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Abstract
Existing methods for optimal control struggle to deal with the complexity commonly
encountered in real-world systems, including dimensionality, process error, model
bias and data heterogeneity. Instead of tackling these system complexities directly,
researchers have typically sought to simplify models to fit optimal control methods.
But when is the optimal solution to an approximate, stylized model better than an
approximate solution to a more accurate model? While this question has largely gone
unanswered owing to the difficulty of finding even approximate solutions for com-
plex models, recent algorithmic and computational advances in deep reinforcement
learning (DRL) might finally allow us to address these questions. DRL methods have
to date been applied primarily in the context of games or robotic mechanics, which
operate under precisely known rules. Here, we demonstrate the ability for DRL algo-
rithms using deep neural networks to successfully approximate solutions (the “policy
function” or control rule) in a non-linear three-variable model for a fishery without
knowing or ever attempting to infer a model for the process itself. We find that the
reinforcement learning agent discovers a policy that outperforms both constant escape-
ment and constant mortality policies—the standard family of policies considered in
fishery management. This DRL policy has the shape of a constant escapement policy
whose escapement values depend on the stock sizes of other species in the model.
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1 Introduction

Much effort has been spent grappling with the complexity of our natural world in con-
trast to the relative simplicity of the models we use to understand it. Heroic amounts
of data and computation are being brought to bear on developing better, more realistic
models of our environments and ecosystems, in hopes of improving our capacity to
address the many planetary crises. But despite these efforts and advances, we remain
faced with the difficult task of figuring out how best to respond to these crises. While
simplified process models for the population dynamics have historically allowed for
exploration of large decision spaces, the newwave of rich models are applied to highly
oversimplified descriptions of potential actions they seek to inform. For instance,
Global Circulation Models (GCMs) such as HadCM3 (Pope et al. 2000; Gordon et al.
2000; Collins et al. 2001) model earth’s climate using 1.5M variables, while the com-
parably vast potential action space is modeledmuchmoreminimalistically, with 5 SSP
socioeconomic storylines and 7 SSP-RCP marker scenarios summarizing the action
space at the IPCC (Riahi et al. 2017).

Even as our research community develops simulations of the natural world that fit
only in supercomputers, we analyze a space of policies that would fit on index cards.
Similar combinations of rich process models and highly simplified decision models
(often not even given the status of ‘model’) are common.Modeling the potential action
space as one of a handful of discrete scenarios is sometimes a well justified acknowl-
edgement of the constraints faced by real-world decision-makers—particularly in the
context of multilateral decisions—and may seem to reflect a division of responsi-
bilities between ‘scientists’ modeling the ‘natural processes’ and policy-makers who
make the decisions. But, more often, this simplification of decision choices is sim-
ply mathematically or conceptually convenient. This simplification reflects trade-offs
between tractablity and complexity at the basis of any mathematical modeling—if
we make both the state space and action space too realistic, the problem of find-
ing the best sequence of actions quickly becomes intractable. However, emerging
data-driven methods from machine learning offer a new choice— algorithms that
can find good strategies in previously intractable problems, but at the cost of opac-
ity.

In this paper,we focus on awell-developed application ofmodel-basedmanagement
of the natural world that has long illustrated the trade-offs between model complexity
and policy complexity: the management of marine fisheries. Fisheries management is
both an important issue to society as well as a rich and frequent test-bed of ecological
management more generally. Fisheries are an essential natural resource that provide
the primary source of protein for one in every four humans, and have faced widely
documented declines due to over-fishing Costello et al. (2016). Fisheries management
centers around the process of sampling populations to determine fishing quotas based
on population estimates. This decision is often guided by a model of the dynamics
of the system. Our paper focuses on the decision side of this problem rather than the
measurement step.

Fisheries management has roots in both the fields of ecosystem management and
natural resource economics. Both fields might trace their origins to the notion of
maximum sustainable yield (MSY), introduced independently by a fisheries ecolo-
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gist (Schaefer 1954) and the economist (Gordon and Press 1954) in the same year.
From this shared origin, each field would depart from the simplifying assumptions
of the Gordon-Schaefer model in divergent ways, leading to different techniques
for deriving policies from models.The heart of the management problem is easily
understood: a manager seeks to set quotas on fishing that will ensure the long-term
profitability and sustainability of the industry. Mathematical approaches developed
over the past century may be roughly divided between these two fields: (A) ecolo-
gists, focused on ever more realistic models of the biological processes of growth
and recruitment of fish while considering a relatively stylized suite of potential man-
agement strategies, and (B) economists, focused on far more stylized models of the
ecologywhile exploring a far less constrained set of possible policies. The economist’s
approach can be characterized by themathematics of aMarkov decision process (MDP
Colin Clark 1973; Colin Clark 1990; Marescot et al. 2013), in which the decision-
maker must observe the stock each year and recommend a possible action. In this
approach, the policy space that must be searched is exponentially large—for a man-
agement horizon of T decisions and a space of N actions, the number of possible
policies is NT . In contrast, fisheries ecologists and ecosystem management typi-
cally search a space of policies that does not scale with the time horizon. Under
methods such as “Management Strategy Evaluation” (MSE, (Punt et al. 2016)) a
manager identifies a candidate set of “strategies” a priori, and then compares the
performance of each strategy over a suite of simulations to determine which strat-
egy gives the best outcome (i.e. best expected utility). This approach is far more
amenable to complex simulations of fisheries dynamics and more closely corre-
sponds to how most marine fishing quotas are managed today in the United States
(see stock assessments documented in RAM Legacy Stock Assessment Database
2020).
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Recent advances in machine learning may allow us to once again bridge these
approaches, while also bringing new challenges of their own. Novel data-driven
methods have allowed these models to evolve into ever more complex and realis-
tic simulations used in fisheries management, where models with over 100 parameters
are not uncommon (RAM Legacy Stock Assessment Database 2020). Constrained by
computational limits,MDPapproaches have been intractable on suitably realisticmod-
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els and largely confined tomore academic applications (Costello et al. 2016). However,
advances in Deep Reinforcement Learning, (DRL) a sub-field of machine learning,
have recently demonstrated remarkable performance in a range of such MDP prob-
lems, from video games (Bellemare et al. 2013; Mnih et al. 2013) to fusion reactions
(Degrave et al. 2022; Seo et al. 2022) to the remarkable dialog abilities of ChatGPT
(OpenAI 2022). RL methods also bring many challenges of their own: being noto-
riously difficult to train and evaluate, requiring immense computational costs, and
presenting frequent challenges with reproducibility. A review of all these issues is
beyond our scope but can be found elsewhere (Lapeyrolerie et al. 2022; Chapman
et al. 2023). Here, though, we will focus on the issue of opacity and interpretability
raised by these methods. In contrast with optimization algorithms currently used in
either ecosystem management or resource economics, RL algorithms have no guar-
antees of or metrics for convergence to an optimal solution. In general, one can only
assess the performance of these black box methods relative to alternatives.

