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Abstract
Co-culture tumour spheroid experiments are routinely performed to investigate can-
cer progression and test anti-cancer therapies. Therefore, methods to quantitatively
characterise and interpret co-culture spheroid growth are of great interest. How-
ever, co-culture spheroid growth is complex. Multiple biological processes occur on
overlapping timescales and different cell types within the spheroid may have dif-
ferent characteristics, such as differing proliferation rates or responses to nutrient
availability. At present there is no standard, widely-accepted mathematical model of
such complex spatio-temporal growth processes. Typical approaches to analyse these
experiments focus on the late-time temporal evolution of spheroid size and overlook
early-time spheroid formation, spheroid structure and geometry. Here, using a range of
ordinary differential equation-based mathematical models and parameter estimation,
we interpret new co-culture experimental data. We provide new biological insights
about spheroid formation, growth, and structure. As part of this analysis we connect
Greenspan’s seminal mathematical model to co-culture data for the first time. Further-
more, we generalise a class of compartment-based spheroid mathematical models that
have previously been restricted to one population so they can be applied to multiple
populations. As special cases of the general model, we explore multiple natural two
population extensions to Greenspan’s seminal model and reveal biological mecha-
nisms that can describe the internal dynamics of growing co-culture spheroids and
those that cannot. This mathematical and statistical modelling-based framework is
well-suited to analyse spheroids grown with multiple different cell types and the new
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class of mathematical models provide opportunities for further mathematical and bio-
logical insights.

Keywords Population growth · Mathematical modelling · Parameter estimation ·
Profile likelihood analysis · Cancer

1 Introduction

Tumour spheroids are a key experimental tool to study avascular cancer progression
and to develop cancer therapies (Costa et al. 2016; Hirschhaeuser et al. 2010; Mehta
et al. 2012; Beaumont et al. 2014). Spheroids bridge the gap between two-dimensional
in vitro experiments and three-dimensional in vivo experiments. In comparison to
two-dimensional experiments, three-dimensional spheroid experiments can capture
realistic geometric limitations and spatial structure, such as those that arise due to dif-
ferences in oxygen partial pressure at the periphery and centre of growing spheroids
(Browning et al. 2021; Murphy et al. 2022b, 2023). Spheroid experiments can be
performed with a single cell type, referred to as a monoculture experiment, or per-
formed with a mixture of two or more cell types, referred to as a co-culture experiment.
Previously we have performed monoculture spheroid experiments and characterised
the temporal evolution of spheroid size and structure using mathematical modelling
and parameter estimation (Browning et al. 2021; Murphy et al. 2022b, 2023). These
studies are based on Greenspan’s seminal compartment-based mathematical model of
avascular tumour growth (Greenspan 1972). Greenspan’s model captures the growth
of a monoculture spheroid from an initial exponential growth phase, where each cell
within in the spheroid can proliferate, to a limiting structure and size where prolif-
eration at the periphery is thought to balance loss from the necrotic core (Browning
et al. 2021; Murphy et al. 2022b, 2023; Greenspan 1972). Furthermore, this model
is relatively simple and all mechanisms and parameters in the model are biologically
interpretable. This ordinary differential equation-based model is derived by coupling
conservation of volume arguments with algebraic constraints (Sect. 4, Supplementary
S5.1.1). Conservation of volume arguments incorporate biological mechanisms such
as cell proliferation and cell death. Constraints, obtained by considering nutrient and
waste mechanisms, define the boundaries of proliferating and necrotic regions. Using
this framework, we have shown that transient and limiting spheroid structure can be
independent of initial spheroid size (Browning et al. 2021). We have also quantita-
tively compared a number of experimental designs to identify design choices that
produce reliable biological insight and consistent parameter estimates (Murphy et al.
2022b). Experimental design choices in this current work are informed by that study.
Furthermore, we have revealed growth and adaptation mechanisms of spheroids to
time-dependent oxygen availability (Murphy et al. 2023). As part of this study we aim
to connect Greenspan’s monoculture model to co-culture data for the first time and
generalise Greenspan’s model to multiple populations for the first time.

In this study, we focus on more complicated co-culture tumour spheroid experi-
ments. These co-culture experiments are routinely performed to capture some of the
complexity of in situ tumours, in particular the growth and interactions of multiple
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cell types that may be cancerous or healthy (Tofilon et al. 1984; Paczkowski et al.
2021; Yakavets et al. 2020; Flach et al. 2011). These co-culture experiments are also
routinely performed for convenience when a cancer cell line does not form an approxi-
mately spherical structure without the addition of another cell type, such as fibroblasts
(Yakavets et al. 2020; Flach et al. 2011). We choose to perform experiments with
human melanoma cancer cell lines in co-culture with fibroblasts. Using melanoma
cell lines builds on our previous monoculture studies (Browning et al. 2021; Murphy
et al. 2022b, 2023; Haass et al. 2014) and using fibroblasts enhances spheroid forma-
tion and compactness. Each cell type within a co-culture spheroid may exhibit different
characteristics, for example different proliferation rates or different responses to nutri-
ent availability. Further, within each spheroid multiple biological processes occur on
overlapping timescales. Therefore, characterising and interpreting co-culture spheroid
growth is challenging. When taking a purely experimental approach quantitative dif-
ferences and similarities in co-culture spheroid growth, and the mechanisms giving
rise to these similarities and differences, are unclear. For example, how does the addi-
tion of fibroblasts influence the formation of melanoma spheroids and the structure of
growing spheroids? Furthermore, what are the biological mechanisms driving internal
dynamics of growing co-culture spheroids?

To address challenges interpreting spheroid formation and internal dynamics in
growing co-culture spheroids, we perform two experiments and interpret the data
using mathematical modelling and parameter estimation. Experiment 1 focuses on
two-dimensional brightfield images taken from above each spheroid (Fig. 1A). These
images capture spheroid formation and growth of overall spheroid size. We aim to
explore these new co-culture spheroid formation and growth data using an ordinary
differential equation-based biphasic mathematical model (Murphy et al. 2022a). Using
the biphasic model allows us to explore in vitro spheroid formation, where cells placed
in a well migrate and adhere over a timescale of days to form a compact solid mass.
These mechanisms are not captured in Greenspan’s model. Furthermore, this approach
extends traditional analysis of overall spheroid size that overlook formation (Gerlee
2013; Sarapata and de Pillis 2014; Browning and Simpson 2023). Taking an extremely
simple approach of approximating the early time growth as a straight line provides
additional insight into the proliferation rate. However, images from Experiment 1 do
not allow us to visualise the internal structure of growing spheroids.

Experiment 2 uses confocal microscopy to reveal the internal structure of grow-
ing co-culture spheroids, after the compact solid mass has formed (Fig. 1B). This
technique allows us to focus on the equatorial plane of each spheroid and generate
three-dimensional renderings of spheroid structure. Melanoma cells are transduced
with fluorescent ubiquitination-based cell cycle indicator (FUCCI) to visualise the
position and cell cycle status of each melanoma cell within the spheroid (Haass
et al. 2014; Sakaue-Sawano et al. 2008). Fibroblasts are stained with a cell tracker
to observe their position within the spheroid. To characterise and interpret the internal
dynamics of growing co-culture spheroids we aim to connect Greenspan’s mono-
culture mathematical model to co-culture data for the first time. It is unclear before
performing this analysis how much insight can be gained by connecting Greenspan’s
monoculture model to co-culture data. For example, can we identify differences in
parameter estimates between melanoma spheroids without fibroblasts and spheroids
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Fig. 1 Workflow for characterising co-culture tumour spheroid growth using mathematical modelling and
parameter estimation.AExperiment 1: Brightfield images of spheroid formation and overall size. Brightfield
images are taken from above each co-culture melanoma fibroblast spheroid (M50:F50) at days 0, 1/24, 1,
2, and 3 after seeding. Images from Experiment 1 are used to estimate the projected area covered by cells,
R(t). Data from Experiment 1 is interpreted with the biphasic model (Sect. 3.1) and linear model (Sect. 3.2).
B Experiment 2: Growth of spheroid structure and size. Confocal images of the equatorial plane of a co-
culture melanoma fibroblast spheroid (M25:F75) at days 2, 6, and 10 after seeding. Melanoma cells are
transduced with FUCCI and colours represent FUCCI signals observed in experimental images: cells in gap
1 (G1) phase fluoresce red, shown in magenta for clarity; and cells in synthesis, gap 2, and mitotic (S/G2/M)
phases fluoresce green shown in magenta and green. Fibroblasts are stained and shown in cyan. The internal
dynamics and overall size of growing co-culture spheroids are analysed using the monoculture Greenspan
model (Sect. 4.2) and a number of new co-culture models that are natural extensions of Greenspan’s model
(Sects. 4.3–4.6). Labelling of model corresponds to the sections in the manuscript where the model is
described (Color figure online)

in co-culture with fibroblasts? Furthermore, we aim to produce a generalised class of
monoculture compartment-based mathematical models to multiple populations for the
first time. In doing so we aim to extend Greenspan’s model and a number of related
compartment-based mathematical models to multiple populations. Therefore our work
can be considered to be a genersalisation of models described by Burton (1966), Deakin
(1975), McElwain and Ponzo (1977); McElwain and Morris (1978), Adam and col-
leagues (Adam 1986, 1987a, b; Adam and Maggelakis 1989, 1990; Maggelakis and
Adam 1990), Landry et al. (1982) as well as those presented by Byrne and Chap-
lain (1996, 1997) Using the general compartment-based model, we aim to efficiently
and systematically develop multiple natural extensions of Greenspan’s model to two
populations. Exploring these new co-culture models we aim to reveal biological mech-
anisms that can describe our new co-culture experimental data and those that cannot.
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Other mathematical models describing tumour spheroid growth are reviewed in Araujo
and McElwain (2004), Bull and Byrne (2022), Byrne (2010), Lowengrub et al. (2010).
For example, individual-based models that prescribe rules that govern the dynamics
of each cell (Bull et al. 2020; Klowss et al. 2022; Jagiella et al. 2016) or continuum
models in the form of partial differential equations (Ward and King 1997; Jin et al.
2021). However, these other models typically contain parameters that are challenging
to estimate using data collected in this study (Browning and Simpson 2023).

