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Abstract
We introduce two time-delay models of metabolic oscillations in yeast cells. Our
model tests a hypothesis that the oscillations occur as multiple pathways share a
limited resource which we equate to the number of available ribosomes. We initially
explore a single-protein model with a constraint equation governing the total resource
available to the cell. The model is then extended to include three proteins that share a
resource pool. Three approaches are considered at constant delay to numerically detect
oscillations. First, we use a spectral element method to approximate the system as a
discrete map and evaluate the stability of the linearized system about its equilibria by
examining its eigenvalues. For the secondmethod,weplot amplitudes of the simulation
trajectories in 2D projections of the parameter space. We use a history function that
is consistent with published experimental results to obtain metabolic oscillations.
Finally, the spectral element method is used to convert the system to a boundary value
problem whose solutions correspond to approximate periodic solutions of the system.
Our results show that certain combinations of total resource available and the time
delay, lead to oscillations. We observe that an oscillation region in the parameter
space is between regions admitting steady states that correspond to zero and constant
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production. Similar behavior is found with the three-protein model where all proteins
require the same production time. However, a shift in the protein production rates
peaks occurs for low available resource suggesting that our model captures the shared
resource pool dynamics.

Keywords Metabolic oscillations · Time delay model · Protein synthesis

1 Introduction

Cellular processes often exhibit non-trivial temporal dynamics in the absence of the
external stimulus. Most common is the cell division cycle. However, as observed more
than 50 years ago (Kuenzi and Fiechter 1969), yeast populations in low growth condi-
tions exhibit metabolic cycling (MC) (Tu et al. 2005; Slavov et al. 2011) also known
as respiratory cycling (Robertson et al. 2008). While traditionally described as a result
of carbon limitation, limitations by other essential nutrients like phosphate (Silverman
2010) or ammonium, ethanol, glucose, and sulfur (Brauer 2008; Slavov and Botstein
2011) can lead to MC also known as metabolic oscillations. Under the growth condi-
tions commonly used in this system, the population doubling time and thus the length
of the cell division cycle is about 8h, and the metabolic oscillations have period 40–
44 min (Klevecz et al. 2004).

The oscillations were first observed as periodic oscillations in the oxygen consump-
tion of continuous, glucose-limited cultures growing in a chemostat, but were later
also observed in batch cultures (Jules et al. 2005). The MC has two distinct phases:
low oxygen consumption (LOC) phase when dissolved oxygen in the medium is high
and high oxygen consumption phase (HOC) when the oxygen in the medium drops to
low levels (Slavov et al. 2011; Tu et al. 2005; Klevecz et al. 2004). Using experimental
techniques ranging from micorarray analysis (Klevecz et al. 2004; Tu et al. 2005) to
short-life luciferase fluorescent reporters (Robertson et al. 2008), researchers were
able to assign transcription of particular genes to these phases. During the LOC phase
the yeast culture performs oxidative metabolism focused on amino-acid and ribosome
synthesis, while during the HOC phase reductive reactions including DNA replication
and proteosome related reactions occur (Tu et al. 2005). Cellular metabolism dur-
ing the reductive HOC phase seems to be devoted to the production of acetyl-CoA,
preparing cells for the upcoming oxidative phase, during which metabolism shifts to
respiration as accumulated acetyl-CoA units for ATP production via the TCA cycle
and the electron transport chain (Tu et al. 2005).

This compartmentalization of cellular processes in time is thought to be related to
help assembly of macro-molecular complexes from units that, at low growth rates, are
expressed at very low levels. Expressing them at the same time helps ensure timely
synthesis and avoids waste of limited resources (Slavov et al. 2011).

There were many different hypotheses centered on chemical signals that maymedi-
ate metabolic synchrony. In particular, Murray et al. (2003) proposed acetaldehyde
and sulphate, Henson (2004) and Sohn andKuriyama (2001) hydrogen sulphide, while
Adams et al. (2003) found that Gts1 protein plays a key stabilizing role. Finally,Muller
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et al. (2003) suggest a signalling agent, cAMP, plays a major role in mediating the
integration of energy metabolism and cell cycle progression.

Several mathematical models that do not specify the synchronizing chemical agent,
but explore a general idea that cells in one phase of a cell cycle can slow down, or speed
up progression of other cells through a different phase, have been suggested (Boczko
et al. 2010; Stowers et al. 2011). Finally, paper (Morgan et al. 2018) explores syn-
chronization which is a result of criticality of necessary cellular resources combined
with the engagement of a cell cycle checkpoint, when these resources dip below the
required level.

In this paper we explore the hypothesis that oscillations may arise spontaneously
when several cellular processes share a limited resource. This does not explain why
the processes separate into oxidative and reductive phase but argues that compartmen-
talization in time may help utilize limited resources more efficiently. Ribosomes are
essential cellular resources as they produce enzymes used in all metabolic processes
as well as all other proteins including those used to assemble ribosomes themselves.
Yeast ribosomes are largemolecular machines consisting of 79 proteins (Woolford and
Baserga 2013) and therefore they require substantial investment of cellular resources.
This is reflected in the observation that the ratio of ribosomal proteins to all proteins
scales linearly with cell growth rate across metabolic conditions (Scott et al. 2014).
For this reason in our model we equate the limited shared cellular resource to the
number of available ribosomes.

In many biological systems, time delays are often incorporated into the models
because many of these processes have nontrivial time spans that dictate the overall
system behavior (Rihan et al. 2018; Fowler 1981; Gulbudak et al. 2021; Huang et al.
2010; Gopalsamy and Aggarwala 1981; Longtin and Milton 1989; Rosen 1987; Pell
et al. 2023). For this reason, the time delay framework is ideal formodeling ametabolic
process where the protein production times can take upwards of 40 min. We aim to
model the protein synthesis process in yeast cells using time delays and explore under
what conditions oscillations are present in the responses. This paper is structured
as follows. In Sect. 2 we introduce a single protein model and extract theoretical
results such as the fixed points and its linear stability behavior. Section3 presents the
three protein extension to the single protein model and the equilibrium conditions are
derived along with the system linearization. We then show the numerical methods
that are utilized on the models in Sect. 4 where we describe the spectral element
linear stability method, response feature analysis of system simulations under low
growth conditions, and boundary value problem computation of periodic solutions to
the nonlinear systems from simulation data. Results for the single protein system are
then presented in Sect. 5 where the numerical methods are applied and the stability of
the system is characterized in a subset of the overall parameter space. We then apply
the same methods to the three protein system in Sect. 6. Finally, we give concluding
remarks in Sect. 7.
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2 Theory: Single Protein

2.1 Model Derivation

Both transcription and translation involve processing molecules (RNAP, ribosomes)
that are sequestered during the time of processing. These processing molecules con-
stitute cellular resources that need to be shared by all necessary protein production
processes. We will concentrate here on ribosomes, as their concentration is known
to be tightly correlated with the microbial growth rate (Scott et al. 2014). The rate
of production of protein p(t) is proportional to the rate of initiation μ at some time
t − τ(t) in the past when the processing started

ṗ(t) = Bμ(t − τ) − Dp(t), (1)

with the maximal growth rate B and the decay rate D. The rate of initiation μ(t) is a
product of the activator (which we assume for simplicity is the protein p itself) and
the ribosome R:

μ(t) = f (p(t))R(t), (2)

with Hill function

f (t) = pn(t)

κn + pn(t)
.

