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Abstract The impacts of water restriction and high temperatures on potato production
will increase over the next decades, due to climate change and the extension of
cultivation in drought and heat prone areas. We review recent achievements and
describe new avenues in the evaluation of tolerance to these abiotic stresses in potato,
focusing on the definition of target populations of environments, choice and character-
ization of the managed stress environment, stress monitoring, and secondary traits
measurement.
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Introduction

Potato is the world’s fourth most produced food crop (370 million tonnes) after rice,
wheat, and maize. It is grown on 19 million ha worldwide (FAOSTAT 2013).
Developing countries are responsible for more than half of the total world potato
production (FAO 2009) and together with soybean constitute the only crops where
contribution from developing countries to world production is growing (Walker et al.
2011). Potato is often cultivated in remote and marginal areas by resource-poor farmers
with limited access to farm inputs (Scott 1985). In these regions, it largely contributes
to dietary daily energy intake (Scott et al. 2000) and hunger reduction (Thiele et al.
2010). Potato is also progressively acquiring higher market value, thus contributing to
poverty reduction (Scott et al. 2000). An increasing part of the production is trans-
formed by industry (French fries, chips) particularly in Asia (Janski et al. 2009).
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In developing countries, increase in production is mainly due to an increase in
cultivated area, yield annual growth rates remaining stagnant (Walker et al. 2011). In
many areas, potato regularly suffers transient water stress due to erratic rainfall or
inadequate irrigation techniques (Thiele et al. 2010). It also often faces heat stress,
particularly in the tropics and subtropics (Simmonds 1971). The impacts of water
shortage and high temperatures on potato production will likely enhance over the next
decades, due to climate change and the extension of potato cultivation in drought and
heat prone areas (Hijmans 2003).

Climate change is expected to increase the frequency of drought events in many
regions, affecting drought susceptible crops like potato (Simelton et al. 2012). Potato
yield losses in the world due to climate change are expected to range between 18 and
32% during the first three decades of this century (Hijmans 2003), although this study
does not consider the mitigation effect of CO2. Climate change could also affect tuber
quality by reducing dry matter and increasing reducing sugar concentration (Haverkort
and Verhagen 2008).

Since 1950, the potato growing area considerably expanded at low latitudes as a
winter crop exposed to high temperatures and drought events (Thiele et al. 2008) and
field studies have revealed the scope for further extension of potato production in these
regions (Minhas et al. 2011). Temperature in these regions is often supra-optimal for
potato growth. There is also a potential for intensifying wheat-based systems in Central
Asia by cultivating potato as a summer crop that will consequently face increased heat
and drought stress (Carli et al. 2014).

Potato is susceptible to both drought (Monneveux et al. 2013) and heat (Levy and
Veilleux 2007). Drought susceptibility of potato has been mainly attributed to its
shallow root system and low capacity of recuperation after a period of water stress
(Iwama and Yamaguchi 2006). Drought decreases plant growth (Deblonde and Ledent
2001), shortens the growth cycle (Kumar et al. 2007), and reduces the number (Eiasu
et al. 2007) and size (Schafleitner et al. 2007) of tubers. The magnitude of drought
effects on potato production depends on the phenological timing, duration, and severity
of the stress (Jeffery 1995; Schafleitner 2009). Emergence and tuberization are two
critical periods where water stress most affects final tuber yield (Martínez and Moreno
1992).

High temperature drastically affects potato production (Gregory 1965; Slater 1968).
Soil temperature higher than 18 °C tends to reduce tuber yield, especially when
combined with high ambient air temperature (30 °C day/23 °C night). When heat
stress accompanies drought stress, pronounced declines in tuber yield and tuber quality
are noted with notable differences among cultivars (Ahn et al. 2004). Heat stress creates
imbalances in source-sink relations, delays in tuber initiation and bulking, and malfor-
mation and necrosis of tubers (Levy and Veilleux 2007). Heat tolerance is an important
trait for further development of potato in subtropical India (Gaur and Pandey 2000), the
semi-arid Middle East (Levy et al. 2001), and the tropics (Minhas et al. 2011).