This study is structured as follows. Section 2 outlines key experimental meth-
ods. Section 3 details the biphasic and linear mathematical models used to interpret
data from Experiment 1 that focuses on spheroid formation and growth of overall
spheroid size. Section 4 presents the general compartment-based mathematical model
and multiple new two-population extensions of Greenspan’s model that allow us inter-
pret data from Experiment 2 that focuses on internal dynamics of growing co-culture
spheroids. Section 5 explains methods for parameter estimation and identifiability
analysis. Results and discussion, and the conclusion are presented in Sects. 6 and 7,
respectively. Supplementary material includes additional details of experimental meth-
ods; a summary of the experimental data; additional experimental images; additional
mathematical modelling details; numerical methods; and additional results.

2 Experimental Methods

We perform two co-culture experiments (Fig. 1). Experiment 1 focuses on two-
dimensional brightfield images taken from above each spheroid (Fig. 1A) and focuses
on spheroid formation and growth of overall spheroid size. Experiment 2 uses confocal
microscopy to reveal the size, internal structure, and geometry of growing co-culture
spheroids, after the compact solid mass has formed (Fig. 1B). Throughout we mix one
human melanoma cell line (WM983B or 1205Lu (Haass et al. 2014; Hsu et al. 2002;
Spoerri et al. 2017)) with human primary fibroblasts (QF1696 (Ainger et al. 2017)) at
four different initial compositions (M100:F0, M75:F25, M50:F50, M25:F75), where
Mx :Fy is the initial proportion, measured as a percentage, of melanoma cells x (%) and
fibroblasts y = 100−x (%). Both melanoma cell lines are transduced with fluorescent
ubiquitination-based cell cycle indicator (FUCCI) constructs that allow us to visualise
the cell-cycle status of each melanoma cell continuously throughout time without loss
of signal (Haass et al. 2014; Sakaue-Sawano et al. 2008). In experimental images from
Experiment 2 FUCCI-transduced melanoma cells in gap 1 (G1) phase fluoresce red,
shown in magenta for clarity; and FUCCI-transduced melanoma cells cells in synthe-
sis, gap 2, and mitotic (S/G2/M) phases fluoresce green shown in magenta and green.
Fibroblasts are stained and shown in cyan. For further details of experimental meth-
ods including cell culture; spheroid generation, culture, and experiments; imaging and
image processing, see Supplementary S1.
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3 Mathematical Models to Analyse Spheroid Formation and Size

In Experiment 1 we observe and measure spheroid formation and growth of overall
spheroid size, R(t), using brightfield images taken from above each spheroid. Here,
to analyse and interpret measurements of R(t) we consider two models: (i) a biphasic
model to explore formation and growth (Fig. 2A); and (ii) a linear model to approximate
early time growth dynamics after formation (Fig. 2B).

3.1 Biphasic Model for Spheroid Formation and Growth of Overall Size

We analyse three-dimensional spheroid formation using the biphasic model introduced
in Murphy et al. (2022a) (Fig. 2A). In the first phase, cells that are placed in the well
of a tissue culture plate migrate and adhere to form a compact solid mass (Fig. 1A).
The projected area covered by cells, as viewed from above, shrinks until the spheroid
forms, for example compare the yellow masks from 4 to 48 h in Fig. S1. In the second
phase, the spheroid grows as a three-dimensional compact mass. We describe each
phase using a logistic-type model with distinct parameters,

dR(t)

dt
=

⎧
⎪⎪⎨

⎪⎪⎩

r1R(t)

(

1 − R(t)

R1

)

, 0 ≤ t ≤ T ,

r2R(t)

(

1 − R(t)

R2

)

, t > T ,

(1)

where R(t) (µm) describes the equivalent radius of the projected area covered by cells
at time t , and T (days) is the formation time. In the second phase, t > T (days),
R(t) is equivalent to the radius of a compact spheroid at time t . Further, r1 (day−1) is
associated with the rate at which the spheroid forms; R1 (µm) is the limiting radius
of the spheroid in the first phase; r2 (day−1) is the growth rate of the spheroid as a
compact mass; and R2 (µm) is the long-time maximum spheroid radius. The initial
spheroid size, R(0) (µm), satisfies R(0) > R1 to observe shrinking in the first phase.
Hence, R(t) > R1 for 0 ≤ t ≤ T . In the second phase, t > T , R(t) → R2 as t → ∞.
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Fig. 2 Mathematical models to analyse spheroid formation and size.ABiphasic model to explore formation
and growth phases. B Linear model to approximate early time growth phase dynamics after formation. In
(A, B) blue dashed vertical corresponds to the time, T , when the spheroid formed as a compact solid mass
(Color figure online)
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This model is characterised by six parameters θ = (R(0), r1, r2,R1,R2, T ) that we
will estimate from our experimental data.

3.2 Linear Model for Growth of Overall Spheroid Size

In contrast to the biphasic model in Sect. 3.1 that can be used to describe spheroid
formation and growth, we now restrict our attention to growth after the spheroid has
formed. For spheroids that do not appear to reach a long-time maximum size during
the timescale of our experiments we simplify our analysis. We approximate early time
exponential growth dynamics in the second phase of the model presented in Eq. (1)
with a linear model (Fig. 2B, Supplementary S3.1), i.e. exp(λt) = 1 + λt +O((λt)2)

when λt is sufficiently small (Browning et al. 2017), to give

R(t) = R(T )(1 + λt). (2)

where R(t) (µm) is the radius of the spheroid at time t , R(T ) (µm) is the radius of the
spheroid at the end of formation that we treat as a constant parameter, and λ (day−1)
is the growth rate. This model is characterised by two parameters θ = (R(T ), λ) that
we will estimate from our experimental data.

4 Compartment-BasedMathematical Models to Analyse Internal
Dynamics of Growing Spheroids

In Experiment 2 we use confocal microscopy to capture the internal structure of grow-
ing co-culture spheroids after they have formed as a compact solid mass. This data
comprises of radial measurements of overall spheroid size, R(t), radial measure-
ments of the necrotic core, Rn(t), and images showing the spatiotemporal evolution
of melanoma cells and fibroblasts throughout the spheroid. Here, to interpret these
data we seek to use and extend Greenspan’s monoculture compartment-based model
(Greenspan 1972). To efficiently and systematically obtain multiple two population
extensions of Greenspan’s model, we derive a general compartment-based spheroid
model composed of I populations and J compartments. Greenspan’s seminal model
is then a special case (Supplementary S5.1).

We derive the general compartment-based spheroid model from conservation of
volume arguments subject to constraints that define the boundaries of the compart-
ments. We refer to these constraints as boundary constraints. Boundary constraints,
for example to define the size of proliferating region, may be prescribed (Browning
and Simpson 2023) or arise by considering additional biological mechanisms, for
example oxygen, nutrient, or waste mechanisms (Greenspan 1972). Conservation of
volume arguments can incorporate biological mechanisms such as cell proliferation,
cell death, and cell migration. In this framework, a population could refer to a cell
type, for example melanoma or fibroblasts, or the state of the cell, for example living
or dead. Here, when we refer to a population we intend the former, but the framework
is general and either interpretation can be considered.
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Fig. 3 Compartment-based mathematical models to analyse spheroid structure. A Simulation of the mono-
culture reduced Greenspan model (Sect. 4.2) that is comprised of two compartments at later times: a
proliferating region at the periphery and a necrotic core. B, C Oxygen diffuses within the spheroid and
is consumed by living cells which gives rise to gradient in the oxygen partial pressure within the spheroid.
Cells are assumed to die below an oxygen partial pressure threshold pn (%). D–I Four natural extensions
of the monoculture reduced Greenspan model to two populations: (i) Co-culture Model 1 (Sect. 4.3)—a
two-compartment co-culture model with heterogeneous proliferation rates shown in (D, E); (ii) Co-culture
Model 2 (Sect. 4.4)—a two-compartment co-culture model with heterogeneous loss rates from the necrotic
core shown in (D, F) (grey/black arrows indicate loss of necrotic matter from the necrotic core (black) from
melanoma and fibroblast cells in various stages of degradation); (iii) Co-culture Model 3 (Sect. 4.5)—a
three-compartment co-culture model with heterogeneous oxygen thresholds for cell death shown in (G, H);
and (iv) Co-culture Model 4 (Sect. 4.6)—a three-compartment co-culture model with heterogeneous oxy-
gen thresholds for cell death with additional cell migration (green/blue arrows for melanoma/fibroblasts,
respectively) shown in (G, I). In (G) Melanoma cells and fibroblasts are assumed to die below an oxy-
gen partial pressure thresholds pm (%) and pf (%), respectively. Two/three compartment models undergo
two/three growth phases. Note that (A) and (D) look similar as they are both represent models with two
compartments. Colours in (E–F) are described in Fig. 1 (Color figure online)
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To introduce our general model we first explore a reduced version of Greenspan’s
monoculture model (Fig. 3A–C). We choose to focus on this two compartment model,
comprising of a proliferating region at the periphery and a necrotic core, since we
have measurements of R(t) and Rn(t) and so that the multiple population extensions
are simpler to interpret. Furthermore, this model is relatively simple and all mecha-
nisms and parameters are biologically interpretable. This monoculture model has three
parameters associated with cell proliferation rate, loss from the necrotic core, and an
oxygen threshold for cell death that corresponds to the formation of the necrotic core.
As the model is restricted to one population this model cannot be used to describe the
internal dynamics of multiple populations within the spheroid.