A suggestion for the sequestration equation based on Mier-y-Terán-Romero et al.
(2010) is given by

R(t) = RT − A
∫ t

t−τ

μ(s)ds, (3)

where RT is the total resource (ribosomes) and the integral is the resource which is
currently being sequestered to produce a protein. Differentiation of Eq. (3) leads to

Ṙ(t) = A (μ(t − τ) − μ(t)) . (4)

We note that this differentiation step is only valid for constant delays and if variable
delays are used, Eq. (3) must be used for analysis. Putting the equations together, we
have the model

ṗ(t) = B f (p(t − τ))R(t − τ) − Dp(t),

Ṙ(t) = A ( f (p(t − τ))R(t − τ) − f (p(t)))R(t)) .
(5)

The constant total resource RT is the sum of R(t) and the integral over the history of
μ(s) from s = t − τ(t) to s = t . This means that the initial functions for p(θ) and
R(θ) with θ ∈ [−τ(0), 0] specify the value RT .
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2.2 Equilibrium Points

Equilibrium conditions of the system can be obtained by setting p(t) = p(t−τ) = p∗,
R(t) = R(t − τ) = R∗, ṗ(t) = 0, Ṙ(t) = 0 in Eq. (5). This process yields one
equilibrium condition (Eq. (6)) because the equation for Ṙ(t) in Eq. (5) is satisfied for
all constant p and R.

Dp∗ = B f (p∗)R∗ (6)

The other equilibrium conditions are obtained from Eq. (3) by assuming that the
integrand is constant when equilibrium has been reached. This yields Eq. (7).

R∗ = RT

1 + Aτ f (p∗)
(7)

We then substitute Eq. (7) into Eq. (6) to obtain,

p∗ = B f (p∗)RT

D(1 + Aτ f (p∗))
. (8)

Finally, inserting the definition of f (p∗), we get a polynomial expression that must
be satisfied for the equilibrium points as shown in Eq. (9).

(1 + Aτ)p∗n+1 − BRT

D
p∗n + κn p∗ = 0 (9)

Any solution to Eq. (9) can then be plugged in to Eq. (7) to obtain the equilibrium
solutions. Note that this polynomial does not have analytical solutions for all values
of n, but there is always one trivial equilibrium solution at (p∗, R∗) = (0, RT ). The
nontrivial equilibrium points are then obtained from solving the following system for
(p∗, R∗).

(1 + Aτ)p∗n − BRT

D
p∗n−1 + κn = 0, (10a)

R∗ = RT

1 + Aτ f (p∗)
. (10b)

Once the trivial solution is removed from the conditions, the remaining polynomial in
p∗ has either 0 or 2 positive real roots by Descartes’ rule of signs for every n ∈ Z

+
assuming only positive parameters are chosen. In conclusion, there is at least 1 trivial
root at (0, RT ) and at most 3 equilibrium points including the trivial point where the
other two points are the nontrivial equilibria. We choose to restrict the analysis to
n = 2 so that we can obtain analytical solutions for the equilibrium points. Solving
Eq. (9) for n = 2 yielded three equilibrium points:
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(p∗, R∗) = (ptrivial, Rtrivial),

(p∗, R∗) = (pmiddle, Rmiddle),

(p∗, R∗) = (ptop, Rtop),

where,

ptrivial = 0,

Rtrivial = RT ,

pmiddle =
BRT −

√
B2R2

T − 4D2κ2(Aτ + 1)

2D(Aτ + 1)
,

Rmiddle =
BRT

√
B2R2

T − 4D2κ2(Aτ + 1) − 2AD2κ2τ(Aτ + 1) − B2R2
T

B(Aτ + 1)

(√
B2R2

T − 4D2κ2(Aτ + 1) − BRT

) ,

ptop =
BRT +

√
B2R2

T − 4D2κ2(Aτ + 1)

2D(Aτ + 1)
,

Rtop =
BRT

√
B2R2

T − 4D2κ2(Aτ + 1) + 2AD2κ2τ(Aτ + 1) + B2R2
T

B(Aτ + 1)

(√
B2R2

T − 4D2κ2(Aτ + 1) + BRT

) .

A, B, D, τ, κ, and RT are system parameters. Note that the second equilibrium point
has a protein production rate that is between the protein production rates of the other
two equilibrium points. Therefore, we refer to this equilibrium point as the “middle”
equilibrium point and the point with the largest p∗ as the “top” equilibrium point. By
studying the stability of these three fixed points, the stability of the system can be
characterized for certain parameters.

To understand the role that each equilibrium point plays in the system, we need to
understand which equilibrium points are present in different regions of the parameter
space. For this system, we can compute the saddle node bifurcation by studying the
curve where the argument in the square root term becomes negative indicating that the
top and middle equilibria are no longer real numbers. This curve forms a boundary
that separates the region with three equilibrium points and the region with only the
trivial equilibrium point. It can be computed analytically for this system and is defined
in terms of τ and RT as:

RT <

√
4D2κ2(1 + Aτ)

B2 . (11)

This boundary given by the equality of Eq. (11) is plotted in the stability diagrams
in Sect. 5 as a red curve with triangles. So any parameters that satisfy (11) only
have a single equilibrium at the trivial point, and if the parameters do not satisfy this
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inequality, the top and middle equilibrium points are valid equilibrium solutions along
with the trivial point.

2.3 System Linearization

In the analysis of nonlinear dynamical systems it is useful to study the associated
linearized system about the fixed points. The Hartman–Grobman theorem states that
near a hyperbolic equilibrium point, the linearized system exhibits the same behavior
as the nonlinear system (Seydel 2010). We linearize (5) by computing the Jacobian
matrices of the present and delayed states about an equilibrium point �q = [

p∗ R∗]T .
We start by defining two state space vectors, �x and �xτ where,

�x =
[
p(t)
R(t)

]
=

[
x1
x2

]
,

�xτ =
[
p(t − τ)

R(t − τ)

]
=

[
x1τ
x2τ

]
.

The nonlinear delay system can then be written in the form,

�̇x(t) = �g(�x, �xτ ), (12)

where, �g = �g1(�x) + �g2(�xτ ), �g1 =
[ −Dx1
−A f (x1)x2

]
, �g2 =

[
B f (x1τ )x2τ
A f (x1τ )x2τ

]
. In this

form, the system is written as a sum of a nonlinear component as a function of t and
a nonlinear delay component as a function of t − τ . We linearize each piece of g by
computing the Jacobian matrix of the vector functions.

G1 = ∂ �g1
∂x

=
[

∂ �g11
∂x1

∂ �g11
∂x2

∂ �g12
∂x1

∂ �g12
∂x2

]
=

[ −D 0
−A f ′(x1)x2 −A f (x1)

]
, (13)

and

G2 = ∂ �g2
∂xτ

=
[

∂ �g21
∂x1τ

∂ �g21
∂x2τ

∂ �g22
∂x1τ

∂ �g22
∂x2τ

]
=

[
B f ′(x1τ )x2τ B f (x1τ )
A f ′(x1τ )x2τ A f (x1τ )

]
, (14)

where f ′(x1τ ) = nκn xn−1
1τ

(κn+xn1τ )2
. The linearized system about an equilibrium q is then

written as

�̇x ≈
[ −D 0
−A f ′(x1)x2 −A f (x1)

] ∣∣∣∣
q
(�x − �q)

+
[
B f ′(x1τ )x2τ B f (x1τ )
A f ′(x1τ )x2τ A f (x1τ )

] ∣∣∣∣
q
(�xτ − �q). (15)
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If a change of variables, �y = �x − �q is implemented, with �yτ = �xτ − �q , Eq. (15)
simplifies to Eq. (16) effectively moving the equilibrium point to the origin.

