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Abstract
In comparison to phylogenetic trees, phylogenetic networks are more suitable to rep-
resent complex evolutionary histories of species whose past includes reticulation such
as hybridisation or lateral gene transfer. However, the reconstruction of phylogenetic
networks remains challenging and computationally expensive due to their intricate
structural properties. For example, the small parsimony problem that is solvable in
polynomial time for phylogenetic trees, becomes NP-hard on phylogenetic networks
under softwired and parental parsimony, even for a single binary character and struc-
turally constrained networks. To calculate the parsimony score of a phylogenetic
network N , these two parsimony notions consider different exponential-size sets of
phylogenetic trees that can be extracted from N and infer the minimum parsimony
score over all trees in the set. In this paper, we ask: What is the maximum difference
between the parsimony score of any phylogenetic tree that is contained in the set of
considered trees and a phylogenetic tree whose parsimony score equates to the par-
simony score of N? Given a gap-free sequence alignment of multi-state characters
and a rooted binary level-k phylogenetic network, we use the novel concept of an
informative blob to show that this difference is bounded by k + 1 times the softwired
parsimony score of N . In particular, the difference is independent of the alignment
length and the number of character states. We show that an analogous bound can be
obtained for the softwired parsimony score of semi-directed networks, while under
parental parsimony on the other hand, such a bound does not hold.
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1 Introduction

The generalisation of phylogenetic trees to phylogenetic networks goes along with the
development of newmethods to reconstruct phylogenetic networks fromgenomic data.
Since phylogenetic networks are structurally much more complicated than phyloge-
netic trees, the algorithms to infer networks are typically computationally expensive.
Indeed, several optimisation problems that can be solved efficiently for phylogenetic
trees, become computationally difficult for phylogenetic networks. For example, the
small parsimony problem, which seeks to find the parsimony score of a given phylo-
genetic tree with character states assigned to its leaves is solvable in polynomial time
for phylogenetic trees, e.g., using the well-known Fitch-Hartigan algorithm (Fitch
1971; Hartigan 1973), but becomes NP-hard under different notions of parsimony for
phylogenetic networks, even for a single binary character and structurally constrained
networks (Fischer et al. 2015; van Iersel et al. 2018).

Despite the popularity of model-based methods to infer phylogenetic trees, max-
imum parsimony (see, e.g. Felsenstein 2004 and references therein) continues to be
widely used in certain areas of evolutionary biology, such as the analysis of morpho-
logical data (see, e.g. Sansom et al. 2018; Schrago et al. 2018; Smith 2019). Moreover,
since calculating the parsimony score of a phylogenetic tree is computationally less
expensive than calculating its likelihood, parsimony trees are often used as starting
trees from which a search through tree space is started (Stamatakis et al. 2005) and
are also used in Bayesian phylogenetic inference (Zhang et al. 2020).

Recently, different notions for parsimony on rooted phylogenetic networks have
been proposed, referred to as hardwired, softwired, and parental parsimony. Soft-
wired (Nakhleh et al. 2005) and parental (van Iersel et al. 2018) parsimony both
consider collections of trees that can be extracted from a rooted phylogenetic network
(so-called displayed trees, respectively parental trees) and define the parsimony score
as the minimum parsimony score of any tree in the collection. Softwired parsimony
is implemented in the popular software package PhyloNetworks (Solís-Lemus et al.
2017) and is the main focus of this paper. We remark, however, that two definitions
of softwired parsimony are used in the literature and these are both formally defined
in Sect. 2. Informally, in the first definition, every character in a sequence alignment
can follow a different displayed tree, whereas in the second, all characters follow the
same tree. We will focus on the first definition and then show that our results also hold
for the second. Hardwired parsimony (Kannan and Wheeler 2012), on the other hand,
calculates the parsimony score of a phylogenetic network by considering character-
state transitions along all edges of the network. As the sets of rooted phylogenetic
trees that are evaluated when computing the softwired and parental parsimony scores
of a phylogenetic network have exponential size, it is of interest to investigate the dif-
ferences in parsimony scores of elements in these sets. Given a gap-free alignment of
multi-state characters and a rooted binary level-k network N (formally defined below),
we analyse how different the parsimony score of any phylogenetic tree displayed by
N and the softwired parsimony score of N can be. We show that independent of the
alignment length and number of character states, this difference is bounded by k + 1
times the parsimony score of N . Thus, while computing the softwired parsimony score
is in general an NP-hard problem (even for a single binary character and a structurally
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constrained network (Fischer et al. 2015, Theorem 4.3)), our result implies that an
upper bound for the softwired parsimony score of N can be obtained in polynomial
time by simply evaluating the parsimony score of an arbitrary phylogenetic tree that is
displayed by N . In particular if the level of N is small, this upper bound gives a good
indication of the magnitude of the softwired parsimony score of N .

Related to our result, it was shown in Theorem 5.7 of Fischer et al. (2015) that
the NP-hard optimisation problem of computing the softwired parsimony of a rooted
level-k network for a single multi-state character is, on the positive side, also fixed-
parameter tractable, when the parameter is k. If one considers more than a single
binary character, the softwired parsimony problem is NP-hard even for a rooted level-1
network (Kelk et al. 2019, Theorem 1). As a consequence of the latter negative result,
Kelk et al. (2019) posed the following question. Are there good (i.e. constant-factor)
approximation algorithms for computing the softwired parsimony score of a rooted
phylogenetic network N and a sequence alignment Awithout gaps under the following
three restrictions: (i) N is level-1, (ii) each biconnected component of N has exactly
three outgoing edges, and (iii) A consists of binary characters?

As hinted at above, from an algorithmic perspective, our upper bound result implies
a (k + 1)-approximation algorithm for computing the softwired parsimony score of a
rooted binary level-k network N . Specifically, take an arbitrary phylogenetic tree that is
displayed by N , compute its parsimony score, and use this to approximate the softwired
parsimony score of N . If the level of N is fixed, this algorithm provides a polynomial-
time constant factor approximation. Hence, we answer the aforementioned question
by Kelk et al. affirmatively for a much larger class of rooted phylogenetic networks in
the sense that our result holds for level-k networks (for a fixed non-negative integer k),
it does not require restriction (ii), and it holds for gap-free alignments independent of
the number of character states. Our result also complements a recent paper by Frohn
and Kelk (2023), in which the authors establish a 2-approximation algorithm for the
softwired parsimony problem on binary tree-child networks for a single character.

While softwired parsimony for rooted phylogenetic networks is the main focus of
our paper, we additionally show that an analogous upper bound for the softwired
parsimony score holds for semi-directed networks that are obtained from rooted
phylogenetic networks by deleting the root and omitting the direction of all but
reticulation edges. Semi-directed networks have recently been central to studying
identifiability questions related to phylogenetic networks and to developing phyloge-
netic network estimation algorithms (e.g. Allman et al. 2019; Gross and Long 2018;
Hollering and Sullivant 2021; Solís-Lemus and Ané 2016). We also briefly turn to the
notion of parental parsimony (on rooted phylogenetic networks) and show by way of
counterexample that an analogous bound for the parental parsimony score does not
hold.

The remainder of this paper is organised as follows. We define all relevant con-
cepts related to phylogenetic trees and networks, introduce the notion of softwired
parsimony, and state the main result in Sect. 2. In Sect. 3, we revisit the rSPR distance
and establish an upper bound on this distance for two phylogenetic trees that are both
displayed by a given phylogenetic network. In Sects. 4 and 5, we introduce the notion
of an informative blob and a blob reduction, respectively. Informative blobs are a novel
concept that is crucial for obtaining our main result, the upper bound on the softwired
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parsimony score, which we establish in Sect. 6. Sections7 and 8 are then devoted to
parental parsimony on rooted networks and softwired parsimony on semi-directed net-
works, respectively. We end the paper with some concluding remarks and directions
for future research in Sect. 9.

2 Preliminaries and Statement of Main Result

This section introduces notation and terminology, and states the main result. Through-
out this paper, X denotes a non-empty finite set. Let G be a directed graph. We use
V (G) and E(G) to denote the vertex set and edge set, respectively, ofG. Furthermore,
for each edge (u, v) of G, u is called a parent of v and v is called a child of u. We
sometimes also refer to u and v as neighbours in G. In a similar vein, for two (not
necessarily distinct) vertices s and t of G, we say that s (resp. t) is an ancestor (resp.
descendant) of t (resp. s) if there is a directed path of length zero or more from s to t .
Now let G and G ′ be two directed graphs, and let e = (u, w) be an edge of G. Then
subdividing e is the operation of replacing e with two new edges (u, v) and (v,w).
Furthermore, we callG ′ a subdivision ofG ifG ′ can be obtained fromG by repeatedly
subdividing an edge. We also consider G to be a subdivision of itself.