To explore mechanisms that could describe the internal dynamics of multiple
populations within growing spheroids, we consider four natural extensions on the
monoculture reduced Greenspan model. Each extension is developed by general-
ising one of the monoculture model parameters. The models are as follows: (i) a
two-compartment co-culture model with heterogeneous proliferation rates (Fig. 3D,
E); (ii) a two-compartment co-culture model with heterogeneous loss rates from the
necrotic core (Fig. 3D, F); (iii) a three-compartment co-culture model with hetero-
geneous oxygen thresholds for cell death (Fig. 3G, H); and (iv) a three-compartment
co-culture model with heterogeneous oxygen thresholds for cell death with additional
cell migration (Fig. 3G, I).

4.1 General Model with I Populations and J Compartments

We assume that the tumour spheroid is a compact mass maintained by surface tension
or cell-cell adhesion, however the details of such mechanisms are not explicitly mod-
elled nor crucial to model description (Greenspan 1972). We further assume that each
compartment within the tumour spheroid is spherically symmetric, populations are
well-mixed within each compartment, and all compartments are concentric. In Fig. 4
we present a schematic of the general model with I populations and J compartments.
In Table 1 we present model variables and descriptions. Compartment j denotes the
region R j (t) < r < R j−1(t) for j = 1, 2, . . . , J − 1 and compartment J denotes
the region 0 < r < RJ−1(t). Boundary constraints, for example to define the size
of proliferating region, may be prescribed (Browning and Simpson 2023) or arise by
considering additional biological mechanisms, for example oxygen, nutrient, or waste
mechanisms (Greenspan 1972).

A general conservation of volume statement for I populations and J compartments,
subject to boundary constraints (Eqs. 3f), is shown in Eqs. 3a–3e. Equation (3a) incor-
porates sources, sinks, reactions, and/or migration. Equation (3a) also incorporates
transfer terms that arise due to internal boundary movement and ensure conservation
of volume. To interpret these transfer terms consider an illustrative example with a
Greenspan-type model. Assume that at time t the spheroid is composed of two com-
partments: a necrotic core in 0 ≤ r ≤ Rn(t), and a region Rn(t) < r ≤ R(t) where
cells are living and proliferating. Further, assume that over a time of duration �t
the spheroid increases in volume due to proliferation at the periphery exceeding loss
from the necrotic core, i.e. R(t) < R(t + �t), and due to a boundary constraint that
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Fig. 4 Schematic for general compartment-based tumour spheroid model with I populations and J com-
partments. The direction of arrows representing gi for i = 1, . . . , J − 1 corresponds to the direction in a
growing spheroid where dR j (t)/dt > 0 for j = 0, 1, . . . , J − 1

Table 1 General compartment-based model variables and descriptions

Variable Description

r Radial position (independent variable)

t Time (independent variable)

V ( j)
i (t) Volume of population i in compartment j at time t for i = 1, 2, . . . , I and

j = 1, 2, . . . , J

V ( j)(t) Total volume of compartment j for j = 1, 2, . . . , J

V (t) Total volume of the spheroid

R0(t) Outer radius of the spheroid, i.e. R0(t) = R(t)

R j (t) Boundary between internal compartments j and j + 1 for
j = 1, 2, . . . , J − 1

g( j)(R(t); p) Transfer terms at R j (t) for j = 1, 2, . . . , J − 1

g( j)
i (R(t); p) Proportion of transfer term for population i for i = 1, 2, . . . , I and

j = 1, 2, . . . , J − 1

f
V ( j)
i

(R(t); p) Model specific sources, sinks, reactions, and/or migration for
i = 1, 2, . . . , I and j = 1, 2, . . . , J

f j (R(t); p) Model specific boundary constraints for j = 1, 2, . . . , J − 1

arises from oxygen diffusion and consumption mechanisms Rn(t) < Rn(t + �t). In
this situation, transfer terms capture cells in the region Rn(t) < r < Rn(t + �t)
transferring from a compartment representing living cells at time t to a different com-
partment representing necrotic cells at time t + �t . Note that internal compartments
change drastically in size while overall spheroid size can remain approximately con-
stant, for example in experiments with time-dependent oxygen availability (Murphy
et al. 2022a). In general, as we assume a well-mixed population we set the transfer
term for population i across the boundary R j (t) to be proportional to the volume frac-

tion of population i in compartment j , i.e. we set g( j)
i (R(t); p) = V ( j)

i (t)/V ( j)(t)

123



Formation and Growth of Co-culture Tumour Spheroids… Page 11 of 34 8

for i = 1, 2, . . . , I and j = 1, 2, . . . , J − 1. This choice of g( j)
i (R(t); p) satisfies

Eq (3b) which ensures that the total transfer of volume across the boundary R j (t) is

g( j)(t). Further, enforcing that each g( j)
i (R(t); p) is non-negative in Eq. (3b) ensures

that transfer of volume across R j (t) is in the same direction for all populations.

dV ( j)
i (t)

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
V ( j)
i

(R(t); p)
︸ ︷︷ ︸

source, sink, reaction, migration

− g( j)(R(t); p)
︸ ︷︷ ︸

transfer due to
internal boundaries

g( j)
i (R(t); p),

︸ ︷︷ ︸
proportion∈[0,1]

j = 1, i = 1, 2, . . . , I ,

f
V ( j)
i

(R(t); p) + g( j−1)(R(t); p)g( j−1)
i (R(t); p)

−g( j)(R(t); p)g( j)
i (R(t); p), j = 2, . . . , J − 1, i = 1, 2, . . . , I ,

f
V ( j)
i

(R(t); p) + g( j−1)(R(t); p)g( j−1)
i (R(t); p), j = J , i = 1, 2, . . . , I ,

(3a)

I∑

i=1

g( j)
i (t) = 1, j = 1, 2, . . . , J , with g( j)

i (t) ≥ 0, for i = 1, 2, . . . , I , j = 1, 2, . . . , J − 1, (3b)

V ( j)(t) =
I∑

i=1

V ( j)
i (t), j = 1, 2, . . . , J , (3c)

V (t) =
J∑

j=1

V ( j)(t), (3d)

V ( j)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

4π

3

(
R j−1(t)3 − R j (t)3

)
, j = 1, 2, . . . , J − 1,

4π

3
R j (t)3, j = J ,

(3e)

R j (t) = f j (R(t); p) ,
︸ ︷︷ ︸

boundary constraint

j = 1, 2, . . . .J − 1. (3f)

Equation (3c) ensures there are no voids in each compartment by stating that the total
volume of a compartment is equal to the sum of the volume of each cell population
in that compartment. Equation (3d) ensures there are no voids in the spheroid by
stating that the total volume of the spheroid is equal to sum of the volumes of each
compartment that make up the spheroid. Equation (3e) enforces the assumption of
spherical symmetry for each compartment within the spheroid making use of the fact
that the volume of a sphere of radius r is 4πr3/3.

To solve Eq (3a)-(3f) we prescribe the following functions: (i) f
V ( j)
i

(R(t); p) for

i = 1, 2, . . . , I and j = 1, 2, . . . , J that describe sources, sinks, reactions, and/or
migration; and (ii) f j (R(t); p) for j = 1, 2, . . . , J − 1 that describe boundary con-
straints. These prescribed functions depend on R(t) and a vector of model parameters,
p, that are also to be prescribed. Equations (3a), (3c)–(3f) form a system of I J + 3J
equations for I J + 3J unknowns (V ( j)

i (t) for i = 1, 2, . . . , I and j = 1, 2, . . . , J ;
g( j)(t) for j = 1, 2, . . . , J − 1; V ( j)(t) for j = 1, 2, . . . , J ; V (t); and R j for
j = 0, 1, 2, . . . , J − 1).

It is useful to reformulate Eqs. (3a)–(3f) to obtain expressions for the temporal
evolution of overall spheroid size (Eq. 4b) and to obtain expressions for the transfer
terms (Eq. 4c). To obtain these expressions we simplify Eqs. (3a)–(3f) from a system
of I J+3J to the following system of I J+2J−1 equations for I J+2J−1 unknowns
(V ( j)

i (t) for i = 1, 2, . . . , I and j = 1, 2, . . . , J ; g( j)(t) for j = 1, 2, . . . , J − 1; and
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R j (t) for j = 0, 1, 2, . . . , J − 1) (see Supplementary S3.2 for further details).

dV ( j)
i (t)

dt
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f
V ( j)
i

(R(t); p) − g( j)(R(t); p)g( j)
i (R(t); p), j = 1, i = 1, 2, . . . , I ,

f
V ( j)
i

(R(t); p) + g( j−1)(R(t); p)g( j−1)
i (R(t); p)

−g( j)(R(t); p)g( j)
i (R(t); p), j = 2, . . . , J − 1, i = 1, 2, . . . , I ,

f
V ( j)
i

(R(t); p) + g( j−1)(R(t); p)g( j−1)
i (R(t); p), j = J ,

(4a)

dR0(t)

dt
= 1

4πR0(t)2

J∑

j=1

I∑

i=1

f
V ( j)
i

(R(t); p) , (4b)

g( j)(R(t); p) =
⎛

⎝
j∑

k=1

I∑

i=1

f
V (k)
i

(R(t); p)
⎞

⎠ − 4π
dR0(t)

dt

(

R0(t)
2 − R j (t)

2 dR j (t)

dR0(t)

)

, j = 1, 2, . . . , J − 1, (4c)

R j (t) = f j (R(t); p) ,
︸ ︷︷ ︸

boundary constraint

j = 1, 2, . . . .J − 1, (4d)

where it is assumed that an expression for dR j (t)/dR0(t) in terms of R0(t) for j =
1, 2, . . . , J −1 can be derived from the prescribed functions in Eq. (4d). We then solve
Eqs. (4a)–(4d) numerically (Supplementary S4). Given V ( j)

i (t) for i = 1, 2, . . . , I and
j = 1, 2, . . . , J from the solution of Eq. (4) we obtain V ( j)(t) for j = 1, 2, . . . , J
and V (t) using Eqs. (3c)–(3d), respectively. Motivated by our new experimental data,
we will now describe four simplifications of our general model so that it applies to
our particular experimental conditions.