�̇y ≈
[ −D 0
−A f ′(p∗)R∗ −A f (p∗)

]
�y +

[
B f ′(p∗)R∗ B f (p∗)
A f ′(p∗)R∗ A f (p∗)

]
�yτ . (16)

We can write Eq. (16) in a simplified form as,

�̇y ≈ G1(q)�y + G2(q)�yτ . (17)

We will use this linearized system to evaluate the stability of the equilibrium points
of the system. Note that Eq. (17) was derived only from the DDE system Eq. (5). In
addition, the constraint Eq. (3)must hold also for the perturbations. It is straightforward
to directly compute the linearized system about the trivial equilibrium. We do this by
inserting (p∗, R∗) = (0, RT ) into (17), which leads to the elementary ODE system

�̇y ≈
[−D 0

0 0

]
�y, (18)

because all elements of G2 become zero. This system has only two characteristic
exponents that are directly obtained from the diagonal of G1 as −D and 0. Since
the original nonlinear DDE system is infinite dimensional, there are infinitely many
other characteristic exponents, which all tend to −∞ as �q → [

0 RT
]T . Moreover,

the characteristic exponent equal to zero corresponds to perturbations of the resources
R(t), which changes the value of the overall resources RT . However, such perturba-
tions do not fulfill the additional constraint Eq. (3), which means that this eigenvalue
corresponds to the eigenvector along a one dimensional family of equilibria parame-
terized by the total resource RT . As such this eigenvalue does not reflect the stability
of the equilibrium within a phase space with RT fixed. As a result, the trivial equilib-
rium point is a locally stable node as long as the decay rate is positive (D > 0). We
emphasize that using the Jacobian methods for linearization at this step is valid for
constant delays. For state-dependent delays or time-dependent delays the system can
be linearized using methods from Gedeon et al. (2022).

3 Theory: Three Protein Model

3.1 Model

We extend the single protein model in Eq. (5) to incorporate production of three
proteins with shared resource i.e. a shared ribosomal pool. If the resources are shared,
we expect that oscillations may occur if there are not enough resources to produce all
three proteins simultaneously. The extended model is shown in Eq. (19).

123



A Nonlinear Delay Model for Metabolic Oscillations… Page 9 of 29 122

ṗ1(t) = B1 f (p2(t − τ1)) f (p3(t − τ1))R(t − τ1) − D1 p1,

ṗ2(t) = B2 f (p1(t − τ2))R(t − τ2) − D2 p2,

ṗ3(t) = B3 f (p1(t − τ3))R(t − τ3) − D3 p3,

Ṙ(t) = A(μ1(t − τ1) + μ2(t − τ2) + μ2(t − τ3) − μ1(t) − 2μ2(t)), (19)

where A, B1, B2, B3, τ1, τ2, τ3, D1, D2, D3, are system parameters, μ1(t) =
f (p2(t)) f (p3(t))R(t), and μ2(t) = f (p1(t))R(t) and f (x) = xn

κn+xn . This means
that production of the first protein is activated when the other two protein production
rates are nonzero and production of the second and third proteins is activated by p1.
Analogously to the single protein system, the total resource (RT ) is computed using,

RT = R(t) + A

(∫ t

t−τ1

f (p2(s)) f (p3(s))R(s)ds +
∫ t

t−τ2

f (p1(s))R(s)ds

+
∫ t

t−τ3

f (p1(s))R(s)ds

)
. (20)

3.2 Equilibrium Points

The equilibrium conditions are found by first setting ṗ1 = ṗ2 = ṗ3 = 0 yielding the
following conditions:

D1 p
∗
1 = B1 f (p

∗
2) f (p

∗
3)R

∗,
D2 p

∗
2 = B2 f (p

∗
1)R

∗,
D3 p

∗
3 = B3 f (p

∗
1)R

∗, (21)

where (p∗
1 , p

∗
2 , p

∗
3 ,R

∗) is the equilibrium point. Similarly to the single protein system,
the Ṙ expression in Eq. (19) is always satisfied at equilibrium, but Eq. (20) yields the
fourth and final equilibrium condition:

RT = R∗ + A
[
f (p∗

2) f (p
∗
3)R

∗τ1 + f (p∗
1)R

∗(τ2 + τ3)
]
. (22)

This system has a trivial equilibrium at p∗
1 = p∗

2 = p∗
3 = 0, R∗ = RT . For finding

the other equilibria, we need to solve this system of equations.We see that the relations
in Eq. (21) all depend directly on R∗. We eliminate R∗ by solving Eq. (22) for R∗,

R∗ = RT

1 + A
(
f (p∗

2) f (p
∗
3)τ1 + f (p∗

1)(τ2 + τ3)
) , (23)

and substituting R∗ in the three Eq. (21), along with using the definition of f (x).
These steps result in three multivariate polynomial equilibrium equations shown in
Eqs. (24), (25) and (26).
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D1 p
∗
1(κ

n + p∗n
1 )(κn + p∗n

2 )(κn + p∗n
3 ) + AD1 p

∗
1 p

∗n
2 p∗n

3 (κn + p∗n
1 )τ1

+AD1 p
∗(n+1)
1 (κn + p∗n

2 )(κn + p∗n
3 )(τ2 + τ3)

= B1RT p
∗n
2 p∗n

3 (κn + p∗n
1 ), (24)

D2 p
∗
2(κ

n + p∗n
1 )(κn + p∗n

2 )(κn + p∗n
3 ) + AD2 p

∗(n+1)
2 p∗n

3 (κn + p∗n
1 )τ1

+AD2 p
∗n
1 p∗

2(κ
n + p∗n

2 )(κn + p∗n
3 )(τ2 + τ3)

= B2RT p
∗n
1 (κn + p∗n

2 )(κn + p∗n
3 ), (25)

D3 p
∗
3(κ

n + p∗n
1 )(κn + p∗n

2 )(κn + p∗n
3 ) + AD3 p

∗n
2 p∗(n+1)

3 (κn + p∗n
1 )τ1

+AD3 p
∗n
1 p∗

3(κ
n + p∗n

2 )(κn + p∗n
3 )(τ2 + τ3)

= B3RT p
∗n
1 (κn + p∗n

2 )(κn + p∗n
3 ). (26)

The solutions (p∗
1, p

∗
2, p

∗
3) to these three equations correspond to the equilibrium point

of the system and the resource equilibrium is obtained by substituting these values
in to Eq. (23). Due to the complexity of these equations, we solve them numerically
using the variable precision (VPA) solver in Matlab (vpasolve Mathworks). Details
for how these equations were solved are outlined in Sect. 6.

3.3 Three Protein System Linearization

The three protein system was also linearized about its equilibrium points for stability
analysis using the spectral element linear stability method described in Sect. 4.1. We
will linearize the system about the equilibrium point, �q = [

p∗
1 p∗

2 p∗
3 R∗]T from the

solution to Eqs. (24), (25) and (26). Similarly to the single protein model, we define
state vectors for the current states and delayed states, but in this case, three delayed
states are present due to the system having multiple time delays. The system states
are,

�x =

⎡
⎢⎢⎣
p1(t)
p2(t)
p3(t)
R(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ , �xτi =

⎡
⎢⎢⎣
p1(t − τi )

p2(t − τi )

p3(t − τi )

R(t − τi )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x1τi
x2τi
x3τi
x4τi

⎤
⎥⎥⎦ , (27)

where i ∈ [1, 2, 3] represents the system state at delay τi . We then write the system
as:

�̇x = �g(�x, �xτ1 , �xτ2 , �xτ3), (28)

and separate �g as a sum of terms only dependent on one of the system states.