Phylogenetic Trees and Networks. A rooted binary phylogenetic network N on X is
a rooted acyclic digraph with no loops and no parallel edges that satisfies the following
three properties:

(i) the set of leaves is X ,
(ii) the out-degree of the (unique) root ρ is exactly one, and
(iii) every other vertex has either in-degree one and out-degree two, or in-degree two

and out-degree one.

The set X is also sometimes called the label set of N . Furthermore, a vertex of N is
referred to as a reticulation if it has in-degree two and as a tree vertex if it has in-degree
one and out-degree two. Similarly, an edge of N that is directed into a reticulation
is referred to as a reticulation edge. We denote the number of reticulations in N by
h(N ).

Let N be a rooted binary phylogenetic network on X . If N has no reticulation,
then it is called a rooted binary phylogenetic X -tree. Since all phylogenetic trees and
networks are rooted and binary throughout this paper except for Sect. 8, we refer to a
rooted binary phylogenetic network as a phylogenetic network on X and to a rooted
binary phylogenetic tree as a phylogenetic X -tree.

Let S be a subdivision of a phylogenetic X -tree. We call the directed path from the
root of S to its closest degree-three vertex its root path. If S is a phylogenetic tree,
then the root path consists of a single edge, in which case we sometimes refer to the
root path as the root edge.

Now let N be a phylogenetic network. A biconnected component of N is a maximal
subgraph of N that is connected and cannot be disconnected by deleting exactly one
of its vertices. Furthermore, a vertex of a biconnected component of N is called a
reticulation if it is a reticulation in N . With this definition in hand, we say that N is
level-k if the maximum number of reticulations of a biconnected component of N is
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Fig. 1 A phylogenetic network N (left), an embedding S of a phylogenetic X -tree displayed by N together
with a binary character f and an extension F (middle; also indicated by the dashed lines in the left panel),
and the phylogenetic X -tree T obtained from S by suppressing vertices of in-degree one and out-degree
one (right)

at most k. Lastly, we call a biconnected component of N a blob if it has at least one
reticulation. For a blob B of N , we refer to the unique vertex with in-degree zero and
out-degree two in B as the source of B. A phylogenetic network N on {x1, x2, . . . , x8}
with two blobs B and B ′ is shown on the left-hand side of Fig. 1.

Clusters.LetM be a subdivision of a phylogenetic network on X , and let Y be a subset
of X . We call Y a cluster of M if there exists a vertex v in M that has precisely Y as
its set of descendant leaves. Note that there may be more than one vertex in M whose
cluster is Y and that this may also be the case if M is a subdivision of a phylogenetic
X -tree. Furthermore, we use clM (v) or cl(v) if the subscript is clear from the context
to denote the cluster of a given vertex v of M .

Displaying. Let N be a phylogenetic network on X with root ρ, and let T be a
phylogenetic X ′-tree with X ′ ⊆ X . We say that T is displayed by N if there exists a
subgraph of N that is a subdivision of T that includes ρ, in which case this subgraph is
called an embedding of T in N . The set of all phylogenetic X -trees that are displayed by
N is referred to as the display set of N and denoted by D(N ). Ignoring the assignment
of 0 and 1 to vertices for the moment, Fig. 1 shows a phylogenetic network N , a
phylogenetic tree T that is displayed by N , and an embedding S of T in N . Now,
consider a subset R of the reticulation edges of N . We refer to R as a switching if,
for each reticulation v in N , it contains exactly one of the two edges that are directed
into v. By deleting each reticulation edge of N that is not in R, we obtain a connected
subgraph G of N with no underlying cycle and, for each leaf � ∈ X , there is a directed
path from the root of G, which coincides with ρ, to �. If we repeatedly suppress
each vertex in G with in-degree one and out-degree one, and delete each vertex in G
with out-degree zero that is not in X until no such operation is possible, we obtain a
phylogenetic X -tree TR . We say that R yields TR . By construction, TR is displayed by
N . Conversely, observe that, for each phylogenetic X -tree T in D(N ), there exists at
least one switching that yields T . In summary, we have the following observation.
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Observation 1 Let N be a phylogenetic network on X , and let T be a phylogenetic
X -tree. Then T is displayed by N if and only if there exists a switching of N that
yields T .

rSPR Operation. Let T be a phylogenetic X -tree, and let e = (u, v) be an edge of T
that is not incident with the root. Let T ′ be a phylogenetic X -tree obtained from T by
deleting e and reattaching the resulting rooted subtree that contains v via a new edge
f in the following way: Subdivide an edge of the component that contains the root of
T with a new vertex u′, join u′ and v with f , and suppress u. We say that T ′ has been
obtained from T by a rooted subtree prune and regraft (rSPR) operation. The rSPR
distance between any two phylogenetic X -trees T and T ′, denoted by drSPR(T , T ′),
is the minimum number of rSPR operations that transform T into T ′. It is well known
that T ′ can always be obtained from T by a sequence of single rSPR operations and,
so, drSPR(T , T ′) is well defined.

Characters. An r -state character on X is a surjective function f : X → C from X
into a set C of character states with r = |C | ≥ 1. If r = 2, then f is called a binary
character. Throughout this paper, all results are established for r -state characters with
r being fixed and arbitrarily large. For simplicity, we refer to an r -state character on
X as a character on X .

Let G be an acyclic digraph with leaf set X , and let f : X → C be a character on
X . An extension of f to V (G) is a function F : V (G) → C such that F(�) = f (�)
for each element � ∈ X . For an extension F of f , we set

ch(F,G) = |{(u, v) ∈ E(G) : F(u) �= F(v)}|,

and refer to ch(F,G) as the changing number of F . Intuitively, each edge of G that
contributes to the changing number of F requires a character-state transition to explain
f on G. Lastly, we say that an extension F of f to V (G) is minimum if there exists
no extension of f to V (G) whose changing number is strictly smaller than that of F .

In what follows, we often consider a sequence ( f1, f2, . . . , fn) of characters on
X instead of a single character. We call such a sequence an alignment. Unless stated
otherwise, all alignments in this paper are sequences of r -state characters for r ≥ 2
that do not contain the gap symbol “–”. Such an alignment is referred to as gap-free. In
applied phylogenetics, multiple sequence alignments frequently contain gaps which,
intuitively, are placeholders that can take on any of the other r character states.Wewill
see in the last section why the restriction to gap-free alignments is necessary. Lastly,
we denote a sequence ( f1) that consists of a single element by f1 and omit parentheses
for simplicity.

Parsimony on Phylogenetic Trees and their Subdivisions.Given an alignment A =
( f1, f2, . . . , fn) of characters on X and an arbitrary rooted tree T with leaf set X , we
refer to

PS(A, T ) =
n∑

i=1

min
Fi

(ch(Fi , T ))
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as the parsimony score of A on T , where the minimum is taken over all extensions of
fi to V (T ).
Instead of calculating the parsimony score of a phylogenetic X -tree T , we are often

interested in calculating the parsimony score of a subdivision of T in the upcoming
sections. The next lemma states that both scores are equal. Its correctness can be
established analogously to the proof of Lemma 4.5 in Fischer et al. (2015). In the
proof of this lemma, Fischer et al. (2015) have shown that the parsimony score of
a character f on a phylogenetic tree T is equal to the parsimony score of f on a
particular rooted tree. This latter tree is more general than a subdivision of T in the
sense that it may contain unlabelled leaves in addition to the leaves in X .

Lemma 2 Let f be a character on X, and let S be a subdivision of a phylogenetic
X-tree T . Then PS( f , S) = PS( f , T ).

We also have the following observation.

Observation 3 Let f be a character on X , and let S be a subdivision of a phylogenetic
X -tree. If F is an extension of f to V (S) such that F(u) �= F(v) for some edge
(u, v) of the root path of S, then there exists an extension F ′ of f to V (S) such that
F ′(u) = F ′(v) and ch(F ′, T ) < ch(F, T ).

By Observation 3, we freely assume throughout the remainder of the paper that every
extension F of a character to the vertices of a subdivision of a phylogenetic tree has
the additional property that there is no character state transition on any edge of its root
path.