For a long time, potato was not considered as a crop of major importance in drought-
and heat-prone production systems (Hyman et al. 2008; Li et al. 2011) and breeders
consequently did not consider tolerance to these stresses as priority objectives (Thiele
et al. 2010; Monneveux et al. 2013). Today, the progresses of genomics and bioinfor-
matics offer real opportunities for dissecting the genetic basis of drought and heat
tolerance into component traits and select plants with favorable alleles at the underlying
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genes (Tuberosa 2012). An important quantity of genes involved in drought and heat
tolerance have been identified in the past few decades in potato (Monneveux et al.
2013). Availability of genome sequence and high throughput marker systems enriched
the genomic resources that were used to develop genetic and physical maps (Kumar
et al. 2013). Recently, studies also reported identification of QTLs for drought tolerance
in a diploid genetic background (Anithakumari et al. 2011). Further progress in
developing drought tolerant germplasm and increasing plant performance in drought
and heat prone areas however depends largely on our capacity to generate the high-
quality quantitative data that are needed for genetic analysis and gene identification and
transfer (Tuberosa 2012).

Phenotyping, the Main Bottleneck in Breeding for Abiotic Stress Tolerance

Plant phenotyping (from the Greek phainein, to show) is the basic measurement of
individual quantitative parameters that form the basis for more complex traits such as
growth, development, tolerance, resistance, architecture, and yield. Plant phenotyp-
ing—based on experience and intuition—has been performed by farmers since crop
domestication and by breeders during the last century. Over the last two decades,
progress was done in the development of more reproducible measurements reducing
the individual subjectivity factor of the phenotyper. However, the basic attributes of a
good phenotyping approach are not just the accuracy and precision of measurements,
but also the relevancy of experimental conditions. Efficient phenotyping implies
accurate i) definition of target population of environments, ii) characterization of the
testing environment or managed stress environments, iii) stress monitoring, and iv)
measurement of secondary traits.

Definition of Potato Target Populations of Environments

Any variety is adapted to several environments. This group of environments is referred
by Fischer et al. (2003) as target population of environments (TPE). Deploying different
cultivars in different TPEs is the only way to reduce genotype by environment interac-
tions (GEI). ATPE can be defined as the set of all environments in which an improved
variety is expected to perform well (Cooper et al. 1997). An important objective for
breeders is consequently to clearly define the TPE for which each variety is developed.
The environments constituting a TPE must be sufficiently similar for one genotype to
perform well in all of them. There are several complementary ways to define the TPE.

Mega-Environments or Agro-Ecological Zones

The definition of a mega-environment (ME) is mainly based on spatial information
about environmental constraints (including drought and heat) (Rajaram et al. 1995). It
requires previous information about crop distribution, environmental constraints, and
the factors to which the crop is susceptible.

Information about potato distribution over the world has been insufficient for a long
time. A first (but rather incomplete) map of global potato distribution was published by
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Finch and Baker (1917). Global potato distribution maps were further published by Van
Royen (1954) and Bertin et al. (1971). A better description of the global distribution of
potato area was obtained by merging statistics at country-level, and subnational
information with geo-referenced databases (Hijmans 2001; Theisen and Thiele 2008).
Monfreda et al. (2008) used the previous approach and excluded non cropland defined
by NDVI. Temperature and photoperiod play a key role in the distribution, growth, and
development of potato (Kooman and Haverkort 1995; Struik et al. 1999). Dry matter
accumulation depends on the amount of solar radiation intercepted by the crop while
dry matter distribution between the various organs is determined by temperature and
photoperiod (van Keulen and Stol 1995). Short day length and low temperatures
(especially at night) enhance tuber initiation and increase the number of tubers while
low solar radiation restricts tuber formation (Ewing et al. 2004). Potato growth and
development are slow at lower temperatures while daily average temperatures above
21 °C (generally coinciding with day-night temperatures of 27–15 °C), leading to
increased respiration and foliar development, are detrimental for potato growth. As a
consequence, yield of potato highly depend on latitude and altitude that determine
length of the growing period and photoperiod (Haverkort 1989). A global zonification
taking into account these two last variables was developed at CIP (Fig. 1) to assist in
the distribution of improved potato populations to several regions.

Based on the requirements of the crop and the constraints faced in different regions,
potato agro-ecological zones have been also defined. By 1979, CIP potato breeding
strategy focused on just two ME, tropical highlands and warm tropics. In 1992, three
priority agro-ecologies were defined for potato breeding, the highlands, temperate, and
subtropical lowlands regions agro-ecological analysis was used to reprioritize CIP’s
research (Thiele et al. 2008). In 2013, three main “strategic objectives” were defined
(Table 1).