�g(�x, �xτ1 , �xτ2 , �xτ3) = �g1(�x) + �g2(�xτ1) + �g3(�xτ2) + �g4(�xτ3),
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where,

�g1(�x) =

⎡
⎢⎢⎣

−D1x1
−D2x2
−D3x3

−A f (x1)x4 − 2A f (x2)x4

⎤
⎥⎥⎦ , �g2(�xτ1) =

⎡
⎢⎢⎣
B1 f (x2τ ) f (x3τ )x4τ

0
0

A f (x1τ )x4τ

⎤
⎥⎥⎦ ,

�g3(�xτ2) =

⎡
⎢⎢⎣

0
B2 f (x1τ )x4τ

0
A f (x2τ )x4τ

⎤
⎥⎥⎦ , �g4(�xτ3) =

⎡
⎢⎢⎣

0
0

B3 f (x1τ )x4τ
A f (x2τ )x4τ

⎤
⎥⎥⎦ ,

where f (x) = xn
κn+xn . Now, the system can be linearized about q as,

�̇x ≈ G1(�q)(�x − �q) +
4∑

i=2

Gi (q)(�xτi − �q), (29)

where Gi is the Jacobian matrix of �gi (�xτi−1). The Jacobian matrices for this system
are analytically computed with the matrix of partial derivatives. For example, G1 is
computed as,

G1 =

⎡
⎢⎢⎢⎢⎣

∂ �g11
∂x1

∂ �g11
∂x2

∂ �g11
∂x3

∂ �g11
∂x4

∂ �g12
∂x1

∂ �g12
∂x2

∂ �g12
∂x3

∂ �g12
∂x4

∂ �g13
∂x1

∂ �g13
∂x2

∂ �g13
∂x3

∂ �g13
∂x4

∂ �g14
∂x1

∂ �g14
∂x2

∂ �g14
∂x3

∂ �g14
∂x4

⎤
⎥⎥⎥⎥⎦ ,

where
∂g1 j
∂xk

is the partial derivative of the j-th component of the g1 vector with respect
to xk . A similar process is used for G2, G3 and G4 with the main difference being
that the derivatives are computed with respect to delayed states at the corresponding
delay τi . Carrying out this procedure yields the following expressions for the Jacobian
matrices.

G1(�q) =

⎡
⎢⎢⎣

−D1 0 0 0
0 −D2 0 0
0 0 −D3 0

−2A f ′(p∗
1)R

∗ −A f ′(p∗
2) f (p

∗
3)R

∗ −A f (p∗
2) f

′(p∗
3)R

∗ −2A f (p∗
1) − A f (p∗

2) f (p
∗
3)

⎤
⎥⎥⎦ ,

G2(�q) =

⎡
⎢⎢⎣
0 B1 f ′(p∗

2) f (p
∗
3)R

∗ B1 f (p∗
2) f

′(p∗
3)R

∗ B1 f (p∗
2) f (p

∗
3)

0 0 0 0
0 0 0 0
0 A f ′(p∗

2) f (p
∗
3)R

∗ A f (p∗
2) f

′(p∗
3)R

∗ A f (p∗
2) f (p

∗
3)

⎤
⎥⎥⎦ ,

G3(�q) =

⎡
⎢⎢⎣

0 0 0 0
B2 f ′(p∗

1)R
∗ 0 0 B2 f (p∗

1)

0 0 0 0
A f ′(p∗

1)R
∗ 0 0 A f (p∗

1)

⎤
⎥⎥⎦ ,
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G4(�q) =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

B3 f ′(p∗
1)R

∗ 0 0 B3 f (p∗
1)

A f ′(p∗
1)R

∗ 0 0 A f (p∗
1)

⎤
⎥⎥⎦ ,

where f ′(x) = nκn xn−1

(κn+xn)2
. Finally, we introduce the change of variables �y = �x − �q to

Eq. (29) resulting in the linearized system:

ẏ ≈ G1(�q)�y(t) + G2(�q)�y(t − τ1) + G3(�q)�y(t − τ2) + G4(�q)�y(t − τ3). (30)

For the trivial equilibrium (0, 0, 0, RT ), we have f (0) = 0 and f ′(0) = 0, and
the matrices G2, G3 and G4 vanish. Thus, similarly to the single protein system, the
linearization at the trivial equilibrium becomes a simple ODE system

ẏ ≈

⎡
⎢⎢⎣

−D1 0 0 0
0 −D2 0 0
0 0 −D3 0
0 0 0 0

⎤
⎥⎥⎦ �y.

This system has four eigenvalues−D1,−D2,−D3, and zero. Again, the characteristic
exponent equal to zero corresponds to family of equilibria parameterized by RT and
can be discarded. We conclude that the trivial equilibrium point is locally stable for
all positive decay rates (D1 > 0, D2 > 0, D3 > 0).

4 Methods

4.1 Spectral Element Approach: Linear Stability Analysis

For analyzing the dynamic behavior of the system and identify regions of bistablity
in parameter space, we study the linear stability of the equilibria. We use the spectral
element method, which is an advanced numerical method for the stability analysis of
DDE systems (Khasawneh and Mann 2013). In particular, the linear variational sys-
tems Eqs. (17) and (30) for perturbations around the equilibrium points are converted
to a dynamic map, which describes the evolution of the system state �zn−1 at time step
n − 1 to the system state �zn at time step n

�zn = U�zn−1, (31)

where U is the monodromy matrix. The state vector �zn is a discrete representation
of the DDE state, which contains information of the system variable �y for the time
interval [t − τmax, t], where τmax is the maximum delay. The matrix U is a high
dimensional approximation of the monodromy operator which is an operator that
allows for mapping dynamic states forward in time by one period (Khasawneh and
Mann 2013). The full operator is infinite dimensional, but this method utilizes finite
approximations of the operator to permit computing approximate solutions to the
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characteristic equation of the system. Specifically for the spectral element method,
because the system is transformed into a discrete map, if the eigenvalues of U have a
magnitude less than unity, that equilibrium point is stable and larger than one makes it
unstable. If the magnitude is exactly one the equilibrium point is said to be marginally
stable and this also is indicative that the equilibrium is non-hyperbolic (Kuznetsov
2004). Note that the monodromy matrix for an autonomous system always has a
trivial eigenvalue λ = 1 which does not dictate the stability of the equilibrium point
(Beyn et al. 1999). In the case where the trivial eigenvalue is the furthest from the
origin we take the second largest eigenvalue of the system to characterize the stability.