Parsimony on Phylogenetic Networks. As outlined in the introduction, several
notions of parsimony have been introduced that generalise parsimony from phy-
logenetic trees to phylogenetic networks. In this paper, we are focusing on the
notion of softwired parsimony and briefly touch on parental parsimony in Sect. 7.
Following Nakhleh et al. (2005), we now formally define softwired parsimony. Let
A = ( f1, f2, . . . , fn) be an alignment of characters on X , and let N be a phylogenetic
network on X . The softwired parsimony score of A on N is defined as

PSsw(A, N ) =
n∑

i=1

PSsw( fi , N ) =
n∑

i=1

min
T∈D(N )

min
Fi

(ch(Fi , T ))

=
n∑

i=1

min
T∈D(N )

PS( fi , T ), (1)

where, for each character fi , the first minimum is taken over all phylogenetic trees
in the display set of N and the second minimum is taken over all extensions of fi
to V (T ). As per Eq. (1), each character in A can follow a different tree in D(N ). A
slightly more restricted definition of softwired parsimony, which has also appeared in
the literature (e.g. see Kelk and Fischer 2017; Kelk et al. 2019), is the following

PSsw′(A, N ) = min
T∈D(N )

n∑

i=1

min
Fi

(ch(Fi , T )) = min
T∈D(N )

n∑

i=1

PS( fi , T ), (2)
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where all characters in A follow the same tree in D(N ). Clearly, if n = 1, then
PSsw(A, N ) = PSsw′(A, N ). On the other hand, for n ≥ 1, it follows from the
definition that PSsw(A, N ) ≤ PSsw′(A, N ). For the purpose of the upcoming sections,
we adopt the softwired parsimony definition as formalised in Eq. (1) and will see later,
that our main result holds also under the definition given in Eq. (2). In this context, it
is worth mentioning that the hardness result for computing the softwired parsimony
score of a level-1 network for an alignment of at least two binary characters (Kelk
et al. 2019, Theorem 1) as mentioned in the introduction has been established for the
definition given in Eq. (2).

Statement of Main Result. The main result of this paper is the following theorem
which we establish in Sect. 6.

Theorem 4 Let N be a phylogenetic network on X, and let T be a phylogenetic X-tree
in D(N ). Furthermore, let A be an alignment of characters on X. Then

PS(A, T ) ≤ (k + 1) · PSsw(A, N ) and PS(A, T ) ≤ (k + 1) · PSsw′(A, N ),

where k is the level of N .

For example, if N is a level-1 network, Theorem 4 implies that the parsimony score
of an arbitrary tree displayed by N is at most twice the parsimony score of a tree
displayed by N whose parsimony score is equal to PSsw(A, N ). Moreover, we show
in Sect. 6 that the bound as stated in Theorem 4 is sharp.

The next corollary positively answers the open problem that is detailed in the
introduction and that was first posed in Kelk et al. (2019).

Corollary 5 For a fixed non-negative integer k, let N be a level-k network on X, and let
A be an alignment of characters on X. There exists a polynomial (k+1)-approximation
algorithm to calculate PSsw(A, N ) and PSsw′(A, N ).

Proof Clearly, we can construct a phylogenetic X -tree T such that T ∈ D(N ) in time
that is polynomial in |V (N )|. Furthermore, it takes time that is polynomial in |X |
to calculate PS(A, T ) by applying Fitch’s algorithm (Fitch 1971). The result now
follows immediately from Theorem 4. 	


3 Bounding the rSPR Distance

In this section, we establish an upper bound on the rSPR distance between two phy-
logenetic trees for when both trees are displayed by a given network. Let N be a
phylogenetic network, and let R and R′ be two switchings of N . We define

dswitch(R, R′) = h(N ) − |R ∩ R′|

to be the switching distance between R and R′. Intuitively, dswitch(R, R′) is the number
of reticulations in N for which R and R′ contain different reticulation edges.

The following lemma is a generalisation of Lemma 3.1 in Döcker et al. (2024).
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Lemma 6 Let N be a phylogenetic network on X, and let TR and TR′ be two phy-
logenetic X-trees that are yielded by two switchings R and R′, respectively, of N .
Then

drSPR(TR, TR′) ≤ dswitch(R, R′).

Proof Let S (resp. S′) be an embedding of TR (resp. TR′) in N whose edge set contains
each edge in R (resp. R′). Obtain a directed acyclic graph N ′ from N by deleting each
edge that is not contained in E(S) ∪ E(S′) and, subsequently, applying any of the
following two operations until no further operation is possible.

(i) Suppress a vertex of in-degree one and out-degree one.
(ii) If e and e′ are two edges in parallel, delete e′.
By construction, N ′ is a phylogenetic network on X and each reticulation edge that
is not contained in R ∪ R′ is deleted in obtaining N ′. Hence, h(N ′) ≤ dswitch(R, R′).
Furthermore, as S and S′ are embeddings of TR and TR′ , respectively, TR and TR′
are displayed by N ′. Now, let h(TR, TR′) be the minimum number of reticulations of
any phylogenetic network that displays TR and TR′ . Clearly, h(TR, TR′) ≤ h(N ′) and,
thus

dswitch(R, R′) ≥ h(N ′) ≥ h(TR, TR′) ≥ drSPR(TR, TR′),

where the last inequality follows from Equation 10.1 of Semple (2007). 	


4 Informative Blobs

To establish themain result of this paper, we introduce the novel concept of informative
and non-informative blobs in this section. After giving a formal definition of these
blobs, we establish results related to the changing number of character extensions to
embeddings of phylogenetic trees that are displayed by phylogenetic networks that
consist of a single informative or non-informative blob.

We begin by introducing the notion of children of a blob. Let N be a phylogenetic
network on X , and let B be a blob of N . Furthermore, let CN (B) be the subset of
V (N ) that contains precisely each vertex that is not in B and that is a child of a vertex
of B. We refer to CN (B), as the children of B. As an immediate consequence of the
definition of CN (B), we have the following lemma that we will freely use throughout
the remainder of the paper.

Lemma 7 Let B be a blob of a phylogenetic network N on X, and let v be a vertex of
CN (B). Furthermore, let S be an embedding of a phylogenetic X-tree that is displayed
by N. Then, v is a vertex of S. Moreover, if v is a vertex of a blob B ′ in N, then v is
the source of B ′.

Proof We first establish the second assertion of the lemma. Suppose that v is a vertex
of a blob B ′ in N . Since v ∈ CN (B), we have B ′ �= B. Towards a contradiction,
assume that v is not the source of B ′. It follows that v is a vertex of in-degree two. Let
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u be the parent of v in B, and let u′ be the other parent of v. Then there is a directed
path from the root of N to v that traverses u and a directed path from the root of N
to v that traverses u′, thereby contradicting that B and B ′ are two distinct blobs in
N . We complete the proof by noting that S contains each edge of N whose deletion
disconnects N into more than one connected component and, so, v is a vertex of S.

Now, let s be the source of a blob B in a phylogenetic network N on X . Furthermore,
let S be an embedding of a phylogenetic X -tree that is displayed by N . Let f be a
character on X , and let F be an extension of f to V (S). We set ind(F, B, S) = 0 if
each element inCN (B) is assigned to the same character state under F and, otherwise,
we set ind(F, B, S) = 1. By Lemma 7, recall that each vertex in CN (B) is also a
vertex of S and, thus, ind(F, B, S) is well defined. Moreover, we say that B is a non-
informative blob relative to S and f if there exists an extension F of f to V (S) such
that PS( f , S) = ch(F, S) and ind(F, B, S) = 0. Otherwise, we say that B is an
informative blob. We next extend the concept of a single informative blob to all blobs
B1, B2, . . . , Bm of N and set

b( f , N , S) = min
Fj such that

PS( f ,S)=ch(Fj ,S)

(
m∑

i=1

ind(Fj , Bi , S)

)
,

where the minimum is taken over all extensions Fj of f to V (S) whose changing
number is equal to PS( f , S). Then b( f , N , S) denotes the number of informa-
tive blobs relative to S and f in N . If Fj is an extension of f to V (S) such that
b( f , N , S) = ∑m

i=1 ind(Fj , Bi , S), then we say that Fj realises b( f , N , S). See
Fig. 1 for an example of a phylogenetic network N on X = {x1, x2, . . . , x8} with two
blobs B and B ′, an embedding S of a phylogenetic X -tree displayed by N , and a binary
character f on X such that b( f , N , S) = 1. Here, B is non-informative because there
exists a minimum extension F of f that assigns character state 0 to all elements of
CN (B), where CN (B) contains the source of B ′ and leaves x7 and x8. Blob B ′, on the
other hand, is informative, as the elements in CN (B ′) = {x1, x2, . . . , x6} are assigned
two different states by f and thus by any extension of it. To see that F is indeed
minimum, notice that ch(F, S) = ch(F, T ) = 1. This is minimum since f employs
two states, and it is well-known and easy to see that, in this case, any extension of f
requires at least one change.