Fig. 1 Global zonification based on length of growing period (LGP) and photoperiod at tuberization. A
latitude layer for calculating photoperiods in suitable areas for production was established by using threshold
temperatures (minimum between 4 to 18 °C and a maximum below 30 °C) and duration of the growing season
(pixels selection depend on if they show the indicated threshold temperatures during three consecutive
months). LGP and photoperiod were classified in two (≤150 and >150 days) and three classes (short:
≤13 h, intermediate: 13–15 h and long: >15 h) respectively
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However, the ME and agro-ecological zones do not always offer a sufficient level of
resolution in the definition of TPE. Genotype by environment interaction analysis,
spatial analysis, and modeling are useful tools to refine the TPE definition.

Use of Genotype by Environment Interaction Analysis

An important objective by implementing ME and analyzing GEI is, besides describing
the behavior of genotypes across different environments, to define clusters of locations
sharing the same best cultivar(s), i.e., showing little or no crossover (Yan and Rajcan
2002). The biplot analysis and the AMMI (additive main effects and multiplicative
interaction) and GGE (genotype main effects and genotype by environment interaction
effects) models have been used in several crops for clustering location and defining
TPE (Basford and Cooper 1998; Yan et al. 2007).

A compromise should be searched between precisely defining the TPE and
achieving enough replication within it. If the TPE is too narrowly defined, few
trials will be conducted within each TPE, and least significant difference values
will be very large, preventing accurate evaluations and reducing progress from
selection. Since each new TPE will need additional breeding and testing resources,
there is a practical limit to the number of TPE used in a breeding program, and
breeders should rely on the spillover of a variety from another TPE. The subdi-
vision of a target region into uniform subregions will only increase selection
efficiency if genotype-by-subregion interactions are repeatable (Atlin et al. 2001),
genotypic correlation among subregions is low (Presterl et al. 2003), and increase
in genotypic variance can counterbalance loss in precision of genotypic means
associated with division of testing resources (Windhausen et al. 2012).

As there is a large non-predictable component of GEI associated with year-to-year
variation, it is sometimes difficult to define consistent patterns for the grouping on the
basis of locations (Cooper et al. 1999), and substantial datasets (twenty or more
varieties evaluated over several years) are consequently required to accurately estimate
the best clustering. The high temporal variability in climatic variable can be addressed
using long-term historical (Qiao et al. 2004; Loffler et al. 2005) or simulated/predicted
climatic records (CCAFS 2011).

In potato, GEI analysis have been widely used to describe adaptation of potato
varieties in specific environments and characterize their stability but poorly exploited
for clustering environments. In some crops like wheat breeding programs routinely
collected data from ME and historical sets of data are available at the global level
(Peterson and Pfeiffer 1989). This is unfortunately not the case in potato, partially
because of the constraints related to seeds exchange and distribution.

Use of Spatial Analysis and Modeling

As information about GEI is scarce in potato, CIP invested over the last years in the use
of spatial analysis and the development of models to better define TPE. Several
advances over the last few decades in the development of computer hardware and
software, and availability of climate data in digital formats allowed sophisticated
statistical analysis of GEI (Crossa et al. 2004) and development of precise agro-
ecological zoning maps (Hyman et al. 2013). By using soil and climate information
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on the trial sites, it is possible to classify locations into more or less homogenous
environment types (DeLacy et al. 1994; Roozeboom et al. 2008). Linking individual
trial sites to larger regions for which they are representative is very useful for devel-
oping maps of TPE and, ultimately, for introducing varieties into environments where
they are expected to perform well (Gauch and Zobel 1997).

In cereals, a great advance in the study of TPE has been attained using long-term
climatic records as an input of crop growth models with the aim to analyze patterns of
water deficit based on crop water availability (Heinemann et al. 2008; Chenu et al.
2011). This approach permits to identify model parameters, run the model under
different climatic scenarios, and test it in the multi-environment trials (Tardieu 2012).