This problem falls under the broader classification of pseudospectral differenc-
ing methods where in general an approximation of an infinite dimensional operator
is computed resulting in a matrix where the eigenvalues approach solutions to the
characteristic equation of the linear delay differential equations (Breda et al. 2005).
Further, Breda et al. proved many useful convergence results for such methods such
as the fact that none of the eigenvalues of the approximation matrix are “ghost roots”.
This means that all of the computed eigenvalues will eventually converge to a true root
of the full infinite dimensional system if sufficient nodes are used in the discretization
(Breda et al. 2005). It is also known that roots closer to the origin in the complex
plane are approximated first with these differencing methods so it is important to use
sufficient discretization meshes to find the unstable eigenvalues (Breda et al. 2005).
It has been shown that for a DDE system the number of characteristic equation roots
in the right half of the complex plane is finite (Stépán 1989) meaning that if enough
eigenvalues are approximated for the system about its equilibrium, eventually the right
most eigenvalue will be computed which allows for characterizing the stability of the
equilibrium point. For a discrete system this means that the number of eigenvalues
outside of the unit circle is finite. In further sections, methods described in Khasawneh
and Mann (2013) are applied for discretizing and computing dominant eigenvalues
for the metabolic systems to evaluate the system stability at different parameters.

4.2 Numerical Simulations

For the second method, we chose to perform many numerical simulations to demon-
strate the behavior of the system and connect the results to experimental observations.
This was done through simulation of the system using the Julia differential equa-
tions library. The goal was to study specific features of the system trajectories in
the parameter space to locate regions with different types of solutions. A diagram is
obtained from the simulations by computing scalar features of the asymptotic solutions
from time domain simulations and plotting the result as an image as a 2D projection of
the overall parameter space. The features can be used to distinguish periodic solutions
from equilibria. If the simulation times are long enough such that the system behaviour
is characteristic of its long run behavior, we refer to this as the steady state response
as this is when the transient response has dissipated. The method for computing these
response feature diagrams for this system was inspired by the AttractionsViaFeaturiz-
ing function of the dynamical systems library in Julia (Datseris 2018). This method
computes a feature M : Rn → R on the system trajectory with n system variables that
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indicate different features of the system response at each point in the parameter space.
For this analysis, we needed to fix the history function for our systems. Specifically
for this paper, we focus on a feature based on the amplitude of the time series signals.
However, many other features can be used to study system behavior such as the mean
response and standard deviation. We compute the amplitude feature A of a response
xi (t) as:

Ai = 1

2
(max (xi (t) − min (xi (t))) .

The amplitude feature is then consolidated into a scalar value by summing over the
variables in i as:

MA =
n∑

i=1

Ai . (32)

If the trajectory is stable, we expect MA to be close to zero and if the response contains
oscillations MA should be nonzero and finite.

4.3 Low Growth History Functions

To compute features of the system response, sufficient information is required to sim-
ulate the system such as the start time, end time and initial conditions. One critical
difference between time delay differential equation systems (DDE) and ordinary dif-
ferential equation systems (ODE) is that a DDE system requires the solution to be
defined over the interval [−τmax, 0] rather than just supplying a single point initial
condition for an ODE system. A history function was chosen based on the experimen-
tal process for achieving thesemetabolic oscillations in practice (Tu et al. 2005). In this
paper, the authors starve the cells of all resource prior to the oscillations. Consequently,
the protein production rate is also zero during this time.

4.3.1 Single Protein History Function and Initial Conditions

To define the history function for the single protein model, we assume that the cell
was operating at zero protein production on [−τ, 0). In other words, p(θ) = 0 and
R(θ) = 0 for θ ∈ [−τ, 0), whereas at time t = 0 we set p(0) = p0. We obtain the
initial conditions of the system by letting t = 0 in Eq. (3) yielding:

RT = R0 + A
∫ 0

−τ

f (p(s))R(s)ds, (33)

where R0 = R(0) is the resource value at time t = 0. For a response of this system
to be valid, Eq. (33) must hold for the value of RT used for the simulation. Since p
and R are zero for the history function, the integral in Eq. (33) vanishes and we have
R0 = RT . As a result, for each simulation RT can be specified and any positive value
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of p0 can be chosen. This system can then be studied by varying the parameters p0, τ
and RT and holding the remaining parameters constant to determine which parameter
values result in periodic solutions.

4.3.2 Three Protein History Function and Initial Conditions

The solutions for the three protein system are also studied using the same zero resource
and zero protein production assumption prior to t = 0. So p1(θ) = p2(θ) = p3(θ) =
0 and R(θ) = 0 for θ ∈ [−τmax, 0). Applying this to the total resource equation from
Eq. (20) again yields R0 = RT . Similar to the single protein system, the initial protein
production rates p10, p20 and p30 can be varied in the system. The dimension of the
parameter space is reduced by limiting this system to the case where τ1 = τ2 = τ3 = τ

or in other words, all three proteins require the same production time. We then vary
this delay and the total resource to determine which parameter combinations yield
oscillations in the system response.

4.4 Boundary Value Calculation of Periodic Solutions to Nonlinear DDE Systems

As an alternative to detecting periodic orbits by simulation and amplitude computation,
we will find them directly by solving a boundary value problem (BVP). This method
comes fromKhasawneh et al. (2012) where the authors describe how a nonlinear DDE
system can be converted to a BVP where the solutions to this problem correspond
to periodic solutions of the original system. Specifically, the system is converted to
the boundary value problem in Eq. (34) and the spectral element method is used to
discretize the DDE system to approximate the infinite dimensional BVP as a finite
dimensional problem that can be solved numerically to obtain a single period of the
periodic solution to the system (Khasawneh et al. 2012).

�f = d �x
dt

− T �g(�x(t), �x(t − τ/T )) = 0, t ∈ [0, 1],
�x(s) − �x(s + 1) = 0, s ∈ [−τ/T , 0],
p(�x) = 0,

(34)

where T is the system period, �x is the vector of system variables, and the first line
corresponds to the specific DDE system being studied. In this case we take �g to be
Eq. (12) for the single protein system, and Eq. (28) for the three protein system. The
second line imposes a periodicity condition on the system and the last line imposes
a phase condition to yield a unique periodic solution by setting p(�x) to be the inner
product of the initial state (�x0) and the time derivative �̇x(t) (Khasawneh et al. 2012).
An initial guess is provided by simulating the system in Julia using the differential
equations library and this simulation is provided to the boundary value problem solver
in Matlab to perform Newton–Raphson iteration and converge on the periodic solu-
tion. This process also yields an approximation to the period T of the system. This
method has been shown to compute accurate periodic solutions for nonlinear DDE
systems with exponential convergence rates as the number of mesh points increases
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(Khasawneh et al. 2012) making it ideal for verifying parameters of the metabolic
system that result in oscillating solutions to the system.

5 Results: Single Protein

The single protein system is analyzed in this section by applying the three methods
outlined in Sect. 4.

5.1 Spectral Element Linear Stability

The eigenvalues of the linearized single protein system about its nontrivial equilibrium
points were approximated at each set of parameters in a 400× 400 grid in the (τ, RT )

plane varying each parameter from zero to 50 using the monodromy matrix from
the spectral element method (Khasawneh and Mann 2013). We hold the remaining
parameters constant at κ = 0.5, A = 1.0, B = 2.0, D = 10.0, n = 2. Themonodromy
matrix requires an oscillation period to map the system states to the next period. It
has been shown that for systems with one delay the period can be set as the delay
for stability computations (Khasawneh and Mann 2013). For this reason, we set the
period to τ for this stability analysis. We examine the stability of the equilibrium
points by plotting the magnitude of the eigenvalue furthest from the origin. Stability
diagrams were plotted for the nontrivial equilibrium points. Note that below the curve
in Eq. (11), only the trivial equilibrium is present (0, RT ), but above this curve three
equilibrium points exist in the system. We only consider the stability of the nontrivial
equilibria in this section as the stability of the trivial solution is computed analytically
in Sect. 2.3. As a result, we color points in the stability diagram as white if only the
trivial equilibrium is present in that region.