Lemma 8 Let f be a character on X, and let N be a phylogenetic network on X with
a single blob B whose source s is the child of the root. Let S and S′ be embeddings of
two phylogenetic X-trees that are displayed by N. Suppose that B is non-informative
relative to S′ and f . Let F ′ be an extension of f to V (S′)with ch(F ′, S′) = PS( f , S′)
that assigns the same character state to each vertex in CN (B). Then there exists an
extension F of f to V (S) such that

(i) ch(F, S) = ch(F ′, S′) and
(ii) F(s) = F ′(s).

Proof Since B is non-informative, recall that F ′ exists. Furthermore, by the definition
of an embedding, s is the child of the roots of S and S′. Let V be the subset of V (N )
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that precisely contains each vertex that is not a vertex of B. Since B is the only blob
of N , each vertex in V is also a vertex of S and S′. Furthermore, each vertex of S or S′
that is not in V , is a vertex of B. Since s is the child of the root of S′ and F ′ assigns the
same character state, say α, to each vertex in CN (B), it follows that F ′ also assigns
α to each vertex in V (S′) that is an ancestor of some vertex in CN (B). In particular,
F ′(s) = α.

Now, consider S. Set F(u) = F ′(u) for each vertex u ∈ V and set F(u′) = α for
each vertex u′ ∈ V (S)\V . By definition of F , we again have that each vertex in V (S)

that is an ancestor of some vertex in CN (B) is assigned to α under F . Hence, as F ′ is
an extension of f to V (S′), F is an extension of f to V (S) with F(s) = F ′(s) = α;
thereby satisfying (ii). Moreover, since S and S′ are embeddings of two phylogenetic
X -trees that are displayed by N , the edges of N satisfy the following property: If
e = (u, v) is an edge of S′ (resp. S) but not an edge of S (resp. S′), then e is an edge
of B and, consequently, F ′(u) = F ′(v) = α (resp. F(u) = F(v) = α). It follows
that ch(F, S) = ch(F ′, S′) which satisfies (i) and, therefore, completes the proof of
the lemma.

Lemma 9 Let f be a character on X. Let T and T ′ be two phylogenetic X-trees.
Furthermore, let F ′ be an extension of f to V (T ′). Then there exists an extension F
of f to V (T ) such that

(i) ch(F, T ) ≤ ch(F ′, T ′) + drSPR(T ′, T ) and
(ii) F(ρ) = F ′(ρ′), where ρ and ρ′ is the root of T and T ′, respectively.

Proof We show by induction on drSPR(T ′, T ) that there exists an extension F of f to
V (T ) that satisfies (i)–(ii). Suppose that drSPR(T ′, T ) = 1. Then there exists a single
rSPR operation that transforms T ′ into T . Given such an rSPR operation, let (u′, v′) be
the edge of T ′ that is deleted in the pruning part of the operation. Let u′

p and u
′
c �= v′

be the parent and other child of u′ in T ′. Further, let u be the vertex that subdivides an
edge, say (u p, uc), when reattaching the resulting subtree with root v′ such that (u, v′)
is an edge in T . Noting that each vertex in T except for u is also a vertex of T ′, we
next obtain an extension F of f to V (T ) with no character state transition on the root
edge of T as follows: For each vertex w �= u, we set F(w) = F ′(w). In particular, we
have F(ρ) = F ′(ρ′) and, so, (ii) follows. Moreover, if u p = ρ, we set F(u) = F(u p).
Otherwise, we set F(u) = α, where α is a character state that has been assigned to at
least one neighbour of u in T under F and there is no other character state that has been
assigned to strictly more neighbours of u in T under F . We next show that (i) holds.
Considering the edges of T , it follows from the rSPR operation transforming T ′ into
T as described above that, except for the edges (u, v′), (u′

p, u
′
c), (u p, u), and (u, uc),

each edge of T is also an edge of T ′. If F(u′
p) �= F(u′

c), then either F
′(u′

p) �= F ′(u′)
or F ′(u′) �= F ′(u′

c). Hence, suppressing u′ does not increase the changing number.
On the other hand, when assigning a character state to u the changing number may
increase. More specifically, we consider three cases. First, if F(u p) = F(uc), then
F(u) = F(u p) by definition of F . Note that u p may be ρ. Thus, there is no character
state transition on the two edges (u p, u) and (u, uc), and at most one such transition
on the edge (u, v′) under F in T . Second, if |{F(u p), F(uc), F(v′)}| = 3, then there
is a character state transition on the edge (u p, uc) under F ′ and we have two character
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state transitions on the three edges (u p, u), (u, uc), and (u, v′) under F . Third, if
F(u p) �= F(uc) and |{F(u p), F(uc), F(v′)}| = 2, then there is again a character state
transition on the edge (u p, uc) under F ′ and we have one character state transition on
the three edges (u p, u), (u, uc), and (u, v′) under F . Hence, regardless of which case
applies

ch(F, T ) ≤ ch(F ′, T ′) + 1 = ch(F ′, T ′) + drSPR(T ′, T );

thereby satisfying (i) for when drSPR(T ′, T ) = 1.
Now suppose that drSPR(T ′, T ) ≥ 2 and that (i)–(ii) are satisfied for all pairs of

phylogenetic trees whose rSPR distance is strictly smaller than drSPR(T ′, T ). Let
T ′′ be a phylogenetic X -tree such that drSPR(T ′, T ′′) = 1 and drSPR(T ′′, T ) =
drSPR(T ′, T ) − 1. Recalling that F ′ is an extension of f to V (T ′), it follows from the
induction hypothesis, that there is an extension F ′′ of f to V (T ′′) that satisfies (ii) and
ch(F ′′, T ′′) ≤ ch(F ′, T ′)+1.Again, by the inductionhypothesis, there exists an exten-
sion F of f to V (T ) that satisfies (ii) and ch(F, T ) ≤ ch(F ′′, T ′′) + drSPR(T ′′, T ).
Hence, by combining the two inequalities we obtain

ch(F, T ) ≤ ch(F ′′, T ′′) + drSPR(T ′′, T )

≤ ch(F ′, T ′) + 1 + drSPR(T ′′, T ) = ch(F ′, T ′) + drSPR(T ′, T )

and F(ρ) = F ′(ρ′). Hence, F satisfies (i)–(ii). This completes the proof of the lemma.
	


In the following corollary,we applyLemma9 to twophylogenetic X -trees displayed
by a phylogenetic network. In this case, the unique root vertex of the network, ρ, is
viewed as the root of T (resp. T ′).

Corollary 10 Let f be a character on X. Let N be a phylogenetic network on X with
root ρ and a single blob, and let T and T ′ be two phylogenetic X-trees displayed by
N. Furthermore, let F ′ be an extension of f to V (T ′). Then there exists an extension
F of f to V (T ) such that

(i) ch(F, T ) ≤ ch(F ′, T ′) + k, where k is the level of N , and
(ii) F(ρ) = F ′(ρ).

Proof Let R and R′ be two switchings of N that yield T and T ′, respectively. By
Lemma 6, we have drSPR(T , T ′) ≤ dswitch(R, R′). Noting that N has a single blob,
we have dswitch(R, R′) ≤ k and the corollary now follows from Lemma 9. 	


While Lemma 8 is restricted to phylogenetic networks that consist of a single non-
informative blob, the next lemma establishes an analogous result for all phylogenetic
networks that consist of a single blob.

Lemma 11 Let f be a character on X, and let N be a phylogenetic network on X with
a single blob B whose source s is the child of the root. Let S and S′ be embeddings of
two phylogenetic trees that are displayed by N. Furthermore, let F ′ be an extension
of f to V (S′). Then there exists an extension F of f to V (S) such that
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(i) ch(F, S) ≤ ch(F ′, S′) + k, where k is the level of N , and
(ii) F(s) = F ′(s).

Proof Let T (resp. T ′) be the two phylogenetic X -trees such that S (resp. S′) is an
embedding of T (resp. T ′) in N . Furthermore, let F ′(s) = α. Observe that each vertex
in T ′ is a unique degree-three vertex in S′. First, let F ′

T ′ be the extension of f to V (T ′)
obtained from F ′ by setting F ′

T ′(w) = F ′(w) for each w ∈ V (T ′). Then

ch(F ′
T ′ , T ′) ≤ ch(F ′, S′), (3)

and, because there is no character state transition on any edge of the root path of S′
that contains s, the root of T ′ is assigned to α. Second, by Corollary 10, there exists
an extension FT of f to V (T ) such that

ch(FT , T ) ≤ ch(F ′
T ′ , T ′) + k (4)

and the root of T is also assigned to α. Third, we obtain an extension F of f to V (S)

from FT as follows. Noting that each edge (v, v′) in T corresponds to a unique directed
path v = v1, v2, . . . , vs = v′ in S whose non-terminal vertices all have degree two,
we set F(v1) = F(v2) = · · · = F(vs−1) = FT (v) and F(vs) = FT (v′). Then

ch(F, S) = ch(FT , T ), (5)

and, since the root of T is assigned to α, it follows that each vertex on the root path of
S, in particular s, is also assigned to α. Hence (ii) is satisfied. Moreover, by combining
Eqs. (3)–(5), we have

ch(F, S) = ch(FT , T ) ≤ ch(F ′
T ′ , T ′) + k ≤ ch(F ′, S′) + k.