Following the mentioned perspective in potato, long-term precipitation records were
collected from the daily TRMM 3B42 v7 data base and corrected with a limited
number of gauged data (Heidinger et al. 2012). This information allowed defining
the probability of drought as the percentage of years when the precipitation does not
cover the crop water demand. Assuming obligatory irrigation until tuber initiation,
drought probability was estimated for three phenological stages: after tuber initiation,
tuber bulking, and senescence (Fig. 2). Crop growth model parameterization using
SOLANUM model (Condori et al. 2010, 2014; Harahagazwe et al. 2012) with
promisory potato clones in drought prone areas (Carli et al. 2014) served as a raw
material for spatial models that simulated water demand and crop responses in water-
limited environments and establish the requested environmental classification. Finally,
field MET could serve to test simulation results.

Choice and Characterization of the Managed Stress Environment

Choice of the Managed Stress Environment

As breeding facilities (fields, equipments) are generally not available in the TPE and
genetic resources cannot easily be transferred, phenotyping and screening need to be
done in a managed stress environment (MSE) that can be the main experimental
station(s) of the national program, private company, or international center. Ideally,
the choice of the MSE should take into account its representativeness with regard to
edaphic and climatic conditions of the TPE, based on historical weather data and soil
features (Gomide et al. 2011). The MSE should mimic as far as possible the TPE for
water distribution and profiles, potential evapotranspiration rates, and physical and
chemical soil properties. Any deviation may result in significant GEI between TPE and
MSE, and genetic gains achieved in the MSE may not be expressed in the TPE.

Geographic information system (GIS) tools and models can help considerably in
describing the relationships between TPE and MSE. Homology maps have been
generated that show the degree of similarity between any set of stations or a continuous
surface through spatial interpolation of climate data (Hyman et al. 2013).
Notwithstanding, the challenge is to try finding the most appropriate formal models
based on key traits that drive the phenotypic responses to each environmental condition
(Cooper et al. 2002). Some pitfalls that limit the aforementioned aim are related to the
disruptive effect of sampling variation and the lack of representativeness of the MET
used as homologues of TPE, among others (Basford and Cooper 1998).
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Characterization of Managed Stress Environments

Actual environmental climatic characterization is essential to quantify evapotranspira-
tion and crop water requirements, in order to control the different water regime
treatments and estimate the corresponding crop stress levels. The main atmospheric

Fig. 2 Main potato cropping area in the lowlands of Uzbekistan (patches defined by blue lines) and
probability of drought (precipitation/crop transpiration) at three crop developmental stages: tuber initiation,
tuber bulking, and senescence during the March–June cropping season
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parameters to be registered by means of an automatic or a standard weather station are
air temperature, global solar radiation, air relative humidity, wind speed, air water vapor
pressure deficit, and precipitation. Soil characterization is equally important as differ-
ences in soil depth and water holding capacity can affect the imposition of stress. Soil
depth affects rooting volume and consequently nutrient and water availability.
Compaction, aluminum toxicity, and soil acidity also reduce root depth. Soil texture
is a major determinant of water holding capacity and water release characteristics
(Gomide et al. 2011). A list of the climatic and soil parameters assessed and methods
used at CIP to characterize the MSE is provided in Table 2.

As far as the aim is to develop varieties with adaptation to water constraints, it is
important to know more about the patterns of water supply and the type of drought
faced by the MSE. Water balance models are highly valuable tools to characterize
environments based on predicted water availability (e.g., aquacrop, see Quiroz et al.
2012 and http://www.fao.org/nr/water/aquacrop.html).

Reducing Noise Factors

Any crop facing drought or heat stress simultaneously experiences a number of
additional stresses (e.g., micronutrient deficiency, soil compaction, salinity, and
pathogens) that impair root growth, reduce water availability, affect source
capacity, and finally exacerbate the effects of the studied stresses. Genetic
variability among the tested germplasm for tolerance to these stresses inevitably
biases an accurate evaluation of the effects of drought or heat. Soil surveys
permit to describe the within-site distribution of these confounding factors
(Cairns et al. 2009). In case of interaction between drought and heat stress,
additional trials (e.g, trial under full irrigation in heat prone areas) may be
needed to isolate the specific effect of each stress.

Table 2 Methods used at CIP to characterize soil and climate conditions in managed stress environments

MSE characterization Methods

Climate characterization Weather station HOBO U30, Onset, Bourne, MA, USA, for measuring air
temperature, relative humidity, dew point, rainfall, soil moisture, solar
radiation, wind speed, and direction, barometric pressure, and more.