In most US fisheries, the mortality policy is often piecewise linear (often with one
constant and one linear piece), and the allowable biological catch (ABC) or total
allowable catch (TAC) is set at some heuristic (e.g. 80%) below the ‘overfishing
limit’, FMSY , i.e. the highest (constant) mortality that can be sustained indefinitely (in
the model – reality of course does not permit such definitions). This fixed mortality
management can be seen, for instance, in most of the fisheries listed in the widely
used R.A. Myers Legacy Stock Assessment Database. Here, we have focused on
purely constant mortality policies, rather than piecewise linear mortality funcitons,
for simplicity. Escapement-based management is less common, except in salmonoids,
as it requires closing a fishery whenever the measured biomass falls below BMSY .

In this article, we compare against two common methods: constant mortality
(CMort) and constant escapement (CEsc), introduced in Text Box 1.1

We consider the problem of devising harvest strategies in a for a series of ecosystem
models with increasing complexity (Table 1): (1) One species, one fishery: a simple
single-species recruitment model based on (May 1977); (2) Three species, one fishery:
a three-species generalization of model 1), where one of the species is harvested;
(3) Three species, two fisheries: the same three-species model as above but with two
harvested species; (4)Three species, twofisheries, parameter variation: a three-species
model of which two are harvested, as above, with a time-varying parameter. This last
model is meant to be a toy model of climate change’s effect on the system. Across
all of these scenarios, two goals are balanced in the decision process: maximizing
long-term catch and preventing stock sizes to fall below some a-priori threshold.

Thisway,we evaluate classicalmanagement strategies (CMort andCEsc) andDRL-
based strategies on four different models. This experimental design is summrized in
Fig. 1.

Regarding control for these 4 models, we show the following. Model 1: DRL-based
strategies recover the optimal constant escapement (CEsc) policy function. Constant

1 A repository with all the relevant code to reproduce our results may be found at https://github.com/
boettiger-lab/approx-model-or-approx-soln in the “src” subdirectory. The data used is found in the “data”
subdirectory, but the user may use the code provided to generate new data sets.
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Table 1 Table of models considered in this paper. Here,N. Sp. is the number of species in the model,Harv.
Sp. is the species of the model which are harvested, and Stationary? refers to whether the parameters of the
model have fixed values (or, on the contrary, if they vary in time). The only non-stationary case presented in
the paper is where rX drifts linearly with time. In the code repository associated to the paper, we consider
other possible choices of non-stationarity

Model name Model eqs. N. Sp. Harv. Sp. Stationary?

Model 1 (3) 1 X Yes

Model 2 (4) 3 X Yes

Model 3 (4) 3 X and Y Yes

Model 4 (4) 3 X and Y No

Fig. 1 An experimental-design type of visualization of the management scenarios considered in this paper.
On the x-axis are four different fishery management problems (Table 1). We represent the Model 4’s non-
stationarity with a clock next to the X variable, and we intend to use it as an example of a possible simplified
model for the effects of climate change. On the y-axis we have different management strategies with which
one may control each of the models. On the bottomwe have the constant escapement strategy (CEsc), based
on calling off all fishing below a certain threshold population value. Above that is the constant mortality
strategy (CMort), where one optimizes over constant fishing effort strategies. Finally, on top we have
DRL-based strategies where policies are in general functions of the full state of the system, and they are
parametrized by a neural network. The specific DRL-based strategy is referred to as PPO+GP in the main
text, due to the algorithm used to produce the policy. The results plotted are the average reward obtained by
the strategy over 100 episodes, and the fraction of those episodes which do not end with a near-extinction
event (denoted Perc for Percentage). We have normalized to the highest reward in each column in order to
enhance the comparison between strategies. For illustrative purposes we have color-coded the results using
a two-dimensional color legend displayed on the bottom left

mortality (CMort) performs considerably worse than these three.2 Model 2: Here, all
management strategies perform similarly. Model 3: For this model, DRL outperforms
both classical strategies, with CMort surprisingly performing significantly better than

2 As will be explained later, all our models are stochastic. If we set stochasticity to zero in Model 1, CMort
matches the performance of the other management strategies.
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CEsc. In particular, we observe that DRL strategies are more sensitive to stochastic
variations of the system which allows it to adaptively manage the system to prevent
population collapses below the threshold.Model 4:Here, the performance gap between
DRL and both classical strategies is maintained.

