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Abstract
We unify evolutionary dynamics on graphs in strategic uncertainty through a decay-
ing Bayesian update. Our analysis focuses on the Price theorem of selection, which
governs replicator(-mutator) dynamics, based on a stratified interaction mechanism
and a composite strategy update rule. Our findings suggest that the replication of a
certain mutation in a strategy, leading to a shift from competition to cooperation in
a well-mixed population, is equivalent to the replication of a strategy in a Bayesian-
structured population without any mutation. Likewise, the replication of a strategy in
a Bayesian-structured population with a certain mutation, resulting in a move from
competition to cooperation, is equivalent to the replication of a strategy in awell-mixed
population without anymutation. This equivalence holds when the transition rate from
competition to cooperation is equal to the relative strength of selection acting on either
competition or cooperation in relation to the selection differential between coopera-
tors and competitors. Our research allows us to identify situations where cooperation
is more likely, irrespective of the specific payoff levels. This approach provides new
perspectives into the intended purpose of Price’s equation, which was initially not
designed for this type of analysis.

Keywords Bioeconomics · Evolutionary game theory · Games on graphs · Price
equation · Strategic uncertainty · Structured population · Bayesian updating

1 Introduction

Non-cooperative games (Harsanyi 1973) involve individual players making decisions
that affect the game outcome, with each player’s action corresponding to a payoff that
determines their success in the game. In contrast, cooperative games, as introduced
by Shapley (1971), involve joint actions taken by groups of players, and the game
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outcome is described by the collective actions of the coalition, along with the associ-
ated payoff distribution. However, in reality, economic and institutional players often
alternate between cooperation and competition in cycles, even in situations where
public goods provision is required. Studies have found that such cyclical-type inter-
actions can emerge in various games, including public goods games with correlated
reward and punishment (Szolnoki and Perc 2013), ultimatum games (Szolnoki et al.
2012), and social dilemma gameswith coevolution (Perc and Szolnoki 2010). To better
understand the complex dynamics of real-world situationswhere cooperation and com-
petition alternate, game theory has embraced interdisciplinary approaches that draw
on knowledge from biology, economics, sociology, psychology, and statistical physics
(Wang et al. 2015). These interdisciplinary approaches provide valuable insights into
the factors that drive the emergence and persistence of cooperation and competition
over time. By exploring the evolutionary dynamics of such games, researchers can gain
a deeper understanding of the strategic behavior of individuals and groups in real-world
settings, and identify ways to promote cooperative behavior even in situations where
the incentives for defection may be high.

The problem of agents having the incentive to free-ride on the contributions of oth-
ers creates social dilemmas that have been extensively studied in game theory (Bach
et al. 2006; Hauert et al. 2006; Santos et al. 2008; Wang et al. 2009; Dragicevic 2017).
In these dilemmas, individual defectors may benefit more than cooperators, despite the
higher collective payoff obtainable throughmutual cooperation (Perc 2006). However,
various mechanisms have been proposed to promote cooperation in different types of
games. For example, spatial patterns (Nowak andMay 1992), moral behavior (Capraro
and Perc 2018), indirect reciprocity (Nowak and Sigmund 1998), voluntary interac-
tions (Hauert et al. 2002), stochastic processes (Yoshimura and Jansen 1996), and
adaptive learning (Traulsen et al. 2004) have all been shown to facilitate cooperative
behavior. Stochastic processes, in particular, have been found to play a significant role
in promoting cooperation, especially when the payoff functions are endowed with
white Gaussian noise, leading to coherence resonance (Perc 2006; Perc and Marhl
2006; Perc, 2007). In situations where game-theoretic strategies and the environment
are both time-evolving, coevolutionary rules can help maintain cooperative behaviors
(Perc and Szolnoki 2010). Evolutionary dynamics (Hofbauer and Sigmund 1998) is
a powerful tool for studying global issues, as it considers the whole population of
agents and can be formalized using the law of mass action (De Roos and Persson
2005). Statistical physics has also proven to be useful in studying large populations
undergoing stochastic phase transitions (Perc 2016; Capraro and Perc 2018).

The literature emphasizes the importance of population structure in evolutionary
games. Models in population ecology commonly fall into two categories: well-mixed
and structured populations (Odenbaugh 2005). Well-mixed or unstructured popula-
tions consist of identical agents, whereas structured populations group agents into
homogeneous classes. Structured populations are considered to provide a more accu-
rate reflection of reality than models based on a well-mixed sampling of players (Perc
et al. 2017). While Nowak and May (1992) demonstrated that evolutionary games in
structured populations can enable cooperators to avoid being exploited by defectors,
the emergence of cooperation and its outcomes may depend on various other factors,
including the structure of the interaction network and the type of interactions (Perc
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et al. 2017). The number of cooperators in a group, for example, can influence condi-
tional cooperation (Szolnoki and Perc 2012; Perc et al. 2013). Strategic uncertainty is
also an important consideration in evolutionary game theory, particularly when play-
ers are unaware of whether the game plan is cooperative or non-cooperative (Perc
2006). Random payoff variations are more representative of long-term contexts, and
thus, population dynamics should be considered under strategic uncertainty (Dragice-
vic 2019a, b). Overall, population structure and the nature of interactions are critical
factors in determining the emergence and persistence of cooperative behavior in evolu-
tionary games.While structured populations have been shown to facilitate cooperation,
other factors can also influence game outcomes. Therefore, a deeper understanding of
population structure dynamics is essential for studying the evolution of cooperation.

Our investigation of cooperation dynamics employs tools from evolutionary game
theory (Maynard and Price 1973) and takes advantage of the unified framework
that encompasses various evolutionary dynamics (Page and Nowak 2002; Dragice-
vic 2019a, b).1 We utilize the Price version of replicator(-mutator) dynamics in a
mixed population setting consisting of model-players sampled from both well- and
poorly-mixed population settings. The Price theorem (Price 1970; Frank 1995; Kerr
and Godfrey-Smith 2008) was initially designed to understand how the frequency
of a particular character state changes over time (Dragicevic 2016, 2019b). It pro-
vides a model of selection that considers how character states co-vary with fitness
or the outcomes they produce (Page and Nowak 2002; Knudsen 2004; Fox 2006;
Collins and Gardner 2009; Helanterä and Uller 2010). The original Price equation,
Ė(p) = cov(π, p) + E( ṗ), describes the change in the value of an arbitrary char-
acter state over time (p), where π is the subsequent outcome, and cov(·) represents
selection. In this context, selection refers to the differential survival of individuals
due to variations in their character-state values. E( ṗ) describes the environmental
pressure on the evolution of the character-state value. We define p as the probability
of playing against a cooperator, and π as the payoff from playing a certain strategy.
By combining the two, we can study the expected payoff associated with a given
strategy available to the players. We translate selection cov(π, p) into the difference
between the expected payoff of a model-player and the average payoff in the pop-
ulation. Meanwhile, E( ṗ) represents the evolution of the payoff with respect to the
probability update. The expanded Price equation (Page and Nowak 2002; Page 2003)
yields Ė(p) = cov(π, p) + E( ṗ) + E(π�), where the additional term describes
random mutations from one type of model-player to another.

In this study, we endeavor to unify evolutionary dynamics on graphs through the
implementation of a decaying Bayesian update mechanism. The study focuses on the
dynamics of evolutionary games in populations structured on graphs (Nowak et al.
2010). Individuals are situated on the vertices of a graph, where the edges of the graph
determine which individuals interact with each other (Lieberman et al. 2005; Ohtsuki
et al. 2006). In games on graphs, an individual’s fitness is determined by interactions
with their neighbors. The traditional replicator equation applies to a complete graph,
where all individuals are adjacent to one another. In contrast to updating rules such as

1 Chatterjee and Chakrabartty (2018) demonstrated that various types of evolutionary game dynamics can
be considered as specific instances of a dynamical system model derived from a framework of generalized
growth transforms.

123



69 Page 4 of 42 A. Z. Dragicevic

birth-death (BD), death-birth (DB), imitation (IM), or pairwise comparison (PC), we
adopt a composite updating rule that integrates birth, death, and neighbor selection,
which collectively determine the transition rate (Lieberman et al. 2005;Okushima et al.
2018).2 The transition rate represents the degree towhich selection favors or disfavors a
particular trait and can be influenced by factors such asmutation rates, genetic drift, and
environmental pressures. It can be calculated in variousways depending on the specific
model and context being used. When studying the expected frequency of strategies
on an infinitely large graph, the pair-approximation calculation in the limit of weak
selection leads to a surprisingly simple equation (Nowak et al. 2010). 3 The replicator
equation on graphs describes how the expected frequencies of strategies on a graph
change over time. It provides insight into the evolutionary outcomes of structured
populations and how different factors can influence the evolution of traits in these
populations. The study of evolutionary game dynamics on graphs has applications in
a variety of fields, including population biology, ecology, and social sciences.

In the study by Zhang and Perc (2016), the conflict between contributors and defec-
tors was addressed using the Price equation. The authors assumed that the size of
a group increases proportionally to its relative payoff, and individuals selectively
migrate to groups with higher average payoffs. Their results showed that cooperation
emerges when inter-group selection outweighs intra-group selection. In contrast, our
study, based on a stratified interaction mechanism and a composite strategy update
rule, demonstrates a conditional equivalence between well-mixed population replica-
tor dynamics and Bayesian-structured population replicator dynamics in a population
of model-players organized on a graph, subject to strategic uncertainty and mutation
towards cooperation. This equivalence is based on the proportion of cooperators being
equivalent to the relative payoff advantage of a competitor over a cooperator, rather
than a relative payoff. The equivalence holds when the transition rate from competi-
tion to cooperation is equal to the relative strength of selection acting on cooperation
or competition in relation to the selection differential between the competitors and
cooperators. Our approach differs from that of Zhang and Perc but addresses a sim-
ilar issue. Our study demonstrates that the replicator-mutator dynamics, whether in
a well-mixed or structured population, can only lead to complete cooperation when
the density of competitors is near one. This unexpected finding underscores that the
presence of a mutation towards cooperation causes a transient full density of coopera-
tors that emerges through free-riders. The sucker’s payoff, which guarantees meeting
a cooperator, serves as an incentive for individuals to engage in free-riding behavior.
However, these cooperators ultimately revert to defection before transitioning back to
cooperators again.

2 Previous research by Zhang et al. (2021) has demonstrated that alternative updating rules, such as the
delayed group-based sequential myopic best response adjustment rule (MBRAR), have been verified to
ensure convergence of the evolutionary game and enhance convergence efficiency.
3 Weak selection on graphs refers to the situation in which the evolution of a trait on a graph is influenced
by weak selective forces. In this context, the fitness of a particular node or edge is determined by its ability
to contribute to the spread of the trait through the graph. Even if evolution can be quick, it requires strong
selection pressure, which is seldom demonstrated (Kun 2022). This aspect gains particular significance
for our investigation as the influence of weak selection escalates when other evolutionary drivers, such as
mutation, exert a comparatively substantial impact on the population dynamics (Ueda et al. 2017).
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Following this introduction,we introduce the static game plan under strategic uncer-
tainty in Sect. 2. In Sect. 3, we describe the population dynamics using the Price
identity. Section 4 presents simulation examples to illustrate our findings. Finally, we
conclude in Sect. 5.

2 Static Model

The standard game-theoretic model is characterized by a simultaneous interaction
between two players, with each player having the option to select either the cooperative
or competitive strategy, and their types are not predetermined. The player endowment,
or initial amount of wealth, is denoted by w > 0. The willingness of players to
contribute to cooperation at the expense of personal gain is represented by c, where
c ≤ w. If both players choose to cooperate, they each receive a reward of εw > 0,
where ε ∈ [0, 1] is a reward coefficient.4

In this game, players operate under strategic uncertainty, which is characterized by
a lack of knowledge regarding each other’s strategies.5 While pure strategies involve
deterministic choices without probabilities, strategic uncertainty introduces an ele-
ment of expected outcomes associated with encountering specific types of players.
Consequently, there exists a probability p of playing against a cooperator, and its com-
plementary probability of playing against a competitor. If both players choose to adopt
the cooperative strategy, they can receive an expected reward of p (w(1 + ε) − c).
However, if both players adopt the competitive strategy and mutually defect, they
both receive an expected punishment payoff of (1 − p)w. In the scenario where one
player adopts the competitive strategy while the other player adopts the cooperative
strategy, the former receives an expected temptation payoff of pw, while the lat-
ter receives an expected sucker’s payoff of (1 − p)(w − c). These expected payoffs
reflect the trade-offs involved in the players’ decision-making process, as they balance
the potential benefits of cooperation against the costs of personal sacrifice and the risk
of exploitation by the other player.