Weather station HOBO U23, Onset, Bourne, MA, USA, for temperature and
relative humidity, weatherproof data loggers for use in outdoor/condensing
environments

Soil characterization Soil sample analysis: sent to outside laboratory to determine texture, pH,
salinity, organic matter, and other cations and anions. Salinity also mapped
with corrected EM38 measurements

503TDR HYDROPROBE, 2830 Howe Road Martinez, CA, USA for
measuring soil moisture

PR2 Soil Moisture Profile Probe, Delta-T Devices Ltd, Cambridge, UK, for
measuring soil moisture in different water profiles in all soil types at 4 depths
down to 40 cm

WATERMARK 200SS, Irrometer, Riverside, CA, USA, for measuring soil water
tension in centibars (cb) or kilopascals (kPa); (0–200 Centibar range)
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Experimental conditions of the MSE should also ensure minimal environmental
heterogeneity to reduce unwanted experimental error. Spatial variability affects the
detection of treatment differences by inflating the estimated experimental error variance
and limiting the value of data acquired (Masuka et al. 2012). Moreover, the effects of
soil heterogeneity become more apparent under drought (Gomide et al. 2011). Direct
assessment of soil variability within a field site can be made through destructive soil
sampling positioned by a Global Positioning System (Campos et al. 2011). For
purposes of water balance, physical and chemical properties of soil samples should
be analyzed through the soil profile (or layers) (at a minimum for texture, pH, bulk
density, macro and micro-nutrients). High-throughput techniques are also available for
mapping variability within field sites based on penetrometers (Cairns et al. 2011), soil
electrical conductivity and electromagnetic induction sensors (Cairns et al. 2012;
Brunner et al. 2004; Jhonston et al. 1997), spectral reflectance (Dang et al. 2011),
and thermal imagery of plant canopies (Campos et al. 2011). At CIP, assessment of soil
variability through reflectance measurements allowed discarding fields contaminated
by nematodes and electromagnetic induction for mapping salinity.

Stress Monitoring

The ability to manage the timing, frequency, and intensity of the stress is a key factor in
mimicking the environmental conditions prevailing in the TPE and ensuring accurate
drought phenotyping (Tuberosa 2012).

An increasing number of breeding programs are conducting drought trials in dry
locations or “out-of-season”, i.e., in seasons that are not the cropping season of the crop
and are characterized by very low rainfall. Under such conditions, the dynamics of drought
episodes can be tightly controlled through the frequency and volume of irrigation treat-
ments. The dry season should be sufficiently long to cover the whole growth cycle.
Furthermore, conditions during the dry season generally do not reflect the environmental
conditions (radiation, temperature, vapor pressure deficit) plants would experience during a
natural drought in the main (wet) season (Jagadish et al. 2011). These differences lead to
genotype-by-season interactions and limit the extrapolation of results. Late or delayed
planting can represent an interesting alternative option, particularly in the case of heat stress.

Static or moveable rainout shelters constitute another alternative of investigating the
adaptive response of crops to a desired level of drought stress, avoiding the bias of
unpredictable rainfall patterns (Tuberosa 2012). Major inconveniences are, in addition
to the high construction and operating costs, i) the usually rather limited area protected
by a shelter which, in turn, limits the number and size of experimental plots that can be
tested and ii) shelters do not consider the water dynamic under the soil.

Phenotyping potted plants in greenhouses or growth chambers with robotized systems,
and advanced image analysis software permits to assess traits in a quicker and more
reproducible manner limiting undesirable environmental influences on phenotype expres-
sion (Furbank and Tester 2011; Fiorani and Schurr 2013). It represents an interesting
option for the analysis of drought and heat tolerance underlying mechanisms. However,
controlled conditions tend to be very different to those prevailing in the TPE andmay limit
the application of results in germplasm development. In particular, irrigation in pots
creates a situation that is very distinct from that occurring under field conditions
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(Passioura 2005), potted plants being exposed to earlier and stronger stress (Wahbi and
Sinclair 2005). Additional factors to be also considered are the more uniform pore
distribution in potting mixtures which can lead to hypoxia and the temperature of the
substrate that can be different from field soil temperature (Passioura 2005).

At CIP, abiotic stress tolerance evaluations are actually made in field conditions with
late planting, in static and moveable rainout shelters, and in growth chambers, accord-
ing to the objective of the evaluation.