We show that in the most complex scenario, Model 4, CMort is faced with a
tradeoff—the optimal mortality rate leads a rather large fraction of episodes end-
ing with a population crash, whose negative reward is counteracted with a higher
economic output.3 Conversely, more conservative, lower, mortality rates lead to lower
total reward on average. The DRL approach side-steps this trade-off by optimizing
over a more complex family of possible policies—policies parametrized by a neural
network, as opposed to policies labeled by a single parameter (the mortality rate).

Our findings paint a picture of how a single-species optimal management strategy
may lose performance rather dramatically when controlling a more complex ecosys-
tem. Here, DRL performs better from both economical and conservation points of
view. Moreover, rather unintuitively, CMort—known to be suboptimal and unsus-
tainable for single-species models—can turn out to even outperform the CEsc—the
single-species optimal strategy—for complex ecosystems. Finally, within this regime
of complex, possibly varying, ecosystems, we show that DRL consistently finds a
policy which effectively either matches the best classical strategy, or outperforms it.
We strengthen this result with a stability investigation: we show that random pertur-
bations in the model’s parameter values used do not significantly vary the conclusion
that DRL outperforms CEsc.

2 Mathematical Models of Fisheries Considered

Here we mathematically introduce the four fishery models for which we compare
different management strategies. In general, the class of models that appear in this
context are stochastic, first order, finite difference equations. For n species, these
models have the general form

�Xt = fX (Nt ) + ηX ,t − MX Xt

�Yt = fY (Nt ) + ηY ,t − MYYt
�Zt = fZ (Nt ) + ηZ ,t − MZ Zt

. . .

(1)

where Nt = (Xt , Yt , Zt , . . . ) ∈ R
n+ is a vector of populations, �Xt := Xt+1 − Xt ,

fi : Rn → R are arbitrary functions, and where ηi,t are Gaussian random variables.
Here, Mi = Mi (Nt ) ∈ R+ is a state-dependent fish mortality arising from harvesting
the i-th species (sometimes this is referred to as fishing effort).

The term MX Xt is the total X harvest at time t . This formulation of stock recruit-
ment as a discrete finite difference process is common among fisheries, as opposed to

3 In our mathematical formulation of the decision problem, we have assumed for simplicity that the fishing
effort cost is zero and that fish price is stable over time. This way, we equate economic output with harvested
biomass.
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continuous time formulations which involve instantaneous growth rates. This growth
rate simplifies e.g. the possibly seasonal nature of reproduction (which would need to
be accounted for in a realistic continuous-time model) by simply considering the total
recruitment experienced by the population over a full year.

The fishing efforts are the control variables of our problem—these may be set by
the manager at each time-step to specified values. We make two further simplifying
assumptions on the control problem: (1) Full observation: the manager is able to
accurately measure Nt and use that measurement to inform their decision. (2) Perfect
execution: the action chosen by the manager is implemented perfectly (i.e., there is
no noise affecting the actual value of the fishing efforts).

Model 1 is a single-species classical model of ecological tipping points. Models
2-4 are all three-species models with similar dynamics. Following this logic, the first
subsection will be dedicated to the single-species model and the second will focus on
the three-species models.

2.1 The Single Species Model

Optimal control policies for fisheries are frequently based on 1-dimensional models,
n = 1, as described in T ext Box 1. Themost familiar model of f (X) is that of logistic
growth, for which

f (Xt ) = r Xt
(
1 − Xt/K

) =: L(Xt ; r , K ). (2)

Real world ecological systems are obviously far more complicated than this simple
model suggests. One particularly important aspect that has garnered much attention
is the potential for the kind of highly non-linear functions that can support dynamics
such as alternative stable states and hysteresis. A seminal example of such dynamics
was introduced in (May 1977), using a one-dimensional model of a prey (resource)
species under the pressure of a (fixed) predator. In the notation of Eq. (1),

fX (Xt ) = L(Xt ; r , K ) − βHX2
t

c2 + X2
t
. (3)

In the following, we will denote

F(Xt , H ; β, c) := βHX2
t

c2 + X2
t
.

The model has six parameters: the growth rate r and carrying capacity K for X ,
a constant population H of a species which preys on X , the maximal predation rate
β, the predation rate half-maximum biomass c, and the variance σ 2

X of the stochastic
term ηX ,t . (Here and in the following we will center all random variables at zero.)

Equation (3) is an interesting study case of a tipping point (saddle-node bifurcation)
(see Fig. 2). Holding the value of β fixed, for intermediate values of H there exist two
stable fixed points for the state Xt of the system, these two attractors separated by an
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Fig. 2 The fixed point diagram for the unharvested dynamics of Model 1 as a function of varying the
parameter βH , assuming zero noise. Stable fixed points (also known as attractors) are plotted using a solid
line, while the unstable fixed point is shown as a dotted line

unstable fixed point. At a certain threshold value of H , however, the top stable fixed
point collides with the unstable fixed point and both are annihilated. For this value
of H , and for higher values, only the lower fixed point remains. This also creates the
phenomenon of hysteresis, where returning H to its original value is not sufficient to
restore Xt to the original stable state.

This structure implies two things. First, that a drift in H could lead to catastrophic
consequences, with the population Xt plummeting to the lower fixed stable point.
Second, that if the evolution of Xt is stochastic, then, even at values of H below the
threshold point, the system runs a sizeable danger of tipping over towards the lower
stable point.

2.2 The Three Species Models

Models 2-4 are three-species models and they are all closely related—in fact, their
natural dynamics (i.e. dynamics under zero harvest) is essentially given by the same
equations:

fX (Nt ) = L(Xt ; rX , KX ) − F(Xt , Zt ; β, c) − cXY XtYt ,

fY (Nt ) = L(Yt ; rY , KY ) − DF(Yt , Zt ; β, c) − cXY XtYt ,

fZ (Nt ) = (b(Xt + DYt ) − dZ )Zt .