We start by computing the stability of the middle equilibrium point as shown in
Fig. 1 where we plot the dominant eigenvalue of the middle equilibrium point for
combinations of τ and RT between 0 and 50. We see that for all parameters shown,
this equilibrium point is unstable because its largest eigenvalue is outside of the unit
circle in the complex plane.

Next, we plot the largest magnitude eigenvalue of the top equilibrium point in Fig. 2
where we see that for small delay and sufficient resource, the top equilibrium point is
stable with |λ| < 1. As the delay increases for a given total resource, a pair of complex
conjugate eigenvalues leave the unit circle that govern the stability of this equilibrium
point making it an unstable focus (Kuznetsov 2004).

Therefore, a Hopf bifurcation occurs from the top equilibrium point along this line.
We plot the Hopf bifurcation curve in subsequent stability diagrams as a green line
with dots. This line was found to be approximately,

RT = 2.6449τ + 4.6323, (35)
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Fig. 1 Single protein middle equilibrium point stability diagrams. Specifically, the eigenvalues with max-
imum magnitude of the monodromy matrix are plotted with respect to the parameters τ and RT . (left)
The real part of the dominant eigenvalue, (middle) imaginary part of the dominant eigenvalue, (right) the
modulus of the eigenvalue. The red curve with triangles is the saddle node boundary that separates regions
with 1 and 3 equilibria. Above the red curve all three equilibrium points exist and below the curve only the
trivial point is present (Color figure online)

Fig. 2 Single protein top equilibrium point stability diagrams. Specifically, the eigenvalues with maximum
magnitude of the monodromy matrix are plotted with respect to the parameters τ and RT . (left) The real
part of the dominant eigenvalue, (middle) imaginary part of the dominant eigenvalue, (right) the modulus
of the eigenvalue. The red curve with triangles is the saddle node boundary that separates regions with 1
and 3 equilibria. Above the red curve all three equilibrium points exist and below the curve only the trivial
point is present. The Hopf bifurcation curve is shown as a line with green dots (Color figure online)

for τ ≥ 0.75by computing a linear regression along the boundarywhere the eigenvalue
exits the unit circle. The model had a coefficient of determination of 0.9999 indicating
that this boundary is well approximated by a linear model.

5.2 Response Features

Response feature diagrams were generated for the single protein system (Eq. (5)) for
κ = 0.5, A = 1.0, B = 2.0, D = 10.0, n = 2 with varying τ , RT and p0. The results
for these simulations are shown in Fig. 3 where we color pixels in the parameter space
according to the response amplitude feature using Eq. (32). We used the starving cell
history function from Sect. 4.3.1 and each simulation was taken between 10,000 and
11,000 time units to ensure that the transient response had dissipated. The authors
acknowledge the arbitrarily chosen parameters for this system and that these parame-
tersmay not be in biologically significant range. However, ourmodel is conceptual and
the purpose of this paper is to demonstrate that certain parameters yield oscillations
in the protein production when the cell is starved of resource prior to t = 0. This is
also the reason why we use “time units" instead of seconds for the simulations.
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First we study the dependence on the initial protein production rate p0 by fixing
the delay at τ = 10 and plotting the amplitude feature over the region (p0, RT ) ∈
[0, 10] × [0, 50]. We see in Fig. 3a that for nontrivial p0, the response is essentially
independent of the initial condition so any large enough initial protein production rate
was sufficient. For small p0 the response approaches the trivial equilibrium point.
While this diagram is only shown for a single delay, we observed a trend where as the
delay varies, the only change is in the width of the limit cycle region for large enough
p0. For this reason, we arbitrarily choose p0 = 10 for our initial p0.

Next, we keep p0 = 10 and vary the parameters (τ, RT ) ∈ [0, 50]×[0, 50] and plot
the amplitude feature in this region of the parameter space in Fig. 3b along with the
Hopf and saddle node bifurcation boundaries obtained from the linear stability analy-
sis. We see that periodic solutions were found above the Hopf curve for this particular
history function indicating that the Hopf bifurcation is subcritical. So slightly above
the green curve we have a bistability between the top equilibrium, trivial equilibrium,
and the limit cycle. Below the Hopf curve we have a bistability between the trivial
equilibrium point and the limit cycle and below RT ≈ 7 we did not observe any oscil-
lations and the trajectory approached the trivial equilibrium. Note that the pink curves
in Fig. 3a are specific to τ = 10 and will increase as the delay is increased according to
the bounds of the periodic region in Fig. 3b. In other words, at a delay of 10 if we draw
a vertical line in Fig. 3b, we should expect it to intersect the blue region at RT ≈ 7
and RT ≈ 42 which correspond to the pink curves in Fig. 3a for nontrivial p0. We
can also show a horizontal slice of Fig. 3b which produces a bifurcation diagram in τ

as shown in Fig. 3c. The stable periodic orbit was generated by setting RT = 30 and
using simulations with the initial conditions from Fig. 3b. The stability region for the
top equilibrium point was computed using analytical expressions. This region ends in
subcritical Hopf bifurcation at τ ≈ 9.59. Importantly, the region between τ ≈ 6.78
and τ ≈ 9.59 exhibits bistability since the stable equilibrium and a stable periodic
orbits coexist. Since the branch of periodic orbits connecting the Hopf bifurcation
to the stable periodic orbit at τ ≈ 9.59 is unstable, we are unable to find it using
simulations.

5.3 Periodic Solutions

Next we utilize the spectral element approach to solve the boundary value problem
in Eq. (34). This process was performed on the three points in the (τ, RT ) parameter
space where oscillations were expected and the two points where we expect fixed point
responses. The first point considered was τ = 12 and RT = 50. We see that this point
corresponds to a response with nonzero amplitude indicating that oscillations should
be expected and is in the subcritical region of the Hopf bifurcation. The system was
simulated and sampled between 15,988 and 16,000 time units for the period. Because
the system is autonomous, we can take the period to be equal to the delay. Solving the
boundary value problem in Eq. (34) for the periodic solution, we obtain the response
shown in Fig. 4. We see that the periodic solution from the boundary value problem
closely matches the simulation result with the period matching the delay. Further,
the protein production rate is nearly constant and close to the top equilibrium point

123



A Nonlinear Delay Model for Metabolic Oscillations… Page 19 of 29 122

Fig. 3 Single protein model response feature diagrams by varying system parameters p0, τ and RT and
simulating the system at for each parameter combination between 0 and 50. The solid pink curve corresponds
to a point on the horizontal boundary at τ = 25 in the middle image and the dashed pink curve corresponds
to a point on the boundary above the green curve at τ = 25 in the middle image. The red curve with triangles
is the saddle node boundary that separates regions with 1 and 3 equilibria, the line with green dots is the
Hopf bifurcation boundary. The right image corresponds to a horizontal slice of the middle plot at RT = 30
to show the bifurcation diagram as τ is varied (Color figure online)

Fig. 4 τ = 12 and RT = 50 single protein periodic solution results from solving the relevant boundary
value problem

(p∗, R∗) = (0.7434, 5.3982) for most of the period in this case with a drop in the
production rate emerging yielding the metabolic oscillations.