2.1 Two-Player Game

The following table depicts the game payoff matrix derived from the classic scenario
known as the prisoner’s dilemma.

4 Whenever we discuss defection as an alternative term for competition, it is considered in the context of
defecting to cooperate, as described by Nowak and Sigmund (2000). In other words, when players choose
to defect, they are essentially engaging in competition.
5 Considering the variety of terms used in the literature, it is imperative to elucidate that the concept of
strategic uncertainty encompasses two distinct components: strategic risk, which pertains to uncertainty
about the realization of the opponent’s mixed strategy, and strategic ambiguity, referring to the uncertainty
surrounding the selection of a mixed strategy by the opponent (Calford 2020; Dragicevic 2024).
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Cooperation Competition

Cooperation w(1 + ε) − c ; w(1 + ε) − c w − c ; w
Competition w ; w − c w ; w

The expected payoffs associated with a model-cooperator and a model-competitor,
operating in a scenario involving strategic uncertainty, are as follows:

�(p) :=
{

πi = p (w(1 + ε) − c) + (1 − p) (w − c)

π j = pw + (1 − p)w.
(1)

Given p ∈ [0, 1], it holds that πi � π j ⇔ pεw � c. Specifically, if the expected
value of the payoff from mutually cooperative actions exceeds the cost of engaging
in such behavior, denoted by c, i.e., pεw > c, then cooperative strategies will prevail
over competitive strategies in the game-theoretic context.

Proposition 1 In the context of strategic uncertainty, a mixed-strategy Nash equi-
librium entails a model-player choosing cooperative behavior if the probability of
encountering a cooperator is sufficiently high, i.e. when p > c

εw
.

Proof The proof can be found in “Appendix A”. ��

2.2 N-Player Game

To analyze cooperation in a population-wide context, the standard game setting is
extended to encompass N players. This approach has been commonly employed in the
literature, such as in the works by Santos et al. (2008) and Perc et al. 2013.We consider
a well-mixed population of infinite size, which is composed of fractions of cooperators
denoted by xi . The complement of xi represents the proportion of competitors, which
we denote by x j = 1 − xi . The proportions represent the distribution of strategies
within the population (Lampert and Tlusty 2011). We assume that xi + (1 − xi ) = 1
represents the normalized population density, where 0 denotes extinction and 1 full
density.6

We designate a specific player as i , who represents a cooperator randomly selected
from the population. Alongside this model-player i , a subgroup of N − 1 individuals,
who compete with i , is also randomly chosen from the population. Together, they
form a cluster of N players who then participate in an N -player game characterized
by pairwise interactions, as described by Dyer and Mohanaraj (2011). Concurrently,

6 Utilizing the concept of prevalence proportion, it is understood that the probability of selecting an agent
at risk from the population corresponds to the population’s at-risk proportion (Dragicevic 2017). From this
standpoint, the probability p of engaging with a cooperator in gameplay can be deemed proportional to the
cooperator fraction xi within the entire population. Nevertheless, a critical distinction emerges between the
two: p originates from the context of an N -player game, wherein players are selected from a population
characterized by a specific cooperator density xi . Therefore, although p and xi are interrelated, they originate
from distinct dimensions of the model’s framework.
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another model-player, j , representing a competitor, is randomly selected from a dif-
ferent stochastic sample of N entities within the population. The resulting payoffs for
both i and j model-players conform to the defined payoff structure �(p, xi ).7

Let �i xi and � j x j , with i, j = 1, . . . , N , denote the sizes of the subpopula-
tions that play the cooperative and competitive strategies, respectively. We assume
that �i p = � j p = 1 represents the normalized probability of strategy occurrence
among the model-players. We then define p̄ = �i xi p for i = 1, . . . , N and note
that �i xi pπi = p̄πi represents the average expected payoff for cooperative behavior
across the entire population. Model-players are sampled from the binomial distribu-
tion, where the probability of having n cooperators among N − 1 players is given
by (

N − 1

n

)
xni (1 − xi )

N−1−n . (2)

The players evaluate their own payoffs in comparison to a model-player, who is
selected at random from the population. The likelihood of adopting the model-player’s
strategy is proportional to the difference between their own payoff and that of the
model-player. Given that

∑N−1
n=0

(N−1
n

)
xni (1 − xi )N−1−n = 1, the expected payoffs

associated with a model-cooperator and a model-competitor are as follows

�(p, xi ) :=
{

πi = p (w(1 + ε) − c) xN−1
i + (1 − p) (w − c)

π j = pw + (1 − p)w
(
1 − xN−1

i

)
.

(3)

By incorporating xN−1
i and 1−xN−1

i into the payoff functions, we introduce strate-
gic uncertainty for the model-players, as both cooperative and competitive outcomes
are possible.

Given p ∈ [0, 1], it follows that πi � π j ⇔ xi �
[(c + p(w − c))/(w + p(εw − c))]

1
N−1 . Therefore, to determine whether cooper-

ative or competitive behavior is dominant, we must compare the proportion of
cooperators in a well-mixed population with the cost-benefit ratio augmented by the
anticipated net gain from cooperation.

If the likelihood of encountering a cooperator in the game is uncertain, the coopera-
tive strategywill dominate inmixed strategies as the fraction of cooperators approaches
full density. In contrast, competition will prevail when the fraction of cooperators is
low. Specifically, when c → w, competition will always be the dominant strategy.
When the cost of engaging in cooperation approaches zero (c → 0), a critical mass
of cooperators in the population can foster the spread of cooperative behavior among

7 Recent advancements in the field of evolutionary dynamics have expanded the scope of inquiry to include
not merely pairwise interactions within networks but also those entailing higher-order connectivity. These
higher-order interactions, characteristic of evolutionary games, facilitate group-based play rather than the
traditional dyadic exchanges. A hallmark of such interactions is the capacity of a single connection, or a
hyperlink in this context, to encompass multiple individuals simultaneously, diverging from the conven-
tional network models limited to pairwise links. This architecture permits the modeling of complex group
interactions through hyperlinks, effectively capturing the essence of collective play among interconnected
participants (Alvarez-Rodriguez et al. 2021).
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competitors. Overall, while the probability of encountering a particular type of model-
player may influence the game’s outcome, its impact significantly diminishes as the
population fraction adopting a specific strategy increases.8

Proposition 2 In the context of strategic uncertainty within a population of N play-
ers, a mixed-strategy Nash equilibrium entails a model-player choosing cooperative
behavior if the proportion of cooperative agents is sufficiently high, i.e. when xi >

[(c + p(w − c))/(w + p(εw − c))]
1

N−1 .

Proof The proof can be found in “Appendix B”. ��
It is important to underline that the use of indices i and j serves a multifaceted

purpose, reflecting both strategic roles (πi and π j ) and subpopulation types (xi and
x j ). This dual use is fundamental, particularly in the context of an N -player game
where players are randomly drawn to participate. In such a setup, contrasting i and
j effectively pits two distinct strategies—cooperation or competition—against each
other. However, it is critical to understand that this opposition is not just between
two strategies but also represents a player adopting one of these strategies against
another player randomly selected from a population that consists of both coopera-
tors and competitors. Thus, the distinction between i and j evolves throughout our
analysis, initially denoting strategic choices and later embodying the individuals who
adopt these strategies during gameplay. Consequently, this notation serves as a bridge
between the micro-level individual strategies and the macro-level population strategy
profiles.

3 Price Identity Dynamic Model

Our study enhances traditional evolutionary game theory by incorporating analyses
of both well-mixed and structured populations (Su et al. 2019) and delves into the
dynamics of evolutionary games on graphs (Ohtsuki and Nowak 2006). At the core of
our model is an N -player game initiation phase, characterized by a selection process
that recruits players from either a well-mixed pool (Sect. 3.1) or a structurally defined
population (Sect. 3.2). This selection sets the stage for analyzing interactions between
a focal player and their immediate neighbors within the N -player framework, with
population structure precisely mapped onto a graph. The introduction of this stratified
interaction mechanism (Dragicevic 2024) signifies a methodological advancement.
It enables a dual-level analysis, capturing both broad evolutionary dynamics at the
population level and localized interactions that stem from the population’s structure.

In the game-theoretic framework, players are situated at nodes within a network
and engage exclusively with their adjacent neighbors. We thus have a game on a
graph. The network may manifest as either a lattice or a regular graph—where each
vertex has the same number of neighbors—devoid of cycles (Allen and Nowak 2014).
Interactions between neighboring pairs occur at a consistent rate, contingent upon both

8 It is worth noting that at themixed strategyNash equilibrium, both players have the same expected payoffs
from their respective strategies.
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players being available for engagement (Broom and Křivan 2020). The interaction
graph is considered to be unweighted and undirected (Su et al. 2019). To maintain
a broad applicability, we refrain from imposing supplementary assumptions on the
structural characteristics of the graph. Regardless of the specific graph configuration,
it is represented by an adjacency matrix, the elements of which are hidden in the
probability of interaction among players (Chen et al. 2016).

3.1 The Price Identity of Replicator DynamicsWithin an Unstructured Population

We now shift our focus to the context of an infinitely large population, wherein an N -
player game is being played. In this scenario, the constituent agents, termed replicators,
are assumed to co-evolve within existing types. A well-mixed population on a graph
corresponds to the absence of clusters (Kim et al. 2015). According to the replicator
dynamics framework (Hofbauer and Sigmund 1998), the evolution of the replicators
is described by the following system of differential equations

Ẋ :=
{
ẋi = xi (πi − π̄)

ẋ j = (1 − xi )
(
π j − π̄

)
.

(4)

Within this system, xi and x j or 1 − xi represent the densities of the payoffs
associatedwith themodel-cooperator andmodel-competitor, respectively, at any given
point in time. The rate at which themodel-playersmodify their strategies is determined
by a per capita rate, which is equivalent to the difference between the expected payoff
of a model-player and the average payoff observed within the population (Cressman
and Tao 2014). These payoffs arise from interactions occurring in randomly formed
groups of individuals. The expression π̄ = xiπi + x jπ j = xiπi + (1− xi )π j denotes
the average payoff within the population.

Building on the work of Ohtsuki and Nowak (2006), we introduce the replicator
equation on graphs, which incorporates an additional parameter δ that reflects the local
competition among different strategies. We can thus talk about a spatial prisoner’s
dilemma (Cardinot et al. 2018). In the spatial prisoner’s dilemma game, players are
situated on a network and engage only with their nearby neighbors. This parameter,
also known as the transition rate, represents the probability of transitioning from one
state to another within a birth-death process.9 Within our framework, the network
serves as a representation of the individual dynamics in which a competing neighbor
could potentially be supplanted by a cooperator should the local population structure
favor efficient outcomes.10

9 The transition rate, also known as selection intensity or selection strength, represents the rate at which
a strategy is replaced by another strategy due to selection pressure in the population. This means that a
higher transition rate implies a higher rate of selection, and strategies that are less fit will be replaced more
quickly. On the other hand, the mutation probability represents the probability that a strategy will mutate
into a different strategy due to a copying error during reproduction. This means that even if a strategy is fit
and successful, it can still be replaced by another strategy due to a random mutation event.
10 It has been established that, in the absence of correlations between hyperdegrees, the dynamics of
higher-order-interaction networks align with the replicator dynamics observed in homogeneously mixed
populations (Alvarez-Rodriguez et al. 2021).
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The mechanisms of strategy update rules in evolutionary games have been exten-
sively documented in the literature (Ohtsuki and Nowak 2006; McAvoy and Hauert
2015; Su et al. 2019). For instance, under a birth-death update rule, a player is selected
for reproduction based on their fitness relative to the population. Subsequently, a
neighboring player is randomly chosen to be replaced by the offspring, who inher-
its the strategy of the reproducing parent. Conversely, in a death-birth update rule, a
player is randomly selected for death, and the neighboring players vie to occupy the
vacated spot through reproduction. Both of the aforementioned rules involve modi-
fying a single strategy during each iteration. However, our study introduces a unique
rule characterized by the simultaneous revision of all strategies, representing a global
update. This can be described as a composite strategy update rule. This approach
allows for a holistic view of the evolutionary dynamics on graphs. Following Yagoobi
et al. (2023) and Dragicevic (2024), we have

δ = rp

rp + (1 − p)︸ ︷︷ ︸
birth probability

· αi j (1 − p)

sαik p + αik(1 − p)︸ ︷︷ ︸
death probability

· N − n

N︸ ︷︷ ︸
selection

. (5)

The first ratio captures the probability of a cooperator being born, while the second
ratio captures the probability of a cooperator dying. The third ratio pertains to neighbor
selection through local competition between strategies, which involves the stochastic
selection of a node for transformation into a cooperator.

