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Abstract
Crop intelligence and yield prediction of potato (Solanum tuberosum L.) are impor-
tant to farmers and the processing industry. Remote sensing can provide timely 
information on growth status and accurate yield predictions during the growing 
season. However, there is limited documentation on the most suitable vegetation 
indices (VIs) and optimal growth stages for acquiring remote sensing imagery of 
potato. To address this knowledge gap, a systematic review was conducted. Origi-
nal scientific manuscripts published between 2000 and 2022 were identified using 
various databases. The findings indicate that satellite imagery is the most widely 
used source of remote sensing data for tuber yield prediction, whereas unmanned 
aerial vehicle systems (UAVs) and handheld sensors are more frequently applied for 
growth monitoring. The normalized difference vegetation index (NDVI), red-edge 
chlorophyll index (CIred-edge), green chlorophyll index (CIgreen), and optimized soil-
adjusted vegetation index (OSAVI) are the most frequently used VIs for the growth 
and yield estimation of potato. The tuber initiation stage was found to be the most 
appropriate stage for remote sensing data acquisition. This review will assist potato 
farmers, agronomists and researchers in selecting the most suitable VIs for monitor-
ing specific growth variables and selecting the optimal timing during the growing 
season to obtain remote sensing images.
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Introduction

Potato (Solanum tuberosum L.) growth monitoring and tuber yield prediction are 
of utmost importance for effective management of crops and planning of farm 
activities, such as harvesting, storage, distribution, and marketing logistics (Stone 
and Meinke 2005; Van der Velde and Nisini 2019). Moreover, monitoring potato 
crop development during the growing season allows for an adaptive management 
of fertilizers, irrigation, and pests and diseases (van Evert et  al. 2012; Cucho-
Padin et al. 2020; Gold et al. 2020).

Crop growth monitoring and yield prediction through ground-based observa-
tions and destructive sampling during the growing season tend to be costly, time-
consuming, and prone to errors (Basso and Liu 2019; Tiedeman et al. 2022). As 
such, process-based crop models have been developed to simplify growth and 
yield prediction processes. Well-calibrated crop models can provide reliable esti-
mates of potato growth and tuber yield before harvest (Raymundo et  al. 2014). 
However, calibration for local conditions is necessary to accommodate the spa-
tial variability in soil and weather conditions, crop variety, and management 
practices, which require a large amount of data input (Boote et al. 1996). These 
requirements can result in simulation uncertainties if input data are inaccurate or 
incomplete (Hoogenboom et al. 2019).

Recently, remote sensing technology has been adopted to monitor crop growth 
and predict yield during the season, and the spectral reflectance of green plants 
has been related to crop growth variables such as leaf area index (LAI), canopy 
cover, biomass, leaf chlorophyll content (LCC), and yield (Haboudane et al. 2002; 
Al-Gaadi et al. 2016; Tenreiro et al. 2021). Various vegetation indices (VIs), such 
as the normalized difference vegetation index (NDVI), weighted difference vege-
tation index (WDVI), enhanced vegetation index (EVI), red-edge inflection point 
(REIP), and ratio vegetation index (RVI) have been derived from remote sensor 
observations and used as proxies for plant growth and productivity (Prasad et al. 
2006; Herrmann et  al. 2011; Xue and Su 2017). Although remote sensing has 
been widely used in crop monitoring, there is a lack of literature regarding the 
appropriate phenological growth stage for acquiring remote sensing imagery and 
suitable VIs for optimal potato growth monitoring and tuber yield prediction.

This paper presents a systematic literature review of published original 
research on the application of remote sensing in potato growth monitoring and 
yield prediction. The objective of this study was to address the gaps in the exist-
ing literature by answering the following research questions:

•	 What are the most suitable remote sensing techniques for potato growth moni-
toring and tuber yield prediction?

•	 What are the most widely used vegetation indices to monitor potato growth 
and predict yield?

•	 What is the most appropriate phenological stage for accurate potato yield pre-
diction?
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The remainder of this paper is organized as follows. Sect.  "Overview of Remote 
Sensing Applications for Potato" provides an overview of the remote sensing 
applications for potato growth monitoring and yield prediction. Sect.  "Research 
Methodology" describes the methodology used in the systematic review. Sect. "Results 
and Discussion" presents the results and discussion, and Sect. "Conclusions" presents 
the conclusions.

Overview of Remote Sensing Applications for Potato

Remote sensing information can be retrieved using various sensors, such as cam-
eras, video recorders, multispectral and hyperspectral scanners, mounted on satel-
lites, airplanes, unmanned aerial vehicles (UAVs), and ground-based platforms. The 
application of remote sensing for potato crop monitoring can be categorized into 
three main areas: growth monitoring, vegetation condition status monitoring, and 
tuber yield prediction.

Growth Monitoring

Remote sensing is based on acquiring electromagnetic wave reflectance from vege-
tation surfaces. The reflected light from vegetation surfaces depends on factors such 
as plant type, growth stage, water content and intrinsic tissue factors. Reflectance 
within the ultraviolet (10 – 380 nm), the visible region (450 – 750 nm) and the near 
infrared wave band (850 – 1100 nm), are prominent in agricultural applications (Xue 
and Su 2017). The change in reflectance at different wavelengths during the different 
crop growth stages is used to derive VIs that are related to canopy state variables, 
such as aboveground biomass (AGB), LAI, ground canopy cover, plant height, and 
vigour assessment (Delegido et al. 2008). The NDVI is the most popular VI related 
directly or indirectly to growth variables through regression or machine learning 
(ML) models (Peng et al. 2021a; Tenreiro et al. 2021).

Vegetation Condition Status

Remote sensing has been employed to estimate the leaf nitrogen (N) and LCC of 
potato crops (Clevers and Kooistra 2012; Kooistra and Clevers 2016). Plant health 
and vigour are used to assess the plant vegetation condition status. Healthy and 
vigorous plants usually exhibit rapid emergence, early ground coverage, and high 
concentrations of leaf N and LCC (Ter Steege et al. 2005; Basu and Groot 2023). 
Furthermore, leaf N and LCC can serve as indicators of plant nutritional status, pho-
tosynthetic rate, and biomass production (Clevers and Kooistra 2012; Kooistra and 
Clevers 2016). Therefore, in-season measurement of leaf N and LCC using remote 
sensing can be of great assistance in timely N management and optimising N use 
efficiency by the crop (van Evert et al. 2012).

Remote sensing has been used to monitor and assess the incidence and severity of 
diseases in potatoes (Couture et al. 2018; Duarte-Carvajalino et al. 2018; Gold et al. 
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2020). According to Polder et  al. (2019), there is a significant difference between 
the reflectance of healthy and diseased potato leaves. Plant pathogens (fungi, bac-
teria, and viruses) attack the epidermal and mesophyll cells of leaves, which affects 
the biophysical and biochemical properties of crop vegetation (Couture et al. 2018). 
Disease infection therefore influences the spectral reflectance of vegetation, which in 
turn affects spectral metrics, such as spectral distance and VIs (Griffel et al. 2018). 
Simultaneously, spectral reflectance is affected by factors such as water and nutrient 
stress, natural plant senescence, variability of canopy structure, and spectral resolu-
tion of the sensor, which limits the accuracy of disease assessment using remote 
sensing (Franceschini et al. 2019). Despite these limitations, several studies reported 
successful disease assessment using high spectral resolution imagery and spectral 
reflectance classification techniques, including parametric and non-parametric mod-
elling techniques, as well as classification methods, such as quadratic discriminant 
analysis, support vector machine (SVM), and classification trees (Duarte-Carva-
jalino et al. 2018; Franceschini et al. 2019). Griffel et al. (2018) and Couture et al. 
(2018) used support vector machine classification methods and found that potato 
plants infected with potato Virus Y (Potyviridae PVY) had significantly lower 
reflectance values between 700 – 1300 nm wavelengths than healthy plants. Other 
foliar diseases including potato early blight (Alternaria solani) (Van De Vijver et al. 
2020) and late blight (Phytophthora infestans) (Franceschini et al. 2017a, b; Gold 
et al. 2020; Hou et al. 2022) have been monitored using remotely sensed data.