This concludes the proof of the lemma. 	


5 Blob Reduction

In this section, we introduce the notion of a blob reduction. Intuitively, this allows us
to decompose a phylogenetic network N into two smaller phylogenetic networks and
calculate the parsimony score of an embedding S of a phylogenetic X -tree displayed
by N based on these two smaller networks.

Let N be a phylogenetic network on X . A blob B of N with source s is called a
maximal blob if s is not an ancestor of the source of any blob in N that is distinct
from B. Informally, B is maximal if there is no other blob below it. Now, let B be
a maximal blob of N with source s, and let Y = cl(s). For some y /∈ X , the blob
reduction of B reduces N to two smaller phylogenetic networks as follows. Let N (Ȳ )

be the phylogenetic network on (X \ Y ) ∪ {y} that is obtained from N by replacing
the subnetwork of N that is rooted at s with a single new leaf y. Furthermore, let
N (Y ) be the phylogenetic network on Y that is obtained from the subnetwork of N
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Fig. 2 An example of a blob reduction applied to a phylogenetic network N that replaces the maximal blob
B with source s and cl(s) = {x1, x2, x3} with a single new leaf y to obtain N (Ȳ )

that is rooted at s by adding a new vertex ρY and edge (ρY , s). By construction, each
of N (Ȳ ) and N (Y ) contains at least one leaf. Figure2 illustrates an example of a blob
reduction.

Now, let S be an embedding of a phylogenetic X -tree T that is displayed by N .
Recall that s is a vertex of S and cl(s) = Y . Let f be a character on X . Using the
aforementioned blob reduction of B as a guide, we next also reduce S to two smaller
trees such that one of the resulting trees is an embedding of a subtree of T in N (Ȳ )

and the other one is an embedding of another subtree of T in N (Y ). More specifically,
let S(Ȳ ) be the tree with leaf set (X \ Y ) ∪ {y} that is obtained from S by replacing
the subtree of S that is rooted at s with a single new leaf y. Furthermore, let S(Y )

be the tree with leaf set Y that is obtained from the subtree of S that is rooted at s
by adding a new vertex ρY and edge (ρY , s). We call (S(Y ), S(Ȳ )) the cluster tree
pair of S relative to B. Let fY and fȲ be a character on Y and on (X \ Y ) ∪ {y},
respectively, such that fY (�) = f (�) for each � ∈ Y and fȲ (�′) = f (�′) for each
�′ ∈ X \ Y . We refer to extensions FY of fY to V (S(Y )) and FȲ of fȲ to V (S(Ȳ )) as
a pair of cluster extensions with respect to f if FȲ (y) = FY (ρY ). Except for fȲ (y),
observe that f uniquely determines the character state of each leaf in S(Y ) and S(Ȳ ).
Moreover, since the root path of S(Y ) contains at least one edge, the definition of a
pair of cluster extensions implies that FY (ρY ) = FY (s) by our assumption following
Observation 3. An example of a cluster tree pair and a pair of cluster extensions is
shown in Fig. 3.

The next lemma shows how the changing number of extensions of characters f ,
fY , and fȲ to V (S), V (S(Y )), and V (S(Ȳ )), respectively, are related to each other.

Lemma 12 Let B be a maximal blob of N . Let f be a character on X, and let S
be an embedding of a phylogenetic X-tree that is displayed by N. Furthermore, let
(S(Y ), S(Ȳ )) be the cluster tree pair of S relative to B. Then, the following two
statements hold.
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Fig. 3 An embedding S of a phylogenetic X -tree that is displayed by the phylogenetic network N on X as
shown in Fig. 2, the cluster tree pair (S(Y ), S(Ȳ )) of S relative to the blob B that is also shown in Fig. 2,
and a pair of cluster extensions FY and FȲ with respect to the character f on X . For reasons of clarity, the
extensions FY and FȲ to the vertices of S(Y ) and S(Ȳ ), respectively, are only shown for some vertices.
Observe that FȲ (y) = FY (ρY ) and that all leaves of S(Y ) and S(Ȳ ), except for y, are assigned to the same
character state as in S

(i) If F is an extension of f to V (S), then there exists a pair of cluster extensions
(FY , FȲ ) such that

ch(F, S) = ch(FY , S(Y )) + ch(FȲ , S(Ȳ )).

(ii) If (FY , FȲ ) is a pair of cluster extensions with respect to f , then there exists an
extension F of f to V (S) such that

ch(F, S) = ch(FY , S(Y )) + ch(FȲ , S(Ȳ )).

Proof Let s be the source of B, and let Y = clN (s). By the definition of a cluster
tree pair, S(Y ) has leaf set Y and root ρY , and S(Ȳ ) has leaf set (X \ Y ) ∪ {y} and
root ρ, where ρ is also the root of S. Lastly, as s is a vertex of S, it follows from the
construction of S(Y ) and S(Ȳ ) that s corresponds to the child of ρY in S(Y ) and to y
in S(Ȳ ), whereas each other vertex of S corresponds to a unique vertex in either S(Y )

or S(Ȳ ). To ease reading, we refer to the child of ρY in S(Y ) as sY . Reversely, the only
vertex of S(Y ) and S(Ȳ ) that does not correspond to a unique vertex in S is ρY . We
next show that (i) and (ii) hold.

First, let F be an extension of f to V (S). Obtain a pair of cluster extensions FY and
FȲ of characters fY and fȲ to V (S(Y )) and V (S(Ȳ )), respectively, in the following
way. For each vertex w of V (S(Y ))\{ρY }, set FY (w) = F(w′), where w′ is the vertex
of S that w corresponds to, and set FY (ρY ) = FY (sY ). Similarly, for each vertex w

of V (S(Ȳ )), set FȲ (w) = F(w′), where w′ is the vertex of S that w corresponds to.
Since y and sY both correspond to s, it follows that FȲ (y) = FY (ρY ). It is is now
easily checked that FY and FȲ is a pair of cluster extensions with respect to f and
that

ch(F, S) = ch(FY , S(Y )) + ch(FȲ , S(Ȳ )).

Hence, (i) holds.
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Now, let FY and FȲ be a pair of cluster extensions with respect to f . In particular,
FY (�) = f (�) for each � ∈ Y , FȲ (�) = f (�) for each � ∈ X\Y , and FȲ (y) = FY (ρY ).
Now obtain an extension F of f to V (S) from FY and FȲ in the following way. For
each vertex w′ of V (S) that corresponds to a vertex w of S(Y ), set F(w′) = FY (w)

and, for each vertex w′of V (S) \ {s} that corresponds to a vertex w of S(Ȳ ), set
F(w′) = FȲ (w). Since FY (sy) = FY (ρY ), it follows that

ch(F, S) = ch(FY , S(Y )) + ch(FȲ , S(Ȳ )).

Thus, (ii) holds as well.

6 Proof of Theorem 4

In this section, we establish the proof of Theorem 4 and show that the bound that is
given in the theorem is sharp. Most work in proving Theorem 4 goes into establishing
the following lemma.

Lemma 13 Let f be a character on X. Let N be a phylogenetic network on X, and
let S and S′ be embeddings of two phylogenetic X-trees that are displayed by N.
Furthermore, let F ′ be an extension of f to V (S′) that realises b( f , N , S′). Then
there exists an extension F of f to V (S) such that

ch(F, S) ≤ ch(F ′, S′) + k · b( f , N , S′),

where k is the level of N .

Proof Let B1, B2, . . . , Bm be the blobs of N . The proof is by induction onm. Ifm = 0,
then N is a phylogenetic tree with k = 0 and so the result clearly follows since S = S′
and, therefore,

ch(F, S) ≤ ch(F ′, S′) + 0

when setting F = F ′. Now assume that m ≥ 1 and that the statement is true for all
phylogenetic networks with at most m − 1 blobs. Let B be a maximal blob of N with
source s, and let Y = clN (s). Without loss of generality, we assume that B = Bm .