To apply a similar drought stress (in terms of timing, frequency, and intensity) in the
MSE as experienced in the TPE, irrigation should be withheld at the correct pheno-
logical stage. As drought stress is imposed at the same time across all genotypes,
genotypes with different phenologies are expected to face different stress durations
what biases the interpretation of the influence of drought-adaptive traits on yield
(Tuberosa 2012). To overcome this difficulty, genotypes can be grouped into subsets
of similar maturity to ensure phenological synchronization across genotypes at the
crucial stage when drought stress is imposed. Another option is to use the information
on phenology as a covariate adjustment. Finally, irrigation methods must be carefully
chosen to ensure optimum control of the irrigation water (Gomide et al. 2011). Drip
irrigation is utilized at CIP to allow plot level control of irrigation.

An accurate management of irrigation and sound interpretation of drought response
require an adequate characterization and monitoring of soil and plant water status. Jones
(2007) highlighted that over half of the published papers focusing on the effects of
drought on gene expression or transgenes did not include measurement of plant or soil
water status. Soil or plant water status can be monitored by measuring water potential
(Blum 2009) or relative water content (Riga and Vartanian 1999). Methods for measur-
ing the amount of water stored in the soil include the gravimetric method, the polymer-
based tensiometer (van der Ploeg et al. 2008), the neutron probe (Hignett and Evett
2008), the capacity probe (Nagy et al. 2008), the time-domain reflectometry (Noborio
2001), the single and multi-sensor capacitance probe systems (Fares and Polyakov
2006), and the two dimensional geo-electrical tomography (Werban et al. 2008).

Efficiency of breeding is largely due to accurate phenotyping of large numbers of
plots, made possible by more sophisticated and high-throughput experimental machin-
ery (e.g., plot combines able to measure yield directly in the field), as well as the
automation of tedious manual operations. The labeling of a large number of plots and
samples, data collection, and storage are now facilitated by the use of electronics (e.g.,
bar-coding) and dedicated software (e.g., spreadsheets, databases, etc.). The effective-
ness of field experiments and the management and interpretation of phenotypic data can
be enhanced through the utilization of the most appropriate experimental designs
(Federer and Crossa 2011) to allow for better control of within-replicate variability
and reduce or remove spatial trends.

Traits Measurement

General Requirements

After having used yield under drought as an exclusive breeding objective, most
breeders progressively replaced this empirical approach by indirect selection (Jackson
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et al. 1996), based on the selection for “secondary traits” or plant characteristics that
provide additional information about how the plant performs under a given environ-
ment (Lafitte et al. 2003). To be useful in breeding programs, a secondary trait should
ideally be (Edmeades et al. 1997) (i) genetically associated with yield under drought;
(ii) genetically variable; (iii) highly heritable; (iv) easy, inexpensive, and fast to observe
or measure; (v) non-destructive; (vi) stable over the measurement period; and (vii) not
associated with yield loss under unstressed conditions. The heritability of indirect traits
itself varies according to the genetic make-up of the materials under investigation, the
conditions under which the materials are investigated and the accuracy and precision of
the phenotypic data. The accuracy of secondary traits measurement is closely related to
precision or repeatability, the degree to which further measurements show the same or
similar results (Tuberosa 2012).

Most of the traits currently mentioned in the literature associated with drought and
heat adaptation in potato are shown in Table 3, classified according to their relationship
to drought escape, growth and biomass, partitioning, water status, and photoprotection.

A Need of More Integrative Measurements

Most traits mentioned in Table 3 are assessed through “instantaneous methods” which
depend on environmental conditions during measurement, what strongly limits the
number of individuals assessed. Most traits are also assessed on individual plants or
even on particular organs of individual plants what poses a problem of representative-
ness of the sampling. In addition, these methods are cumbersome. There is consequent-
ly a need of traits assessment methods that are more integrative, both in time and space
(Jarvis 1995). Some promising approaches are presented below.