4.2 Monoculture Reduced GreenspanModel

The monoculture reduced Greenspan model considers one population and two com-
partments (I = 1, J = 2), captures key characteristics of Greenspan’s model, and
describes growth with two phases (Fig. 3A–C). In phase (i) all cells within the spheroid
can proliferate and the spheroid grows exponentially. In phase (ii) the spheroid is com-
posed of two compartments: compartment one which is a proliferating region at the
periphery, R1(t) < r < R(t), and compartment two which is the necrotic core,
0 ≤ r ≤ R1(t). At later times proliferation at the periphery balances mass loss from
the necrotic core resulting in a limiting spheroid structure (Browning et al. 2021;
Murphy et al. 2022b, 2023; Greenspan 1972). For consistency with the literature we
write R1(t) as Rn(t) and R0(t) as R(t) (Murphy et al. 2022b, 2023; Greenspan 1972).
We define Rn(t) through a boundary constraint obtained by considering additional
biological mechanisms, specifically oxygen diffusion within the spheroid and oxygen
consumption by living cells (detailed in Supplementary S3.3) (Murphy et al. 2023).

We assume that in the proliferating region the rate at which cell volume is produced
by mitosis per unit volume of living cells is s (day−1). In the necrotic region we assume
that the rate at which cell volume is lost from the necrotic core per unit volume of
necrotic material is 3sγ (day−1) where γ (–) is a dimensionless parameter and the
three is included for mathematical convenience and consistency with the literature
(Greenspan 1972). Therefore, we prescribe the following functions,

f
V (1)

1
(R(t); p) = sV (1)

1 (t) = s
4π

3

(
R(t)3 − Rn(t)

3
)

(5a)
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f
V (2)

1
(R(t); p) = −3sγ V (2)

1 (t) = −3sγ
4π

3
Rn(t)

3 (5b)

Substituting the prescribed functions (Eqs. 5 and S.14) into general model Eqs. (4a–
4d) gives equations for the temporal evolution of the volume of living cells at the
periphery (Eq. 6a), the temporal evolution of the volume of the necrotic core (Eq. 6b),
the temporal evolution of overall spheroid size (Eq. 6c), an equation for the rate
of transfer of living cells to the necrotic core (Eq. 6d), and the algebraic boundary
constraint that arises from oxygen diffusion and consumption mechanisms (Eq (6e))

dV (1)
1 (t)

dt
= s

4π

3

(
R(t)3 − Rn(t)3

)
− g(1)(R(t); p), (6a)

dV (2)
1 (t)

dt
= −3sγ

4π

3
Rn(t)3 + g(1)(R(t); p), (6b)

dR(t)

dt
= 1

R(t)2

( s

3

(
R(t)3 − Rn(t)3

)
− sγ Rn(t)3

)
, (6c)

g(1)(R(t); p) = s
4π

3

(
R(t)3 − Rn(t)3

)
− 3sγ

4π

3
Rn(t)3 − 4π

dR(t)

dt

(

R(t)2 − Rn(t)2 dRn(t)

dR(t)

)

, (6d)

0 =

⎧
⎪⎨

⎪⎩

Rn(t) − 0, R(t) ≤ R,

−R2 + R(t)2 − Rn(t)2 − 2Rn(t)2

R(t)
(R(t) − Rn(t)) , R(t) > R.

(6e)

where R is the radius of the spheroid when the necrotic first forms and is associated
with the oxygen threshold pn (%) below which cells die (Fig. 3C, Supplementary
S3.3).

In general Eqs. (4a–4d) are coupled and must be solved simultaneously to obtain
R(t) and Rn(t). Here, for the special case of this monoculture model, Eqs. (6c) and (6e)
can be solved for R(t) and Rn(t) independently of Eqs. (6a), (6b), and (6d). Solving
only Eqs. (6c) and (6e) is the standard formulation of a monoculture compartment-
based Greenspan-type model. Therefore, for consistency with the literature we present
the final model as only Eqs. (6c) and (6e)

R(t)2 dR(t)

dt
= s

3

(
R(t)3 − Rn(t)

3
)

− sγ Rn(t)
3, (7a)

0 =
⎧
⎨

⎩

Rn(t) − 0, R(t) ≤ R,

−R2 + R(t)2 − Rn(t)
2 − 2Rn(t)

R(t)
(R(t) − Rn(t)) , R(t) > R,

(7b)

where s (day−1) is the rate at which cell volume is produced by mitosis per unit volume
of living cells; γ (–) is a dimensionless parameter associated with loss of mass from
the necrotic core; R (µm) is radius of the spheroid when the necrotic region forms
associated with the oxygen partial pressure threshold pn (%); R(T ) (µm) is the initial
radius of the spheroid at formation that we treat as a constant parameter; and we set
Rn(T ) = 0 based on experimental observations. This model is characterised by four
parameters θ = (R(T ), s, γ,R) that we will estimate from our experimental data.
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4.3 Co-culture Model 1: Heterogeneous Proliferation Rates

Here we extend the monoculture reduced Greenspan model presented in Sect. 4.2 by
generalising the rate at which cell volume is produced by mitosis per unit volume of
living cells, s (day−1), to be two potentially distinct parameters (Fig. 3D, E). This
results in a model with two populations and two compartments (I = 2, J = 2).
We let population one and two represent melanoma and fibroblast cells, respectively.
Accordingly we update the notation and let sm (day−1) and sf (day−1) corresponding
to the rates at which cell volume is produced by mitosis per unit volume of living cells
for melanoma cells and fibroblasts, respectively (Fig. 3E). We assume that the rate at
which cell volume is lost from the necrotic core per unit volume of necrotic material
is 3smγ (day−1). All other model assumptions and mechanisms are unchanged. The
prescribed functions for Co-culture Model 1 are

f
V (1)

1
(R(t); p) = smV (1)(t)

V (1)
1 (t)

V (1)(t)
= sm

4π

3

(
R(t)3 − Rn(t)

3
) V (1)

1 (t)

V (1)
1 (t) + V (1)

2 (t)
, (8a)

f
V (1)

2
(R(t); p) = sfV

(1)(t)
V (1)

2 (t)

V (1)(t)
= sf

4π

3

(
R(t)3 − Rn(t)

3
) V (1)

2 (t)

V (1)
1 (t) + V (1)

2 (t)
, (8b)

f
V (2)

1
(R(t); p) = −3smγ V (2)(t)

V (2)
1 (t)

V (2)(t)
= −3smγ

4π

3
Rn(t)

3 V (2)
2 (t)

V (2)
1 (t) + V (2)

2 (t)
, (8c)

f
V (2)

2
(R(t); p) = −3smγ V (2)(t)

V (2)
2 (t)

V (2)(t)
= −3smγ

4π

3
Rn(t)

3 V (2)
2 (t)

V (2)
1 (t) + V (2)

2 (t)
, (8d)

0 =
⎧
⎨

⎩

Rn(t) − 0, R(t) ≤ R,

−R2 + R(t)2 − Rn(t)
2 − 2Rn(t)2

R(t)
(R(t) − Rn(t)) , R(t) > R.

(8e)

Substituting Eqs. (8a)–(8e) into Eqs. (4a)–(4d) gives equations for the temporal
evolution the volume occupied by each population in each compartment (Eqs. S.15.1–
S.15.4), the temporal evolution of overall spheroid size (Eq. S15.5), and an equation
for the rate of transfer of living cells to the necrotic core (Eq. S.15.6).

We solve the system of Eqs. (S.15.1)–(S.15.6) with Eqs. (8e) and (S.16) numer-
ically. Equation (S.16) governs the time evolution of dRn(t)/dR(t), obtained by
differentiating Eq. (8e) with respect to R(t). To specify initial conditions we intro-
duce Vm(T ) = V1(T ) as the volume of melanoma cells at spheroid formation,
t = T , and treat this as a parameter. The volume of fibroblast cells at t = T is
then V2(T ) = Vf(T ) = 4πR(T )3/3 − Vm(T ). This model is characterised by six
parameters θ = (R(T ), Vm(T ), sm, sf , γ,R).