(4)

The three species modeled are X , Y and Z . Species Z preys on both X and Y , while
the latter two compete for resources. There are thirteen parameters in this model: The
growth rate and carrying capacity, rX , KX , rY and KY , of X and Y . A parameter cXY
mediating a Lotka-Volterra competition between X and Y . A maximum predation rate
β and a predation rate half-maximum biomass c specifying how Z forages on X and Y .
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A parameter D regulating a relative preference of Z to prey on Y . A death rate dZ and
a parameter b scaling the birth rate of Z . Finally, the noise variances σX , σY and σZ .

The three models will branch off of Eq. (4) in the following way. Model 2: here,
only X is harvested, that is, in the notation of Eq. (1), we fix MY = MZ = 0 and leave
MX as a control variable. All parameters here are constant. Model 3: as Model 1, but
with X and Y being harvested. In other words, we set MZ = 0 and leave MX and
MY as control variables. Model 4: here X and Y are harvested, but now we include a
non-stationary parameter:

rX = rX (t) =
{
1 − t/200, t ≤ 100,

1/2, t > 100.
(5)

All other parameters are constant. Equation (5) is intended to reflect in a simplemanner
a possible effect of climate change: where the reproductive rate of X is reduced linearly
over time until it stabilizes.

3 Reinforcement Learning

Reinforcement learning (RL) is a way of approaching sequential decision problems
through machine learning. All applications of RL can be conceptually separated into
two parts: an agent and an environment which the agent interacts with. That is, the
agent performs actions within the environment.

After the agent takes an action, the environment will transition to a new state and
return a numerical reward to the agent. (See Fig. 1 in (Lapeyrolerie et al. 2022) for a
conceptual description of reinforcement learning algorithms.) The rewards encode the
agent’s goal. The main task of any RL algorithm is then to maximize the cumulative
reward received. This objective is achieved by aggregating experience in what is called
the training period and learning from such experience.

The environment is commonly a computer simulation. It is important to note here
the role that real time-series data of stock sizes can play in this process. This data is
not used directly to train the RL agent, but rather to estimate the model defining the
environment. This environment is subsequently used to train the agent. In this paper,
we focus on the second step—we take the estimated model of reality as a given, and
train an RL agent on it.4

Specifically, we consider four environments corresponding to each of the models
considered (Table 1). At each time step, the agent observes the state S and enacts some
harvest—reducing Xt to Xt−MX (Nt )·Xt , and, forModels 3 and 4, also reducing Yt to
Yt − MY (Nt ) ·Yt . Here the fish mortality-rates-from-harvest (i.e. MX = MX (Nt ) and
MY = MY (Nt )), are the agent’s action at time t . This secures a reward of MX (Nt )X
for Models 1 and 2, and, similarly, a reward of MX (Nt )X + MY (Nt )Y for Models 3

4 In this sense, it is important to note that the classical management strategies we compare against have
a similar flow of information. Namely, data is used to estimate a dynamical model, and this model is used
to generate a policy function. The difference to our approach is located in the process of *how* the model
is used to optimize a policy. Because of this difference, RL-based approaches can produce good heuristic
solutions for complex problems.
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and 4. After this harvest portion of the time step, the environment evolves naturally
according to Eqs. (3) and (4) (Sect. 2).

As mentioned previously, discretising time allows a simplification of the possi-
bly seasonal mating behavioral patterns of the species involved. This approximation
is commonly used in fisheries for species with annual reproductive cycles (see e.g.
(Mangel 2006), Chap. 6). Moreover, the separation of each time-step into a harvest
period and a natural growth period assumes that harvest has little disruption on the
reproductive process. A detailed model which includes such a disruption is outside of
the scope of this work.

3.1 Mathematical Framework for RL

The RL environment can be formally described as a discrete time partially observable
Markov decision process (POMDP). This formalization is rather flexible and allows
one, e.g., to account for situations where the agent may not fully observe the environ-
ment state, or where the only observations available to the agent are certain functions
of the underlying state. For the sake of clarity, we will only present here the subclass of
POMDPs which are relevant to our work: fully observable MDPs (henceforth MDPs
for short). An MDP may be defined by the following data:

• S: state space, the set of states of the environment,
• A: action space, the set of actions which the agent may choose from,
• T (Nt+1|Nt , at , t): transition operator, a conditional distribution which describes
the dynamics of the system (where Ni ∈ S are states of the environment),5

• r(Nt , at , t): reward function, the reward obtained after performing action at ∈ A
in state Nt ,

• d(N0): initial state distribution, the initial state of the environment is sampled
from this distribution,

• γ ∈ [0, 1]: discount factor.

At a time t , the MDP agent observes the full state st of the environment and
chooses an action based on this observation according to a policy function π(at |Nt ). In
return, it receives a discounted reward γ t r(at , Nt ). The discount factor helps regular-
ize the agent, helping the optimization algorithm find solutions which pay off within
a timescale of t ∼ log(γ −1)−1.

With any fixed policy function, the agent will traverse a path τ = (N0, a0, N1, a1
. . . , Ntfin. ) sampled randomly from the distribution

pπ (τ ) = d(N0)

tfin.−1∏

t=0

π(at |Nt )T (Nt+1|Nt , at , t).