The probability of encountering a cooperator during play is denoted by p. This
parameter characterizes the probability that a player interacts with a cooperative neigh-
bor; higher values of p indicate that a player is more likely to play with cooperative
neighbors, whereas lower values indicate a higher likelihood of playing with defect-
ing neighbors. The selection parameter r pertains to the birth of a cooperator and
denotes the likelihood of a new cooperator being born into the population. In the
spatial prisoner’s dilemma game, this parameter reflects the tendency of a player to
adopt a cooperative strategy when their neighbors are also cooperative. The selection
parameter s corresponds to the death of a cooperator and determines the probability
that a cooperator will perish and be replaced by a defector. In the spatial prisoner’s
dilemma game, this parameter reflects the propensity of a player to abandon coop-
eration when most of their neighbors are defectors. The weight of a link between
neighboring players is represented by αi j and the weight of a link between individ-
uals in different subpopulations i and k is αik . When the graph is regular, we have
αi j = αik = α. This parameter influences the extent to which a neighbor’s strategy
affects a player’s decision to cooperate or defect. Higher values of αi j indicate that the
neighbor’s strategy has a stronger influence on the player’s decision. Finally, N denotes
the total population size, while n represents the number of neighbors in a player’s local
group of cooperators. The (N − n)/N ratio represents the relative probability that a
node’s offspring will belong to the same group or neighborhood of cooperators as the
parent node, given the spatial structure of the network. This probability influences
the likelihood that a node will adopt a cooperative strategy, as cooperation may be
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favored if there is a high probability of interacting with other cooperators in the local
neighborhood.

By multiplying these ratios with the probability of playing against a cooperator,
the resulting transition rate includes p2 and provides an estimate of the expected rate
of phase transition toward cooperation. In the spatial prisoner’s dilemma game, the
probability of a player adopting a cooperative strategy depends on the payoff values
and the local environment, which includes the strategy of the neighboring players.
Multiplying the transition rate by p incorporates the effect of cooperative neighbors
on the probability of a player adopting a cooperative strategy. Overall, it captures the
influence of both the payoff values and the local environment on the emergence of
cooperative clusters.

We can express the system in the form of a Price equation, as follows

Ė(p) = cov(πi , p) + E( ṗ) (6)

= �i xiπi p + �i xiπiδ p − π̄ p̄ + �i xi ṗ

= �i xiπi p(1 + δ) − (
xiπi + (1 − xi )π j

)
�i pxi + �i xi ṗ

= �i pxi
(
(1 + δ)πi − xiπi − (1 − xi )π j

) + �i xi ṗ

= �i pxi
(
(1 + δ − xi )πi − (1 − xi )π j

) + �i xi ṗ

= �i pxi (1 + δ − xi )πi − �i pxi (1 − xi )π j + �i xi ṗ

= �i pxi (1 + δ − xi )
[
p (w(1 + ε) − c) xN−1

i + (1 − p) (w − c)
]

− �i pxi (1 − xi )
[
pw + (1 − p)w

(
1 − xN−1

i

)]
+ �i xi ṗ,

where i = 1, . . . , n, . . . , N .
The equation ṗ = n p̄

(
N + 10−3 n

N

) πi (n)−π j (n)

πi (n−1)−π j (n−1) describes the time derivative
of the probability p that a player adopts a cooperative strategy in a population with
N players, where n players currently adopt the cooperative strategy and (N − n)

players adopt the competitive strategy. Here are the definitions of the variables used in
the equation: p̄ is the average probability that a randomly selected player adopts the
cooperative strategy in the current population, 10−3 is a small increment rate added to
ensure that the denominator of the expression is non-zero,11 and πi (n) and π j (n) are
the payoffs obtained by players adopting the cooperative and competitive strategies,
respectively, when n players in the population adopt a strategy. The denominator of
the expression, πi (n−1)−π j (n−1), represents the difference in payoffs obtained by
the cooperative and competitive strategies when n − 1 players adopt the cooperative
strategy. This represents the change in payoffs resulting from a small increase in the
number of players adopting the cooperative strategy.

The properties of the differential equation lead to the following proposition

Proposition 3 In unstructured population replicator dynamics under strategic uncer-
tainty, the system of differential equations exhibits a corner equilibrium at (0, 0) and

11 The value of 10−3 is chosen to be small enough to have a negligible impact on the overall result, but
large enough to ensure that the denominator is non-zero.
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an interior equilibrium that fulfills the constraint of x	
i being equal to 1− x	

j . All equi-
libria in the system are classified as saddle points, meaning they are neither stable nor
unstable. Furthermore, the behavior of the system is contingent on the initial density of
cooperators. If the initial density is below the attraction coordinates, the cooperation
goes extinct. Conversely, if the initial density is higher than the coordinates of the
attraction, then cooperation thrives fully.

Theobservedoutcomedependenceon the initial conditions emphasizes the system’s
sensitivity to small variations in the starting state. This underscores the crucial signifi-
cance of considering the influence of strategic uncertainty when analyzing population
dynamics.

Proof The proof can be found in “Appendix C”. ��

3.2 The Price Identity of Replicator DynamicsWithin a Bayesian-Structured
Population

The critical question raised by Hilbe (2011) is whether replication can be an accurate
approximation of how humans update their strategies, particularly given that individu-
alsmay blindly copy the strategies of co-playerswith higher payoffs. By implementing
an update decay mechanism in the comparison of payoffs with randomly selected
model-players, we transition from an unstructured population to a structured one (Sato
and Crutchfield 2003). We differ from the approach in which the average payoff is
adjusted based on the proportion of players adopting an adverse strategy, resulting
in binomial sampling from a poorly-mixed population of model-players (Dragicevic
2019a, b).

We integrate Bayesian updating to assess payoff comparisons, introducing decay
parameters for both cooperative (λ(xi |1−xi )) and competitive (λ(1−xi |xi )) strategies.
This approach results in binomial sampling from a heterogeneously mixed popula-
tion of model players, reflecting the replication’s aftermath in unbalanced population
fractions. Consequently, this could diminish the propagation rate of specific strate-
gies among model players. Within the framework of replicator dynamics on a regular
graph, we utilize the Bayesian decay factor to modulate the frequency at which players
revise their strategies in response to neighboring strategies. Adjusting the Bayesian
decay factor allows us to examine the effects of strategic uncertainty on the progression
of cooperation within structured populations. Bayes’ theorem provides a quantitative
mechanism for evaluating the likelihood of a given hypothesis, considering prior infor-
mation. To further elucidate the application of Bayesian updating within evolutionary
game theory, we analyze the expression through the lens of complementary fractions,
xi and 1 − xi ,

λ(xi |1 − xi ) = xiλ(1 − xi |xi )
1 − xi

= xi (1 − xi )

1 − xi
, (7)
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where λ is the decay parameter in the context of Bayesian updating; λ(xi |1 − xi )
represents the likelihood of adopting the cooperative strategy xi , given the current
prevalence of the competing strategy 1− xi , and reflects a player’s tendency to adopt a
cooperative strategy based on the observed distribution of strategies within the popula-
tion; λ(1−xi |xi ) quantifies the probability of transitioning from a competitive strategy
1−xi to a cooperative strategy xi , based on the current proportion of cooperatorswithin
the population xi . In essence, the expression xi (1−xi )

1−xi
describes a scenario where the

likelihood of transitioning from one state to another, as dictated by the probability
of the alternate state, is solely dependent on the proportion of players adopting that
strategy. It highlights the self-adjusting nature of Bayesian updating, illustrating that
the probability of a strategy shift is directly related to the number of players utilizing
that strategy within the population.

The system evolution across the time is equivalent to

Ẋ(λ) :=
{
ẋi (λ(xi |1 − xi )) = xi (πi − λ(xi |1 − xi )π̄)

ẋ j (λ(1 − xi |xi )) = (1 − xi )
(
π j − λ(1 − xi |xi )π̄

)
.

(8)

The differential equations yield a single Price formulation in form of

Ė(λ, p) = cov(πi , p) + E( ṗ) (9)
= �i xiπi p + �i xiπi δ p − λπ̄ p̄ + �i xi ṗ

= �i xiπi p(1 + δ) − xi (1 − xi )

1 − xi

(
xiπi + (1 − xi )π j

)
�i pxi + �i xi ṗ

= �i xiπi p(1 + δ) − �i pxi

(
xi (1 − xi )

1 − xi
xiπi + xi (1 − xi )

1 − xi
(1 − xi )π j

)
+ �i xi ṗ

= �i xiπi p(1 + δ) − �i pxi
(
x2i πi + xi (1 − xi )π j

)
+ �i xi ṗ

= �i xiπi p(1 + δ) − �i px
2
i

(
xiπi + (1 − xi )π j

) + �i xi ṗ

= �i pxi
(
(1 + δ) − x2i

) [
p (w(1 + ε) − c) xN−1

i + (1 − p) (w − c)
]

− �i px
2
i (1 − xi )

[
pw + (1 − p)w

(
1 − xN−1

i

)]
+ �i xi ṗ,

where i, j = 1, . . . , n, . . . , N and ṗ = n p̄
(
N + 10−3 n

N

) πi (n)−π j (n)

πi (n−1)−π j (n−1) .
The following proposition ensues.

Proposition 4 In Bayesian-structured population replicator dynamics under strategic
uncertainty, the system of differential equations exhibits a corner equilibrium at (0, 0)
and an interior equilibrium that fulfills the constraint of x	

i being equal to 1 − x	
j .

All equilibria in the system but one are classified as saddle points, meaning they are
neither stable nor unstable. The sole stable equilibrium corresponds to the attractor.
Furthermore, the behavior of the system is contingent on the initial density of cooper-
ators. If the initial density is below the attraction coordinates, the cooperation heads
toward the system attraction point. Conversely, if the initial density is higher than
the coordinates of the attraction, cooperation decreases until it reaches the attraction
point.
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The sensitivity of the system to minor changes in the initial state is highlighted
by the observed dependency of outcomes on initial conditions. This underscores the
critical importance of considering the impact of strategic uncertainty when analyzing
population dynamics, even when Bayesian updating is present.

Proof The proof can be found in “Appendix D”. ��

3.3 The Price Identity of Replicator-Mutator DynamicsWithin an Unstructured
Population

The probability of a change in strategy between two points in time echoes the happen-
ing of mutation (Chatterjee et al. 2012), the rate of which is given by q ji ∈ [0, 1]. The
mutation rate is the probability that a player with strategy j will mutate to strategy i .
This brings to the fore a differential equation, which describes the adaptive dynamics
of the population distribution (Levin 2002), termed replicator-mutator dynamics with
a frequency-dependent fitness (Bürger 1998). Mutation mostly arises when groups of
players form alliances in order to increase their payoffs (Nolte 2015). When it comes
to the topic addressed in this paper, a competitive strategist then replicates into a coop-
erative one (Dercole and Rinaldi 2008). Recent findings indicate that the introduction
of mutation in dynamical systems has been found to result in increased behavioral
diversity (Duong and Han 2020; Ariful Kabir et al. 2023).