4.4 Co-culture Model 2: Heterogeneous Loss Rates

Here we extend the monoculture reduced Greenspan model presented in Sect. 4.2
by generalising the dimensionless parameter γ associated with rate at which mass
is lost from the necrotic core to be two potentially distinct parameters (Fig. 3D, F).
This results in a model with two populations and two compartments (I = 2, J = 2).
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We let population one and two represent melanoma and fibroblast cells, respectively.
We assume that the rate at which cell volume is lost from the necrotic core per unit
volume of necrotic material is 3sγm (day−1) for melanoma cells and is 3sγ f (day−1)
for fibroblasts. All other model assumptions and mechanisms are unchanged. The
prescribed functions for Co-culture Model 2 are

f
V (1)

1
(R(t); p) = sV (1)(t)

V (1)
1 (t)

V (1)(t)
= s

4π

3

(
R(t)3 − Rn(t)

3) V (1)
1 (t)

V (1)
1 (t) + V (1)

2 (t)
, (9a)

f
V (1)

2
(R(t); p) = sV (1)(t)

V (1)
2 (t)

V (1)(t)
= s

4π

3

(
R(t)3 − Rn(t)

3) V (1)
2 (t)

V (1)
1 (t) + V (1)

2 (t)
, (9b)

f
V (2)

1
(R(t); p) = −3sγmV (2)(t)

V (2)
1 (t)

V (2)(t)
= −3sγm

4π

3
Rn(t)

3 V (2)
2 (t)

V (2)
1 (t) + V (2)

2 (t)
, (9c)

f
V (2)

2
(R(t); p) = −3sγfV

(2)(t)
V (2)

2 (t)

V (2)(t)
= −3sγf

4π

3
Rn(t)

3 V (2)
2 (t)

V (2)
1 (t) + V (2)

2 (t)
, (9d)

0 =
⎧
⎨

⎩

Rn(t) − 0, R(t) ≤ R,

−R2 + R(t)2 − Rn(t)
2 − 2Rn(t)2

R(t)
(R(t) − Rn(t)) , R(t) > R.

(9e)

Substituting Eqs. (9a)–(9e) into Eqs. (4a)–(4d) gives equations for the tempo-
ral evolution of the volume occupied by each population in each compartment
(Eqs. S.17.1–S.17.4), the temporal evolution of overall spheroid size (Eq. S.17.5),
and an equation for the rate of transfer of living cells to the necrotic core (Eq. S.17.6).
We solve the system of Eqs. (S.17.1)–(S.17.6) with Eqs. (9a) and (S.16) numerically.
This model is characterised by six parameters θ = (R(T ), Vm(T ), s, γm, γf ,R).

4.5 Co-culture Model 3: Heterogeneous Cell Death Oxygen Thresholds

Here we extend the monoculture reduced Greenspan model (Sect. 4.2) by generalising
the single oxygen partial pressure threshold pn (%) to two potentially distinct param-
eters pm (%) and pf (%) (Fig. 3G, H). The new parameters pm and pf correspond
to the oxygen partial pressure below which melanoma (population 1) and fibroblast
(population 2) cells die, respectively (Fig. 3G). We assume pf ≥ pm with the aim
of reproducing experimental observations with regards to the position of fibroblasts
within the spheroid. Generalising pn corresponds to generalising the parameter R
(Eq S.13) to two potentially distinct parameters Rm (µm) and Rf (µm). The new
parameters Rm and Rf depend on pm and pf , respectively.

The resulting model describes two populations with three compartments (I = 2,
J = 3). In phase (i) all cells proliferate and the spheroid grows exponentially. In
phase (ii), in Rf(t) ≤ r ≤ R(t) melanoma cells and fibroblasts proliferate and in
0 ≤ r ≤ Rf(t) melanoma cells proliferate and fibroblasts are necrotic. In phase (iii),
in compartment one, Rf(t) ≤ r ≤ R(t), melanoma cells and fibroblasts proliferate; in
compartment two, Rm(t) ≤ r ≤ Rf(t), melanoma cells proliferate while in fibroblasts
are necrotic; and in compartment three, 0 ≤ r ≤ Rm(t), melanoma and fibroblast
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cells are necrotic. We define Rm(t) and Rf(t) through boundary constraints obtained
by considering diffusion of oxygen within the spheroid, consumption of oxygen by
living cells, and the oxygen thresholds pm and pf below which melanoma cells and
fibroblasts undergo necrosis, respectively (Fig. 3G). Further details on these boundary
constraints are presented in Supplementary S3.6. All other model assumptions and
mechanisms are unchanged. The prescribed functions for Co-culture Model 3 are

f
V (1)

1
(R(t); p) = sV (1)(t)

V (1)
1 (t)

V (1)(t)
= s

4π

3

(
R(t)3 − Rf (t)

3) V (1)
1 (t)

V (1)
1 (t) + V (1)

2 (t)
, (10a)

f
V (1)

2
(R(t); p) = sV (1)(t)

V (1)
2 (t)

V (1)(t)
= s

4π

3

(
R(t)3 − Rf (t)

3) V (1)
2 (t)

V (1)
1 (t) + V (1)

2 (t)
, (10b)

f
V (2)

1
(R(t); p) = sV (2)(t)

V (2)
1 (t)

V (2)(t)
= s

4π

3

(
Rf (t)

3 − Rm(t)3) V (2)
1 (t)

V (2)
1 (t) + V (2)

2 (t)
, (10c)

f
V (2)

2
(R(t); p) = −3sγ V (2)(t)

V (2)
2 (t)

V (2)(t)
= −3sγ

4π

3

(
Rf(t)

3 − Rm(t)3) V (2)
2 (t)

V (2)
1 (t) + V (2)

2 (t)
,

(10d)

f
V (3)

1
(R(t); p) = −3sγ V (3)(t)

V (3)
1 (t)

V (3)(t)
= −3sγ

4π

3
Rm(t)3 V (3)

1 (t)

V (3)
1 (t) + V (3)

2 (t)
, (10e)

f
V (3)

2
(R(t); p) = −3sγ V (3)(t)

V (3)
2 (t)

V (3)(t)
= −3sγ

4π

3
Rm(t)3 V (3)

2 (t)

V (3)
1 (t) + V (3)

2 (t)
. (10f)

Substituting Eqs. (10a)–(10f) into Eqs. (4a)–(4d), and using the boundary con-
straint obtained by considering diffusion and consumption of oxygen, leads to a
systems of differential equations and algebraic constraints that we solve numeri-
cally (Supplementary S3.6). This model is characterised by six parameters θ =
(R(T ), Vm(T ), s, γ,Rm,Rf).

4.6 Co-culture Model 4: Heterogeneous Cell Death Oxygen Thresholds and
Additional Cell Migration

To capture experimental results where fibroblasts are positioned throughout the
spheroid at early times but are only observed in the central region of the spheroid
at later times we extend Co-culture Model 3 (Sect. 4.5). We now include an addi-
tional cell migration mechanism that we denote h(R(t); p) ≥ 0 (Fig. 3G, I). There
are many biological reasons why this migration could occur and this model does not
rule in or out any possibility. In general, we assume h(R(t); p) is known either from
a modelling assumption or by considering additional biological mechanisms. Here,
we assume that population 1 (melanoma) cells in region 2 migrate to region 1 while
the same volume of population 2 (fibroblast) cells in region 1 migrate to region 2.
Then we prescribe h(R(t); p) in Eq (11g) by taking a simple approach and assuming
that h(R(t); p) depends on the volume of population 2 (fibroblasts) cells in region
2, the volume of population 1 (melanoma) cells in region 1, and a new parameter ω.
Therefore, h(R(t); p) = 0 if V (1)

1 (t) = 0 or V (2)
2 (t) = 0. Alternative choices could

be considered. Note that reversing the direction of this additional cell migration, by
setting h(R(t); p) < 0, means that there is no mechanism for fibroblasts initially at
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the periphery to be lost from the periphery. Since we do not observe fibroblasts at the
periphery at later times, we do not consider h(R(t); p) < 0. The prescribed functions
for Co-culture Model 4 for h(R(t); p) ≥ 0 are

f (1)
V1

(R(t); p) = 4π

3
s
(
R(t)3 − Rf (t)

3
) V (1)

1 (t)

V (1)
1 (t) + V (1)

2 (t)
+ h(R(t); p),

︸ ︷︷ ︸
additional migration

(11a)

f (1)
V2

(R(t); p) = 4π

3
s
(
R(t)3 − Rf (t)

3
) V (1)

2 (t)

V (1)
1 (t) + V (1)

2 (t)
− h(R(t); p),

︸ ︷︷ ︸
additional migration

(11b)

f (2)
V1

(R(t); p) = 4π

3
s
(
Rf (t)

3 − Rm(t)3
) V (2)

1 (t)

V (2)
1 (t) + V (2)

2 (t)
− h(R(t); p),

︸ ︷︷ ︸
additional migration

(11c)

f (2)
V2

(R(t); p) = − 4π

3
3sγ

(
Rf (t)

3 − Rm(t)3
) V (2)

2 (t)

V (2)
1 (t) + V (2)

2 (t)
+ h(R(t); p),

︸ ︷︷ ︸
additional migration

(11d)

f (3)
V1

(R(t); p) = − 4π

3
3sγ Rm(t)3 V (3)

1 (t)

V (3)
1 (t) + V (3)

2 (t)
, (11e)

f (3)
V2

(R(t); p) = − 4π

3
3sγ Rm(t)3 V (3)

2 (t)

V (3)
1 (t) + V (3)

2 (t)
, (11f)

h(R(t); p) = ω
4π

3

(
R(t)3 − Rf(t)

3
) V (1)

2 (t)

V (1)
1 (t) + V (1)

2 (t)
︸ ︷︷ ︸

volume of fibroblasts in Rf(t)<r<R(t)

· 4π

3

(
Rf(t)

3 − Rm(t)3
) V (2)

1 (t)

V (2)
1 (t) + V (2)

2 (t)
︸ ︷︷ ︸

volume of melanoma cells in Rm(t)<r<Rf(t)

.

(11g)

Substituting Eqs. (11a)–(11g) into Eqs. (4a)–(4d), and using the boundary con-
straint obtained by considering diffusion and consumption of oxygen, leads to a
systems of differential equations and algebraic constraints that we solve numeri-
cally (Supplementary S3.6). This model is characterised by seven parameters θ =
(R(T ), Vm(T ), s, γ,Rm,Rf , ω).