5 Transition operators are commonly discussed without having a direct time-dependence for simplicity,
but the inclusion of t as an argument to T does not alter the structure of the learning problem appreciably.
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Reinforcement learning seeks to optimize π such that the expected rewards are max-
imal,

π∗ = argmax Eτ∼pπ [R(τ )],

where,

R(τ ) =
tfin.−1∑

t=0

γ t r(at , Nt , t),

is the cumulative reward of path τ . The function J (π) := Eτ∼pπ [R(τ )] is called the
expected return.

3.2 Deep Reinforcement Learning

The optimal policy function π often lives in a high or even infinite-dimensional space.
This makes it unfeasible to directly optimize π . In practice, an alternative approach
is used: π is optimized over a much lower-dimensional parameterized family of func-
tions.6 Deep reinforcement learning uses this strategy, focusing on function families
parameterized by neural networks. (See Fig. 1 and Appendix A in (Lapeyrolerie et al.
2022) for a conceptual introduction to the use of reinforcement learning in the context
of conservation decision making.)

We will focus on deep reinforcement learning throughout this paper. Within the
DRL literature there is a wealth of algorithms from which to choose to optimize π ,
each with its pros and cons. Most of these are based on gradient ascent by using the
technique of back-propagation to efficiently compute the gradient. Here we have used
only one such algorithm (proximal policy optimization (PPO)) to draw a clear com-
parison between the RL-based and the classical fishery management approaches. In
practice, further improvements can be expected by a careful selection of the optimiza-
tion algorithm. (See, e.g., (François-Lavet et al. 2018) for an overview of different
optimization schemes used in DRL.)

6 Policies are, in general, functions from state space to policy space. In our paper, these are π : [0, 1]×3 →
R+ for the single fishery case, and π : [0, 1]×3 → R

2+ for two fisheries. The space of all such functions
is highly singular, spanning a non-separable Hilbert space Even restricting ourselves to continuous policy
functions, we end up with a set of policies which span the infinite dimensional space L2([0, 1]×3). One
way to avoid optimizing over an infinite dimensional ambient space is to discretize state space into a set of
bins. This approach runs into tractability problems: First, the dimension of policy space scales exponentially
with the number of species. Second, even for a fixed number of species (e.g., 3), the dimension optimized
over can be prohibitively large—for example if one uses 1000 bins for each population in a three-species
model, the overall number of parameters being optimized over is 109. Neural networks with much smaller
number of parameters, on the other hand, can be quite expressive and sufficient to find a rather good (if not
optimal) policy function.
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3.3 Model-Free Reinforcement Learning

Within control theory, the classical setup is one where we use as much information
from the model as possible in order to derive an optimal solution. Here, one may find
a vast literature on model-based methods to attain optimal, or near-optimal, control
(see, e.g., (Zhang et al. 2019; Sethi and Sethi 2019; Anderson and Moore 2007)).

The classical sustainable fishery management approaches summarized in Text Box
1, for instance, are model-based controls. As we saw there, these controls may run
into trouble in the case where there are inaccuracies in the model parameter estimates.

There are many situations, however, in which the exact model of the system is not
known or not tractable. This is a standard situation in ecology: mathematical models
capture the most prominent aspects of the ecosystem’s dynamics, while ignoring or
summarizing most of its complexity. In this case, it is clear, model-based controls run
a grave danger of mismanaging the system.

Reinforcement learning, on the other hand, can provide a model-free approach to
control theory. While a model is often used to generate training data, this model is not
directly used by model-free RL algorithms. This provides more flexibility to use RL in
instances where the model of the system is not accurately known. In fact, it has been
shown that model-free RL outperforms model-based alternatives in such instances
(Janner et al. 2019). (For recent surveys ofmodel-based reinforcement learning, which
we do not focus on here, see (Moerland et al. 2023; Polydoros and Nalpantidis 2017).)

This context provides a motivation for this paper. Indeed, models for ecosystem
dynamics are only ever approximate and incomplete descriptions of reality. This way,
it is plausible that model-free RL controls could outperform currently used model-
based controls in ecological management problems.

Model-free DRL provides, moreover, a framework within which agents can be
trained to be generally competent over a variety of different models. This could more
faithfully capture the ubiquitous uncertainty around ecosystemmodels. The aforemen-
tioned framework—known as curriculum learning—is considerably more intensive
on computational resources than the “vanilla” DRL methods we have used in this
paper.7 Due to the increased computational requirements of this framework, we have
left the exploration in this direction for future work.

4 Methods

4.1 The Environment

We considered the problem of managing four increasingly complex models (see Table
1). To recap, these four environments are a single-species growth model (3) for a
harvested species; a three-species model (4) with a single harvested species; the same
three-species model but with two harvested species; and, finally, a three-species model
with a time-varying parameter and two harvested species.

7 All our agents were trained in a local server with two commercial GPUs. The training time was between
30min and one hour in each case.
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The policies explored were functions from states Nt to either a single number
MX (Nt ) = π(Nt ) (for Models 1 and 2), or a pair of numbers (MX (Nt ), MY (Nt )) =
π(Nt ) (for Models 3 and 4).

Our goal was to evaluate the performance of different policy strategies over a spec-
ified window of time. We chose this window to be 200 time-steps, where each discrete
time-step represents the dynamical evolution of the system over a year. Each time-step
was composed of two parts: First, a harvest period where the harvest is collected from
the system (e.g. the population X is reduced to Xt �→ Xt − MX (Nt )Xt ). Second, a
recruitment and interaction period, where the system’s state evolves according to its
natural dynamics.

Training and evaluating management strategies were performed by simulating
episodes. An episode begins at a fixed initial state and the system is controlled with a
management policy until t = 200, or until a “near-extinction event” occurs—that is,
until any of the populations go below a given threshold,

Xt ≤ X thresh., Yt ≤ Ythresh., or, Z ≤ Z thresh.. (6)

In our settingwe have chosen X thresh. = Ythresh. = Z thresh. = 0.05 as a rule of thumb—
given that under natural (unharvested) dynamics the populations range within values
of 0.5 to 1, this would represent on the order of a 90–95% population decrease from
their “natural” level.

