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Abstract
Iron deficiency is a serious global issue, particularly in developing countries. Individ-
uals are suffering from iron deficiency due to monotonous consumption of cereal based
diets, which are unable to provide adequate amounts of iron. The majority of these
people cannot afford a diversified diet, iron supplements and iron fortified food
products. The development of iron biofortified potatoes could provide a sustainable
solution to this problem. The leading strategies for crop biofortification include agro-
nomic practices, plant breeding and transgenic approaches. Previous reports have
highlighted that agronomic practices are not very effective for iron biofortification of
potato. However, extensive genetic variability for iron content in potato gene pool
makes it an ideal crop for iron biofortification through genetic approaches. Therefore,
genotypes with high iron content could be used as parental lines in potato breeding
programs. The screening of genes or QTLs responsible for high iron content in these
genotypes could pave the way for the development of iron biofortified potatoes through
marker-assisted selection, speed breeding and transgenic approaches.

Keywords Homeostasis . Iron deficiency . Iron uptake . Potato breeding . Transgenic
approaches

Introduction

Micronutrient deficiencies (hidden hunger) have become a silent epidemic. More than 2
billion individuals are suffering from it worldwide (Gödecke et al. 2018). Among all
micronutrients, iron (Fe) deficiency causes a significant threat to human health through
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anaemia. At present, more than 1.2 billion people are Fe deficient (Camaschella 2019).
Fe deficiency is more prevalent in developing countries where plant-based food is the
chief source of Fe (Pasricha et al. 2013). Children below the age five, adult girls and
pregnant women are at severe risk of anaemia due to low dietary Fe bioavailability
(Cappellini et al. 2020). Severe Fe deficiency results in impaired physical and mental
health (Pivina et al. 2019). Current interventions such as the use of iron supplements
and iron-fortified products have failed to reduce Fe deficiency due to high cost. In
recent years, many efforts have been made to cut the cost of iron fortification and iron
supplements (Horton 2006; Tripathi and Mishra 2020). Crop biofortification has
emerged as a cost-effective and sustainable way to combat hidden hunger. Develop-
ment of Fe rich staple food crops through biofortification has a tremendous potential to
diminish this global issue (Connorton and Balk 2019; Masuda et al. 2020). Potato is an
ideal target crop for Fe biofortification because it is a staple crop in many countries,
where occurrence of Fe deficiency is most prevalent. Moreover, it is a short duration
and easy to grow crop (Lutaladio and Castaldi 2009). A recent study shows that Fe
bioavailability from potato is very high in comparison to cereals (Jongstra et al. 2020).
The recommended dietary allowance (RDA) for iron is 1.8 times higher for vegetarians
compared to non-vegetarians (NIH 2018). An in vitro gastrointestinal digestion proce-
dure and a Caco2 cell lines based model of the human intestine showed that on an
average, 70.6% of the potato iron is released from the potato matrix and is therefore
available at the intestinal level (Andre et al. 2015). Hence, a high portion of the RDA
could be obtained from potatoes. Furthermore, the presence of extensive natural
variation in potato germplasm could be used for potato biofortification (Haynes et al.
2012; Paget et al. 2014; Singh et al. 2020b). During the last decade, many attempts
have been made to develop Fe-rich biofortified potatoes using agronomic practices,
traditional plant breeding and modern genetic engineering. However, knowledge of the
various molecular mechanisms involved in Fe uptake, transportation and storage in
potato tubers is still limited. This review discusses our current knowledge of molecular
pathways involved in the determination of Fe concentrations in potato tubers. In
addition, various biofortification strategies used to improve the nutritional value
of potatoes are discussed with an emphasis on biofortification through genetic
engineering tools.