Remote sensing has been used to assess plant water status and water stress in 
crops (Gerhards et  al. 2016). This can be achieved through the estimation of leaf 
water content using indicators such as water potential, relative water content, equiv-
alent water thickness of leaves and canopy temperature (Ahmad et al. 2021). Moreo-
ver, remote sensing can provide information for estimating crop water requirements 
through the determination of crop evapotranspiration (ET) (Jayanthi et  al. 2007; 
Campos et al. 2017; Pôças et al. 2020). Knowledge of crop ET facilitates irrigation 
scheduling. Crop ET can be estimated through remote sensing using two approaches. 
The first approach involves using thermal bands as inputs to the surface energy bal-
ance algorithm for land (SEBAL), mapping evapotranspiration at high resolution 
using internalized calibration (METRIC), surface energy balance index (SEBI), 
and surface energy balance system (SEBS) (Bastiaanssen et  al. 1998; Allen et  al. 
2005; Aryalekshmi et al. 2021). The required energy fluxes (net radiation Rn, soil 
heat flux, and sensible heat H) are derived from satellite images (Allen et al. 2011; 
Irmak et  al. 2011). Successful applications of energy balance models for estimat-
ing ET in various crops have been reported (Bastiaanssen et al. 2005; Tasumi et al. 
2005; Tasumi and Allen 2007; Bashir et al. 2008; Kumar et al. 2020). Although this 
approach provides a precise measure of crop ET, it requires extensive data input and 
is limited by the availability of satellites equipped with thermal sensors (Glenn et al. 
2010).

The second method entails estimating crop coefficients (the single crop coeffi-
cient, Kc, and the basal crop coefficient, Kcb) based on VIs (VI approach) (Jayanthi 
et al. 2007; Mukiibi et al. 2023). The VI-based Kc or Kcb values are then multiplied 
by the reference evapotranspiration to determine ET. Relationships between VIs and 
crop coefficients have been established for various crops using linear and nonlinear 
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equations (Choudhury et al. 1994; Duchemin et al. 2006; Campos et al. 2017). The 
VI approach is relatively simple and requires fewer computations than the surface 
energy balance models (Glenn et al. 2010). However, reductions in ET due to stoma-
tal closure, particularly during periods of water deficit, cannot be detected using the 
VI approach (González-Dugo and Mateos 2008).

Yield Prediction

Remote sensing techniques have been employed to forecast and predict crop yields 
using linear and non-linear models. The most common models for remote sensing 
applications are empirical relationships between VIs and final yield (Lobell 2013). 
However, empirical models require calibration using ground measured data for accu-
rate yield predictions. A major limitation of empirical models is that they are site-
specific and may not provide accurate yield predictions in different locations and 
years (Basso et al. 2013). Recent advancements in data processing techniques using 
ML algorithms have led to the development of more precise yield prediction models 
that incorporate VIs and factors that affect crop yields, such as fertilizer applica-
tion rates (nitrogen, phosphorus, and potassium), irrigation, soil properties, weather 
parameters, and crop management information (plant population) (Abrougui et  al. 
2019; Abbas et  al. 2020; Muruganantham et  al. 2022). Additionally, these factors 
have a significant influence on the spectral reflectance of the crop canopy and can be 
used to explain the spatial variability in crop yields.

Remotely sensed information can also be incorporated into a crop simula-
tion model during calibration, or to adjust the initial conditions of the model 
(Doraiswamy et  al. 2003; Pinter et  al. 2003; Awad 2019). The integration of 
remotely sensed data into process-based crop models can provide more accurate 
results than using process-based crop models alone (Launay and Guerif 2005; Dente 
et al. 2008; Jin et al. 2018). For instance, canopy state variables and soil moisture 
can be integrated into potato models to enhance the yield prediction accuracy (Dente 
et al. 2008; Jin et al. 2016; 2018; Zhou et al. 2017b).

Research Methodology

This study followed the systematic review guidelines outlined by Kitchenham and 
Charters (2007). Additionally, the study followed the preferred reporting items 
for systematic reviews and meta-analyses (PRISMA) (Liberati et  al. 2009). The 
PRISMA framework describes the flow of information through the different phases 
of a systematic review, and includes article identification, screening, eligibility, and 
data analysis (Fig. 1).

Article Search Procedure

A literature search was performed on the internet using the following databases: 
Google Scholar, ScienceDirect, Scopus, Web of Science, IEEE Explorer, MDPI, 
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Taylor and Francis, and SpringerLink. More studies were sourced by scanning the 
reference lists of articles obtained from the databases. Databases were selected 
based on the comprehensiveness of archiving and accessibility. This research 
focused on potato yield prediction using remote sensing technologies; therefore, the 
search strategy in the databases included keywords and Boolean operators “AND” 
and “OR” with the main search string as “potato yield prediction” AND “remote 
sensing”. As a consequence, less emphasis was put on vegetation condition status. 
To include any other relevant articles in our study, the search string was modified by 
adding the following keywords: “potato yield prediction” OR “potato yield forecast-
ing” OR “potato yield estimation” AND “remote sensing” OR “satellite imagery.” 
Minor adjustments were made to the search string to suit each database (Table 1). 
Original research studies conducted between 2000 and 2022 were used for this study, 
as the use of remote sensing technologies in agriculture gained momentum with the 
launch of MODIS and Landsat-7 satellite sensors in 1999 (Kasampalis et al. 2018; 

No. of publications identified from 
database with inclusion criteria
(n = 236)

No. of publications excluded due to 
duplicates (n= 172)

No. of publications screened and 
assessed for eligibility (n = 79)

Full-text articles selected for analysis 
(n = 79)
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Fig. 1   The PRISMA flow diagram indicating the number of articles in each phase of the selection pro-
cess
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Khanal et al. 2020). Since then, various remote sensing platforms, including satel-
lites, manned and UAVs, have been developed and used to collect vegetation spec-
tral data for different precision agricultural applications.

Article Selection Criteria

The search query in each database returned several inapplicable records, most of 
which were out of the scope (Table 1). To be included, studies had to meet the mini-
mum criteria of including remote sensing applications for potato growth and yield 
prediction. Publication titles, abstracts, and keywords were used to select articles for 
further analysis. Articles were excluded using the following criteria:

•	 Articles not focused on potato.
•	 Studies not including remote sensing data or remote sensing applications not 

related to growth monitoring or yield prediction.
•	 Publications without access to the full-text version, review articles, and articles 

in a language other than English.

Data Analysis

The number of articles published per annum and the number of articles per remote 
sensing application were calculated. Information that answered the research ques-
tions was extracted from the publications. A bibliometric analysis was conducted 
using VOSviewer software (www.​vosvi​ewer.​com, van Eck and Waltman 2010) to 
identify authors’ keywords appearing in three or more publications. This allowed the 
visualization of the network between the most dominant themes in remote sensing 
applications for potato research.