The next parameters that were considered were τ = 10 and RT = 20. The system
was simulated at these parameters from 15,990 to 16,000 time units and the period
was set to 10. Passing this initial guess into the boundary value problem, the obtained
periodic solution is shown in Fig. 5. Interestingly, we see that the time that the protein
production rate spends at 0 is much longer compared to Fig. 4. As the Hopf bifurcation
curve is crossed, the drop in the protein production rate appears to spend more time
at zero during the oscillation period.

The third set of parameters considered was τ = 45 and RT = 15. The system was
simulated at these parameters from 15,955 to 16,000 time units and the period was
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Fig. 5 τ = 10 and RT = 20 single protein periodic solution results from solving the relevant boundary
value problem

Fig. 6 τ = 45 and RT = 15 single protein periodic solution results from solving the relevant boundary
value problem

set to 45 resulting in the periodic solution shown in Fig. 6. We see that the trajectory
starts to spend more time near a protein production rate of zero as the total resource
approaches the horizontal line RT ≈ 7 in Fig. 3b. The periodic solutions shown
demonstrate the transition from the fixed point stability at the top equilibrium to fixed
point stability at the trivial equilibrium.

5.4 Steady State Solutions

We also explore the steady state solutions of the system by examining two parameter
conditions. The first case is where the total resource is too low to sustain protein
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Fig. 7 Approach to trivial fixed point for low growth conditions in the cell (τ = 45, RT = 5)

Fig. 8 Fixed point response for high growth conditions in the cell (τ = 5, RT = 50)

production (low growth conditions). In this case, we found a trajectory that approaches
the trivial equilibrium point. This was verified by simulating the system at τ = 45 and
RT = 5. The resulting response is shown in Fig. 7 where we see the system approach
(p, R) = (0, RT ).

We also consider the case where the cell has access to plentiful resources and can
synthesize proteins at a constant rate (high growth conditions). To examine this case,
we simulated the system at τ = 5 and RT = 50. The response for these parameters is
shown inFig. 8.We see that as timeprogresses, the protein production rate approaches a
steady state value because the cell is able to produce proteins at a constant rate. Further,
the point that this trajectory approaches corresponds to the top equilibrium point of
the system which for these parameters works out to be (p∗, R∗) ≈ (1.6412, 8.968).

5.5 Single Protein Summary

Three distinct behaviors were observed in the single protein time delay model. First, if
the resources are not sufficient to sustain metabolic activity, the system will approach
the trivial equilibrium point with zero protein production rate. If the resources are
plentiful, they can sustain constant protein production at the top equilibrium point.
Between these two cases, the cell initially has enough resource to synthesize proteins,
but as the protein production rate increases, resources are used and the metabolic
activity decreases. This balance between constant production and no production seems
to lead to oscillations in the system response. Slightly above theHopf bifurcation curve,
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we observe oscillations that are close to a constant solution at the top equilibrium and
as the parameters cross the Hopf curve and approach the line RT ≈ 7, the solution
continues to oscillate butwith a solution that is closer to a constant solution at the trivial
equilibrium. The oscillation region represents a transition between the top and trivial
equilibria and the middle solution remains unstable for all parameters in this region.
For τ < 0.75, the solution can switch directly between the top and trivial equilibrium
with no oscillations, but after this bifurcation point at (τ, RT ) ≈ (0.75, 6.6), the
periodic solution emerges to transition from constant to zero protein production.

6 Results: Three Proteins

The three protein system is analyzed in this section by applying the three methods
outlined in Sect. 4.

6.1 Spectral Element Linear Stability

Our main goal with the three protein system was to find parameters where the protein
production rates peak at different times in the period. This phenomena would be
indicative of the cell prioritizing its resources to produce proteins in a way that could
bemore efficient. To begin exploring this systems parameter space, we use the spectral
element method to study the linear stability of the three protein system with arbitrarily
chosen parameters κ = 0.5, A = 1.0, B1 = 2.0, B2 = 2.0, B3 = 2.0, D1 = 10.0,
D2 = 10.0, D3 = 10.0, n = 2. We set τ1 = τ2 = τ3 = τ such that all three proteins
require the same amount of production time, and vary τ and RT just as was done with
the single protein system.

However, for this system we do not have analytical expressions for the equilibrium
solutions and we only have the coupled polynomial system in Eqs. (24), (25) and (26).
Solving this system of equations is a nontrivial task, but if we make some assumptions
based on our observations from the single protein systemwe can still generate stability
diagrams using this method. Namely, we will assume that this system also exhibits
three possible equilibriumpoints (top,middle, and trivial). Using the variable precision
accuracy (VPA) solver in Matlab, we can solve this system of equations numerically
in our parameter space and approximate the dominant eigenvalues to characterize
the stability of each point. The documentation for the VPA solver used states that
for polynomial systems, all solutions in a region will be returned by the function
(vpasolve Mathworks). This solver was applied to a 400 × 400 grid of parameters in
(τ, RT ) ∈ [0, 50] × [0, 100], and the assumption was found to be correct where one
region of the space contained 3 equilibrium points and the other region only contained
the trivial point.

With the single protein system, we defined the top and middle equilibrium points
based on the magnitude of the equilibrium protein production rate p∗. However, in
the three protein system we have multiple equilibrium protein production rates. To
modify this approach for the three protein system, we form the following vector of
equilibrium coordinates,
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Fig. 9 Three proteinmiddle equilibrium point stability diagrams at equal delay. Specifically, the eigenvalues
with maximum magnitude of the monodromy matrix are plotted with respect to the parameters τ and RT .
(left) The real part of the dominant eigenvalue, (middle) imaginary part of the dominant eigenvalue, (right)
the modulus of the eigenvalue. The red curve with triangles is the saddle node boundary that separates
regions with 1 and 3 equilibria. Above the red curve all three equilibrium points exist and below the curve
only the trivial point is present (Color figure online)

�p = [
p∗
1 p∗

2 p∗
3

]T
.

Thus, the top and middle equilibria are defined by the l2 norm of �p where the top
equilibrium has the largest l2 norm and the middle solution has a norm between the
top and trivial. We then use Eq. (23) to obtain R∗ for a given set of parameters at
each equilibrium point. This system can then be linearized about each equilibrium
point using Eq. (30) and the dominant eigenvalue of the linearized system at a given
set of parameters can be approximated with the spectral element method described
in Sect. 4.1. We note that because a single delay is present, we use this delay for the
system period when computing the monodromy matrix for the system.

Similar to the single protein model, we start by plotting the stability of the middle
equilibrium point in Fig. 9. Note that we color the region as white if only the trivial
equilibrium is present. We see that there are two distinct regions in the plot of the
magnitude of the eigenvalue. The curve that separates these regions is the saddle node
bifurcation curve for this system. Using a third order polynomial fit, the saddle node
curve was found to be,

RT = 0.0016τ 3 − 0.1118τ 2 + 4.8855τ + 10.3749, (36)

for τ ≥ 0.625. This curve had a coefficient of determination of 0.9997. We plot the
saddle node boundary as a red curve with triangles in the stability diagrams.

Because the dominant eigenvalue for the middle equilibrium always has a modulus
greater thanone for these parameters, this equilibriumpointwill not govern the stability
of the system if another point is stable or marginally stable. This was also the case
with the single protein system.