Fe Uptake Mechanisms

In nature, plants obtain Fe from the rhizosphere. Fe is present in ample amounts in the
soil, but its availability to plant roots is limited (Morrissey and Guerinot 2009). As Fe is
a vital mineral for plant growth and development, the higher plants have established
two different strategies for Fe uptake. The non-graminaceous plants adopted the
reduction-based strategy in which the plant roots excrete protons to the soil that
converts less soluble Fe3+ to the more soluble Fe2+ form by reduction. The
graminaceous plants such as wheat, rice, maize and barley have developed the
chelation strategy, often called iron uptake strategy II (Kobayashi and Nishizawa
2012). Presently, iron uptake and homeostasis in potato is not well understood.
However, potato being a non-graminaceous plant follows strategy I (Fig. 1). According
to this strategy, plant roots excrete protons to the rhizosphere via a proton ATPase
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pump, which results in the reduction of Fe3+ to Fe2+ with the help of a ferric chelate
reductase (FROs) (Jeong and Connolly 2009). The FRO2 gene is chiefly responsible
for the reduction of iron in Arabidopsis (Connolly 2003), whereas in potato roots, the
FRO1 gene showed elevated expression levels under iron deficient conditions (Legay
et al. 2012). This indicates that FRO genes respond to iron deficiency in potato and
reduce Fe3+ to Fe2+. Then Fe2+ is transported into the root epidermal cells by iron
regulated transporter 1 (IRT1) (Barberon et al. 2014; Castaings et al. 2016). High
expression levels of the IRT1 gene were observed in potato roots (Legay et al. 2012).
Inside the plant body, iron cannot move freely because of its poor solubility, high
reactivity and excess iron cytotoxicity (Hell and Stephan 2003; Conte and Walker
2011; Kobayashi et al. 2019), and therefore must be linked to a chelating molecule.
Various iron chelators have been reported in plants such as nicotinamide (Von Wiren
et al. 1999), citrate (Durrett et al. 2007) and mugineic acid family phyosiderophores
(Suzuki et al. 2008; Khan et al. 2018). It is expected that iron is transported to the
shoots from the roots via the xylem (Durrett et al. 2007). The citrate transporters load
the Fe-citrate complexes into the xylem in both non-graminaceous and graminaceous
plants (Ariga et al. 2014). The ferric reductase defective3 (FRD3) citrate effluxer
regulates iron translocation in the model plant Arabidopsis (Green and Rogers 2004;
Durrett et al. 2007; Roschzttardtz et al. 2011). The high expression of the FRD3 gene in
in vitro potato plants grown on iron deficient media suggests its positive role in iron
transportation in potato (Legay et al. 2012). During the last decade, our knowledge
regarding iron transportation from roots to shoots and seeds has improved (Kobayashi
and Nishizawa 2012; Brumbarova et al. 2015; Connorton et al. 2017; Jeong et al.
2017). However, our understanding of iron transportation and storage into the edible
parts of tuber crops is still poor. Unlike other minerals (Mg, P, S, Cl and K), a
significantly higher iron concentration in the surface layers compared to tuber flesh
suggests that iron may not move easily through phloem. Another possible reason
behind high iron content in the peridermal region is the direct uptake of iron across

Fig. 1 Iron uptake strategy I adopted by non-graminaceous plants including potato
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the epidermis of the developing tubers (Subramanian et al. 2011). However, the direct
uptake of iron into the mature tubers via periderm is less likely because with maturity,
the periderm becomes thick and suberized (Singh et al. 2020a). Nevertheless, several
successful attempts have been made to increase the iron content in potato through better
agronomic practices, utilization of diverse potato germplasm, traditional breeding and
genetic engineering.

Agronomic Biofortification

Agronomic biofortification is potentially easy, cost-effective, efficient and applicable to
most crops. Agronomic practices for potato biofortification comprise tuber priming
(Vergara Carmona et al. 2019), foliar application and soil application of fertilizers
(Kromann et al. 2017; White et al. 2017). Seed priming with different micronutrients
has been shown to increase the micronutrient content of crop plants (Sundaria et al.
2019; Carmona et al. 2019) and to have several other growth benefits (Sharifi 2016;
Reis et al. 2018). Carmona et al. (2019) reported an increase in the zinc concentration in
the cortex of tubers by priming the seed tubers in zinc solution before planting.
However, no such study has been performed for iron content in potato. Similarly, soil
and foliar applications of zinc have improved the zinc content in tubers but the iron
concentration does not increase with iron fertilization (Kromann et al. 2017; White
et al. 2017). Foliar application of micronutrients (Fe, Zn, Cu and Mn) increased potato
tuber yield and dry matter (Al-Jobori and Al-Hadithy 2014; Moinuddin et al. 2017).
Apart from the soil and foliar fertilizer applications, agronomic biofortification can be
performed by growing the plants in soilless media (Di Gioia et al. 2019; Giordano et al.
2019). For example, higher concentrations of Fe, Zn and Se have been observed in
different cereal crops when grown in coal fly ash plant growth media in comparison to
control plants grown in soil (Bilski et al. 2012). This method could be tested for iron
biofortification in potato.