For some y /∈ X , let N (Ȳ ) be the phylogenetic network on (X \ Y ) ∪ {y}, and
let N (Y ) be the phylogenetic network on Y and with root ρY resulting from N by
applying a blob reduction to Bm . Notice that by construction, N (Y ) consists of the
single blob Bm with s being the child of ρY , whereas N (Ȳ ) contains precisely m − 1
blobs. Moreover, let (S(Y ), S(Ȳ )) be the cluster tree pair of S relative to Bm , and let
(S′(Y ), S′(Ȳ )) be the cluster tree pair of S′ relative to Bm . Since s is a vertex of S and
S′, s is also a vertex of S(Y ) and S′(Y ). Now, by Lemma 12, Part (i), there exists a
pair of cluster extensions (F ′

Y ,G ′
Ȳ
) with respect to f such that

ch(F ′, S′) = ch(F ′
Y , S′(Y )) + ch(G ′

Ȳ
, S′(Ȳ )) (6)
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andG ′
Ȳ
(y) = F ′

Y (ρY ) = F ′
Y (s). Let fY and gȲ be the characters onY and (X\Y )∪{y},

respectively, such that F ′
Y and G ′

Ȳ
are extensions of fY and gȲ , respectively.

We next consider N (Ȳ ) and start by making two observations. First, since
ch(F ′, S′) = PS( f , S′), it follows from Lemma 12, Parts (i) and (ii), that
ch(G ′

Ȳ
, S′(Ȳ )) = PS(gȲ , S′(Ȳ )). Second, by the construction of the pair of cluster

extensions in Lemma 12, Part (i), we may assume that, for each vertexw of V (S′(Ȳ )),
we have G ′

Ȳ
(w) = F ′(w′), where w′ is the vertex of S′ that w corresponds to. Then,

as F ′ realises b( f , N , S′), G ′
Ȳ
realises b(gȲ , N (Ȳ ), S′(Ȳ )). Noting that N (Ȳ ) has

m − 1 blobs and level at most k, we now apply the induction hypothesis to obtain an
extension GȲ of gȲ to V (S(Ȳ )) that satisfies

ch(GȲ , S(Ȳ )) ≤ ch(G ′
Ȳ
, S′(Ȳ )) + k · b(gȲ , N (Ȳ ), S′(Ȳ )) (7)

such that GȲ (y) = gȲ (y) = G ′
Ȳ
(y) = F ′

Y (s).
To complete the proof, we consider N (Y ). Here, we distinguish two cases depend-

ing on whether its single blob Bm whose level is at most k is informative or
non-informative.

First, assume that Bm is informative. By Lemma 11, there exists an extension FY
of fY to V (S(Y )) such that

ch(FY , S(Y )) ≤ ch(F ′
Y , S′(Y )) + k and FY (s) = F ′

Y (s). (8)

Since FY (s) = F ′
Y (s) = GȲ (y), the pair (FY ,GȲ ) is a pair of cluster extensions with

respect to f . Thus, by Lemma 12, Part (ii), there exists an extension F of f to V (S)

such that

ch(F, S) = ch(FY , S(Y )) + ch(GȲ , S(Ȳ )).

Now, using Inequalities (7) and (8), we obtain

ch(F, S) = ch(FY , S(Y )) + ch(GȲ , S(Ȳ ))

≤ ch(F ′
Y , S′(Y )) + k + ch(G ′

Ȳ
, S′(Ȳ )) + k · b(gȲ , N (Ȳ ), S′(Ȳ ))

= ch(F ′
Y , S′(Y )) + ch(G ′

Ȳ
, S′(Ȳ )) + k · (1 + b(gȲ , N (Ȳ ), S′(Ȳ )))

= ch(F ′, S′) + k · b( f , N , S′),

where the last equality follows from Eq. (6) and the fact that Bm is informative.
Second, assume that Bm is non-informative. Then by Lemma 8, there exists an

extension FY of fY to V (S(Y )) such that

ch(FY , S(Y )) = ch(F ′
Y , S′(Y )) and FY (s) = F ′

Y (s). (9)

The remainder of the proof is now similar to the first case. In particular, noting that the
pair (FY ,GȲ ) is a pair of cluster extensions with respect to f , by Lemma 12, Part(ii),
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there exists an extension F of f to V (S) such that

ch(F, S) = ch(FY , S(Y )) + ch(GȲ , S(Ȳ )).

Using Inequalities in (7) and (9), we obtain

ch(F, S) = ch(FY , S(Y )) + ch(GȲ , S(Ȳ ))

≤ ch(F ′
Y , S′(Y )) + ch(G ′

Ȳ
, S′(Ȳ )) + k · b(gȲ , N (Ȳ ), S′(Ȳ ))

= ch(F ′, S′) + k · b( f , N , S′),

where the last equality follows from Eq. (6) and the fact that Bm is non-informative.
In both cases, we obtain an extension F of f to V (S) such that

ch(F, S) ≤ ch(F ′, S′) + k · b( f , N , S′).

This concludes the proof of the lemma. 	

Corollary 14 Let f be a character on X. Let N be a phylogenetic network on X, and
let S and S′ be embeddings of two phylogenetic X-trees displayed by N such that
PSsw( f , N ) = PS( f , S′). Then

PS( f , S) ≤ PS( f , S′) + k · b( f , N , S′),

where k is the level of N .

Proof Let F ′ be an extension of f to V (S′) that realises b( f , N , S′). By Lemma 13,
there exists an extension F of f to V (S) such that PS( f , S) ≤ ch(F, S) ≤
PS( f , S′) + k · b( f , N , S′). 	


We are finally in a position to establish the main result of this paper, which we
restate for convenience.

Theorem 4. Let N be a phylogenetic network on X , and let T be a phylogenetic X -tree
in D(N ). Let A be an alignment of characters on X . Then

PS(A, T ) ≤ (k + 1) · PSsw(A, N ) and PS(A, T ) ≤ (k + 1) · PSsw′(A, N ),

where k is the level of N .

Proof We will establish that

PS(A, T ) ≤ (k + 1) · PSsw(A, N ).

Since PSsw(A, N ) ≤ PSsw′(A, N ), it immediately follows that PS(A, T ) ≤ (k+1) ·
PSsw′(A, N ) also holds.
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First, assume that A consists of a single character f . Let S be an embedding of T in
N , and let S′ be an embedding of a phylogenetic X -tree in N such that PSsw( f , N ) =
PS( f , S′). By Corollary 14, we have

PS( f , T ) = PS( f , S) ≤ PS( f , S′) + k · b( f , N , S′),

where the first equality follows from Lemma 2. Now, as every blob B in N that is
informative relative to S′ contributes at least one to PS( f , S′), we have

b( f , N , S′) ≤ PS( f , S′).

By Lemma 2 and combining the last two inequalities, we obtain

PS( f , T ) = PS( f , S) ≤ PS( f , S′) + k · PS( f , S′)
= (k + 1) · PS( f , S′)
= (k + 1) · PSsw( f , N ). (10)

Now, assume that A = ( f1, . . . , fn) with n ≥ 1. Then, we apply Inequality (10) to
each character, and obtain

PS(A, T ) =
n∑

i=1

PS( fi , T )

≤
n∑

i=1

(k + 1) · PSsw( fi , N )

≤ (k + 1) ·
n∑

i=1

PSsw( fi , N )

= (k + 1) · PSsw(A, N ).

	

We close this section by presenting, for each k ≥ 0, a level-k network and a

binary character such that the upper bound stated in Theorem 4 is sharp. As level-0
networks on X are phylogenetic X -trees, the bound is sharp for any level-0 network
and any binary character on X . For k ≥ 1, let N be the level-k network on X =
{x0} ∪ {xi , x ′

i , x
′′
i : 1 ≤ i ≤ k} that is depicted in Fig. 4. Further, let f : X → {0, 1} be

the binary character with f (x) = 1 if x ∈ {x0, x1, . . . , xk} and f (x) = 0 otherwise.
Let us consider the two phylogenetic X -trees T , T ′ ∈ D(N ) that are illustrated on the
right-hand side of Fig. 4 together with extensions F and F ′ of f to V (T ) and V (T ′),
respectively. By using Fitch’s algorithm it is easy to verify that F and F ′ areminimum.
Hence, we have PS( f , T ′) = 1 and, thus, PSsw( f , N ) = 1 (since f employs two
character states, PSsw( f , N ) ≥ 1). Moreover, PS( f , T ) = k + 1. In summary, we
have PS( f , T ) = (k + 1) · PSsw( f , N ). As the construction shown in Fig. 4 involves
a single character, the two notions of softwired parsimony on N coincide, and we have
PS( f , T ) = (k + 1) · PSsw′( f , N ) for the same example.
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Fig. 4 A level-k network N on X = {x0} ∪ {xi , x ′
i , x

′′
i : 1 ≤ i ≤ k} (left) and two phylogenetic X -trees

T and T ′ displayed by N together with a binary character f and extensions F and F ′ to V (T ) and V (T ′),
respectively (right)

7 Parental Parsimony for Phylogenetic Networks

Wenowbriefly consider the notion ofparental parsimony introduced byvan Iersel et al.
(2018) as an alternative to softwired and hardwired parsimony. Intuitively, instead of
defining the parsimony score of a phylogenetic network N by considering its display
set D(N ), parental parsimony considers the set of parental trees (sometimes also
called weakly displayed trees (Huber et al. 2016)), which is a superset of D(N ).