The population evolution, as defined in the Price equation with mutational events
(Page and Nowak 2002), takes the form of

Ė(�, p) = cov(π j , p) + E( ṗ) + E(πi�) (10)
= � j x jπ j p + � j x jπ j δ p − π̄ p̄ + �i xi ṗ + �i xiπi� j q ji p

= � j x jπ j p(1 + δ) − (
xiπi + (1 − xi )π j

)
�i pxi + �i xi ṗ + �i xiπi� j q ji p

= � jπ j x j p(1 + δ) − �i x
2
i πi p − �i xi (1 − xi )π j p + �i xi ṗ + �i xiπi� j q ji p

= −�i x
2
i πi p + �i xiπi� j q ji p + � jπ j x j p(1 + δ) − �i xi (1 − xi )π j p + �i xi ṗ

= �i xi p(� j q ji − xi )πi + p(� j x j (1 + δ) − �i xi (1 − xi ))π j + �i xi ṗ

= �i xi p(� j q ji − xi )
[
p (w(1 + ε) − c) xN−1

i + (1 − p) (w − c)
]

+ p(� j x j (1 + δ) − �i xi (1 − xi ))
[
pw + (1 − p)w

(
1 − xN−1

i

)]
+ �i xi ṗ,

where i, j = 1, . . . , n, . . . , N , � = 112 and ṗ =
n p̄

(
N + 10−3 n

N

) πi (n)−π j (n)

πi (n−1)−π j (n−1) .

Proposition 5 In unstructured population replicator-mutator dynamics under strate-
gic uncertainty, the system of differential equations exhibits a corner equilibrium at
(0, 0) and an interior equilibrium that fulfills the constraint of x	

i being equal to

12 Based on the prevalence proportion principle (Dragicevic 2017), we can determine that the mutation
probability of a player chosen at random from the population is equal to the proportion of cooperators in
the population. In the case of a population-level mutation from type j to type i , E(πi�) represents the
expected surplus from cooperating. This is assuming that the probability of mutation is certain, or in other
words, E(�) = 1.
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1 − x	
j . All equilibria in the system but one are classified as saddle points, mean-

ing they are neither stable nor unstable. The sole unstable equilibrium corresponds
to the source. Furthermore, the behavior of the system is non-contingent on the ini-
tial density of cooperators. Whatever the initial density, the system converges toward
the system attraction point. However, the certainty of mutation towards cooperation,
which encourages free-riding, results in the system being consistently drawn towards
a transient full population density.

Proof The proof can be found in “Appendix E”. ��

3.4 The Price Identity of Replicator-Mutator DynamicsWithin a
Bayesian-Structured Population

In the lookout for theBayesian population structure version of the differential equation,
the replicator-mutator dynamics takes place in the form of

Ė(λ,�, p) = cov(π j , p) + E( ṗ) + E(πi�) (11)
= � j x jπ j p + � j x jπ j δ p − λπ̄ p̄ + �i xi ṗ + �i xiπi� j q ji p

= � j x jπ j p(1 + δ) − xi (1 − xi )

1 − xi

(
xiπi + (1 − xi )π j

)
�i pxi

+�i xi ṗ + �i xiπi� j q ji p

= � j x jπ j p(1 + δ) − (x2i πi + xi (1 − xi )π j )�i pxi + �i xi ṗ + �i xiπi� j q ji p

= � j x jπ j p(1 + δ) − �i x
3
i πi p − �i x

2
i (1 − xi )π j p + �i xi ṗ + �i xiπi� j q ji p

= �i xiπi� j q ji p − �i x
3
i πi p + � j x jπ j p(1 + δ) − �i x

2
i (1 − xi )π j p + �i xi ṗ

= �i xi p(� j q ji − x2i )πi + p(� j x j (1 + δ) − �i x
2
i (1 − xi ))π j + �i xi ṗ

= �i xi p(� j q ji − x2i )
[
p (w(1 + ε) − c) xN−1

i + (1 − p) (w − c)
]

+ p(� j x j (1 + δ) − �i x
2
i (1 − xi ))

[
pw + (1 − p)w

(
1 − xN−1

i

)]
+ �i xi ṗ,

where i, j = 1, . . . , n, . . . , N and ṗ = n p̄
(
N + 10−3 n

N

) πi (n)−π j (n)

πi (n−1)−π j (n−1) .

Proposition 6 In unstructured population replicator-mutator dynamics under strate-
gic uncertainty, the system of differential equations exhibits a corner equilibrium at
(0, 0) and an interior equilibrium that fulfills the constraint of x	

i being equal to
1 − x	

j . All equilibria in the system but one are classified as saddle points, mean-
ing they are neither stable nor unstable. The sole unstable equilibrium corresponds
to the source. Furthermore, the behavior of the system is non-contingent on the ini-
tial density of cooperators. Whatever the initial density, the system converges toward
the system attraction point. However, the certainty of mutation towards cooperation,
which encourages free-riding, results in the system being consistently drawn towards
a transient full population density.

Proof The proof can be found in “Appendix F”. ��
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3.5 Unified Evolutionary Dynamics Through the Price Identity

By combining the aforementioned result with the findings from a previous subsection,
and assuming a certainty of mutation by setting E(�) = 1,13 we can derive the
following conditional equivalence

�i xiπi p(1 + δ) − �i px
2
i

(
xiπi + (1 − xi )π j

) + �i xi ṗ (12)

= �i xi p(� j q ji − xi )πi + p(� j x j (1 + δ) − �i xi (1 − xi ))π j + �i xi ṗ

⇔ �i xiπi p(1 + δ) − �i px
2
i

(
xiπi + (1 − xi )π j

)
= �i xi p(� j q ji − xi )πi + p(� j x j (1 + δ) − �i xi (1 − xi ))π j

⇔ (cov(πi , p) + π̄ p̄)(1 + δ) − (cov(πi , p) + π̄ p̄)x2i − (cov(πi , p)

+π̄ p̄)(� j q ji − xi )

= �i xi (1 − xi )π j (xi − p) + (cov(π j , p) + π̄ p̄)(1 + δ),

where i, j = 1, . . . , n, . . . , N . Allen and Rosenbloom (2012) observed that high
mutation rates are commonly found in cyclical frequency-dependent dynamics and
fluctuating environments. When the proportion of cooperators is small,14 i.e., xi → 0
and π̄ p̄ → 0, the following situation arises

δ = cov(π j , p)

cov(πi − π j , p)
(13)

The next proposition ensues.

Proposition 7 In replicator-mutator dynamics under strategic uncertainty, as outlined
in the Price theoremof selection, the replication of an unstructured population strategy
with certain mutation, from competition to cooperation, is conditionally equivalent to
the replication of a Bayesian-structured population strategy without mutation. This
equivalence holds when the transition rate from competition to cooperation is equal
to the relative strength of selection acting on competition in relation to the selection
differential between the cooperators and competitors.

Proof The proof can be found in “Appendix G”. ��
Calculations have previously shown that, in the context of replicator-mutator

dynamics, the replication of a strategy with a certain mutation in an unstructured
population is equivalent to the negative replication of the same strategy in a structured
population without mutation, as demonstrated by Dragicevic (2019a). Although the
Price equation is part of a unified evolutionary framework, the outcomes obtained in
terms of reflective evolution are no longer observed. Furthermore, it must be high-
lighted that the newest result is also different from the one in Dragicevic (2019b).
Indeed, it has been previously found that in the context of replicator-mutator dynamics

13 E(�) = 1 implies E( ṗ) → 0, such that the expected change in p tends toward zero as the player
population shifts toward cooperation on a particular basis.
14 Conversely, if there is a preponderance of cooperators, the mutation is less significant.
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with strategic uncertainty, which can be traced back to the Price theorem of selection,
the replication of an unstructured-population strategy, subject to certainmutation, from
competition to cooperation, is conditionally interchangeable with the replication of a
structured-population strategy that is free frommutation. This equivalence ariseswhen
the fraction of competitors, weighted by the payoff of a cooperative model-player and
inversely proportional to the expected payoff from cooperation, is less than or equal to
the joint selection of cooperators and competitors, which is augmented by the double
average population payoff. In our latest result, what comes out is that the equivalence
is valid if and only if the rate of transition from competition to cooperation equals
the ratio of the strength of selection acting on competition relative to the selection
differential between the cooperators and competitors.

In evolutionary dynamics, the selection differential is a measure of the fitness
difference between individuals with certain traits and those without. The selection
differential between cooperators and competitors refers to the difference in payoff
between individuals who cooperate and those who compete in a given population. This
difference in payoffs is due to various factors, such as the rewards and costs associated
with each strategy, and how well each strategy performs in the environment.

The selection differential between cooperators and competitors plays a crucial
role in determining the evolutionary outcomes of social dilemmas. If the selection
differential favors cooperators, meaning that cooperators have a higher payoff than
competitors, then cooperation is likely to spread in the population over time. On the
other hand, if the selection differential favors competitors, then competition will be
more successful and could potentially lead to the extinction of the cooperative strat-
egy. A positive covariance between the selection differential and the probability of
meeting a cooperator suggests that individuals with higher payoff—due to a higher
selection differential—are more likely to encounter other cooperators, which would
further increase their payoff.

Once again, the implication of the value of δ is as follows. If δ approaches 0,
it suggests a lack of correlation or assortment between payoffs and the probability
of encountering a cooperator, which implies that the population is more randomly
mixed and that there is no clear relationship between payoffs and the likelihood of
encountering a cooperator. Conversely, a value of δ near 1 indicates a strong correlation
or a high degree of assortment between payoffs and the probability of encountering
a cooperator, suggesting that individuals are more likely to interact with those who
have similar payoffs.

Remark 1 The equivalence betweenBayesian-structured population replicator dynam-
ics and unstructured population replicator-mutator dynamics, in the context of the
Price theorem of selection under strategic uncertainty, can be indirectly established
by calibrating replicator dynamics in a poorly-mixed population setting.

Combining the assumption of a certain mutation with the results obtained
previously, we can establish the following conditional equivalence

�i pxi (1 + δ − xi )πi − �i pxi (1 − xi )π j + �i xi ṗ (14)

= �i xi p(� j q ji − x2i )πi + p(� j x j (1 + δ) − �i x
2
i (1 − xi ))π j + �i xi ṗ
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⇔ (1 + δ)(�i xiπi p − � j q ji − x2i ) − �i xiπ j p(1 − xi )(1 + xi )

= �i xi p(� j q ji − xi )πi + p(� j x j (1 + δ) − �i xi (1 − xi ))π j

⇔ (cov(πi , p))(1 + δ) − (cov(πi , p) + π̄ p̄)xi
= (cov(π j , p)(1 + δ) − (cov(π j , p) + π̄ p̄)(1 − xi )(1 + xi ) + �i xiπi (� j q ji − x2i ),

where i, j = 1, . . . , n, . . . , N . In the presence of a small proportion of cooperators,
such that xi → 0 and π̄ p̄ → 0, we fall on

δ = cov(πi , p)

cov(π j − πi , p)
(15)

We summarize the result in the following proposition.

Proposition 8 In replicator-mutator dynamics under strategic uncertainty, as outlined
in the Price theorem of selection, the replication of a Bayesian-structured population
strategywith certainmutation, fromcompetition to cooperation, is conditionally equiv-
alent to the replication of an unstructured population strategy without mutation. This
equivalence holds when the transition rate from competition to cooperation is equal
to the relative strength of selection acting on cooperation in relation to the selection
differential between the competitors and cooperators.

Proof The proof can be found in “Appendix H”. ��
This outcome is contingent on x	

i = 1, which is only possible when the payoff for
cooperation is zero. This counterintuitive finding arises when the population is large, a
mixed strategy including cooperation is present, andmutual cooperation yields benefits
that outweigh the costs of exploitation. A structured population graph is a requisite
for this occurrence.

