analysis method. Moreover, it 
could be risky to apply published findings to other datasets, 
unless the same software, analysis protocol and acquisition 
protocol have been used. This is particularly relevant for those 
studies that define cut-off values for PWI biomarkers (i.e. in 
tumors grading). It must be said, however, that, as shown 
in the work by Kelm [32], different diagnostic accuracy is 
unlikely to be found among different FDA-cleared software.

Conclusions

In conclusion, we found a very good intrasoftware repro-
ducibility and poor intersoftware reproducibility for DCE 
and DSC analyses, suggesting that while the use of a single 
software ensures reliable results, caution should be taken 
when comparing data obtained using different software and 
different postprocessing options, since the reproducibility 
in this case is not guaranteed anymore.
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