Genetic Biofortification

Genetic biofortification is a strategy that relies on traditional plant breeding techniques
and modern biotechnological tools to develop nutrient rich crops. Crop biofortification
through plant breeding is a globally accepted, cost-effective and sustainable method for
the development of nutrient rich crops. The conventional breeding programs take
advantage of naturally occurring genotypic variations for the trait of interest such as
iron content in potato germplasm. Furthermore, mutagenesis can be used to induce
promising genetic variations to increase iron concentrations. This technique has been
used successfully for the functional characterization of various iron related genes
(Rehman et al. 2020). For example, some mutant lines of wheat and rice exhibit
increased levels of iron in grains (Tran and Ho 2017; Kenzhebayeva et al. 2019).
The mutation breeding technique has been used to improve several qualitative and
quantitative traits in tetraploid potato (Bado et al. 2016; Zia et al. 2018). This could also
be employed to develop iron-rich potato varieties. Genetic biofortification can also
involve the development of nutrient rich crops through the transgenic method. This
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method does not depend upon the genetic variation present in the germplasm of a
particular crop as it can use beneficial genes from other plant species regardless of their
evolutionary relationships (Garg et al. 2018; Kumar et al. 2019). The CRISPR-Cas9
gene-editing technology has become a routine practice in molecular biology labs. It has
been used to improve various qualitative and quantitative traits in major food crops
including potato (Dangol et al. 2019). It could take advantage of previously known
regulators of iron metabolism. Moreover, this technique could be used as a reverse
genetic approach to identify the key contributors of iron uptake from the rhizosphere
and its allocation to the tubers.

Potato Biofortification by Breeding

The foremost requirement of plant breeders is the presence of natural variation in the
germplasm of a crop for further breeding. Fortunately, potato germplasm is a rich
source of natural variations in terms of tuber shape, size, skin texture and colour, and
nutrient concentrations (Ashrafzadeh et al. 2017; Berdugo-Cely et al. 2017; de Haan
et al. 2019). Different potato accessions have differential genetic variations for tuber
iron content (Table 1). For example, some iron-rich potato accessions have been
reported in Solanum tuberosum and in Solanum tuberosum ssp. andigena by Dalamu
et al. (2017) and Singh et al. (2020a, 2020b), respectively. These accessions could be
used as parental lines in the breeding programs aimed to develop iron-rich potato
varieties, but more research is required on the heritability of the trait. Knowledge of
genes responsible for iron uptake and accumulation in tubers could help the potato
breeding programs aimed to enhance the iron content. Various types of molecular
markers could be developed for iron related metabolism or markers associated with iron
metabolism could be used in potato from other crops (Gupta et al. 2017). Moreover,
genome wide association studies (GWAS) have emerged as a powerful tool for the
identification of genes/markers associated with a complex phenotypic trait such as
mineral concentrations (Arora et al. 2019; Cu et al. 2020). This approach has been used
to dissect the potato genetics for different phenotypic traits. GWAS should be used to
investigate the marker-trait associations liked to tuber iron content in diverse potato
germplasm.