Calculations have previously shown that, in the context of replicator-mutator
dynamics, the replication of a strategy in an unstructured population without muta-
tion is equivalent to the negative replication of the strategy in a structured population
with mutation, as demonstrated by Dragicevic (2019a). Moreover, Dragicevic (2019b)
demonstrated that the replication of a structured-population strategy, subject to certain
mutation from competition to cooperation, is conditionally equivalent to the repli-
cation of an unstructured-population strategy free from mutation, in the context of
replicator-mutator dynamics under strategic uncertainty, as outlined in the Price theo-
rem of selection. This equivalence occurs when the fraction of competitors, weighted
by the payoff of a cooperative model-player and inversely proportional to the expected
payoff from cooperation, is less than or equal to the joint selection of cooperators and
competitors increased by the double average population payoff. Our latest finding
indicates that the equivalence is only valid if the rate of transition from competition
to cooperation is equal to the ratio of the strength of selection acting on cooperation
in relation to the selection differential between competitors and cooperators.

Remark 2 The equivalence betweenBayesian-structured population replicator dynam-
ics and unstructured population replicator-mutator dynamics, in the context of the
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Price theorem of selection under strategic uncertainty, can be indirectly established
by calibrating replicator dynamics in a well-mixed population setting.

Equations (13) and (15) provide a means for determining the proportion of cooper-
ators required for the convergence of evolutionary dynamics. As such, we can derive
the following result

cov(πi , p)

cov(π j − πi , p)
= cov(π j , p)

cov(πi − π j , p)
(16)

⇔ −�i xiπi = � j x jπ j

⇔ −xiπi = (1 − xi )π j

⇔ x	
i = π j

π j − πi
,

where i, j = 1, . . . , n, . . . , N . The final examination of the game-theoretic scenario
leads to the following corollary.

Corollary 1 The Price theorem of selection establishes a conditional equivalence
between unstructured population replicator dynamics and Bayesian-structured popu-
lation replicator dynamics within a population of model-players organized on a graph
and subjected to strategic uncertainty andmutation towards cooperation. This equiva-
lence is contingent upon the proportion of cooperators being equivalent to the relative
payoff advantage of a competitor over a cooperator.

Proof The proof can be found in “Appendix I”. ��

4 Simulations

Starting from the propositions obtained in the modeling section, we shall now illus-
trate, by means of numerical simulations performed on stream diagrams, the various
evolutionary dynamics.15 Four examples are presented, each of which covers the prop-
erties and the conditions exposed hereinabove. The purpose of the incremental fifth
subsection is to bring to light the unified evolutionary dynamics through the Price
identity.

In what follows, consider the initial numerical values of the modeling items to be
fixed at w = 10, ε = 0.5, c = 5, N = 100, q ji = 1 and δ = 0.5. As we now launch
the simulations, the dynamic mappings yield the following outputs.

4.1 The Price Identity of Replicator DynamicsWithin an Unstructured Population

Figure 1 depicts an example of replicator dynamics in an unstructured population
context.

Analyzing a stream plot of the basins of attraction in the context of Price-wise
unstructured population replicator dynamics involves examining the patterns and

15 The Python codes for the numerical simulations are available upon request for interested readers.
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Fig. 1 A stream plot is produced to visualize the basins of attraction of the Price-wise unstructured pop-
ulation replicator dynamics, represented by the derivative Ė(p), for a constant transition rate (δ = 0.5).
We consider four probability levels defining the likelihood of cooperation (p = {0.25, 0.50, 0.75, 1}). The
x-axes represent the differential equation of the time-varying fraction of cooperators (ẋi ). The y-axes repre-
sent the differential equation governing the time evolution of the proportion of competitors (ẋ j ).We observe
saddle attractors in the system. At p = 0.25, {xi , x j } = (0.38, 0.38). At p = 0.50, {xi , x j } = (0.3, 0.3).
At p = 0.75, {xi , x j } = (0.13, 0.13). At p = 1, {xi , x j } = (0, 0) (Color figure online)

directional flow of the streamlines. These streamlines depict the evolution of the fre-
quency of various strategies over time, while the basins of attraction indicate the
steady-state frequencies of strategies within the population.16

16 The Python code uses NumPy’s np.linspace and np.meshgrid functions to define the x and y
coordinates of the plot. The ax.streamplot function from Matplotlib is used to create a plot of the
vector field for the replicator dynamics model. Contour lines are added to the plot using the contourf
function to color the regions of the basins of attraction. The set_xlim, set_ylim, set_xmargin, and
set_ymargin functions are used to set the axis limits and margins. Finally, the plot is displayed using
the plt.show function from Matplotlib.
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Weanalyzed the stability conditions of the systemunder considerationbyexamining
its fixed points, with a fixed value of δ equal to 0.5. This was accomplished by solving
the system of differential equations represented by the time derivative of the strategy
frequencies, given by Ė(p) = {xi , x j }. This yielded the fixed point values for x	

i

and x	
j , given by x	

i = {0, −2+15p−15p2−10px j+10p2x j+30p2x99j −20p2x100j

20p(1−x99j +px99j )
} and x	

j =
{0, −2+15p−15p2−10pxi+10p2xi+30p2x99i −20p2x100i

20p(1−x99i +px99i )
}. These fixed point values represent

the equilibrium points of the system.
Our analysis revealed that the system under consideration has both a corner equi-

librium and an interior equilibrium. However, all fixed points are identified as saddle
points, given that the eigenvalues of the Jacobianmatrix show opposite signs. At a sad-
dle point, the system displays both stable and unstable behavior in different directions,
resulting in trajectories near the point to either converge or diverge. Since certain equi-
libria may only be stable within a specific range of parameter values, we conducted
a sensitivity analysis to examine the impact of the probability of cooperating on the
equilibria. Notably, fixed points can serve as attraction points in a dynamic system.

At a specific value of p equal to 0.25, we observe an attractor with coordinates
{xi , x j } = (0.38, 0.38). As p increases, the coordinates of the attractor approach
zero, indicating a faster transition from competition to cooperation with increasing
probability of meeting a cooperator. We observe attractors with coordinates {xi , x j } =
(0.3, 0.3) at p = 0.50, and {xi , x j } = (0.13, 0.13) at p = 0.75. At p = 1, the
systemconverges towards {xi , x j } = (0, 0). Additionally, below the attractor point, the
dynamics lead to the attractor bifurcating towards the extinction of one subpopulation
for the benefit of the other, while beyond the attraction point, the arrows bifurcate
and lead to the hegemony of either subpopulation. These findings verify xi + (1 −
xi ) = 1 and indicate that the bifurcation from cooperation to competition of the entire
population takes a longer time than the bifurcation from competition to cooperation
of the whole population.

The colors in the basins of attraction indicate regions where a strategy frequency
will converge over time. Blue regions are lower stable frequencies, and red regions are
higher stable frequencies, with a gradient of colors in between representing interme-
diate stable frequencies. Higher stable frequencies are resistant to invasion and attract
nearby strategy frequencies over time, while lower stable frequencies are stable against
small perturbations in the strategy frequencies. The difference between the two is the
frequency relative to the population average. Red regions favor cooperation above
the attraction coordinates and competition below them, as the cooperative strategy is
more successful in those areas. Blue regionsmostly appear near the corner equilibrium
where either strategy prevails, indicating the presence of both strategies in those areas.

4.2 The Price Identity of Replicator DynamicsWithin a Bayesian-Structured
Population

Figure 2, which displays structured population replicator dynamics, exhibits patterns
that diverge notably from those detected in conventional replicator dynamics.
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Fig. 2 A stream plot is produced to visualize the basins of attraction of the Price-wise Bayesian-structured
population replicator dynamics, represented by the derivative Ė(p), for a constant transition rate (δ = 0.5).
Weconsider four probability levels defining the likelihoodof cooperation (p = {0.25, 0.50, 0.75, 1}). The x-
axes represent the differential equation of the time-varying fraction of cooperators (ẋi ). The y-axes represent
the differential equation governing the time evolution of the proportion of competitors (ẋ j ). We observe
stable attractors in the system. At p = 0.25, {xi , x j } = (0.62, 0.62). At p = 0.50, {xi , x j } = (0.55, 0.55).
At p = 0.75, {xi , x j } = (0.37, 0.37). At p = 1, {xi , x j } = (0.03, 0.03) (Color figure online)

The stream plot of the basins of attraction in Price-wise structured population repli-
cator dynamics involves examining the streamlines’ patterns and directional flow,
depicting the frequency of various strategies’ evolution over time. The basins of
attraction indicate the steady-state frequencies of strategies within the population.

The stability conditions of the system were investigated by analyzing its fixed
points, while assuming a value of δ = 0.5. The Jacobian matrix was utilized for this
purpose.We solved the differential equations Ė(p) = {xi , x j } and obtained the values
of the fixed points as x	

i = {0, −2x j+15px j−15p2x j−10px3j+10p2x3j+30p2x100j −20p2x102j

20px2j (1−x99j +px99j )
}
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and x	
j = {0, −2xi+15pxi−15p2xi−10px3i +10p2x3i +30p2x100i −20p2x102i

20px2i (1−x99i +px99i )
}. These fixed point

values represent the equilibrium points of the system.
Our analysis revealed the presence of both a corner and an interior equilibrium

within the system. Except for the attractor coordinates, all other fixed points were clas-
sified as saddle points based on the opposite signs of the eigenvalues of the Jacobian
matrix. A saddle point displays both stable and unstable behavior in different direc-
tions, leading trajectories near the point to either converge or diverge. To investigate
the impact of the probability of cooperation on equilibria, we conducted a sensitivity
analysis since some equilibria may only be stable within a certain range of parameter
values. Notably, fixed points can act as attraction points in dynamic systems.

Our analysis of the system’s fixed points led us to investigate the presence of attrac-
tors, which are sets of trajectories or states that a system converges towards over time
regardless of initial conditions. Attractors can also include fixed points. We observed
an attractor with coordinates {xi , x j } = (0.62, 0.62) at p = 0.25, while p = 0.50
and p = 0.75 had attractors at {xi , x j } = (0.55, 0.55) and {xi , x j } = (0.37, 0.37),
respectively. At p = 1, the system converged towards {xi , x j } = (0.03, 0.03).

In scenarios where the probability of encountering cooperators is uncertain, the
population dynamics system generally exhibits convergence towards the interior equi-
librium. As the probability of meeting a cooperator approaches one, the interior
equilibrium tends towards zero. The system displays attraction towards a stable attrac-
tor point as a whole. However, in cases where players are guaranteed to interact with
cooperators and free-riding behavior is incentivized by means of the sucker’s payoff,
the corner equilibrium is the only attractor. This leads to competition between player
populations, eventually resulting in the extinction of one or both populations.

The system exhibits convergence towards the attractor point without any subpopu-
lation domination, occurring both below and above the attractor point. This indicates
the absence of bifurcation from competition to cooperation in the system. Furthermore,
the attractor point displays the stable property of attracting nearby strategy frequencies
over time, which makes it resistant to invasion. However, an intriguing finding is that
the probability of cooperation increasing causes both subpopulations to approach zero,
suggesting a mutual push towards extinction. As a result, a more in-depth examination
of the basins of attraction is required to understand the underlying mechanisms of this
phenomenon.