The reward function defining our policy optimization problemhad two components.
The first was economical: the total biomass harvested over an episode. The second
seeked to reflect conservation goals: if a near-extinction event occurred at time t , the
episode was ended early and a negative reward of −100/t was awarded. This reward
function balanced the extractive motivation of the fishery with conservation goals
which went beyond the scope of long-term sustainable harvests commonly used in
fishery management.

4.2 Training a DRL Agent

We trained aDRL agent parametrized by a neural networkwith two hidden, 64-neuron,
layers, on a local server with 2 commercial GPUs. We used the Ray framework8 for
training, specifically we used the Ray PPOConfig class to build the policy optimization
algorithm using the default values for all hyper-parameters. In particular, no hyperpa-
rameter tuning was performed. The agent was trained for 300 iterations of the PPO
optimization step for the three-species cases. The total training time was on the order
of 30min to 1h. For the single-species model, the training iterations were scaled down
to 100 and the training time was around 10min.

The state space used was normalized case-by-case as follows: Model 1: a line
segment [0, 1], Models 2-4: a cube [0, 1]×3. We used simulated data to derive a bound
on the population sizes typically observed, and thus be able to normalize states to a
finite volume.

8 https://docs.ray.io/
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Policies obtained from the PPO algorithm can be “noisy” as their optimization
algorithm is randomized (see, e.g. Appendix B for a visualization of the PPO policy
obtained forModel 4).We smoothed this policy out using aGaussian process regressor
interpolation. Details for this interpolation process can be found in Appendix C.

4.3 Tuning the CMort Strategy

In order to estimate the optimum mortality rate, we optimized over a grid of possible
mortality rates. Namely, for Models 1 and 2, grid of 101 mortality rates was laid
in the interval [0, 0.5]; for Models 3 and 4, a 51 × 51 grid was set in the square
[0, 0.5]2. The latter had a slightly coarser grid due to the high memory cost of using
the denser grid. Since the approach for tuningwas completely analogous for all models
evaluated, here we discuss only Model 4. For each one of these choices of mortality
rates, say (MX , MY ), we simulated 100 episodes based on (4): At each time step the
state (Xt ,Yt , Zt ) was observed, a harvest of MX Xt + MYYt was collected and then
the system evolved according to its natural dynamics (4). The optimal mortality rate
was the value (M∗

X , M∗
Y ) for which the mean episode reward was maximal.

4.4 Tuning the CEsc Strategy

This tuning procedure was analogous to that of the CMort strategy just summarized.
Namely: A grid of 101 escapement values was laid out on the interval [0, 1] forModels
1 and 2; and a 51× 51 grid on [0, 1]2 was laid out for Models 3 and 4. Each grid point
represented a CEsc policy. We used each of these policies to manage 100 replicate
episodes. The optimal policy was the policy with the highest average reward obtained.
A visualization of the tuning outcome for Model 4 is shown in Fig. 3.

4.5 Parameter Values Used

The single-species model’s (Eq. (3)) dynamic parameters were chosen as

r = K = 1, β = 0.25, c = 0.1. (7)

Here, the values of β and c were chosen as to make the system be roughly close to its
tipping point.

For Models 2 and 3, their dynamic parameters (in Eq. (4)) were chosen as follows

rX = KX = rY = KY = 1, β = 0.3, c = 0.3

cXY = 0.1, b = 0.1, D = 1.1, dZ = 0.1.
(8)

Moreover, the variances for the stochastic terms were chosenas

σ 2(ηX ,t ) = σ 2(ηY ,t ) = σ 2(ηZ ,t ) = 0.05.
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Fig. 3 Visualization of the cosntant escapement strategy tuning procedure for Model 4. There was a certain
multiplicity in this tuning strategy: a “ridge of optimality”where policies had essentially equivalent behavior.
Throughout our investigation, we tuned constant escapment in several occasions and, on each occassion, a
different optimal policy along the ridge was found. The results for different policies along the ridge were in
practice equivalent, with no discernible difference in performance. We highlighted the ridge with a white
dotted line

For Model 4, we used rX (t) given as in Eq. (5) and all other parameters were given as
in Eq. (8).

The values of c and β in the three-species model were slightly different than their
values in the one-species model. These values were chosen heuristically: We observed
that choosing the lower value of c = 0.1 in this casewould lead to quick near-extinction
events even without a harvest. Moreover, β was slightly increased simply to put more
predation pressure on the X and Y populations and make them slightly more fragile.

4.6 Stability Analysis

To ensure that our results do not strongly depend on our parameter choices, we per-
formed a stability analysis. Here, we perturbed parameters randomly and measured
the difference in performance between our DRL-basedmethods and the CEsc strategy.
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We observed that the difference in performance is maintained for even relatively high
noise strengths. We only considered the most complex case here, Model 4.

For each value of parametric noise strength σparam., we executed the following
procedure: We sampled 100 choices of perturbed parameter values, where the pertur-
bation was as follows—each parameter P was perturbed to (1+ gP)P where gP was
a Gaussian random variable with variance σ 2

param.. For each of these sample parameter
sets, we tuned CEsc and trained the DRL agent. We measured the average reward
difference between these two strategies for each of sample (this was done using 100
replicate evaluation episodes). Finally, we took the mean of this average difference
over the 100 perturbed parameter samples.

The parametric noise strength values used were [0.04, 0.08, . . . , 0.2].