Potato Biofortification via Transgenic Approaches

Potato iron biofortification by transgenic means can be a good alternative to conven-
tional breeding. Potato plants obtain minerals primarily from soil through their roots
(Karley and White 2009) and redistribute these minerals to the tubers via phloem, but
iron is less mobile in the phloem (Subramanian et al. 2011). More knowledge is
required on iron localization in potato tubers. Since the molecular players involved in
the iron transportation into the tubers are poorly understood, the genes whose func-
tionality linked to iron metabolism has been validated in other crops (Table 2) could be
transferred into potato for testing. Sharma and Yeh (2020) suggested that the iron
deficiency tolerant1 (IDT1) gene could be used for iron biofortification. Transgenic
potatoes with increased provitamin A have been developed by incorporating phytoene
synthase (CrtB), phytoene desaturase (CrtI) and lycopene beta-cyclase (CrtY) genes
from Erwinia herbicola (Diretto et al. 2007). In a similar way, iron-rich potatoes can be
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developed by incorporating the already known positive regulators of iron metabolism
from other crops. The potato orthologues of these genes could be used to develop iron
rich over-expressor lines. One study suggests that overexpression of ferritin (FER3)
and iron-regulated transporter (IRT1) genes can help potato plants grow normally
without exhibiting any Fe deficiency symptoms in calcareous soils (Boamponsem et al.
2017). Likewise, MT (metal transporter), oligopeptide transporter, plasma membrane
H+-ATPase and germin genes showed significantly increased expression levels in
potato plants grown in iron deficient soil and complemented the iron uptake (Xiao
et al. 2015). Potato follows a reduction-based strategy for iron uptake, which is
different from other major crops such as wheat, rice and maize. Therefore, currently
not much information is available about the genes regulating the iron homeostasis in
potato. Moreover, the chances of achieving success by incorporating the positive
regulators of iron metabolism from graminaceous crops into potato are doubtful.
However, the overexpression of candidate genes present in potato and the introduction
of iron-associated genes from other tuber crops could play a pivotal role in the
generation of iron-rich potatoes.

Lessons from Other Tuber Crops

There are many candidate genes that are well studied in the model plant Arabidopsis
and also in other non-graminaceous plants, which can be used for iron biofortification
in tuber crops including potato. A few attempts to enhance iron concentrations have
been made in cassava using these candidate genes. For example, transgenic cassava
plants overexpressing AtVIT1 showed significantly higher iron content in cassava roots
and stems in comparison to control (Narayanan et al. 2015). Likewise, overexpression
of an algal gene FEA1 in cassava roots increased the iron accumulation by threefold in
its storage roots (Ihemere et al. 2012). Another study reported that co-expression of a
mutated AtIRT1 gene and AtFER1 gene in transgenic cassava increased the iron
accumulation 7–18 times higher than non-transgenic controls (Narayanan et al.
2019). These genes might play important roles in the development of iron-rich potato
varieties. In addition, H+-pyrophophatase gene IbVP1 could also be used in potato
biofortification for iron deficient soils as it promotes soil acidification in transgenic
sweet potato plants (Fan et al. 2017).

Conclusion and Future Perspectives

Potato is a highly nutritious crop feeding the poor throughout the world. Previous
studies suggest that 100 g of potatoes can deliver up to 8% of the RDA for iron for
adult males (Camire et al. 2009; King and Slavin 2013). However, wide variations in
the iron concentrations in potato germplasm (Table 1) suggest that iron rich genotypes
can provide a much higher portion of RDA for iron than previously thought. The
genetic variability in the potato gene pool could be used to increase the iron content in
potato by using traditional breeding and selection methods. Genotypes with high iron
concentration should be incorporated into potato breeding programs. Identification of
genes/markers/QTLs associated with iron uptake, translocation and storage may speed
up the breeding programs or could be used in the transgenic studies (Bradshaw 2019).
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GWAS is a powerful tool that can decipher the genetic variation linked to a complex
phenotypic trait. As there is always a risk of transferring undesirable genes along with
desirable genes while crossing with wild genotypes, the development of iron-rich
potatoes through transgenic approaches is a good alternative option. At present, iron
deficiency is a global issue, which could be reduced by the development of iron-rich
potato varieties. Potato biofortification requires integrated approaches comprising the
most effective agronomic practices, modern plant breeding strategies and advanced
genetic engineering tools.

Funding This study was financed by Department of Science and Technology-Science and Engineering
Research Board (DST-SERB) in the form of an externally funded project to Indian Council of Agricultural
Research - Central Potato Research Institute (ICAR-CPRI), Shimla, India
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