The basins of attraction depict the regions of strategy frequency convergence over
time,with blue regions representing lower stable frequencies and red regions represent-
ing higher stable frequencies. The gradient of colors in between indicates intermediate
stable frequencies.Higher stable frequencies are resistant to invasion and attract nearby
strategy frequencies over time, while lower stable frequencies are stable against small
perturbations in the strategy frequencies. Red regions favor competition when the
cooperation density is low, while blue regions mostly appear around a density of 0.5
of cooperators. Near the attraction coordinates, red regions favor competition above
the attractor and cooperation below it. When encountering a cooperator is certain, red
regions favor full density of competition and the extinction of cooperators. There-
fore, Bayesian updating favors competition in all cases except when the initial level
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Fig. 3 A stream plot is produced to visualize the basins of attraction of the Price-wise unstructured popula-
tion replicator-mutator dynamics, represented by the derivative Ė(p), for a constant transition rate (δ = 0.5).
We consider four probability levels defining the likelihood of cooperation (p = {0.25, 0.50, 0.75, 1}). The
x-axes represent the differential equation of the time-varying fraction of cooperators (ẋi ). The y-axes rep-
resent the differential equation governing the time evolution of the proportion of competitors (ẋ j ). We
observe unstable attractors in the system. At p = 0.25, {xi , x j } = (1, 1). At p = 0.50, {xi , x j } = (1, 1).
At p = 0.75, {xi , x j } = (1, 1). At p = 1, {xi , x j } = (1, 1) (Color figure online)

of cooperators is already high. The prevalence of cooperators in the entire population
would not occur unless this condition is met.

4.3 The Price Identity of Replicator-Mutator DynamicsWithin an Unstructured
Population

The patterns observed in Fig. 3, which illustrates replicator-mutator dynamics in an
unstructured population, significantly deviate from those observed in the previous
cases.
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The stream plot of the basins of attraction in Price-wise unstructured population
replicator-mutator dynamics involves analyzing the streamlines’ patterns and direc-
tional flow, which depicts the evolution of various strategies’ frequency over time.
The basins of attraction signify the steady-state frequencies of strategies within the
population.

After assuming a value of δ = 0.5, the stability of the system was investi-
gated by analyzing its fixed points using the Jacobian matrix. The fixed points
were obtained by solving the differential equations Ė(p) = {xi , x j }. The resulting

fixed points are x	
i = {0, −x j+5px j−5p2x j−5px2j+5p2x2j+10p2x100j −10p2x101j

5p(2x j−3)(1−x99j +px99j )
} and x	

j =
{0, −xi+5pxi−5p2xi−5px2i +5p2x2i +10p2x100i −10p2x101i

5p(2xi−3)(1−x99i +px99i )
}. The eigenvalues of the Jacobian

matrix indicated the existence of an unstable corner equilibrium.
In the context of dynamical systems, an unstable fixed point refers to a state where

small perturbations result in the system moving away from the fixed point rather than
converging towards it. Our analysis revealed that the unstable fixed point acts as a
source, with trajectories diverging away from it in all directions, similar to the behavior
of a repeller. To assess the influence of the probability of cooperation on equilibria,
we performed a sensitivity analysis concerning the probability of cooperating.

Following our analysis of the stability of fixed points in the system, the fixed points
do not serve as attractors in this system. We thus shift our focus to the presence of
attractors. In a system of differential equations, an attractor is defined as a set of
states or trajectories that the system tends to converge towards over time, regard-
less of its initial conditions. At p = 0.25, we observe an attractor with coordinates
{xi , x j } = (1, 1). Similarly, at p = 0.50 and p = 0.75, we have attractors with coor-
dinates {xi , x j } = (1, 1) and {xi , x j } = (1, 1), respectively. At p = 1, we observe
{xi , x j } = (1, 1). The study found that the population dynamics system converges
towards an unstable attractor, regardless of the probability of encountering a coop-
erator. An unstable attractor attracts nearby trajectories, but slight perturbations can
cause trajectories to diverge. Assuming that there is a certain probability of muta-
tion towards cooperation occurring, the system eliminates competitors who return as
free-riders due to certain encounters with cooperators, driving the system towards a
transient full population density. However, guaranteed interaction with cooperators
incentivizes free-riding through the sucker’s payoff, and only mutation can restore
cooperation.

The basins of attraction are colored regions indicating the convergence of a strat-
egy frequency over time. They include lower stable frequencies shown in blue, higher
stable frequencies shown in red, and a gradient of colors in between representing
intermediate stable frequencies. Higher stable frequencies attract nearby strategy fre-
quencies over time and are resistant to invasion, while lower stable frequencies are
stable against small perturbations in the strategy frequencies. This difference between
the two is the frequency relative to the population average. Our study of the basins
of attraction confirms the aforementioned observation. Red regions favor cooperation
asymptotically. When the density of competitors is low, cooperation prevails. When
the density of cooperators is full, they turn into free-riders due to certain encoun-
ters with cooperators before mutating into cooperators. Blue regions appear along
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Fig. 4 A stream plot is produced to visualize the basins of attraction of the Price-wise Bayesian-
structured population replicator-mutator dynamics, represented by the derivative Ė(p), for a constant
transition rate (δ = 0.5). We consider four probability levels defining the likelihood of cooperation
(p = {0.25, 0.50, 0.75, 1}). The x-axes represent the differential equation of the time-varying fraction
of cooperators (ẋi ). The y-axes represent the differential equation governing the time evolution of the pro-
portion of competitors (ẋ j ). We observe unstable attractors in the system. At p = 0.25, {xi , x j } = (1, 1).
At p = 0.50, {xi , x j } = (1, 1). At p = 0.75, {xi , x j } = (1, 1). At p = 1, {xi , x j } = (1, 1) (Color figure
online)

the bisector, illustrating the continuous mutation towards cooperation driven by the
free-riding problem.

4.4 The Price Identity of Replicator-Mutator DynamicsWithin a
Bayesian-Structured Population

Figure 4 provides an overview of replicator-mutator dynamics within a structured
population structure. There is a high degree of similarity between this scenario and
the previous one.
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The stream plot of the basins of attraction in Price-wise structured population
replicator-mutator dynamics involves visualizing the direction of flow of the stream-
lines, which represent the frequency of various strategies’ evolution over time. The
basins of attraction reveal the stable steady-state frequencies of strategies within the
population.

We examined the stability of the system by analyzing its fixed points, assum-
ing a constant value of δ = 0.5 and a certain probability of mutation towards
cooperation. Using the Jacobian matrix, we determined the stability conditions
by solving the differential equations Ė(p) = {xi , x j }. The fixed points were

computed as x	
i = {0, −x j+5px j−5p2x j−5px3j+5p2x3j+10p2x100j −10p2x102j

5p(2x2j−3)(1−x99j +px99j )
} and x	

j =
{0, −xi+5pxi−5p2xi−5px3i +5p2x3i +10p2x100i −10p2x102i

5p(2x2i −3)(1−x99i +px99i )
}. Our analysis revealed the presence

of an unstable corner equilibrium, as the eigenvalues of the Jacobianmatrixwere found
to be positive.

In a system with an unstable fixed point, even small perturbations can cause the
system to move away from the point rather than converge towards it. In our case,
the unstable fixed point behaves like a source and produces a repeller-like behavior
where trajectories diverge in all directions away from the fixed point. To investigate the
impact of cooperation probability on equilibria, we conducted a sensitivity analysis
by varying the probability of cooperating.

Upon analyzing the stability of fixed points in the system, our next task was to
investigate the presence of attractors. An attractor is a set of states or trajectories to
which a system of differential equations converges over time, regardless of its initial
conditions. Although fixed points can also serve as attractors in a system, this is not
the case in our scenario. We observe an attractor at coordinates {xi , x j } = (1, 1)when
p = 0.25. Similarly, at p = 0.50 and p = 0.75, we find attractors at {xi , x j } = (1, 1).
When p = 1, the attractor is located at {xi , x j } = (1, 1).

The findings of the study indicate that the population dynamics system converges
towards an unstable attractor, regardless of the probability of encountering cooperators.
An unstable attractor is a point that attracts nearby trajectories but any slight perturba-
tion can cause them to diverge andmove away from it. Assuming thatmutation towards
cooperation is a certain event that will occur during the game, the system continuously
eliminates competitors who persist as free-riders due to their certain encounters with
cooperators, driving the system towards a transient full population density.When play-
ers are guaranteed to interact with cooperators, incentivizing free-riding behavior, only
mutation can prompt them to revert to cooperation. Interestingly, Bayesian updating
has no impact on population dynamics in the case of a certain mutation.

The basins of attraction, depicted as colored regions, represent the convergence
of a strategy frequency over time. These regions include lower stable frequencies
(blue), higher stable frequencies (red), and a gradient of colors in between represent-
ing intermediate stable frequencies. Higher stable frequencies attract nearby strategy
frequencies over time and are resistant to invasion, while lower stable frequencies are
stable against small perturbations in the strategy frequencies. The difference between
the two is the frequency relative to the population average. Our study of the basins of
attraction confirms that red regions favor cooperation asymptotically.When the density
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Fig. 5 A colormap is produced
to illustrate the levels of
transition rate δ that equate the
rates of change of Ė(λ, p) and
Ė(�, p). The x-axis represents
the payoff attained from
competing, π j ∈ [0, 10]. The
y-axis represents the payoff
from cooperating, πi ∈ [0, 10].
The z-axis illustrates the values

of δ = cov(π j ,p)
cov(πi−π j ,p)

. It is

noteworthy that δ has an upper
bound of 0.1 (Color figure
online)

of competitors is low, cooperation prevails. However, when the density of cooperators
is full, they turn into free-riders due to certain encounters with cooperators before
mutating back to cooperators. Blue regions appear along the bisector, illustrating the
continuous mutation towards cooperation driven by the free-riding problem. Further-
more, our study reveals that Bayesian updating has no effect on population dynamics
in the case of a certain mutation.

4.5 Unified Evolutionary Dynamics Through the Price Identity

We have conducted an additional analysis of the unified evolutionary dynamics in
relation to the Price identity. Our findings, as shown in Fig. 5, indicate that coupling
unstructured population replicator dynamics with Bayesian-structured population
replicator dynamics results in a distinct definition of the transition rate.17 The visual
representation in the figure provides clear evidence of a contradiction to the com-
monly observed patterns in evolutionary game theory, where players typically take into
account the payoffs or rewards associated with different strategic choices (Sandholm
2012).

The given results imply a relationship between the payoffs, the probability of
cooperating, and the selection differential between cooperators and competitors.
Specifically, the transition rate, which is the probability of a cooperator replacing
their neighbor in the birth-death process, is independent of the levels of payoffs
of either type of player and is always approximately 0.1. By replacing cov(π j , p)
with 0.1 · cov(πi − π j , p), we can derive that cov(π j , p) = 1

11cov(πi , p) and
cov(πi − π j , p) = 10

11cov(πi , p). This indicates that the covariance between the
probability of cooperating and the payoff from defecting is reduced to 1

11 of the covari-
ance between the probability of cooperating and the payoff from cooperating, while
the covariance between the selection differential and the probability of cooperating

17 The colorplan surface plot has been obtained on Python by defining ranges for πi , π j , and p using
NumPy functions, creating a meshgrid, calculating covariance and δ values, and then plotting the result
using matplotlib.pyplot functions.
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is increased to 10
11 of the covariance between the probability of cooperating and the

payoff from cooperating.
Based on the analysis conducted, it appears that the selection differential between

cooperators and competitors has a stronger influence on the probability of cooperation
compared to the difference in payoffs between cooperating and defecting. This find-
ing has important implications for our understanding of how cooperation evolves in
social dilemmas. Specifically, it suggests that the transition rate, which represents the
probability of a cooperator replacing its neighbor in the birth-death process, is more
dependent on the covariance between payoffs and the probability of cooperation rather
than the specific values of the payoffs themselves. This means that even small changes
in the probability of cooperation can have a significant impact on the evolution of
cooperation within the population.

Studying the covariance between payoffs and the probability of cooperation can
provide a useful framework for understanding the evolution of cooperation in social
dilemmas and developing interventions to promote cooperation. In various social and
economic settings, promoting cooperation is crucial, and a possible strategy to achieve
this is by examining the covariance between cooperation and selection. The relation-
ship between cooperation and selection is complex and can depend on many factors.
While cooperation can be favored by selection in some contexts (Traulsen and Nowak,
2006; Kurokawa, 2019; Madgwick and Wolf, 2020), it can also be subject to selective
pressures that can limit its evolution (Fehl et al., 2011; Powers et al., 2012; Waite et
al., 2015). Our results enable us to recognize scenarios in which cooperation is more
probable, regardless of the particular payoff levels. Such a perspective sheds new light
on Price’s equation, which was not initially intended for this purpose.