Results and Discussion

Descriptive Statistics of Selected Publications

The number of publications on remote sensing application in potato increased rap-
idly in recent years (Fig. 2). After applying the inclusion criteria, 79 articles were 
selected for further analysis. Remote sensing was mainly used for potato yield pre-
diction (37% of the total studies), followed by leaf N status estimation (21% of the 
total studies) (Fig.  3). The most frequently used keywords related to growth and 
yield prediction were potato yield, tuber yield, LAI, plant height, AGB, and phenol-
ogy (Fig. 4). Other common keywords included remote sensing, machine learning, 
precision agriculture, random forest, climate change, and UAV.

The use of remote sensing technology to monitor crop growth and predict yield 
is rooted in the premise that remotely sensed features, mainly spectral reflectance, 
VIs and canopy texture, can serve as proxies for plant growth variables, such as LAI, 
AGB, and fraction of photosynthetically active radiation (fPAR) (Lobell 2013; Zhou 

http://www.vosviewer.com
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et al. 2018). These plant growth variables play a vital role in biophysical processes, 
such as light interception, photosynthetic activity, and biomass accumulation, which 
directly affect final crop yield (Mulla 2013; Vannoppen and Gobin 2022). Remote 
sensing enables the real-time observation of vegetation condition, which is influ-
enced by both crop genetics and management practices (Zhou et al. 2018). As VIs 
are linked to the primary productivity of crops, potato yield prediction using various 
models based on VIs has been explored (Table 2).

Potato Yield Prediction

Remote Sensing Techniques for Potato Yield Prediction

Optical satellite systems were the most widely used remote sensing platforms for 
predicting yield (Table 2). Sentinel-2 was the most popular satellite platform, while 
other platforms adopted by researchers included Landsat satellite series 5–8, Planet 
Scope, National Oceanic and Atmospheric Administration (NOAA) equipped with 
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Fig. 2   Number of publications from 2000 to 2022 included in the review

Fig. 3   Distribution of growth 
monitoring and yield prediction 
aspects from selected articles
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an Advanced Very High-Resolution Radiometer (AVHRR) sensor, TERRA, and 
Aqua satellites equipped with moderate-resolution imaging spectroradiometer 
(MODIS) sensors (Table 2). Optical satellite platforms are equipped with high-res-
olution multispectral sensors that capture fine-scale details of crop vegetation over 
large areas, facilitating potato yield prediction at both the field and regional scales 
(Salvador et al. 2020). However, the main limitation of optical satellite platforms is 
the trade-off between acquiring images with sufficiently high spatial and temporal 
resolution to obtain multiple cloud-free images during the growing season (Lobell 
et al. 2007; Mulla 2013; Khabbazan et al. 2019). For example, Sentinel-2 satellites 
have a temporal resolution of 5 days and a relatively high spatial resolution (10 or 
20 m/pixel for land applications) (Herrmann et al. 2011; Sun et al. 2022). Landsat 
satellites have a relatively high spatial resolution of 30 m/pixel, but a low tempo-
ral resolution of 16 days. The TERRA satellite has a high temporal resolution of 1 

Fig. 4   Overlay visualization of co-occurrence of author keywords from the Web of Science (a) and Sco-
pus (b) databases
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– 2 days but a low spatial resolution of 250 – 1000 m/pixel. The Planet Scope satel-
lite provides images with the highest spatial resolution (3 m/pixel) and highest tem-
poral resolution (daily). However, these images are costly ($218 per 100 km2), limit-
ing the use of Planet Scope images for agricultural monitoring (Sun et al. 2022).

Owing to the limitations of optical remote sensing, microwave (radar) sensors, 
which can penetrate clouds with high spatial and temporal resolution and are inde-
pendent of light conditions, have been investigated for Earth observations (Bouman 
and van Kasteren 1990; Clevers and Van Leeuwen 1996; Steele-Dunne et al. 2017). 
Microwave remote sensing uses synthetic aperture radar (SAR) sensors that emit 
low-frequency microwave pulses (1 – 10 GHz) towards the Earth’s surface (Steele-
Dunne et al. 2017; Khabbazan et al. 2019). The pulses are scattered upon interaction 
with different surfaces (vegetation and soil) and sent back to the receiver, which is 
also known as radar backscattering (Moran et al. 2002). Radar backscattering from 
a vegetation surface is mainly influenced by canopy size, ridge orientation, architec-
ture of individual plants, crop type, growth stage, water content of the plant parts, 
and roughness of the vegetation canopy (Bouman and van Kasteren 1990). Radar 
backscattering by the soil surface is mainly influenced by soil water content and sur-
face roughness. Therefore, radar remote sensing has potential for agricultural appli-
cations, particularly for crop monitoring, classification, and soil/vegetation moisture 
estimation (Moran et  al. 2002; Steele-Dunne et  al. 2017). With the launch of the 
Sentinel-1 satellites (Sentinel-1A and Sentinel-1B), high temporal (6 – 12 days), and 
high spatial (2.3 – 13.9  m) SAR data can be freely accessed in different parts of 
the world (Mercier et al. 2020). The potential of Sentinel-1 SAR data for monitor-
ing phenological development of various crops including maize, potato, sugar beet, 
winter wheat, rapeseed and rye grass was evaluated by Khabbazan et al. (2019) and 
Mercier et al. (2020). Radar backscattering coefficients can be used to estimate crop 
growth variables such as crop height (Abdikan et al. 2018; Arslan et al. 2022), crop 
biomass (Ndikumana et al. 2018), LAI (Clevers and Van Leeuwen 1996; Hirooka 
et al. 2015), and crop yield (Clevers and Van Leeuwen 1996).

Besides optical satellites, ground-based systems were the second most widely 
used platforms, including the Field Scout NDVI meter, handheld hyperspectrom-
eters, infrared cameras, red, green, and blue (RGB) digital cameras, GreenSeeker, 
and Holland Scientific Crop Circle™ sensors (Table 2). Ground-based remote sens-
ing devices provide benefits such as high spatial resolution, real-time data, cost-
effectiveness for small research plots, control over measurement conditions, and 
access to ground-truth measurements, which can be used to validate and improve the 
accuracy of potato yield prediction (Sun et al. 2022).

The Most Used Vegetation Indices for Potato Yield Prediction

A wide range of VIs was used to predict potato yield (Table 3). NDVI was the most 
widely used index (Tables 2 and 3). Other commonly used indices included GNDVI, 
normalized difference red-edge (NDRE), SAVI, EVI, red-edge chlorophyll index (CI 
red-edge) and RVI (Table 3).