Lastly, we plot the stability of the top equilibrium point of this system in Fig. 10.
These diagrams show that for small delay and large resource, this point is stable. As the
delay increases for a given resource, this point becomes an unstable focus by way of
a Hopf bifurcation. We plot the Hopf bifurcation curve as a green line with dots. This
curve was approximated by locating points in the parameter space with unit length
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Fig. 10 Three protein top equilibrium point stability diagrams at equal delay. Specifically, the eigenvalues
with maximum magnitude of the monodromy matrix are plotted with respect to the parameters τ and RT .
(left) The real part of the dominant eigenvalue, (middle) imaginary part of the dominant eigenvalue, (right)
the modulus of the eigenvalue. The red curve with triangles is the saddle node boundary that separates
regions with 1 and 3 equilibria. Above the red curve all three equilibrium points exist and below the curve
only the trivial point is present. The Hopf bifurcation curve is shown as a line with green dots (Color figure
online)

eigenvalues. Using linear regression, the Hopf bifurcation curve was approximated to
be,

RT = 12.0948τ + 4.7910, (37)

for τ ≥ 0.75. This model had a coefficient of determination of 0.9987 suggesting that
it is a good approximation. Note that while there is interesting behavior that occurs
between the green (dots) and red (triangles) curves in these stability diagrams, all of
the eigenvalues plotted are outside of the unit circle and are therefore unstable so this
is not a bifurcation it just means that another eigenvalue moved further from the origin.

6.2 Response Features

Holding the remaining parameters constant at the values from Sect. 6.1, an amplitude
feature diagram was generated with equal delays for all three proteins and varying the
delay τ with the total resource RT . The three protein system was simulated between
10,000 and 11,000 time units using the zero history function described in Sect. 4.3.2,
and the amplitude feature was plotted in the τ − RT space where τ is the same for all
three proteins. The results are shown in Fig. 11.We see that the amplitude diagram has
a similar structure to the single protein system, but there is a change in the amplitude
feature for a small region at low total resource. System responses in these regions are
explored further in Sect. 6.3. We plot the Hopf bifurcation curve from Sect. 6.1 in
Fig. 11 as the green line with dots. The red curve with triangles corresponds to the
saddle node bifurcation curve from the approximations in Sect. 6.1.

6.3 Periodic Solutions

Three points were considered within the region of the parameter space with non-
trivial amplitude in Fig. 11. Namely, we choose (τ, RT ) = (5.7, 100), (25, 50) and
(25, 11.8). The first point is in the nonzero amplitude region to the left of the Hopf
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Fig. 11 Three protein system
response amplitude diagram in
the τ − RT parameter space
where τ is the same delay for all
three proteins. The low growth
history function was used for all
simulations in this diagram

Fig. 12 Boundary value problem solution for the three protein system with τ = 5.7 and RT = 100

bifurcation curve. This point was chosen to verify the subcriticality of the Hopf bifur-
cation. The second point was chosen to show the response near the middle of the
oscillation region. We chose the third point in the region of differing amplitude at low
total resource to observe the changes that occur when the cell has limited resources
available. The steady state regions or regions with near zero amplitude were found to
exhibit similar behaviors to the single protein model outside of the oscillation region
so these responses will not be considered.

Startingwith τ = 5.7 and RT = 100, the systemwas simulated between 15,000 and
15,005.7 time units to capture a single period of the response. This solution was then
verified by solving the nonlinear DDE boundary value problem to obtain the periodic
solution inFig. 12.We see that the obtained solution is nearly identical to the simulation
and appears to be close to a constant solution at the top equilibrium point which for
these parameters is at (p∗

1, p
∗
2, p

∗
3, R

∗) ≈ (0.9942, 1.1328, 1.1328, 7.0965). We also
note that all of the protein production rates here appear to oscillate in-phase.
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Fig. 13 Boundary value problem solution for the three protein system with τ = 25 and RT = 50

Next, we study the solution when τ = 25 at the same resource RT = 50. This
point corresponds to a region in the response feature diagram in Fig. 11 with the
same amplitude as the solution in Fig. 12. Plotting the response for these parameters
between 15,000 and 15,025 time units yielded Fig. 13.We see that as the total resource
has decreased, the periodic solution is at zero protein production rates for most of
the period. Again, the protein production rates appear to oscillate in-phase for these
parameters.

Lastly, we compute a periodic solution in the thin region of larger amplitude feature
at low total resource. To do this, we chose τ = 25 and RT = 11.8. The periodic
solution was obtained using simulation data between 15,000 and 15,025 time units
and the resulting solution is shown in Fig. 14. It is clear that the periodic solution at
these parameters is much different from the others. We see that the peak for p1(t)
has shifted out of phase with the other proteins. This behavior could indicate that at
extremely low resource, the best way to share that resource is to separate production
of different proteins to different times, as this results in a more efficient use of resource
for the cell.

6.4 Three Protein Summary

The three protein system was found to behave similarly to the single protein system.
Three equilibrium points were found numerically, and a subcritical Hopf bifurcation
was found in the τ − RT parameter space where all three proteins exhibited the same
production time τ . A large region of periodic solutions was found by numerical sim-
ulation by way of a resource limiting history function which aligns with experimental
observations (Tu et al. 2005). It was found that for small delay and large total resource,
the cell can produce all proteins at a constant rate at the top equilibrium point. Due
to the subcritical Hopf bifurcation of the top equilibrium point, an oscillation region
appears in the parameter space which facilitates the transition from constant produc-

123



A Nonlinear Delay Model for Metabolic Oscillations… Page 27 of 29 122

Fig. 14 Boundary value problem solution for the three protein system with τ = 25 and RT = 11.8

tion to zero production just as was observed in the single protein system. Below the
Hopf bifurcation curve, there is a bistability between the trivial equilibrium and the
limit cycle, but slightly above the Hopf bifurcation curve there is a bistability between
the top and trivial equilibrium points and the limit cycle. The trivial equilibrium was
found to have a small basin of attraction and is only approached for small initial protein
production rates p0.

7 Conclusion

We introduced a nonlinear time delay framework for modeling metabolic oscillations
during protein synthesis in yeast cells. The model contains many parameters that
control the behavior of the system where the delays correspond to the respective
protein production times. The single protein and three protein variants of this model
were studied to locate regions in the parameter space where the metabolic activity
contained oscillations. Due to the complexity of the model, three numerical methods
were utilized for locating limit cycles in these systems. First, a spectral elementmethod
was used to approximate the system as a high dimensional map whose eigenvalues
approximate the true spectrum of the system allowing for the stability of the fixed
points to be characterized in a subset of the parameter space. Three equilibrium points
were found for each system and a subcritical Hopf bifurcation curve was located in the
parameter space where an equilibrium point of the system loses stability and a limit
cycle emerges leading to periodic solutions. The second numerical method utilized
system simulations carried out over a range of τ to show the region of bistability
where the stable steady state and a stable periodic orbit coexist. The simulation results
were verified with the third numerical method where a finite dimensional boundary
value problem (BVP) was solved by discretizing the system using a spectral element
approach. We found a large region of the parameter space to have nonzero amplitude
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of oscillation for a range of delay and total resource values. It was observed that
the oscillation region forms as a transition between two steady states in the system
(constant production and zero production) for large enough production times. It was
also observed that for the three protein model when the resources were shared and
each protein had an equal production time, certain parameters at low total resource
resulted in a temporal shift in the protein production rate peaks. Our simulation results
are consistent with what has been observed in experiment, and our model helps argue
that the observed temporal shift is a more efficient use of resources for the cell.
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