4.6 Sensitivity Analysis

Sensitivity analysis in a dynamic system refers to the study of how changes in the
input parameters of the system affect the output or the behavior of the system. It
involves examining how small perturbations or variations in the initial conditions or
model parameters impact the system’s response or stability. Sensitivity analysis can
help identify critical parameters that significantly influence the system’s behavior.

4.6.1 Different Values of the Cooperation Probability

Initially, we performed a sensitivity analysis by keeping the transition rate (δ = 0.5)
and reward coefficient (ε = 0.5) fixed. We then varied the values of p and examined
the equilibrium densities of cooperators (x	

i ), in the four evolutionary dynamics under
study. Each subfigure of Fig. 6 represents a different scenario.18

In the context of replicator dynamics, we observe that when the probability of
encountering a cooperator (p) falls within the range of [0.2, 0.8] and the density
of competitor strategies (x	

j ) approaches zero, the density of cooperators steadily

18 The Python code plots a 3D surface of a math function using the func(p,x) function, with p and x
values generated bynumpy.meshgrid. The imshow function from the matplotlib.pyplot library
creates the plot with color scheme set by cmap and a colorbar added using colorbar.
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Fig. 6 A colormap is produced to illustrate the equilibrium densities of cooperators (x	
i ) in the four evolu-

tionary dynamics under consideration, as represented by Ė(p), for a fixed transition rate (δ = 0.5) and a
constant reward coefficient (ε = 0.5). The x-axes correspond to the probability level defining the likelihood
of cooperation (p). The y-axes denote the equilibrium density of competitors (x	

j ) (Color figure online)

increases up to 0.6 in the unstructured population condition. However, in the Bayesian-
structured population scenario, the density of cooperators reaches full capacity. The
maximum density is achieved at approximately p = 0.4. This result may seem unex-
pected, as onewould anticipate full cooperation to emerge at high levels of p. However,
it is important to remember that in the presence of certainty of cooperation, free-riding
behavior is incentivized, leading to the corner equilibrium being the sole attractor. This
can result in the extinction of one or both populations.

In the replicator-mutator dynamics, it is noteworthy that x	
i = 1 is observed when

x	
j ≥ 0.80, regardless of the level of p. This observation may seem surprising, but

it once again underscores that the presence of a certain mutation towards coopera-
tion leads to a transient full density of cooperators generated by free-riders, which
ultimately return to defection before mutating to cooperators again. In contrast, it is
important to note that in the Bayesian-structured replicator-mutator dynamics, a full
density of cooperators is only encountered when p → 0 for a high density of com-
petitors, since a low probability of encountering a cooperator creates a weak incentive
to free-ride, leading to a full density of cooperation.
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Fig. 7 A colormap is produced to illustrate the equilibrium densities of cooperators (x	
i ) in the four evo-

lutionary dynamics under consideration, as represented by Ė(p), for a fixed probability of cooperation
(p = 0.5) and a constant reward coefficient (ε = 0.5). The x-axes correspond to the transition rate defin-
ing the local competition among different strategies (δ). The y-axes denote the equilibrium density of
competitors (x	

j ) (Color figure online)

4.6.2 Different Values of the Transition Rate

We then conducted a sensitivity analysis by fixing the probability of cooperation (p =
0.5) and the reward coefficient (ε = 0.5) and varying the values of δ. Subsequently,
we examined the equilibrium densities of cooperators (x	

i ) in the four evolutionary
dynamics under consideration. Each subfigure of Fig. 7 corresponds to a different
scenario.

The transition rate is a measure of the probability of transitioning from competition
to cooperation in a birth-death process. In the case of replicator dynamics with an
unstructured population, the equilibrium level of cooperation remains low regardless
of the transition rate. This indicates that the effect of the transition rate on the equi-
librium level of cooperation is minimal. The transition rate primarily reflects the local
competition between different strategies, indicating that neighbor selection has little
impact on the final outcome. In the Bayesian-structured population setting, a full den-
sity of cooperators is only observed for low levels of both δ and x	

j . The occurrence
of a cluster of cooperators is due to the high prevalence of cooperators with a low
neighbor replacement rate, leading to full cooperation.
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Fig. 8 A colormap is produced to illustrate the equilibrium densities of cooperators (x	
i ) in the four evo-

lutionary dynamics under consideration, as represented by Ė(p), for a constant probability of cooperation
(p = 0.5) and a fixed transition rate (δ = 0.5). The x-axes correspond to the coefficient of reward obtained
by engaging in cooperative behavior (ε). The y-axes denote the equilibrium density of competitors (x	

j )
(Color figure online)

In the replicator-mutator dynamics, an interesting observation is that x	
i = 1 is

only observed when x	
j ≥ 0.80 for δ ≤ 0.2. These results are further amplified in the

Bayesian-structured population setting, where full density of cooperators is observed
for a probability of cooperation up to 0.5. Such findings can be attributed to the
high density of competitors in combination with weak selection towards cooperation
among neighbors. Those factors ultimately lead to cooperation spreading throughout
the population due to the weak incentive to free-ride and the automatic mutation
towards cooperation in case of defection.

4.6.3 Different Values of the Reward Coefficient

At last, a sensitivity analysis was performed by keeping the probability of cooperation
(p = 0.5) and the transition rate (δ = 0.5) constant and varying the reward coefficient
(ε). The equilibrium densities of cooperators (x	

i ) were then analyzed in the four evo-
lutionary dynamics. Figure 8 presents the results of this analysis, with each subfigure
representing a different scenario.

In the case of the original replicator dynamics, where the population is well-mixed,
the level of reward does not affect the equilibrium level of cooperators. However, the

123



The Unification of Evolutionary Dynamics Through the… Page 33 of 42 69

Bayesian-structured population setting exhibits a full density of cooperators regardless
of the reward level, given that the density of competitors is low. This occurs because
the Bayesian decay factor influences the equilibrium density of cooperation through
the reward scheme. As the density of cooperators increases, the Bayesian decay factor
also increases, leading to an increase in the reward amplifying effect. This rise in the
reward coefficient reduces the incentives for free-riding and can result in a higher
equilibrium density of cooperation.

In the replicator-mutator dynamics, both in the unstructured and structured popu-
lation settings, full cooperation can only be achieved when the density of competitors
is close to one. This can be explained by the fact that, in the presence of a certain
mutation rate of competitors, the switch from the full density of cooperators to the full
density of competitors is guaranteed. However, in order for the full density of cooper-
ators to persist, a reward for cooperation must be present. Without such a reward, the
incentive to free-ride in the face of a cooperator is too strong and leads to cooperators
returning to defection.

5 Conclusion

The equivalence between replicator-mutator dynamics and the Price equation, which
was first highlighted by Page and Nowak (2002), is a fundamental concept in the field
of unified evolutionary dynamics. We use a modeling framework that demonstrates a
different equivalence. Specifically, we show that an aggregated version of the Price
formula can connect replicator dynamics and replicator-mutator dynamics by taking
into account the population structure. As in Dragicevic (2019b), our study represents
the second paper to successfully accomplish this objective. It extends previous findings
on the interlocking relationship between evolutionary dynamics. It was previously
mentioned that the scope of the unifying approach was restricted by a peculiar form
of decay factor that only considered the portion of homogeneous individuals in a
group that employed the opposite strategy (Dragicevic 2019a). This led us to ask
whether a different structuring of the population would lead to different conclusions,
and we found that the answer is both yes and no. On the one hand, the equivalence
obtained in our study is different from the reflective evolution and the joint selection
of competitors and cooperators. On the other hand, by choosing an appropriate decay
factor and imposing the certainty of mutation, we can once again achieve a balance
between mutation and selection, resulting in a straightforward relationship between
the two types of dynamics. Our results validate that this approach gives population-
wide cooperation a transient status, which is consistent with previous research (Perc
2016; Dragicevic 2019b). In summary, our study offers a unique viewpoint in the field
of evolutionary game theory, and we anticipate that our findings will pave the way for
further advancements in this area of research.

Bayes’ rule is a powerful tool for understanding the dynamics of social behavior
in various settings, including biological populations, social networks, and economic
systems. In evolutionary dynamics, Bayes’ rule is used to calculate the posterior frac-
tion of strategy players, which is represented as a function of the prior fraction of
players (Dragicevic 2015). By updating using Bayes’ rule, agents can incorporate
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new information into their comparisons of payoffs, which can in turn influence their
own strategic choices. This updating process can lead to the emergence of cooper-
ative behavior in structured populations, as agents become more likely to cooperate
on graphs when they encounter cooperators within a cluster. However, outside the
limits of a cluster of cooperators, encountering a cooperator can lead to free-riding
as a player relies on their counterpart to make a personal sacrifice for the sake of all.
Although the use of Bayes’ rule in evolutionary dynamics is a valuable tool, it raises
the question of what other decay factors could be considered. Our study has focused
on relatively simple spatially-structured populations, where individuals are located in
physical space and interact with their neighbors. However, in ecological communities,
multiple species interact with each other, often through complex networks of predator–
prey or mutualistic interactions. Modeling decay factors on such complex networks
is necessary to understand the population dynamics that arise and to determine how
well these models reflect real-world situations.

Hilbert (2017) demonstrated that cooperation outperforms selection when there is
complementary variety between different population types. Dragicevic (2019b) sug-
gested that the presence of both cooperators and competitors in the Price identity can
be seen as a complementary selection of different population types. This means that
cooperation and selection are not necessarily in contradiction. In our present work, the
selection is presented as the difference between the expected payoff of a model-player
and the average payoff within the population. This implies that the more successful
individuals within the population are more likely to be selected and reproduce, pass-
ing on their strategies to the next generation. We have obtained an equivalence that
is valid when the transition rate from competition to cooperation corresponds to the
relative strength of selection acting on either cooperation or competition relative to
the selection differential between competitors and cooperators. Put simply, this means
that the rate at which individuals switch from competing to cooperating is related
to how strongly selection is acting on either cooperative or competitive behaviors,
compared to the difference in success between cooperators and competitors. Utilizing
this model, researchers can enhance their comprehension of how these factors interact
and influence the development of populations throughout time. For instance, they can
employ simulations to investigate how a population may evolve given a specific level
of selection strength or relative payoff advantage, or how to overcome a low rate of
transition from competition to cooperation.

6 Appendix A

Proof of Proposition 1 We observe that

πi � π j

⇔ p (w(1 + ε) − c) + (1 − p) (w − c) � pw + (1 − p)w

⇔ pw(1 + ε) − pc + w − c − pw + pc � pw + w − pw

⇔ pwε − c � 0
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⇔ pεw � c.

��

7 Appendix B

Proof of Proposition 2 We observe that

πi � π j

⇔ p (w(1 + ε) − c) xN−1
i + (1 − p) (w − c) � pw + (1 − p)w

(
1 − xN−1

i

)
⇔ p(w(1 + ε) − c)xN−1

i + (1 − p)wxN−1
i � pw + (1 − p)w

−(1 − p)w + (1 − p)c

⇔ xN−1
i (p(w(1 + ε) − c) + (1 − p)w) � pw + (1 − p)c

⇔ xN−1
i � c + p(w − c)

w + p(εw − c
)

⇔ xi �
(

c + p(w − c)

w + p(εw − c
)

) 1
N−1

��

8 Appendix C

Proof of Proposition 3 Weanalyzed the stability conditions of the systemby examining
its fixed points,19 assuming δ = 0.5.20 To accomplish this, we utilized the Jaco-
bian matrix. We solved the system of differential equations Ė(p) = {xi , x j }, which
yielded the fixed point values x	

i = {0, −2+15p−15p2−10px j+10p2x j+30p2x99j −20p2x100j

20p(1−x99j +px99j )
}

and x	
j = {0, −2+15p−15p2−10pxi+10p2xi+30p2x99i −20p2x100i

20p(1−x99i +px99i )
}. Our analysis revealed that

the system possesses both a corner equilibrium and an interior equilibrium. However,
we found that all fixed points are classified as saddle points due to the eigenvalues of
the Jacobian matrix exhibiting opposite signs. At a saddle point, the system displays
both stable and unstable behavior in different directions, causing trajectories near the
point to either converge or diverge. It is worth noting that saddle points can lead to
complex and unpredictable system behavior.