A multilabelled tree on X is a leaf-labelled rooted tree whose root has out-degree
one, all other interior vertices have in-degree one and out-degree one, or in-degree
one and out-degree two, and, for each element x in X , there exists at least one leaf
in T that is labelled x . Now using the same notation as van Iersel et al. (2018), let
U∗(N ) be the multilabelled obtained from a phylogenetic network N on X as follows:
The vertices of U∗(N ) are the directed paths in N starting at the root of N , and for
each pair of directed paths p, p′, there is an edge (p, p′) in U∗(N ) if and only if p′
is an extension of p by one additional edge of N . Furthermore, each vertex inU∗(N )

corresponding to a path in N starting at the root of N and ending at x ∈ X is labelled
by x . For an example of the multilabelled tree U∗(N ) obtained from a phylogenetic
network N , see Fig. 5. Now, a phylogenetic X -tree is called a parental tree of N if it
can be obtained from this subgraph ofU∗(N ) by suppressing vertices of in-degree and
out-degree one. Notice that we may delete vertices and edges from U∗(N ) to obtain
a subgraph before suppressing vertices. To denote the set of all parental trees of N ,
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Fig. 5 A phylogenetic network N on X = {x1, x2, . . . , x4}, a phylogenetic X -tree T such that T ∈ P(N )

and T /∈ D(N ), and the multilabelled tree U∗(N ). The dashed lines in N indicate how T can be drawn
inside N

we use P(N ). Informally speaking, a tree is a parental tree of a phylogenetic network
if it can be drawn inside the network in such a way that the tree vertices of the tree
correspond to tree vertices of the network. Importantly, though, a parental tree is not
necessarily a displayed tree (see Fig. 5), whereas every displayed tree is also parental.

Given a character f on X and a phylogenetic network N on X , the parental
parsimony score of f on N is now defined as

PSpa( f , N ) = min
T∈P(N )

PS( f , T ),

where the minimum is taken over all parental trees for N .
It was shown by (van Iersel et al. 2018, Theorem 2) that computing the parental

parsimony score is NP-hard even if f is a binary character and N is a restricted type
of a so-called tree-child network (Cardona et al. 2009). It is thus a natural question
if our main result for softwired parsimony (Theorem 4) generalises to parental par-
simony. Unfortunately, this is not the case. Suppose that n is an even integer and
that N is the level-1 network on n + 1 leaves depicted in Fig. 6. Then, both phylo-
genetic trees T and T ′ as depicted in the same figure are parental trees of N and
T ′ /∈ D(N ). Additionally, suppose that f is the binary character that assigns state 0
to leaves x2, x4, x6, . . . , xn , and state 1 to leaves x1, x3, . . . , xn+1. Crucially, we have
PS( f , T ) = n/2 and PS( f , T ′) = 1. In particular, PSpa( f , N ) = 1, and thus,

PS( f , T ) = n/2 � 2 · PSpa( f , N ) = 2

for eachn > 4 (a similar argument applies ton beingodd),which shows thatTheorem4
does not generalise to parental parsimony even if the phylogenetic network is level-1
with a single blob and the alignment consists of a single binary character.

8 Softwired Parsimony for Semi-directed and Unrooted Networks

In this section, we show that binary semi-directed networks have an analogous bound
on the softwired parsimony score as the one we established for rooted binary phyloge-
netic networks.We briefly turn our attention to unrooted binary phylogenetic networks
at the end of the section and show that the approach we take to establish the bound for
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Fig. 6 A level-1 network N on X = {x1, x2, . . . , xn+1} with n being even and two parental trees T
and T ′ of N together with a binary character f on X . Here, PSpa(N , f ) = PS( f , T ′) = 1, whereas
PS( f , T ) = n/2

semi-directed networks does not work in this setting. However, this does not exclude
the possibility that similar bounds can be obtained for unrooted phylogenetic networks
by other means.

Abinary semi-directed network Ns on X is a leaf-labelledmixedmultigraphwithout
any loops that can be obtained from a rooted binary phylogenetic network Nr by
deleting its root, suppressing the child of the root, and omitting the direction of each
edge that is not a reticulation edge.We call Nr a rooted partner of Ns . By construction,
Ns has at most one pair of parallel edges. This is precisely the case when Nr has
an underlying 3-cycle that contains the child of the root. Note that Ns may have
multiple rooted partners. A vertex v in Ns is called a reticulation if Ns contains
two edges, referred to as reticulation edges, that are directed into v. A semi-directed
level-k network is a semi-directed network Ns such that a rooted partner of Ns is a
rooted binary level-k network. Lastly, an unrooted binary phylogenetic X -tree Tu is
a connected undirected acyclic graph whose leaf set is X and whose inner vertices
all have degree three. Note that an unrooted binary phylogenetic tree is a binary
semi-directed network without reticulations. In the following, all rooted (resp. semi-
directed) phylogenetic networks and rooted (resp. unrooted) phylogenetic trees are
assumed to be binary.

Now, let Tu be an unrooted binary phylogenetic X -tree, and let Ns be a semi-directed
network on X . We say that Tu is displayed by Ns if there exists a subgraph S of Ns

such that S is a subdivision of Tu (omitting the directions of the reticulation edges)
and S contains, for each reticulation v in Ns , at most one reticulation edge incident
with v. Similar to rooted phylogenetic networks, if Tu is displayed by Ns , we call S an
embedding of Tu in Ns . Furthermore, we refer to the set of all unrooted phylogenetic
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X -trees that are displayed by Ns as the unrooted display set of Ns and denote it by
D(Ns).

Let A = ( f1, f2, . . . , fn) be an alignment of characters on X , and let Ns be a
semi-directed network on X . We define the softwired parsimony score of A on Ns as

PSsw(A, Ns) =
n∑

i=1

min
Tu∈D(Ns )

PS( fi , Tu), (11)

where the parsimony score of an unrooted phylogenetic X -tree T is defined as in the
rooted case since the corresponding concepts of the changing number and (minimum)
extensions naturally translate to undirected graphs.

The next lemma shows how the set of unrooted phylogenetic trees that are displayed
by a semi-directed network Ns is related to the set of rooted phylogenetic trees that
are displayed by a rooted partner of Ns .

Lemma 15 Let Ns be a semi-directed network on X, and let Nr be a rooted partner
of Ns. Then, the following two statements hold.

(i) If Tu is an unrooted phylogenetic X-tree that is displayed by Ns, then there exists
a rooted phylogenetic X-tree T ∈ D(Nr ) such that Tu can be obtained from T by
deleting the root and suppressing its child.

(ii) If T is a rooted phylogenetic X-tree that is displayed by Nr , then there exists an
unrooted phylogenetic X-tree Tu ∈ D(Ns) such that Tu can be obtained from T
by deleting the root and suppressing its child.

Proof Throughout the proof, we assume that Ns does not contain a pair of parallel
edges. Indeed, if Ns contains such a pair of edges, e1 and e2 say, we can obtain a
semi-directed network N ′

s on X from Ns , by deleting e1, suppressing the two resulting
degree-two vertices, and omitting the direction of e2. Clearly D(Ns) = D(N ′

s). Now,
let v be the child of the root ρ in Nr , and let w and w′ be the children of v. If either w

or w′ is a reticulation, we assume without loss of generality that w′ is a reticulation.
Observe that at most one of w and w′ is a reticulation. Each edge in Nr that is not
incident with v corresponds to exactly one edge in Ns , and each edge in Ns except
eρ = {w,w′} (resp. eρ = (w,w′) if w′ is a reticulation in Nr ) corresponds to exactly
one edge in Nr . In particular, each reticulation edge in Nr corresponds to exactly one
such edge in Ns and vice versa. First, let Tu be an unrooted phylogenetic X -tree that
is displayed by Ns . By definition, there exists an embedding Su of Tu in Ns . If eρ is
an edge in Su , we obtain an embedding S of a rooted phylogenetic X -tree T in Nr

from Su as follows. We replace eρ with the three directed edges (ρ, v), (v,w) and
(v,w′) and each edge e �= eρ with its directed counterpart in Nr . By definition, T
is displayed by Nr , that is T ∈ D(Nr ). Further, by construction, Tu can be obtained
from T by deleting the root and suppressing its child. Now, let us consider the case
that eρ is not an edge in Su . Let S′ be the connected acyclic subgraph of Nr that is
obtained from Su by replacing each edge in Su with its directed counterpart in Nr . We
next show that there is a unique vertex vs in S′ with in-degree zero and out-degree two.
Since S′ is acyclic, it follows that S′ contains a vertex with in-degree zero. Clearly, the
out-degree of this vertex cannot be one or three and, thus, vs exists. Assume towards a
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contradiction that v′
s �= vs is another vertex with this property. As S′ is connected and

does not contain a vertex with in-degree two, one of v′
s and vs is a descendant of the

other in S′. But then one of these vertices has in-degree one, a contradiction. It now
follows that each vertex in S′ is a descendant of vs . Let π = (ρ = v1, v2, . . . , vt = vs)

be a directed path in Nr . Such a path π exists as there is a directed path from the root
to any vertex in Nr . Since each vertex in S′ is a descendant of vs , it follows that vi with
i < t is not in S′. Then, we obtain an embedding S of a rooted phylogenetic X -tree T
in Nr from S′ by adding the t − 1 directed edges (vi , vi+1), 1 ≤ i < t , to S′. Again,
we have T ∈ D(Nr ) and, by construction, Tu can be obtained from T by deleting the
root and suppressing its child. Hence, (i) holds.