Remote Sensing

Remote sensing is defined as the set of techniques to collect information about an
object without having physical contact with it. From the analysis of physical parameters
such as the reflectance of radiant energy that interacts with plant tissues in plants, it is
possible to get information from biological variables such as biomass, nutritional
deficiencies of nitrogen in the leaves, water stress, the presence of pests and diseases,
among others. Because green leaves reflect a small portion of the incident radiation in
the red and a high proportion in the infrared, vegetation indices can be used as tools to
estimate the condition of the crop or the presence of different types of stress in plants
(Peñuelas et al. 1997; Suárez et al. 2009) and even anticipate their presence before
symptoms are visible, due to the increased spectral sensitivity of the sensors in
comparison with our view. In an experiment conducted in CIP Lima for example, the
presence of "yellowing veins" virus (PYVV) on potato plants inoculated with virus was
detected 14 days before symptoms were detected by a trained eye (Chavez et al. 2009).

To facilitate remote-sensing measurements, CIP is developing the use of unmanned
aerial vehicles (UAV) with eight rotors transporting small and light cameras and radiom-
eters. The processing of the acquired images includes the following steps: log file
(superimpose and align images acquired with cameras adapted with interference filters
centered in the near infrared and red, respectively, to obtain a multispectral image),
geometric correction, mosaicking (or image stitching), and georeferencing (Fig. 3).
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Carbon Isotope Discrimination

Carbon isotope discrimination (Δ) in plant tissues, calculated from the ratio of
the two stable carbon isotopes 12C and 13C, negatively correlates with
transpiration efficiency in C3 species (Johnson et al. 1990). This allows an
integrated measure of this trait during the entire period in which the sample
tissue was growing. In cereals, an association was found between carbon
isotope discrimination and yield (Monneveux et al. 2005). The potential
utilization for estimating transpiration efficiency or drought tolerance has
been poorly explored in root and tuber crops. Jefferies and MacKerron
(1997) reported a positive correlation between Δ and stomatal conductance
among potato clones while Deblonde et al. (1999) found an association
between Δ and drought tolerance (tuber yield under water limitation relative
to tuber yield under irrigated conditions). Recently, Δ has been proposed in
potato as an indicator of photosynthetic capacity and yield potential (Ramírez,
unpublished).

Fluorescence

In addition to the reflected energy, a small fraction of the energy absorbed by the
plants is emitted as chlorophyll fluorescence. The particularity of the fluorescence
of plants is that their dynamics are related to changes in the photochemical
conversion. The importance of chlorophyll fluorescence for the study of photosyn-
thesis is well documented and is widely used in laboratory (Krause and Weis
1991; Schreiber et al. 1994) proving to be a sensitive indicator of a stress response
to water scarcity (Flexas et al. 1999). Today, large commercial instrumentation
measures the performance of fluorescence at leaf-level in the laboratory, but its
assessment in open field conditions and at the canopy level is still a challenge.
Works such as those by Zarco-Tejada et al. (2009) and Zarco-Tejada et al. (2012)
suggest the possibility of remotely obtaining chlorophyll fluorescence images using
the discrimination method of Fraunhofer lines in the absorption bands of atmo-
spheric oxygen (Moya et al. 1998), a promising technique since it would provide
information at different levels of integration, from a leaf to the whole canopy
(Moya and Cerovic 2004).

Fig. 3 Optical (left) and spectral (right) images of a potato experimental field taken from an unmanned aerial
vehicle
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Conclusion

Drought is expected to increasingly affect potato production, with potential conse-
quences on food security. Genomics approaches to improve drought tolerance will
bring new opportunities over the next few years, but their impact in farmer’s fields will
mainly depend on the actual progress in our understanding of the physiology and
genetic basis of drought-adaptive traits. The effective implementation in breeding
programs of accurate and cost-effective phenotyping methods will be consequently
essential to ensure research impact.

Efforts should focus on a more precise definition of TPE, a better control of
the stress monitoring in the MSE and a more accurate assessment of drought-
tolerance-related traits. GIS system tools, remote sensing information, growth
crop modeling, new equipments for the measurement of soil and plant water
content, and more integrative drought-tolerance-related traits assessment
methods can contribute largely in these efforts. Success will also depend on a
closer cooperation among partners. Collaborative efforts could include develop-
ment of free-access long-term climatic databases, multi-local and multi-
institutional trials including common sets of cultivars, establishment of a well-
documented database of potato MSE and field data, web-sharing of experiences,
and organization of training courses. The development of networks among
different partners and establishment of shared phenotyping platforms will allow
quicker evaluation of germplasm in diversified environments, broader dissemi-
nation of germplasm products, and larger impact of breeding efforts.
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