The accuracy of final tuber yield prediction was evaluated based on the coef-
ficient of determination (R2) between VI and observed yields. The ranges of R2 
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Table 3   Most widely used vegetation indices for estimating potato yield, aboveground biomass, leaf area 
index, and canopy chlorophyll

Index Code Formula

Normalized difference vegetation index NDVI NIR−R

NIR+R

Optimized soil-adjusted vegetation index OSAVI 1.16 ∗
NIR−R

NIR+R+0.16

Re-normalized difference vegetation index RDVI NIR−R

NIR+R

0.5

Modified simple ratio MSR
(

NIR

R

)

−1

(

NIR

R

)0.5

+1

Soil adjusted vegetation index SAVI 1.5 ∗
NIR−R

NIR+R+0.5

Triangular vegetation index TVI 0.5[120(NIR − G) − 200(R − G)]

Spectral polygon vegetation index SPVI 0.4[3.7(NIR − R) − 1.2(R − G)]

Ratio vegetation index RVI NIR

R

Modified chlorophyll absorption ratio 
index

MCARI [(

λ700 − λ670
)

− 0.2
(

λ700 − λ550
)]

(

λ700

λ670

)

Structure-insensitive pigment index SIPI NIR−B

NIR+R

Visible atmospherically resistance index VARI G−R

G+R−B

Green NDVI GNDVI NIR−G

NIR+G

Enhanced vegetation index EVI 2.5 ∗
NIR−R

NIR+6R−7.5B+1

Linear combination index LCI (λ850−λ710)
(λ850+λ670)

0.5

Normalized difference red-edge NDRE NIR−Rededge

NIR+Rededge

Modified soil adjusted vegetation index MSAVI 2NIR+1−

√

(2NIR+1)2−8(NIR−R)

2

Normalized difference index NDI (λ850−λ710)
(λ850+λ670)

Normalized green–red difference index NGRDI G−R

G+R

Red-edge chlorophyll index CIred-edge
(

λ780

λ710

)

− 1

Weighted difference vegetation index WDVI λ870 −
[(

λ870soil

λ670soil

)

∗ λ670

]

Wide dynamic range vegetation index* WDRVI a∗NIR−R

a∗NIR+R

MERIS terrestrial chlorophyll index MTCI (λ754 − λ700)∕(λ700 − λ680)

Photochemical reflectance index PRI (λ570−λ531)
(λ570+λ531)

Red-Edge Inflection Point REIP
700 + 40

{
[

(λ670+λ780)
2

]

−λ700

λ740−λ700

}

Ratio TCARI/OSAVI TCARI/OSAVI 3
[

(λ700−λ670)−0.2(λ700−λ550)
(

λ700

λ670

)]

1.16∗
NIR−R

NIR+R+0.16

Chlorophyll vegetation index CVI (λ870 ∗ λ670)∕(λ550 ∗ λ550)

Ratio MCARI/OSAVI MCARI/OSAVI [(λ700−λ670)−0.2(λ700−λ550)]
(

λ700

λ670

)

1.16∗
NIR−R

NIR+R+0.16

Transformed chlorophyll absorption in 
reflectance index

TCARI 3
[

(

λ700 − λ670
)

− 0.2
(

λ700 − λ550
)

(

λ700

λ670

)]

Plant senescence reflectance index PSRI (λ680 − λ500)∕λ750



1 3

Potato Research	

values reported for the six most commonly used VIs are shown in Fig. 5. Posi-
tive associations between NDVI and final potato yield had R2 values ranging 
from 0.23 – 0.84 (median of 0.67). Relating NDVI (median R2 = 0.67) with final 
potato yield provided a higher median R2 than other comparable indices, such as 
GNDVI (median R2 = 0.58 and NDRE (median R2 = 0.61), despite the fact that 
NDVI is influenced by soil background reflectance and tends to saturate at LAI 
values greater than 3 (Gitelson 2004).

A few studies used NDRE to predict yield and reported R2 values between 0.12 
– 0.85 (median of 0.61) (Fig. 5). For instance, Luo et al. (2020) observed a strong 
association between NDRE and tuber yield (R2 = 0.85) during the starch accu-
mulation stage (80 – 100 DAP). The R2 for the association between GNDVI and 
tuber yield ranged between 0.26 – 0.75 (median of 0.58). This indicates that the 
spectral absorbance of the green portion of the electromagnetic spectrum can be 
used to predict the final tuber yield. This is supported by Mhango et al. (2021), 
who reported that the absorbance of the green portion of the magnetic spec-
trum is significantly associated with the tuber yield. The EVI and CIred-edge also 
showed good associations with the tuber yield (R2 = 0.4 – 0.87). Luo et al. (2020) 

Table 3   (continued)

Index Code Formula

Canopy chlorophyll content index CCCI (NDRE)−(NDREMin
)

(NDRE
Max

)−(NDRE
Min

)

Ratio at red-edge R740/720 λ740∕λ720)

Modified chlorophyll absorption in reflec-
tance index 2

MCARI2 1.5[2.5(λ800−λ670)−1.3(λ800−λ550)]
√

�

(2λ800+1)
2
−(6λ800−5(λ670)

0.5)−0.5
�

Green-chlorophyll index CIgreen
(

λ780

λ550

)

NIR is reflectance in near-infrared band, R is reflectance in red band, G is reflectance in green band, B 
is reflectance in blue band λx is reflectance at specified waveband and′a′ is a weighting coefficient with a 
value ranging from 0.1 – 0.2

Fig. 5   The coefficient of deter-
mination (R2) for vegetation 
indices used in final tuber yield 
prediction (NDVI is normalized 
difference vegetation index, 
GNDVI is green NDVI, NDRE 
is Normalized difference red-
edge, SAVI is soil-adjusted veg-
etation index, EVI is enhanced 
vegetation index, and CIred-edge 
is red-edge chlorophyll index)
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estimated potato yield using six VIs and identified CIred-edge as the best index for 
potato yield estimation at any growth stage of the crop, with R2 greater than 0.70.

Preferred Growth Stage for Potato Yield Prediction Using Remote Sensing

The results in Fig. 6 show variability in the R2 values obtained for the relation-
ship between tuber yield and VIs as the number of days after planting increased 
from 35 – 95 DAP. The highest median R2 values were observed between 36 – 55 
DAP. These findings suggest that the optimal growth stage for obtaining VIs to 
predict tuber yield often occurs approximately during maximum ground cover 
and tuber initiation.

Dry matter accumulation in potato is a function of intercepted photosyntheti-
cally active radiation, which exponentially increases to a maximum at 100% 
ground cover (Haverkort 2018). For most potato varieties, maximum ground 
cover is attained between 60 – 80 DAP, which also coincides with the peak spec-
tral reflectance and peak VI values reported for potato (Mhango et al. 2022). The 
reflectance in the NIR region may be inconsistent in the early stages of potato 
because of the influence of soil background reflectance (Morier et  al. 2015). 
Additionally, the biophysical and biochemical composition of the leaves, which 
are responsible for light absorption and reflection, are immature during the early 
stages of the crop, resulting in low absorption of red light and low NIR reflec-
tance (Gómez et al. 2021). Therefore, VIs obtained during the early stages (0 – 40 
DAP) of the crop may provide less reliable yield predictions.

Fig. 6   Box plot comparing the coefficients of determination (R2) between tuber yield and all vegetation 
indices combined on different days after planting
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Potato Aboveground Biomass Monitoring

Remote Sensing Techniques for Aboveground Biomass Monitoring

Aboveground biomass (AGB) is an agronomic variable widely used to assess crop 
growth and development, physiological conditions, light use efficiency, and the 
effects of agricultural management practices, as well as to estimate crop yields 
(Poorter et al. 2012; Gnyp et al. 2014; Liu et al. 2022a). AGB is also important for 
determining the nitrogen nutrition index (NNI), which is used to monitor crop N 
status (van Evert et al. 2012; Jin et al. 2021; Sun et al. 2022). Conventional methods 
for estimating AGB involve destructive plant sampling, which is time-consuming, 
labour-intensive, and often unable to detect spatial and temporal variability (Gnyp 
et  al. 2014). Alternative methods for estimating AGB include process-based crop 
models; however, these models often require numerous inputs that are not readily 
available for accurate AGB estimation (Craufurd et al. 2013; Wan et al. 2021).