5 Parameter Estimation and Identifiability Analysis

For each deterministic ordinary differential equation-based mathematical model
shown in Sects. 3–4 we assess if the model parameters are practically identifiable,
perform parameter estimation, and form approximate confidence intervals for model
parameters using profile likelihood analysis (Murphy et al. 2022a, b; Pawitan 2001;
Simpson et al. 2020; Simpson and Maclaren 2023; Murphy et al. 2023). Practical
identifiability assesses how well a parameter can be identified given a finite set of
noisy experimental data. This is in contrast to structural identifiability studies that are
more concerned with model structure and assess whether parameters can be uniquely
identified given a set of continuous noise-free observations (Raue et al. 2009). For
this purpose we assume that experimental measurements are noisy observations of
the deterministic mathematical model. Therefore, we couple each deterministic math-

123



8 Page 18 of 34 R. J. Murphy et al.

ematical model with a probabilistic observation model, also referred to as an error
model. The probabilistic observation model accounts for experimental variability and
measurement error. We assume that observation errors are independent, identically
distributed, additive and normally distributed with zero mean and constant variance
σ 2. We estimate σ alongside other model parameters. For the biphasic model (Eq. 1)
and linear model (Eq. 2) experimental measurements comprise of estimates of the
radius of each spheroid, R(t). For the compartment-based models in Sect. 4 experi-
mental measurements comprise of estimates of the radius of each spheroid, R(t), and
the necrotic core of each spheroid, Rn(t).

For this approach we use the log-likelihood function 	(θ | yo
1:J ) = ∑J

j=1 log[φ(yo
j ;

y j (θ), σ 2(θ))], where φ(x;μ, σ 2) denotes a Gaussian probability density function
with mean μ and constant variance σ 2; θ denotes model parameters; and yo

j denotes

the j th experimental observation. For a best-fit to the data we compute the maximum
likelihood estimate (MLE), θ̂ = argmaxθ 	(θ | yo

1:J ), subject to bound constraints.

Results are reported in terms of the normalised log-likelihood function, 	̂(θ | yo
1:J ) =

	(θ | yo
1:J ) − supθ 	(θ | yo). Note 	̂(θ̂ | yo

1:J ) = 0. To compute profile likelihoods we
assume that the full parameter θ can be partitioned into θ = (ψ, λ), where ψ is a scalar
interest parameter and λ is a vector nuisance parameter. The profile likelihood for ψ

is 	̂p(ψ | yo) = supλ	(ψ, λ | yo
1:J ). Bounds are chosen to ensure that approximate

95% confidence intervals, defined using a profile likelihood threshold value of −1.92
(Royston 2007), are captured. Mathematical models are solved numerically using the
open-source DifferentialEquations package in Julia (Supplementary S4).
Numerical optimisations are performed using the Nelder-Mead routine in the open-
source NLopt optimisation package in Julia (Johnson 2022), for further detail see
(Murphy et al. 2022a).

6 Results and Discussion

Here we analyse spheroid formation, geometry, and growth of overall size and struc-
ture in co-culture experiments. We seek to provide mechanistic insight by analysing
experimental measurements of R(t) and Rn(t) within objective mathematical and
statistical modelling framework presented in Sects. 3–5.

6.1 Spheroid Formation and Geometry

Spheroid experiments are routinely performed to characterise cancer growth and
fibroblasts are commonly included in cancer cell line experiments to enhance spheroid
formation and structure. To understand this approach, compare the size and densities
of 1205Lu monoculture (M100:F0) spheroids and monoculture fibroblast (M0:F100)
spheroids (Fig. 5A). In both conditions cells initially placed in the well migrate and
adhere. The M0:F100 spheroid forms a compact, dense, and approximately spherical
structure by approximately 48 h. In contrast, the M100:F0 spheroid does not (Fig. 5B).
Experimental images for intermediate conditions, namely M75:F25, M50:F50, and
M25:F75, show that fibroblasts enhance formation (Fig. 5A, C). We are interested
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Fig. 5 Spheroid formation analysis. Results shown for co-culture spheroids formed with the 1205Lu cell
line and fibroblasts. A Brightfield experimental images captured from above each spheroid at 0, 1, 6, 24,
48, and 72 (h). B, C 3D rendering from confocal microscopy z-stack images at 72 h for B M100:F0 and C
M50:F50 spheroids. The spheroid in (B) is relatively flat while it is reasonable to approximate the spheroid
in (C) as spherical. Scale in (B, C) is microns. Colour represents a cell nuclear stain (DAPI) for melanoma
cells and fibroblasts. D Temporal evolution of measurements of spheroid size, R(t) (µm). Results shown for
sixteen spheroids for the M100:F0 condition, eight spheroids for the M75:F25 and M25:F75 conditions and
seven spheroids for the M50:F50 and M0:F100 conditions. Error bars represent standard deviation about
the mean at each time point. E Profile likelihoods for formation time, T (days), with approximate 95%
confidence interval threshold (horizontal black-dashed). Throughout M100:F0 (blue), M75:F25 (orange),
M50:F50 (green), M25:F75 (magenta), and M0:F100 (yellow) (Color figure online)

in the contribution of fibroblasts to melanoma spheroids so we do not consider the
M0:F100 condition in the remainder of the study.

We now explore the quantitative impact of fibroblasts on melanoma spheroid for-
mation time, T (days), using the biphasic model (Sect. 3.1) and profile likelihood
analysis (Sect. 5) to interpret the experimental measurements of spheroid size, R(t)
(Fig. 5D). For each condition, profile likelihoods for T are well-formed and relatively
narrow about a single central peak suggesting T is practically identifiable. Three out
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Table 2 Estimates of spheroid
formation time, T (days) for
1205Lu co-culture spheroids

Condition Formation time, T (days)

M100:F0 1.94 (1.87, 2.12)

M75:F25 1.95 (1.86, 2.12)

M50:F50 1.89 (1.69, 2.01)

M25:F75 2.54 (2.38, 2.73)

Results show MLE and 95% approximate confidence intervals obtained
from the profile likelihoods presented in Fig. 5E. We consider four
conditions that correspond to the initial proportions of melanoma cells
and fibroblasts at seeding

of the four profiles appear to be consistent suggesting that spheroid formation time
relative to the experimental duration is not drastically altered across the conditions
(Fig. 5E, Table 2). It is not clear if the profile for M25:F75 is different for a biolog-
ically meaningful reason or due to experimental noise (Fig. 5E). In Supplementary
S5.2 we show that, for each condition, experimental data are accurately described by
simulating the biphasic mathematical model with the MLE and that the other param-
eters in the biphasic mathematical model are practically identifiable. In the remainder
of this study we focus on the growth of WM983B co-culture spheroids because they
form dense, compact, and approximately spherical spheroids across all conditions
(M100:F0, M75:F25, M50:F50, M25:F75).

6.2 Temporal Evolution of Spheroid Size

The temporal evolution of spheroid size, R(t), is approximately linear in all conditions
(Fig. 6B). Therefore, we analyse the data using a linear model (Eq. 2). Profile likeli-
hoods suggest that R(3) and λ are practically identifiable since the univariate profiles
are each well-formed around a single peak (Fig. 6C, D). Profile likelihoods for R(3)

capture that spheroids seeded with a greater proportion of melanoma cells initially
form larger spheroids (Fig. 6C, Table 3). Profile likelihoods for λ suggest the growth
rates are relatively consistent across conditions (Fig. 6D, Table 3). Previous mono-
culture results suggest that increasing the experimental duration results in sigmoidal
growth (Browning et al. 2021; Murphy et al. 2022a, b).

6.3 Temporal Evolution of Spheroid Size and Structure

Here we explore the role of fibroblasts play in influencing the size and structure of
the co-culture spheroids. We analyse confocal microscopy images of each spheroid’s
equatorial plane, measure R(t) and Rn(t), and interpret these data using a series of
mathematical models, parameter estimation, and profile likelihood analysis.

To identify living and proliferating regions within each spheroid we use FUCCI
signals. For M100:F0 spheroids, on days 2 and 3 magenta and green FUCCI signals
are present throughout the spheroid indicating all cells are living and proliferating
(Fig. 7A). From day 6 onwards the large central region without FUCCI signals indi-
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Fig. 6 Temporal evolution of spheroid structure. Results shown for co-culture spheroid experiments formed
with the WM983B cell line and fibroblasts. A Brightfield experimental images captured from above each
spheroid. Exemplar image masks shown in Fig. S1.BTemporal evolution of overall spheroid size R(t) (µm).
Results shown for 15, 7, 8, 7, and 12 spheroids for the M100:F0, M25:F75, M50:F50, M25:F75, and M0:F100
conditions. C Profile likelihoods for initial spheroid size, R(3) (µm). D Profile likelihoods for growth rate,
λ (day−1). In (C, D) approximate 95% confidence interval threshold shown with horizontal black-dashed
line. Throughout conditions are M100:F0 (blue), M75:F25 (orange), M50:F50 (green), M25:F75 (magenta),
and M0:F100 (yellow) (Color figure online)

cates a necrotic core, previously confirmed by both confocal microscopy and flow
cytometry using cell death markers (Murphy et al. 2022b; Haass et al. 2014; Spoerri
et al. 2021a, b). Outside of the necrotic core FUCCI signals indicate a proliferating
region at the periphery (predominately green) and an intermediate region of living
cells that are proliferation-inhibited (predominately magenta). We observe similar
behaviour, albeit the necrotic core forms later, for M75:F25, M50:F50, and M25:F75
spheroids (Fig. 7). Using standard image processing techniques we measure R(t) and
Rn(t) (Fig. 8A–D, Supplementary S1 and S2.2). We focus on R(t) and Rn(t) to present
results in terms of typical measurements and this means that we group together the
proliferating and proliferation-inhibited regions (Murphy et al. 2022b).