Second, let T be a rooted phylogenetic X -tree that is displayed by Nr . Let S be an
embedding of T in Nr , and let π = (ρ = v1, v2, . . . , vt ) be the root path of S. Then,
we obtain an embedding Su of an unrooted phylogenetic X -tree Tu in Ns from S by
deleting each vertex that lies on π except for vt , turning directed edges into undirected
ones and, if t = 2, suppressing vt . If t = 2, then π consists of the single edge (ρ, v),
and S contains (v,w) and (v,w′). Hence, Su contains the edge {w,w′} as a result of
suppressing v. Otherwise, if t ≥ 3, then S contains (ρ, v) and exactly one of (v,w)

and (v,w′), and vt is a vertex in Ns . Furthermore, if t ≥ 4, each edge (vi , vi+1) with
3 ≤ i < t that is traversed by π corresponds to a unique edge consisting of the same
vertices in Ns . It now follows that Su is indeed an embedding of Tu in Ns , that is,
Tu ∈ D(Ns). By construction, Tu can be obtained from T by deleting the root and
suppressing its child. Hence, (ii) holds as well. 	


We next obtain the following corollary from Lemma 15.

Corollary 16 Let Ns be a semi-directed network on X, let Nr be a rooted partner of Ns,
and let A be an alignment of characters on X. Then PSsw(A, Ns) = PSsw(A, Nr ).

Proof The corollary follows from Lemma 15 and the fact that, if T is a rooted phylo-
genetic X -tree and Tu is an unrooted phylogenetic X -tree such that Tu can be obtained
from T by deleting the root and suppressing its child, then PS(A, T ) = PS(A, Tu).
	


We are now in a position to state the main result of the section.

Theorem 17 Let Ns be a semi-directed network on X, and let Tu be an unrooted
phylogenetic X-tree that is displayed by Ns. Furthermore, let A be an alignment of
characters on X. Then

PS(A, Tu) ≤ (k + 1) · PSsw(A, Ns),

where k is the level of Ns.

Proof Let Nr be a rooted partner of Ns , and let T ∈ D(Nr ) be a rooted phylogenetic
X -tree such that deleting the root in T and suppressing its child yields Tu . The rooted
phylogenetic X -tree T exists by Lemma 15 (i). Since an unrooted phylogenetic tree
is a semi-directed network without reticulations, we have (i) PS(A, Tu) = PS(A, T )

by Corollary 16. Furthermore, by Theorem 4, we have (ii) PS(A, T ) ≤ (k + 1) ·
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PSsw(A, Nr ). Finally, by Corollary 16, we have (iii) PSsw(A, Nr ) = PSsw(A, Ns).
Combining (i)–(iii) yields PS(A, Tu) ≤ (k + 1) · PSsw(A, Ns). 	


We now shift our focus from semi-directed networks to unrooted phylogenetic
networks. An unrooted binary phylogenetic networkU on X is a connected undirected
graph without any loops or edges in parallel, whose leaf set is X , and whose inner
vertices all have degree three. As before, we omit the term binary in the following as
all unrooted phylogenetic networks considered in this section are binary.

Let U be an unrooted phylogenetic network on X . We say that an unrooted phylo-
genetic X -tree Tu is displayed byU if there exists a subgraph ofU that is a subdivision
of Tu . Furthermore, we refer to the set of all unrooted phylogenetic X -trees that are
displayed byU as the display set ofU and denote it by D(U ). We callU an unrooted
level-k network if at most k edges have to be deleted in each biconnected component
ofU such that the resulting graph is acyclic. Lastly, ifU can be obtained from a rooted
phylogenetic network N by deleting its root, suppressing the child of the root, and
omitting all edge directions, we say that N is an orientation of U .

Let A = ( f1, f2, . . . , fn) be an alignment of characters on X , and let U be an
unrooted phylogenetic network on X . We define the softwired parsimony score of A
on U as

PSsw(A,U ) =
n∑

i=1

min
T∈D(U )

PS( fi , T ). (12)

Next, we present an unrooted level-1 network U and a binary character f such
that PSsw( f ,U ) �= PSsw( f , N ) for an orientation N of U , that is, we show that
Corollary 16 does not translate from semi-directed networks to unrooted phyloge-
netic networks. Moreover, we give two different orientations N and N ′ of U with
PSsw( f , N ) �= PSsw( f , N ′).

To this end, letU be the unrooted level-1 network on X = {a, b, c, d, e}, and let N
and N ′ be the two orientations of U as shown in Fig. 7. The display set D(U ) of size
five is shown in the middle of the same figure. By deleting the root and suppressing its
child in each element of D(N ) (resp. D(N ′)), we obtain a subset of D(U ) as indicated
by the two dashed rectangles that each enclose N (resp. N ′) and two elements of
D(U ). Now for the single binary character f : X → {0, 1} with

f (a) = f (b) = f (c) = 0 and f (d) = f (e) = 1,

we have PSsw( f ,U ) = 1, PSsw( f , N ) = 2 and PSsw( f , N ′) = 1. Since the soft-
wired parsimony score of an unrooted phylogenetic network U is not necessarily the
same as the score of an orientation of U , we cannot represent an unrooted phyloge-
netic network by an arbitrary orientation in the way we used a rooted partner of a
semi-directed network to obtain Theorem 17. While our example shows that using
the same approach as in the semi-directed setting is not viable, it does not exclude
the existence of similar bounds for unrooted phylogenetic networks or classes thereof
(such as unrooted level-1 networks, for example).
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Fig. 7 An unrooted level-1 networkU (left) with its display set D(U ) (middle), and two orientations N and
N ′ of U (right) with their respective display sets indicated by a dashed rectangle. More precisely, D(N )

and D(N ′) can be obtained by orienting the enclosed unrooted phylogenetic X -trees

9 Concluding Remarks

In this paper, we have obtained a bound on the softwired parsimony score of a gap-
free alignment of multistate characters on rooted as well as semi-directed phylogenetic
level-k networks. To be precise, we have shown that the maximum difference between
the softwired parsimony score of a phylogenetic network N and the parsimony score
of any tree displayed by N is bounded by k + 1 times the parsimony score of N .
Unfortunately, our approximation result as stated in Theorem 4 cannot be generalised
to alignments with gaps since it was already shown in Corollary 2 of Kelk et al. (2019)
that computing the softwired parsimony score of a level-1 network for an alignment
of binary characters that additionally allows gaps is APX-hard.

Extending the notion of softwired parsimony to semi-directed networks and exploit-
ing a connection between the display sets of semi-directed networks and their rooted
partners, we have shown that an analogous bound holds for semi-directed networks.
For unrooted networks, on the other hand, the approach via rooted partners (more
formally, via orientations) does not seem to be viable. Nevertheless, it would be an
interesting question for future research to investigate if an analogous or similar bound
for the softwired parsimony score can be obtained in some other way for unrooted
phylogenetic networks.

Another interesting direction for future research would be to analyse whether our
results also apply in the case of non-binary phylogenetic networks, i.e., phylogenetic
networks that may have vertices of degree strictly greater than three.While there exists
a polynomial time algorithm to compute the parsimony score of a given non-binary
phylogenetic treewith character states assigned to its leaves, namely theFitch-Hartigan
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algorithm (Fitch 1971; Hartigan 1973), other concepts that our results rely on, such
as the rSPR distance and its relation to the switching distance, have been studied less
for non-binary phylogenetic trees (see Sect. 2 of Fischer and Kelk (2016) for a related
discussion).
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