Remote sensing technology provides real-time and non-destructive AGB meas-
urements (Table 4), which are based on the hypothesis that the spectral reflectance 
of vegetation at specific wavelengths is strongly associated with LAI, canopy cov-
erage, fPAR, and CCC, which are related to crop biomass production (Weiss et al. 
2020; Shu et al. 2023). Changes in the spectral reflectance of vegetation at different 
growth stages are mainly influenced by the biochemical properties of the leaf, such 
as leaf pigments, water content, and dry matter content, and canopy structure prop-
erties, such as LAI and leaf inclination (He et al. 2021; Jin et al. 2021).

Unmanned aerial vehicles (UAVs) were the most commonly used platforms for 
the in-season estimation of potato AGB (Table 4). UAVs allow frequent and timely 
monitoring, are easy to operate, and usually provide images with higher spatial and 
temporal resolution than satellite imagery (Liu et al. 2022b). UAVs can fly at low 
altitudes to capture images with an extremely high spatial resolution of up to 1 cm/
pixel. These images contain vital information regarding the spatial distribution of 
plants, soil coverage, and canopy structure, which are essential factors for estimat-
ing the AGB (Turner et al. 2012; Yu et al. 2016). UAVs are usually equipped with 
digital, multispectral, and hyperspectral sensors that capture images of varying prop-
erties. In particular, hyperspectral sensors have narrow spectral bands that allow 
visualization of spatial variability in the canopy structure and are highly sensitive 
to reflected light across the bands (Liu et al. 2022a). Hyperspectral sensors provide 
shortwave (1100 – 2500 nm) plant spectra, which are strongly associated with leaf 
water content, lignin, cellulose, and starch content (Gnyp et al. 2014; Marshall and 
Thenkabail 2015). These leaf traits are directly related to fresh and dry leaf weight. 
However, the use of hyperspectral sensors is limited because of the large num-
ber of spectral bands, high cost, and image processing difficulties (Jin et al. 2021; 
Mao et  al. 2021). Moreover, because UAVs operate at low altitudes, images typi-
cally exhibit a small field of view (Turner et al. 2012). Consequently, many images 
must be captured to adequately cover the required area of interest. The processing 
of a large number of images necessitates the use of techniques, such as mosaicking, 
geometric correction, and ortho-rectification, which can be particularly challenging 
(Turner et al. 2012; Zhang and Kovacs 2012).
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Some studies employed ground-based sensors, specifically handheld field spec-
troradiometers, for potato AGB estimation (Table 4). Ground-based sensors provide 
high temporal and spectral resolution images for extracting canopy traits, such as 
plant height and texture features, which are related to AGB (Liu et  al. 2022b, c). 
However, ground-based sensors are unable to capture large-scale images that illus-
trate the spatial distribution of crop growth (Zhu et al. 2019). Furthermore, image 
acquisition using ground-based sensors often results in damage to crops and is 
labour intensive, which complicates the crop growth monitoring process (Liu et al. 
2022b).

Few studies employed satellite platforms to estimate the AGB of potatoes 
(Table 4). The limited application of satellite remote sensing could be due to the low 
spatial and temporal resolutions of most freely available satellites. The long revisit 
cycles of most satellites make it difficult to obtain crop AGB data for the desired 
growth stages (Wan et al. 2021).

Aboveground biomass of potato has been predicted with varying accuracy 
(R2 = 0.20 – 0.90) using different models (Table 4). Estimation of crop AGB through 
remote sensing is mainly performed using physical and statistical models. Physi-
cally based models for estimating AGB involve the use of radiative transfer models 
(RTMs), such as the PROSAIL model (Duan et al. 2014). The physical models use 
canopy reflectance at 400 – 2500 nm wavelengths as input (Duan et al. 2014; Weiss 
et al. 2020). The inversion of RTMs using canopy reflectance values from remote 
sensing allows the estimation of plant variables such as chlorophyll content, dry 
matter content, LAI, carotenoid content, and leaf equivalent water thickness (Wan 
et al. 2021), which are used to calculate AGB (Duan et al. 2014). Statistical mod-
els are empirical regression equations relating ground measured AGB and remotely 
sensed spectral features such as VIs, canopy texture variables, geometric variables, 
canopy height, and fractional vegetation cover (Luo et  al. 2022). Statistical mod-
els employed for AGB estimation included multiple regression, partial least squares 
regression (PLSR) and principal component analysis (PCA) (Table  4). Recently 
ML techniques such as Random Forest, artificial neural network (ANN) and SVM 
that incorporate multiple VIs, canopy texture features and crop height have been 
explored for AGB estimation (Zhu et al. 2019; Li et al. 2020c; Liu et al. 2022c).

Vegetation Indices for Aboveground Biomass Monitoring

The most commonly used VIs included NDVI, optimized SAVI (OSAVI), re-nor-
malized difference vegetation index (RDVI), and modified simple ratio (MSR) 
(Table 3). Most studies associated NDVI with the AGB of potato, with relationships 
showing varying strengths. However, NDVI is affected by reflectance from the soil 
surfaces, especially at low canopy cover, and has low sensitivity to AGB at high 
canopy cover (Xue and Su 2017). This affects the accuracy of AGB estimation using 
NDVI. Therefore, alternative VIs such as RDVI, SAVI, OSAVI, TSAVI, CIred-edge, 
MSR among others, with the capability to distinguish between crop vegetation and 
soil reflectance, have been evaluated for accurate AGB estimation. Although most 
VIs are positively correlated with AGB (Pei et  al. 2019), they tend to saturate at 
high vegetation cover, making them inefficient for estimating AGB at different crop 
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growth stages (Liu et al. 2022e). Therefore, techniques, including the use of plant 
height extracted from digital surface models (DSMs) (Roth and Streit 2018), micro-
wave SAR backscatter (Gao et al. 2013; Hosseini et al. 2019), light detection and 
ranging (LiDAR) (Li et al. 2015; ten Harkel et al. 2020) and canopy texture features 
from ultrahigh ground-resolution RGB digital images have been investigated (Yue 
et al. 2018; Liu et al. 2022b).

Plant height is used to characterize vertical crop growth; therefore, it can be used 
to estimate other crop variables, including AGB (Yue et al. 2018; Lu et al. 2019). 
Crop AGB has been estimated using plant height extracted from DSMs and digital 
terrain models (Bendig et al. 2015; Mao et al. 2021). DSMs can be generated from 
RGB ultrahigh-ground resolution digital images using structure-from-motion algo-
rithms (Aasen et  al. 2015). Combining plant height and VIs in statistical models 
improves the accuracy of AGB estimation (Bendig et al. 2015; Yue et al. 2018; Lu 
et  al. 2019), as it enables the use of both spectral and structural information (Lu 
et al. 2019; Niu et al. 2019). Liu et al. (2022b) found that the use of crop height and 
canopy texture features results in more accurate estimation of potato AGB (R2 = 0.73 
– 0.78) than using texture features alone (R2 = 0.59 – 0.73).