Seeking to characterise co-culture spheroid growth, we again turn to mathemat-
ical modelling and profile likelihood analysis. We consider a reduced version of
Greenspan’s mathematical model (Greenspan 1972), introduced by Burton (1966),
and focus on the temporal evolution of R(t) and Rn(t) (Sect. 4.2). This model is
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Table 3 Estimates of linear model parameters for WM983B co-culture spheroids

Condition Initial radius, R(3) (µm) Growth rate, λ (day−1)

M100:F0 181.69 (181.64, 181.82) 0.0913 (0.0909, 0.0920)

M75:F25 174.47 (174.26, 174.80) 0.0878 (0.0866, 0.0891)

M50:F50 172.46 (172.28, 172.70) 0.0776 (0.0765, 0.0786)

M25:F75 158.38 (157.76, 158.66) 0.0796 (0.0780, 0.0812)

Parameters reported include the initial spheroid radius, R(3) (µm), and the growth rate, λ (day−1), obtained
from the profile likelihoods presented in Fig. 6C,D, respectively. Results show MLE and 95% approximate
confidence intervals
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Fig. 7 Spatio-temporal evolution of tumour spheroid structure. Confocal microscopy images of each
spheroid’s equatorial plane for A M100:F0, B M75:F25, C M50:F50, and D M25:F75 spheroids. Results
shown for the WM983B melanoma cell line. FUCCI signals are shown with magenta and green. Presence
of FUCCI signal indicates living cells whereas large regions at the centre of spheroids that lack FUCCI
signals indicate a necrotic core. Fibroblasts are not shown so that it is easier to visualise the necrotic core
and overall size (Color figure online)
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relatively simple. Further, all mechanisms and parameters in the model are biologi-
cally interpretable. This is a great advantage over more complicated models where the
biological meaning of parameters and mechanisms is not always clear. Note that this
mathematical model assumes a monoculture spheroid whereas the experimental data
comprise of measurements of co-culture spheroids. We take this approach deliberately.
This approach allows us to explore whether estimates of parameters that characterise
growth vary across experimental conditions.

For each experimental condition, the monoculture model simulated with the MLE
agrees with measurements of R(t) and Rn(t) (Fig. 8A–D). Profile likelihoods suggest
that all model parameters are practically identifiable since the univariate profiles are
each well-formed around a single peak (Fig. 8E–I, Table 4). The profile for R(2)

(µm) suggests the experimental condition influences the initial size of each spheroid
(Fig. 8E, Table 4). Profiles for the proliferation rate per unit volume of living cells, s
(day−1), the dimensionless parameter related to the loss rate from the necrotic core,
γ (–), and size of the spheroid when the necrotic region forms, R (µm), appear to
be consistent across all conditions (Fig. 8F, G, H, Table 4). Profiles for the standard
deviation (Fig. 8I, Table 4) capture variability in the experimental data (Fig. 8A–D).
These powerful quantitative insights suggest that growth characteristics are similar
across conditions. Spheroid structure, assessed by measuring the necrotic fraction,
Rn(t)/R(t) (–), also appears to be consistent across conditions (Fig. 8J). However,
these results do not take into account the internal dynamics of the two populations
within the growing spheroid.

Thus far we have examined the experimental images using FUCCI signals to identify
regions of living melanoma cells, that are proliferating or proliferation-inhibited, and
necrotic matter. Here, we re-examine these experimental images and include the signal
from the fibroblast marker (Fig. 9, Supplementary S2.2). Focusing on the M75:F25,
M50:F50, and M25:F75 spheroids, fibroblasts are present throughout each spheroid on
days 2 and 3 (Fig. 9B–D). At later times we only observe fibroblasts close to the centre
of the spheroid. Therefore, assumptions that the two cell types are well mixed within
compartments appears reasonable. The biological mechanisms driving the changing
position of the fibroblasts within the spheroid are unclear. Seeking further insights
we again turn to mathematical modelling and systematically extend the monoculture
reduced Greenspan model.

We systematically extend the monoculture model by introducing heterogeneity
independently and in turn for the proliferation rate s, the loss rate γ , and the cell death
oxygen thresholds via R. This results in four new co-culture models: (i) heterogeneity
in s (Sect. 4.3); (ii) heterogeneity in γ (Sect. 4.4); (iii) heterogeneity in R (Sect. 4.5);
and (iv) heterogeneity in R and an additional cell migration mechanism (Sect. 4.6).
Parameter values are chosen to capture, where possible, loss of fibroblasts from the
periphery and chosen so that model simulations agree with measurements of R(t) and
Rn(t) from the M50:F50 condition. Specifically, we simulated each model at a local
estimate of the MLE, where the initial estimate of the MLE for the MLE search was
chosen based on good qualitative agreement between the solution of the mathematical
model and the data. Results for the M75:F25 and M25:F75 conditions are similar to
those discussed in the following.
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Fig. 8 Temporal evolution of spheroid size and structure analysed using the reduced Greenspan mathemat-
ical model. A–D Comparison of experimental data and mathematical model simulated with the maximum
likelihood estimate for: A M100:F0; B M75:F25; C M50:F50; D M25:F75 spheroids. In (A–D) experimen-
tal measurements of spheroid radius, R(t) (µm), and necrotic radius, Rn(t) (µm), shown as green and black
circles, respectively. (E-H) Profile likelihoods for E R(T ) (µm); F s (day−1); G γ (–); H R (µm), and I
σ (µm). In E–I approximate 95% confidence interval threshold shown with horizontal black-dashed line.
J Measurements of the necrotic fraction, Rn(t)/R(t) (–), against spheroid radius, R(t) (µm). Throughout
conditions are M100:F0 (blue), M75:F25 (orange), M50:F50 (green), and M25:F75 (magenta) (Color figure
online)

123



Formation and Growth of Co-culture Tumour Spheroids… Page 25 of 34 8

Ta
bl
e
4

E
st

im
at

es
of

m
on

oc
ul

tu
re

re
du

ce
d

G
re

en
sp

an
m

od
el

pa
ra

m
et

er
s

fo
r

W
M

98
3B

co
-c

ul
tu

re
sp

he
ro

id
s

C
on

di
tio

n
R
(2

)
(µ

m
)

s
(d

ay
−1

)
γ

(–
)

R
(µ

m
)

σ
(µ

m
)

M
10

0:
F0

20
1.

2
(1

97
.7

,2
05

.1
)

0.
24

7
(0

.2
26

,0
.2

67
)

2.
00

(1
.6

9,
2.

31
)

22
4.

6
(2

20
.6

,2
28

.5
)

7.
5

(5
.7

,7
.8

)

M
75

:F
25

18
1.

5
(1

75
.3

,1
87

.9
)

0.
25

0
(0

.2
18

,0
.2

83
)

2.
36

(1
.5

9,
3.

13
)

22
3.

6
(2

16
.9

,2
30

.2
)

12
.5

(1
0.

3,
14

.0
)

M
50

:F
50

17
5.

5
(1

68
.5

,1
82

.4
)

0.
23

4
(0

.2
02

,0
.2

67
)

3.
50

(2
.0

9,
4.

95
)

23
1.

4
(2

25
.6

,2
37

.2
)

12
.2

(1
0.

5,
14

.4
)

M
25

:F
75

15
9.

6
(1

55
.5

,1
63

.4
)

0.
21

2
(0

.1
92

,0
.2

31
)

1.
94

(0
.6

8,
3.

07
)

21
1.

6
(2

08
.4

,2
14

.9
)

9.
1

(7
.2

,9
.8

)

Pa
ra

m
et

er
s

re
po

rt
ed

in
cl

ud
e
R
(2

)
(µ

m
),
s

(d
ay

−1
),

γ
(–

),
R

(µ
m

),
an

d
σ

(µ
m

).
R

es
ul

ts
sh

ow
M

L
E

an
d

95
%

ap
pr

ox
im

at
e

co
nfi

de
nc

e
in

te
rv

al
s

123



8 Page 26 of 34 R. J. Murphy et al.

M
10

0:
F0

M
75

:F
25

M
50

:F
50

Day 3 Day 6 Day 8 Day 10Day 2
M

25
:F

75

(A)

(B)

(C)

(D)

400 μm

Fig. 9 Spatio-temporal evolution of tumour spheroid structure including fibroblast marker. Confocal
microscopy images of each spheroid’s equatorial plane for A M100:F0, B M75:F25, C M50:F50, and
D M25:F75 spheroids. These are same spheroids as shown in Fig. 7 now with the fibroblast marker shown
in cyan. The fibroblast marker stains the entire cell whereas the FUCCI signal is only present at the cell
nucleus (Color figure online)

In Co-culture Model 1 (Sect. 4.3) we assume that melanoma cells and fibroblasts
proliferate at different rates per unit volume, sm (day−1) and sf (day−1), respectively
(Fig. 3D, E). Simulating Model 1 with sm > sf we can capture the temporal evolution
of measurements of R(t) and Rn(t) (Fig. 10A). For greater insight, we analyse the
temporal evolution of the volume of melanoma cells and fibroblasts within each com-
partment j = 1, 2 of the spheroid, denoted V ( j)

m (t) and V ( j)
f (t), respectively. Here

compartment one represents the periphery, Rn(t) < r < R(t), and compartment two
represents the necrotic core, 0 < r < Rn(t). For each compartment the melanoma
fraction is φ

( j)
m (t) = V ( j)

m (t)/[V ( j)
m (t) + V ( j)

f (t)]. Since φ
(1)
m (t) → 1 as t → ∞, Co-

culture Model 1 captures the loss of fibroblasts from the periphery (Fig. 10B). Further,
since φ

(2)
m (t) → 1 as t → ∞, Co-culture Model 1 suggests that the necrotic core will

eventually be composed only of matter from necrotic melanoma cells (Fig. 10B). This
is a useful insight. In experimental images we are unable to quantify the proportion
of necrotic matter that is from melanoma cells and fibroblasts due to loss of signal
during necrosis.
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In Co-culture Model 2 (Sect. 4.4), we assume that the rate at which mass in the
necrotic core degrades and is lost from the spheroid depends on whether the necrotic
matter is from melanoma cells or fibroblasts (Fig. 3D, F). This is associated with
two parameters γm (–) and γf (–). Simulating Co-culture Model 2 we can capture the
temporal evolution of measurements of R(t) and Rn(t) but we cannot capture the loss
of fibroblasts at the periphery (Fig. 10C, D).