5 Results

We evaluated each of the four management strategies considered on Models 1-4.
To recap, the management strategies were CEsc, CMort, PPO and a Gaussian pro-
cess interpolation of PPO (“PPO+G”). Furthermore, we characterized the trade-off
between economic output and sustainability faced by CMort policies. This was done
by evaluating CMort policies with a fraction of the optimal mortality rate (specifically,
80, 90 and 95%). All evaluations were based on 100 replicate episodes.

We will visualize the results concerning Model 4 in this section, leaving the other
models for Appendix A. This is the most complex scenario considered and where our
results show the most compelling advantage of DRLmethods with respect to classical
strategies.

Ourmain result is summarized in Fig. 4which displays the total reward distributions
for the policy obtained through each strategy. Here we see that CEsc has a long-tailed
distribution of rewards, and its average reward is much lower than other management
strategies. CMort has a shorter-tailed distribution and a much higher average reward.
Finally, both DRL-based strategies have a more concentrated reward distribution and
a higher average reward than CMort.

To assess what is the culprit for the classical strategies’ low performance with
respect to the DRL-based strategies, we plot the duration of each of the 100 evaluation
episodes of each strategy in Fig. 5. We see that early episode ends are prevalent in
classical strategies and rare for DRL-based strategies. Early episode ends tend to
happen at lower t values for CEsc than CMort. Thus, distribution of episode durations
seems to be widest for CEsc, followed by CMort, DRL and DRL+GP.

We examine the trade-off between profit and sustainability faced by the CMort
strategy in Fig. 6. Two quantities are plotted: the fraction of evaluation episodes with
maximal length (i.e. episodes with no near-extinction events), and the average reward.
On the x-axis we have several sub-optimal mortality rates that err on the conservative
side: e.g. the policy labeled “80% Opt. CMort” has the form

π : (Xt ,Yt , Zt ) �→ (0.8M∗
X , 0.8M∗

Y ),
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Fig. 4 Reward distributions for the four strategies considered. These are based on 100 evaluation episodes.
We denote CEsc for constant escapement, CMort for constant mortality, PPO for the output policy of the
PPO optimization algorithm, and PPO GP for the Gaussian process interpolation of the PPO policy

Fig. 5 Hisotgrams of episode lengths and rewards for the four different management strategies considered.
Only the first 50 evaluation episodes (from a total of 100) were included, for ease of visualization. From
left to right, the four management strategies compared are CEsc, CMort, PPO, and PPO+GP
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Fig. 6 Trade-off between reward and probability of a near-extinction event for CMort policies.We evaluated
policies at the full optimal constant escapement value, and also at 0.8, 0.9, 0.95 of the latter. Each evaluation
is based on 100 episodes. On the left we plot the percentage of episodes which last their maximum time
window, i.e. that do not see a near-extinction event. On the right, we plot the mean episdoe reward and
standard deviation for each policy

where (M∗
X , M∗

Y ) is the optimal CMort strategy. We see that sufficiently conservative
policies attain high sustainability, but only at a high price in terms of profit.9 We
expect a similar and, possibly, more pronounced effect for the CEsc strategy but do
not analyze this case here.

One problem that is often encountered when using machine learning methods is
the interpretability of the output of these methods. For our PPO strategy, the output is
a policy function parametrized by a neural network θ :

πθ : Nt �→ (MX (Nt ), MY (Nt )),

where Nt = (Xt ,Yt , Zt ) is the state of the system at time t , and where MX and MY

are the mortalities due to harvest during that time-step. While the values of the neural
network parameters are hard to interpret, the actual shape of the policy function is
much more understandable.

Here we visualize the PPO+GP policy function and provide an interpretation for
it, as this function is smoother and less noisy than the PPO policy function. The PPO
policy function is visualized similarly in Appendix B.

9 As noted before, here we equate economic profit with biomass caught. This is done as an approximation
to convey the conceptual message more clearly, and we do not expect our results to significantly change
if, e.g., “effort cost” is included in the reward function. When we refer to “large differences” in profit, or
“paying dearly,” we mean that the ratio between average rewards is considerable—e.g. a 15% loss in profit.
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Fig. 7 Plots of the PPO+GP policy πPPO+GP along several relevant axes. Here MX and MY are the X
and Y components of the policy function. The values of the plots are generated in the following way: For
each variable X , Y , and Z , the time-series of evaluation episodes are used to generate a window of typical
values that variable attains when controlled by πPPO+GP. Then, for each plot either X or Y was varied on
[0, 1] along the x axis, while the other variables (resp. Y and Z , or X and Z ) were varied within the typical
window computed before. The value of one of the latter two variables were visualized as color

Given its high dimension, it is not possible to fully display how the policy function
obtained “looks like”—we thus project it down to certain relevant axes. The result of
this procedure is shown in Fig. 7. In that figure, the shape of the optimal escapement
strategy is provided for comparison.

We notice that the DRL-derived policy has similarities to a CEsc policy. Here, the
key difference is that the escapement value for each of the fished species is sensitive
to variations in the other populations. This can be seen as color gradients in the plots
of (X , MX ) and (Y , MY ), where the gradient corresponds to differing values of Z .
Moreover, this can be seen as an anti-correlation in the plot of (X , MY )—for optimal
CEsc, MY is uncorrelated to X .