Microwave SAR is sensitive to biophysical crop variables including LAI, bio-
mass, and canopy height (Jin et al. 2015; Ndikumana et al. 2018). Synthetic aperture 
radar backscatter is advantageous over optical remote sensing because it can pen-
etrate crop canopies and circumvent the premature saturation of AGB estimates, par-
ticularly during periods of full canopy coverage (Gao et al. 2013; Liu et al. 2022b). 
Research has demonstrated that the backscattering coefficients from SAR can accu-
rately estimate the AGB in various crops, including wheat (Jin et al. 2015; Han et al. 
2019), maize (Gao et al. 2013; Hosseini et al. 2019), rice (Ndikumana et al. 2018), 
and soybean (Mandal et al. 2019).

LiDAR, or laser-scanning remote sensing, involves the transmission of electro-
magnetic pulses (laser pulses) with a specific penetration ability to interact with 
vegetation and ground surfaces (Poley and McDermid 2020; Sun et al. 2022). The 
interaction between laser pulses and ground objects is used to characterize crop 
canopy structural and biophysical variables, such as volume, height, density, LAI, 
stem diameter, and coverage, which are useful for estimating the AGB (Jimenez-
Berni et al. 2018; Poley and McDermid 2020; ten Harkel et al. 2020). For example, 
Li et al. (2015) demonstrated that the canopy height and LAI acquired by LiDAR 
correlated strongly with aboveground and belowground maize biomass. Jimenez-
Berni et al. (2018) accurately (R2 > 0.90) estimated the canopy height, ground cover, 
and biomass of wheat using a LiDAR-based 3-dimensional profile index (3DPI) 
model. Similarly, ten Harkel et al. (2020) evaluated the potential of a 3DPI model 
based on LiDAR point clouds to estimate winter wheat, sugar beet, and potato bio-
mass. The 3DPI estimated biomass well for sugar beet (R2 = 0.68) and winter wheat 
(R2 = 0.82), but poorly estimated potato biomass (R2 = 0.24). Additional research is 
needed to assess the potential of LiDAR technology for potato AGB estimation.

Canopy texture features such as gray scale variance, homogeneity, contrast, dis-
similarity, entropy and second moment obtained from ultrahigh-ground-resolution 
RGB digital images provide useful information for estimating crop variables, such 
as LAI, plant density, chlorophyll content, nitrogen content, and AGB (Yue et  al. 
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2018; Poley and McDermid 2020; Zhai et al. 2023). Canopy texture features have 
been used to accurately estimate crop AGB for rice (Zheng et  al. 2019), winter 
wheat (Yue et al. 2019) and potato (Liu et al. 2022c, b). Studies by Li et al. (2020b) 
and Liu et al. (2022c) revealed that combining multiple VIs, texture features, plant 
height, and canopy cover improved the accuracy of potato AGB estimation.

The strength of the relationship between VIs and AGB increases from emer-
gence to tuber bulking stages and declines from tuber bulking until crop maturity 
(Liu et al. 2022d). VIs are strongly associated with AGB at the tuber bulking stage 
(R2 = 0.62 – 0.92) (Pei et al. 2019; Yang et al. 2021; Liu et al. 2022a; d). This trend 
can be related to the potato growth cycle, where maximum vegetative growth and 
full canopy cover are attained during the tuber initiation and bulking growth stages 
(Haverkort 2018). Therefore, the spectral information obtained between the tuber 
initiation and bulking stages reflected AGB relatively well (Pei et al. 2019; Liu et al. 
2022d). During the later growth stages, leaves start to senesce, resulting in a reduc-
tion in canopy cover; hence, crop canopy is a poorer predictor of AGB in this stage.

Potato Leaf Area Index

Leaf area index, defined as the total one-sided area of leaf tissue per unit ground 
surface area, is a good indicator of vegetation status, photosynthetic rate, biomass 
accumulation, and evapotranspiration (Wan et al. 2021). Timely estimation of potato 
LAI using remote sensing has been investigated by various researchers (Table 5). 
Unmanned aerial vehicles equipped with hyperspectral sensors and satellites 
equipped with multispectral sensors were the most commonly used remote sensing 
platforms for potato LAI monitoring (Table 5). However, no single remote sensing 
platform provides images with high spectral, spatial, and temporal resolutions at a 
low cost. Therefore, the use of different optical sensors on various platforms has 
been explored for estimating potato LAI (Franceschini et al. 2017a). Ground-based 
sensors, such as multispectral cameras (Roosjen et  al. 2018) and Cropscan multi-
spectral radiometers (Clevers et al. 2017; Franceschini et al. 2017a), were employed 
to obtain ground-truth reflectance data for calibrating the UAV hyperspectral and 
satellite multispectral data. Gevaert et  al. (2014, 2015), investigated the utility of 
continuous surface reflectance (spectral-temporal response surfaces, STRSs) derived 
from the integration of Formosat-2 multispectral satellite imagery and UAV hyper-
spectral imagery. The findings indicated that STRSs obtained from both satellite 
multispectral and UAV hyperspectral data can be employed to derive VIs for esti-
mating potato LAI and chlorophyll content, with R2 ranging from 0.1 – 0.84. How-
ever, studies on image fusion techniques utilizing satellite and UAV data to estimate 
potato LAI remain limited.

Leaf area index can be estimated from remote sensing using three approaches: 
biophysical processors, RTMs, and statistical models (Wan et  al. 2021). The LAI 
can be retrieved from the biophysical processor tool of the Sentinel Application 
Platform (SNAP) created by the European Space Agency (Mourad et al. 2020). The 
SNAP software includes neural network algorithms trained to process biophysical 
traits such as LAI and LCC from Sentinel-2 imagery. Additionally, Mourad et  al. 
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(2020) indicated that the SNAP biophysical processor tool underestimated the LAI 
for various crops, including potato (R2 = 0.27), compared to VI-based statistical 
models (R2 = 0.51 – 0.63). However, additional research is needed to fully assess 
the dependability of the SNAP biophysical processor in estimating the LAI of crops.

The PROSAIL model, which integrates the PROSPECT and SAIL models, is the 
most commonly used RTM for simulating crop canopy reflectance as a function of 
LAI, leaf angle distribution function, chlorophyll content, dry matter content, carot-
enoid content, leaf equivalent water thickness, canopy reflectance background, sen-
sor viewing angle, sun zenith, and azimuth angles (Roosjen et al. 2018; Wan et al. 
2021). To retrieve LAI using RTMs, model inversion techniques such as iterative 
optimization, look-up tables, and neural networks must be applied (Duan et al. 2014; 
Verrelst et al. 2015). A specific set of model parameter values that result in simu-
lated canopy reflectance similar to remote sensing canopy reflectance is utilized to 
estimate the LAI. Duan et al. (2014) assessed the capacity of the PROSAIL model 
to estimate LAI for maize, potato, and sunflower using UAV hyperspectral data. The 
results indicated that the model accurately simulated LAI for all three crops, with 
root mean square error ranging from 0.55 – 0.60 m2 m−2. However, differences were 
observed between the model-estimated and ground measured LAI values, which 
were attributed to the inability of the model to account for the shading effect of row 
crops. The shading effect can lead to an enhancement or reduction in crop canopy 
reflectance, depending on the UAV flight direction (Duan et al. 2014).