19 An investigation of fixed points and attractors has been carried out using Python with the aid of
two tools: (1) fsolve from the scipy.optimize package and (2) the solve_ivp function from
the scipy.integrate module. The analysis was performed using the numpy library, which enabled
numerical calculations.
20 When the transition rate of switching from a competitor to a cooperation is 0.5 in a birth-death process
on networks, it indicates that the probability of a neighboring competitor being replaced by a cooperator is
equal to the probability of staying in the competition state. This lack of preference or bias towards either
state suggests that the system is equally likely to transition to either state.
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After analyzing the stability of fixed points in the system, we now turn our attention
to the presence of attractors. In a system of differential equations, an attractor is
a set of states or trajectories that the system tends to converge towards over time,
regardless of its initial conditions. Fixed points can also act as attractors in a system. At
p = 0.25, we observe an attractor with coordinates {xi , x j } = (0.38, 0.38). Similarly,
at p = 0.50 and p = 0.75, we have attractors with coordinates {xi , x j } = (0.3, 0.3)
and {xi , x j } = (0.13, 0.13), respectively. At p = 1, we observe {xi , x j } = (0, 0).

A noteworthy finding is that as the probability of encountering a cooperator
increases, the population dynamics system tends to converge towards the interior equi-
librium,which approaches zero as p approaches one. The system exhibits a bifurcation
around the system attractor point. However, when players are guaranteed to encounter
a cooperator, incentivizing free-riding behavior, only the corner equilibrium attracts
the system. This results in both populations of players competing against each other,
ultimately leading to the extinction of one or both populations. ��

9 Appendix D

Proof of Proposition 4 The stability conditions of the system were investigated
by analyzing its fixed points, while assuming a value of δ = 0.5. The
Jacobian matrix was utilized for this purpose. We solved the differential
equations Ė(p) = {xi , x j } and obtained the values of the fixed points

as x	
i = {0, −2x j+15px j−15p2x j−10px3j+10p2x3j+30p2x100j −20p2x102j

20px2j (1−x99j +px99j )
} and x	

j =
{0, −2xi+15pxi−15p2xi−10px3i +10p2x3i +30p2x100i −20p2x102i

20px2i (1−x99i +px99i )
}.Our analysis indicated that the

system possesses both a corner equilibrium and an interior equilibrium. Our analysis
indicates that, apart from the coordinates of the attractor, all other fixed points were
found to be saddle points, as evidenced by the opposite signs of the eigenvalues of the
Jacobian matrix. At a saddle point, the system exhibits both stable and unstable behav-
ior in different directions, leading to trajectories that either converge or diverge near
the point. It should be noted that saddle points can result in complex and unpredictable
system behavior.

Following our analysis of the stability of fixed points in the system,we now shift our
focus to the presence of attractors. In a system of differential equations, an attractor is
defined as a set of states or trajectories that the system tends to converge towards over
time, regardless of its initial conditions. Fixed points can also serve as attractors in a
system.At p = 0.25,we observe an attractorwith coordinates {xi , x j } = (0.62, 0.62).
Similarly, at p = 0.50 and p = 0.75, we have attractors with coordinates {xi , x j } =
(0.55, 0.55) and {xi , x j } = (0.37, 0.37), respectively.At p = 1,weobserve {xi , x j } =
(0.03, 0.03).

A key observation is that the population dynamics system typically approaches
the interior equilibrium in situations where there is uncertainty about encountering
a cooperator. The interior equilibrium approaches zero as p approaches one. The
system as a whole exhibits attraction towards a stable attractor point. Nevertheless,
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when players are guaranteed to interact with cooperators, thereby incentivizing free-
riding behavior, only the corner equilibrium attracts the system. This leads to both
player populations competing against each other, ultimately resulting in the extinction
of one or both populations. ��

10 Appendix E

Proof of Proposition 5 The stability conditions of the system were investigated by
analyzing its fixed points, while assuming a value of δ = 0.5. We recall that the
mutation is considered to occur for sure. The Jacobian matrix was utilized for this
purpose. We solved the differential equations Ė(p) = {xi , x j } and obtained the val-

ues of the fixed points as x	
i = {0, −x j+5px j−5p2x j−5px2j+5p2x2j+10p2x100j −10p2x101j

5p(2x j−3)(1−x99j +px99j )
}

and x	
j = {0, −xi+5pxi−5p2xi−5px2i +5p2x2i +10p2x100i −10p2x101i

5p(2xi−3)(1−x99i +px99i )
}. Our analysis indicated

that the system possesses an unstable corner equilibrium, for the eigenvalues of the
Jacobian matrix were positive. When a fixed point is unstable, it means that small
perturbations from the fixed point will cause the system to move away from the fixed
point rather than converge to it. In out case, the unstable fixed point is a source, such
that the system exhibits a behavior similar to that of a repeller: trajectories diverge
away from the fixed point in all directions.

Following our analysis of the stability of fixed points in the system,we now shift our
focus to the presence of attractors. In a system of differential equations, an attractor is
defined as a set of states or trajectories that the system tends to converge towards over
time, regardless of its initial conditions. In this system, the fixed points do not serve
as attractors. At p = 0.25, we observe an attractor with coordinates {xi , x j } = (1, 1).
Similarly, at p = 0.50 and p = 0.75, we have attractors with coordinates {xi , x j } =
(1, 1) and {xi , x j } = (1, 1), respectively. At p = 1, we observe {xi , x j } = (1, 1).

The finding of this study indicates that the population dynamics system tends to
converge towards an unstable attractor, regardless of the probability of encountering a
cooperator. An unstable attractor is a point in a dynamical system that attracts nearby
trajectories, but any slight perturbation to the system can cause the trajectories to
diverge and move away from it. Assuming a certain probability of mutation towards
cooperation during the game, the system continuously eliminates competitors who
keep returning as free-riders because they are certain to encounter cooperators, thus
driving the system towards a transient full population density. However, when players
are guaranteed to interact with cooperators, incentivizing free-riding behavior, only
mutation can bring them back to cooperation. ��

11 Appendix F

Proof of Proposition 6 The stability of the system was investigated by examining its
fixed points, while assuming a fixed value of δ = 0.5 and assuming that mutation
towards cooperation always occurs. The Jacobian matrix was utilized to determine the
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stability conditions. The differential equations Ė(p) = {xi , x j } were solved, and the

fixed pointswere obtained as x	
i = {0, −x j+5px j−5p2x j−5px3j+5p2x3j+10p2x100j −10p2x102j

5p(2x2j−3)(1−x99j +px99j )
}

and x	
j = {0, −xi+5pxi−5p2xi−5px3i +5p2x3i +10p2x100i −10p2x102i

5p(2x2i −3)(1−x99i +px99i )
}.Our analysis revealed the

presence of an unstable corner equilibrium, as the eigenvalues of the Jacobian matrix
were found to be positive. An unstable fixed point implies that small perturbations
from the fixed point will cause the system to move away from it instead of converging
towards it. In our case, the unstable fixed point is a source, resulting in a behavior
similar to that of a repeller, whereby trajectories diverge away from the fixed point in
all directions.

After analyzing the stability of the fixed points in the system, we proceed to inves-
tigate the presence of attractors. An attractor is a set of states or trajectories to which
a system of differential equations converges over time, regardless of its initial condi-
tions. Fixed points can also serve as attractors in a system, but such is not the case
in this particular instance. At p = 0.25, we observe an attractor located at the coor-
dinates {xi , x j } = (1, 1). Similarly, at p = 0.50 and p = 0.75, we find attractors
at {xi , x j } = (1, 1) and {xi , x j } = (1, 1), respectively. When p = 1, the attractor is
located at {xi , x j } = (1, 1).

The research finding suggests that the population dynamics system tends to con-
verge towards an unstable attractor, regardless of the probability of encountering a
cooperator. An unstable attractor is a point in a dynamical system that attracts nearby
trajectories, but any slight perturbation to the system may cause the trajectories to
diverge and move away from it. Assuming a certain probability of mutation toward
cooperation during the game, the system continuously eliminates competitors who
persist as free-riders due to their certain encounters with cooperators, driving the
system towards a transient full population density. When players are guaranteed to
interact with cooperators, which incentivizes free-riding behavior, only mutation can
prompt them to revert to cooperation. Interestingly, Bayesian updating has no effect
on population dynamics in the case of certain mutation. ��

12 Appendix G

Proof of Proposition 7 Through the combination of Eqs. (9) and (10), a general equal-
ity can be obtained. It is known that �i pxiπi = cov(πi , p) + π̄ p̄, where covariance
is given by the expression cov(πi , p) = �i pxiπi − π̄ p̄. The identification of all the
covariances that are implicit in the equation allows for the derivation of δ, which
is obtained through the solution of cov(πi , p)δ = cov(π j , p)(1 + δ) ⇔ δ =

cov(π j ,p)
cov(πi−π j ,p)

. In the context of the Price equation, the covariance term represents the
impact of natural selection on the alteration in the trait values. Selection is interpreted
as the difference between the expected payoff of a model-player and the average pay-
off within the population. It can be concluded that the equivalence holds when the
rate of transition from competition to cooperation corresponds to the relative strength
of selection exerted on competition in proportion to the selection differential between
the cooperators and competitors. ��
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13 Appendix H

Proof of Proposition 8 The combination of Eqs. (6) and (11) leads to a general equality.
Specifically, it is established that �i pxiπi = cov(πi , p) + π̄ p̄, where covariance is
expressed as cov(πi , p) = �i pxiπi − π̄ p̄. By identifying the implicit covariances
in the equation, we can solve for δ using cov(πi , p)(1 + δ) = cov(π j , p)δ ⇔ δ =

cov(πi ,p)
cov(π j−πi ,p)

. In the context of the Price equation, the covariance term indicates the
effect of natural selection on changes in trait values. Selection is represented as the dif-
ference between the expected payoff of a model-player and the average payoff within
the population. The equivalence is valid when the transition rate from competition
to cooperation corresponds to the relative strength of selection acting on cooperation
relative to the selection differential between competitors and cooperators. ��

14 Appendix I

Proof of Corollary 1 In order to determine the range of values for πi and π j that satisfy
x	
i = π j

π j−πi
∈ [0, 1], we must solve the inequalities 0 ≤ x	

i ≤ 1. Substituting the

expression for x	
i into the inequalities, we obtain 0 ≤ π j

π j−πi
≤ 1. If πi > π j , the

denominator is negative, and x	
i is undefined. Similarly, if πi = π j , the denominator

is zero, and x	
i is undefined. Therefore, we require πi < π j to ensure that x	

i ∈ [0, 1].
By combining these conditions, we can conclude that x	

i ∈ [0, 1] if and only if πi = 0.
In this case, x	

i = 1, which implies full density of cooperators. While a zero payoff
for cooperation might initially discourage cooperative behavior, the full density of
cooperators can still emerge under certain conditions in an evolutionary context. This
typically requires a sufficiently large population, the ability to adopt a mixed strategy
that includes cooperation, and the benefits of mutual cooperation outweighing the
costs of being exploited by defectors. This implies that w(1 + ε) − c = w − c. This
equation leads to the conclusion that the reward for cooperation is zero. Another way
to come to this result is by posing w(1 + ε) − c = 0 ⇔ ε = c−w

w
. Since ε cannot be

negative, it follows that w = c or ε = 0, which suggests that the benefits of mutual
cooperation outweigh the costs of being exploited by competitors.Given the conditions
described, cooperators are expected to form clusterswithin the networkwhere the need
for rewards is eliminated, as they will interact primarily with other cooperators, thus
avoiding exploitation. This phenomenon can only occur when the game is played on
a graph with a structured population. In light of the fact that x	

i = 1, we can infer that
the entire network can be viewed as a singular, vast cluster of cooperators. ��
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