In Co-culture Models 3 (Sect. 4.5) and 4 (Sect. 4.6), we generalise the single oxygen
partial pressure threshold, pn (%), with two thresholds, pf ≥ pm (%), corresponding
to the oxygen partial pressure below which fibroblasts and melanoma cells die, respec-
tively (Fig. 3G). These two thresholds define Rf(t) and Rm(t), respectively, that satisfy
Rf(t) ≥ Rm(t) (Fig. 3G), and two parameters (Rf , Rm). This gives rise to a model
with three compartments (Fig. 3H). Here we assume that measurements of the necrotic
core correspond to measurements of Rm(t) that is defined by pm. This is because we
measure the size of the necrotic region using FUCCI signals from melanoma cells.
Similarly to Co-culture Model 2, with Co-culture Model 3 we can capture the temporal
evolution of measurements of R(t) and Rm(t) (Fig. 10E) but cannot capture the loss
of fibroblasts at the periphery (Fig. 10F).

Introducing additional cell migration into Co-culture Model 3 gives Co-culture
Model 4. We assume that living fibroblasts at the periphery, Rf(t) ≤ r ≤ R(t),
migrate towards the centre of the spheroid, Rm(t) ≤ r ≤ Rf(t), while the same
volume of melanoma cells migrate in the opposite direction (Fig. 3I). This can give
rise to transient dynamics where the proportion of fibroblasts at the core increases
followed by long-term loss of fibroblasts throughout the spheroid (Fig. 10G, H). There
are many biological reasons why this migration could occur and this model does not
rule in or out any possibility. Experimental observations for co-culture spheroids with
the 1205Lu cell line suggest that fibroblasts can form the core of spheroids at earlier
times (Supplementary S5.4).

7 Conclusion

In this study we develop a general mathematical and statistical framework to charac-
terise and interpret co-culture spheroid formation and growth. We perform co-culture
spheroid experiments and find that introducing fibroblasts allows a cancer cell line to
generate spheroids with approximately spherical structures that would not be possi-
ble otherwise. Using our mathematical and statistical modelling framework we then
quantify spheroid formation time and estimate key parameters that characterise growth.
We find that incorporating fibroblasts has limited impact on formation time, spheroid
growth and structure. There are many possible reasons for these results. For example it
could be that there are limited interactions, or cross-talk, between the melanoma cells
and fibroblasts. As part of this analysis we quantitatively directly connect a version
Greenspan’s seminal model for monoculture spheroids to co-culture spheroid data for
the first time. We choose to use a monoculture model to describe co-culture data delib-
erately. This approach suggests that parameter estimates and growth characteristics are
consistent between WM983b melanoma spheroids without fibroblasts and melanoma
spheroids in co-culture with fibroblasts at initial percentages ranging from 25 to 75%.
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Fig. 10 Spatio-temporal evolution of spheroid structure analysed using multiple co-culture reduced
Greenspan models. A, C, E, G Simulations of A Co-culture Model 1, C Co-culture Model 2, E Co-
culture Model 3, G Co-culture Model 4 show the temporal evolution of spheroid size R(t) (green). For
Co-culture Models 1 and 2 we present the size of necrotic core Rn(t) (black). For Co-culture Models 3 and
4 we present Rf (t) (blue) and Rm(t) (black). Experimental measurements of R(t) and necrotic core from
M50:F50 spheroids are shown as green and black circles, respectively. B, D, F, H Temporal evolution of

melanoma fraction φ
( j)
m (t) = V ( j)

m (t)/[V ( j)
m (t) + V ( j)

f (t)] for regions j = 1 (green), 2 (black dashed) in
Co-culture Models 1 and 2, and j = 1 (green), 2 (black dashed), 3 (blue) in Models 3 and 4. Parameter
values and short descriptions are listed in Table 5 (Color figure online)
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However, the internal dynamics of growing spheroids can be more complicated and
these dynamics should be taken into account when designing experiments and inter-
preting measurements obtained from those experiments. By extending Greenspan’s
model and a general class of monoculture compartment-based mathematical models
to multiple populations, we reveal biological mechanisms that can describe the internal
dynamics of co-culture spheroids and those that cannot.

Our mathematical and statistical modelling framework can be applied to different
cell types and to spheroids grown in different conditions. Here we choose to perform
experiments with melanoma cells and fibroblasts. This builds on our previous mono-
culture melanoma spheroid studies (Browning et al. 2021; Murphy et al. 2022a, b;
Haass et al. 2014). Our results are consistent with analysis of two-dimensional exper-
iments which suggest that fibroblasts have a limited impact on co-culture melanoma
spreading and invasion (Haridas et al. 2017). However, we note that other spheroid
studies suggest fibroblasts contribute to melanoma spheroid growth (Flach et al. 2011).
Interesting future work would be to explore these differences. Such differences could
arise due to many reasons, for example choice of cell line, fibroblasts, and experimen-
tal conditions. Further, the framework is well-suited to diagnose cross-talk in other
co-culture experiments.

In our WM983B co-culture experiments fibroblasts are present throughout the
spheroid at early times but are only present in the central region of the spheroid at
later times, also observed in Yakavets et al. (2020), Fang et al. (2019). Using our new
co-culture compartment-based mathematical models we identify that differences in
proliferation rates (Co-culture Model 1), or differences in when each cell type under-
goes necrosis due to lack of oxygen in combination with cell migration (Co-culture
Model 4), could drive this behaviour. However, differences in loss rates from the
necrotic core (Co-culture Model 2) and differences in when each cell type undergoes
necrosis due to lack of oxygen (Co-culture Model 3) are on their own insufficient
to capture this behaviour. We would not have been able to explore these biological
differences without these new models and experimental data. Performing additional
experiments to inhibit proliferation, or growing co-culture spheroids in different oxy-
gen conditions (Murphy et al. 2022a), would be interesting and may provide useful
insights to improve understanding of the mechanisms driving internal dynamics of
growing co-culture spheroids. In general, additional data would be helpful to assess
whether parameter identifiability in the co-culture mathematical models. Our frame-
work is well-suited to incorporate such additional data and, if appropriate, different
error models (Pawitan 2001; Murphy et al. 2023).

The co-culture mathematical modelling framework is general. We use this frame-
work to extend the monoculture reduced Greenspan mathematical model to two
populations. This allows us to explore the temporal evolution of co-culture spheroid
size and structure. In Supplementary S5.1 we present further examples of the general
model, including the seminal Greenspan model and the radial-death model (Brown-
ing and Simpson 2023). The radial-death model captures key features of Greenspan’s
model, but rather than considering oxygen mechanisms prescribes a fixed size for
the proliferating region. Many other models could be considered with additional
compartments and/or mechanisms such as nutrient/waste diffusion and consump-
tion/production (Burton 1966; Deakin 1975; McElwain and Ponzo 1977; McElwain
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and Morris 1978; Adam 1986, 1987a, b; Adam and Maggelakis 1989, 1990; Magge-
lakis and Adam 1990; Landry et al. 1982; Byrne and Chaplain 1996, 1997). For
example, we could use our experimental images to identify regions where melanoma
cells are proliferation-inhibited and incorporate this into mathematical modelling
(Browning et al. 2021; Murphy et al. 2022a, b; Greenspan 1972). As a further exam-
ple, we could relax the assumption of a single compartment at formation and explore
co-culture spheroid data where one cell type is located at the core of the spheroid
throughout (Supplementary S.5.4). In general, the additional complexity of these
models may result in parameter identifiability challenges with currently available
data (Browning and Simpson 2023; Simpson et al. 2020). Incorporating mechani-
cal effects (Loessner et al. 2013; Walker et al. 2023) and extracellular material as
an additional population are also of interest. The model can also be adapted to con-
sider cell types with different densities, or compartments with different densities, by
considering the total cell number as well as the volume. The framework could also
be extended to characterise the effectiveness of chemotherapies and radiotherapies
(Tofilon et al. 1984; Paczkowski et al. 2021; Yakavets et al. 2020; Flach et al. 2011;
Lewin et al. 2018; Nasim et al. 2022). If compartment-based modelling assumptions,
such as assumptions of spherical symmetry or well-mixed compartments, break down
then alternative models should be considered (Araujo and McElwain 2004; Bull and
Byrne 2022; Byrne 2010; Lowengrub et al. 2010). Throughout the study we have
focused on parameter estimation. It would be interesting future work to explore the
predictive capability of the models, for example by using profile likelihood-based pre-
diction tools (Simpson and Maclaren 2023; Murphy et al. 2023). Overall, this study
presents a quantitative approach to characterise the formation of co-culture spheroids
and the internal dynamics of growing co-culture spheroids.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-023-01229-1.
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