Statistical models are based on established empirical relationships between VIs 
and ground-measured LAI using devices such as a Plant Canopy Analyzer (LAI-
2000, LI-COR), AccuPAR LP-80 ceptometer, and LI-3100C leaf area meter (Cle-
vers et  al. 2017). These empirical relationships can take various forms, including 
linear, exponential, logarithmic polynomial, and inverse exponential expressions 
(Ray et al. 2006). Haboudane et al. (2004) and Ray et al. (2006) found that exponen-
tial relationships between LAI of various crops and VIs had the highest R2 values 
compared to linear, power, and logarithmic relationships. This may be because indi-
ces based on the ratio or product of red and NIR wavelengths are highly sensitive 
to chlorophyll content and tend to saturate at LAI greater than 3 m2  m−2 (Habou-
dane et al. 2004). Although statistical models are simple to compute, they require 
extensive calibration and validation using ground truth data (Mourad et al. 2020). 
Moreover, these models are limited to a specific set of conditions, such as crop type, 
crop management, weather, and soil conditions, under which they are created, which 
restricts their use in different conditions. Despite these limitations, statistical models 
are the most frequently used for estimating the potato LAI, with the relationship 
between LAI and VIs showing varying R2 ranging from 0.52 – 0.95 (Table 5).

The accuracy (indicated by R2) of LAI estimations, regardless of the model used, 
ranged between 0.40 – 0.99, which suggests that remote sensing data can be used to 
estimate the LAI of potato with considerable accuracy (Table 5). The most popular 
indices for potato LAI estimation included NDVI, SAVI, WDVI, red-edge NDVI, 
red-edge inflection point (REIP) and GNDVI (Table 3). Reflectance in the green, red 
and NIR regions is directly related to the LAI, greenness, and canopy cover (Her-
rmann et al. 2011). However, indices based on NIR and red bands, such as NDVI 
and RVI, tended to be less sensitive to LAI greater than 2 m2 m−2, whereas indices 
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combining green and red-edge bands were highly sensitive to LAI above 4 m2 m−2 
(Gitelson 2004; Herrmann et  al. 2011). In addition, reflectance in the NIR region 
tended to be affected by soil reflectance, particularly during the early crop stages 
(Morier et al. 2015). To eliminate the effects of the soil background, VIs such as the 
WDVI, wide dynamic range vegetation index (WDRVI), SAVI, and OSAVI were 
created with a soil reflectance correction factor in the NIR region, which improved 
their sensitivity to LAI (Huete 1988; Clevers 1989; Haboudane et al. 2002; Gitelson 
2004). Although VIs with minimal interference from soil background reflectance are 
highly sensitive to LAI, there is currently no specific VI for LAI estimation. Fur-
thermore, the dependence of spectral reflectance in the visible and NIR regions on 
both LAI and chlorophyll content makes it challenging to find a VI that is not influ-
enced by the chlorophyll content. Haboudane et al. (2004), proposed the MCARI2 
and the modified triangular vegetation index 2 (MTVI2), which are highly sensi-
tive to changes in LAI and have low sensitivity to chlorophyll content. Therefore, 
future research should investigate the nature of the relationship between MCARI2, 
MTVI2, and potato LAI.

Few studies evaluated the relationship between the VIs and LAI of potato at dif-
ferent growth stages. Clevers et al. (2017) evaluated the temporal pattern of WDVI 
as an estimator of LAI of potato during the season. The R2 values between the 
WDVI and LAI of potato at 52, 85, 95, and 122 DAP were 0.71, 0.92, 0.87, and 
0.92, respectively (Clevers et  al. 2017). More research is needed to determine the 
most suitable time to estimate the LAI using VIs.

Estimating Potato Leaf and Canopy Chlorophyll Content

Leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) serve as 
indicators of crop physiological status, health, nutritional status, and productiv-
ity (Evans 1989; Elarab et al. 2015). Leaf chlorophyll content is closely related to 
leaf N, and can therefore be used as an indicator for N nutrition in leaves to guide 
fertilizer application in potatoes (Evans 1989; Clevers et al. 1994; van Evert et al. 
2012). Therefore, timely and accurate estimation of chlorophyll content can aid 
in the implementation of crop management interventions for potatoes, leading to 
improved crop growth and optimized yield. Traditional methods for estimating chlo-
rophyll content involve laboratory techniques such as liquid chromatography, atomic 
absorption, and spectrophotometry (Li et al. 2020b). These methods require destruc-
tive leaf sampling, which is time-consuming and laborious. Traditional methods are 
limited to small areas, necessitating the use of remote sensing techniques for real-
time chlorophyll estimation over relatively large areas (Gao et al. 2021). Research 
has shown that reflectance in specific portions of the spectrum between the visible 
and NIR regions is sensitive to chlorophyll content. Vegetation indices based on 
reflectance in the green, red-edge and NIR bands are strongly correlated with LCC 
and CCC (Gitelson and Merzlyak 1996; Borhan et al. 2017).

The remote sensing platforms, sensors, and models used for estimating LCC 
and CCC of potato are listed in Table  6. UAVs equipped with multispectral and 
hyperspectral sensors, and ground-based (handheld) devices such as the Field 
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spectrometer, Cropscan multispectral radiometers, charged-coupled devices (CCD) 
digital RGB cameras and the soil plant analysis development (SPAD) chlorophyll 
meter were the most used platforms, whereas a few studies used satellite multispec-
tral platforms for potato LCC and CCC estimation (Table 6).

Ground-based sensors are quick, easy to operate and provide LCC and CCC esti-
mates that can be used for ground truthing UAV and satellite-based estimations. 
Various regression techniques, including linear, exponential, logarithmic, multi-
ple linear regression, and PLSR, as well as non-linear regression methods, such as 
ANN and Random Forest, have been employed to establish LCC and CCC predic-
tion models. Relationships between the ground-measured chlorophyll content of 
potato with SPAD chlorophyll meter readings (Uddling et  al. 2007), CCD digital 
image features, such as mean gray values, spectral luminosity, and mean brightness 
ratios (Yadav et al. 2010; Gupta et al. 2013; Borhan et al. 2017), and VIs derived 
from Cropscan radiometer reflectance measurements (Kooistra and Clevers 2016) 
have been established. Borhan et al. (2017) used simple linear and multiple linear 
regressions to show that the mean gray values of CCD digital images at 550  nm 
and 700  nm exhibited strong correlations with the SPAD chlorophyll meter read-
ings of potato. Gupta et al. (2013) applied linear regression and ANN to relate the 
mean brightness ratios of CCD RGB images of leaves with the chlorophyll content 
of micropropagated potato plants. The ANN model demonstrated a higher accuracy 
in predicting the LCC (R2 = 0.82) than simple linear regression (R2 = 0.59). Koo-
istra and Clevers (2016) found that VIs based on Cropscan reflectance values of 
potato crops were linearly related to SPAD chlorophyll meter readings with an R2 
ranging from 0.43 – 0.64. In the same study, the PROSAIL model estimated chloro-
phyll content well (R2 > 0.72) (Kooistra and Clevers 2016). Although some studies 
have shown promising results for the estimation of potato chlorophyll content using 
SPAD chlorophyll meter and CCD digital cameras, environmental factors such as 
nutrient deficiency, leaf disease infection, and the inherent light scattering properties 
of leaves can impact the accuracy of these estimates (Borhan et al. 2017). Addition-
ally, the non-homogeneous distribution of chlorophyll within the leaves can affect 
the estimated chlorophyll concentration (Borhan et al. 2017).

The use of UAVs’ spectral information was employed to derive VIs for estab-
lishing potato chlorophyll content estimation models (Table  6). Yin et  al. (2022) 
implemented twelve VIs derived from UAV multispectral images as inputs for ML 
algorithms, including Random Forest, Support Vector Regression (SVR), PLSR, 
and Ridge Regression, to predict potato chlorophyll content. The findings indicated 
that the Random Forest model demonstrated the highest accuracy in predicting 
chlorophyll content, with a R2 value of 0.76, followed by the SVR model, with a 
R2 value of 0.74. Li et al. (2020b) reported that VIs derived from UAV hyperspec-
tral data showed a strong correlation with potato chlorophyll content at all growth 
stages, with R2 values ranging from 0.53 – 0.77. Additionally, the original spectrum, 
fractional differential spectra, spectral position, and spectral area parameters of 
potato reflectance were used to establish potato chlorophyll prediction models. The 
study conducted by Li et al. (2021a) established linear and nonlinear relationships 
between fractional differentiation of the canopy spectrum and chlorophyll content in 
potato plants at various growth stages. The R2 for the relationship between different 
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fractional differentiation spectra orders and chlorophyll content ranged from 0.65 
– 0.85 (Li et  al. 2021a). In a separate study, Li et  al. (2020b) utilized ML algo-
rithms in conjunction with UAV hyperspectral VIs and spectral characteristics based 
on spectral position and spectral area to estimate the chlorophyll content in potato 
plants at different growth stages. The stepwise regression model demonstrated the 
highest prediction accuracy (R2 ranging from 0.52 – 0.78) at all growth stages.

Most studies used CIred-edge, CIgreen, NDVI, and OSAVI to estimate the LCC and 
CCC of potato (Table 3). In addition, indices such as OSAVI (TCI/OSAVI), TCARI/
OSAVI, DVI, and RVI have been strongly associated with the LCC and CCC of 
potatoes (Kooistra and Clevers 2016). Chlorophyll estimation requires VIs that are 
highly sensitive to chlorophyll concentration, resistant to variations in LAI, and 
unaffected by background soil reflectance (Clevers et al. 2017). These indices com-
bine the bands of minimum chlorophyll absorption (550 nm and 700 nm) and maxi-
mum chlorophyll absorption (670 nm) (Haboudane et al. 2002). This idea led to the 
generation of ratio indices such as TCARI/OSAVI and MCARI/OSAVI (Gitelson 
and Merzlyak 1996; Haboudane et al. 2002). In addition, reflectance in the green- 
and red-edge regions was found to be highly sensitive to chlorophyll content (Gitel-
son et al. 2003). Therefore, VIs based on red-edge properties, such as red-edge posi-
tion (REP), CIred-edge, CIgreen, CVI, and MERIS terrestrial chlorophyll index (MTCI), 
have been recommended for chlorophyll content estimation (Gitelson et  al. 2003; 
Clevers et al. 2017).

As expected, chlorophyll content showed the strongest correlation with spectral 
features during the vegetative growth stage, with an R2 value of 0.85. This relation-
ship was followed by tuber initiation (R2 = 0.70), tuber bulking stage (R2 = 0.69), and 
maturation stages (R2 = 0.54) (Li et al. 2020b). This finding was consistent with the 
use of fractional differentiation spectra orders, which produced an R2 of 0.85 during 
the vegetative stage, followed by an R2 of 0.79 at tuber initiation, an R2 of 0.71 at 
tuber bulking, and an R2 of 0.72 at starch maturation (Li et al. 2021a). Leaf green-
ness, leaf N content, and chlorophyll concentration are highest during the vegetative 
growth stage, and they gradually decline as the season progresses until crop senes-
cence, when leaf colour changes from dark green to yellow (Borhan et  al. 2017; 
Clevers et al. 2017; Li et al. 2020b). It is important to note that this decline in leaf 
greenness is a natural part of crop growth and development. Changes in the struc-
ture and biochemical components of leaves during the growing season affect spec-
tral reflectance. Consequently, the vegetative growth period, including tuber bulking 
stage, is the most appropriate time for estimating chlorophyll content of potato.

Estimating Potato Leaf Nitrogen Status

Ground-based platforms were most commonly used to estimate the N status of 
potato leaves (Table 7). These included sensors such as Cropscan, Rapidscan, NIR 
analyzers, shortwave-infrared (SWIR) cameras, and SPAD meters. A possible rea-
son for the high usage of ground-based sensors could be their high spatial resolu-
tion and the opportunities they offer for accurate ground-truth calibration. Moreover, 
handheld sensors are portable, facilitate measurements in small research fields, and 
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have low operational costs compared with UAVs and satellites. The R2 values for 
all models combined for estimating leaf/petiole N concentrations ranged from 0.52 
– 0.95, suggesting that remote sensing has the potential to estimate the N status of 
potato with considerable accuracy (Table 7).

The most commonly used indices were NDVI, MCARI, TCARI, and TCARI/
OSAVI ratio (Table  3). Cohen et  al. (2010) evaluated the relationship between 
TCARI and potato leaf N levels, and they found that TCARI is strongly associ-
ated with leaf N% and petiole NO3-N only at the tuber bulking stage (R2 = 0.80 and 
0.76). Goffart et al. (2022) showed that the best linear and Random Forest models 
for estimating shoot N concentration and N uptake of potato were those combining 
the TCARI/OSAVI, WDVI, CIred-edge, and RVI indices. Jain et  al. (2007) showed 
that the ratio of reflectance at red-edge bands 750 nm and 710 nm (RRE,750/710) is 
strongly associated with leaf N content of potato between 40 – 60 DAP. Peng et al. 
(2021a) suggested that the RVI, NDRE, and transformed chlorophyll index (TCI) 
were the most suitable indices for estimating the NNI of potato. Based on the above 
analysis, there is substantial variation in opinions regarding the most suitable VIs for 
estimating potato N status; however, red-edge-based indices appear to be the most 
suitable. This suggests that more research is required to confirm the suitability of 
red-edge indices for potato N status estimation.

Conclusions

•	 Satellite images were the most widely used source of remote sensing data for 
potato yield prediction, whereas UAVs and handheld sensors were most widely 
used for potato growth monitoring.

•	 A combination of regression analysis and ML models was used to generate pre-
diction models for all aspects of potato growth and yield, with VIs and spectral 
bands as the main features. The most common VIs for the yield prediction mod-
els were the NDVI, CIred-edge, OSAVI, and CIgreen.

•	 Strong associations between tuber yield and NDVI, EVI, NDRE, and CIred-edge, 
suggested that these indices are most appropriate for estimating tuber yield. A 
strong association was also reported between potato LAI and NDVI, OSAVI, 
WDVI, and GNDVI.

•	 The chlorophyll content of potato correlated well with CIgreen, CIred-edge, TCI/
OSAVI, and TCARI/OSAVI. However, combining multiple VIs with original 
canopy spectrum measurements using PLSR resulted in improved chlorophyll 
content estimation. Indices calculated from red-edge bands, such as the CIred-edge, 
NDRE, and red-edge 740/720 indices, were strongly associated with leaf N con-
centration.

•	 Most studies reported that VIs have a weak association with potato AGB because 
they tend to saturate at high vegetation cover. Accurate AGB estimation can be 
achieved by combining multiple VIs, plant height, canopy cover, and the original 
canopy spectrum in ML models.
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•	 Vegetation indices acquired during maximum ground cover and tuber initiation, 
(approximately 36 – 55 DAP) were strongly associated with potato growth vari-
ables and final tuber yield.

•	 The findings of this systematic review should be helpful in informing research-
ers, agronomists and farmers about the most suitable VIs and the most appropri-
ate time for using remote sensing for potato growth monitoring and tuber yield 
prediction.
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