This sensitivity of the policy to, for instance, the values of Z can be seen in the
sample time series displayed in Fig. 8. Here, we can see that species Z becomes
endangered due to harvesting for all management strategies. The DRL-based strategy,
however, is sensitive to the values of Z and can respond accordingly by scaling the
fishing effort with the value of Z . In particular, the policy responds to the period
of diminishing values of Z near the end of the episode, by restricting fishing on X
and Y , thus promoting Z ’s growth. This pattern is rather common among the whole
dataset—early episode ends are largely due to near-extinctions of Z for allmanagement
strategies.
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Fig. 8 Time-series of an episode managed with πPPO+GP. Here we plot the state of the system on the
bottom panel, and the actions taken (fishing efforts on X and Y—respectively MX and MY ) on the top
panel

5.1 Recovering Constant Escapement for a Single Species

While the optimal control for our single-species model (3) can not be easily proven to
be CEsc (since the right-hand side of that equation is not concave), from experience
we can expect CEsc to either be optimal or near-optimal. We give evidence for this
intuition by showing that our DRL method recovers a CEsc solution when trained.
These results are shown in Fig. 9 Here we show both the output PPO policy, and its
Gaussian process interpolation. This helps build an intuition about the relationship
between our “PPO” and “PPO+GP” management strategies.

There is a presence of certain high-mortality points at low X values in the PPO
policy (which in turn generates a rising fishing mortality for X values below a certain
threshold in the PPO+GP policy). This is likely due to experience of near-extinctions
early on in the training process—where, given an impending extinction, there is a
higher reward for intensive fishing. These “jitters” are likely not fully erased through
the optimization algorithm since near-extinction events become extremely rare after
only a few training iterations. This way, the agent does not further explore that region
of state space to generate new experience. We believe the most important aspect of
the CEsc policy reproduced by PPO is the fact that there is some sufficiently-wide
window below the threshold of the policy (i.e. below the optimal escapement value),
on which no fishing is performed. That is, there exists some sufficiently large ε such
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Fig. 9 Left panel: the policy obtained from 100 training iterations of the PPO algorithm on the “single
species, single fishery” model. Right panel: the Gaussian process interpolation of the left panel. We plot
both as scatter data evaluated on a 101-point grid on [0, 1], but these policies may of course be evaluated
continuously—on any possible value of X

that if X thresh. is the optimal escapement value of the system, then πPPO(X) = 0 for
all X ∈ [X thresh. − ε, X thresh.].

5.2 Stability Analysis

In this section we present results intended to show that the effects that we observe in
this paper are not the result of a careful selection of parameter values, but rather arise
for a wide variety of parameter values.

Our main result in this respect is Fig. 10. There, we plot the average episode reward
difference between the two DRL-based methods we considered, and the optimal CEsc
strategy. This figure shows that, for a wide range of parameter values, DRL-based
strategies can have a considerable advantage over an optimized CEsc policy (the
single-species optimal solution).

6 Discussion

Fisheries are complex ecosystems, with interactions between species leading to highly
non-linear dynamics. While current models for population estimation include many
important aspects of this complexity, it is still common to use simplified dynam-
ical models in order to guide decision making. This provides easily interpretable
solutions, such as CMort policies. There is a drawback here, however: due to the sim-
plicity of these dynamical models, the policies might not respond effectively in many
situations—situations where the predictions of these simple models deviate consider-
ably from reality. Because of this, policies such as MSY have faced pushback and are
believed to have contributed to the depletion of fish stocks (Worm et al. 2006; Costello
et al. 2016).

We propose an alternative approach to the problem of fishery control: to use a more
expressive—albeit more complicated— dynamical model to guide decision making.
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Fig. 10 Mean reward difference between DRLmethods (resp. our “PPO” and “PPO+GP” strategies), on the
one hand, and the optimal constant escapement policy (“CEsc”) on the other. The dynamic parameters in
Eq. (4) were randomly perturbed from the values given in (8) according to the procedure detailed in Sect. 4.
The noise strength of this perturbation is plotted as the x-axis. For each noise strength, 100 parameter
perturbations were sampled—each one giving rise to a realization of the model. For each such realization,
we optimized a CEsc policy and trained a PPO agent. Moreover, we interpolated the PPO policy using a
Gaussian process, as detailed in Sect. 4. Then, for each realization we compared the performance of these
policies: we measured the mean reward difference betwen PPO and CEsc, and between PPO+GP and CEsc.
The plot represents the distribution of reward differences observed at a given noise strength—we plot the
mean and the standard deviation of the mean reward differences observed. In an equation, we plot the means
EP [μDRL

P − μCEsc
P ], where P are the paramter values, μDRL

P is the mean reward for a DRL policy trained

on the problem with parameter values P , and, similarly, μCEsc
P is the mean reward of the optimal constant

escpament policy for parameter values P

Furthermore, rather than computing the optimal control policy for the model (some-
thing that is impossible in practice for complex systems), we use deep reinforcement
learning to obtain a “pretty darn good” policy. This policy is estimated in a model-
free setting, i.e., the agent treats the dynamical model (e.g. Eq. (4)) as a black box
of input–output pairs. By not relying on precise knowledge of the model’s parameter
values, but rather just relying on input–output statistics, model-free approaches have
gained traction in a variety of control theory settings (see, e.g., (Sato 2019; Ramirez
et al. 2022; Zeng et al. 2019)).

We compare deep reinforcement learning-based policies against classical manage-
ment strategies (CMort and CEsc).While the latter are inspired by the shape of optimal
solutions in the single-species setting, they are optimized in a model-free way as well:
e.g. the optimal mortality rate is computed empirically from simulated data.

Because of the simplicity of the classical policy functions, the optimal such policy
may be easily estimated through a grid-search. This is the case since these policy
functions are only specified by one or two parameters (respectively in the single fishery,
or two fishery cases). In contrast, DRL optimizes over themore expressive—andmore
complicated—family of policies parametrized by a neural network. Neural networks
are often used as flexible function approximators that can be efficiently optimized
over.
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We showed that for sufficiently complex management scenarios— Models 3 and
4—DRL-based management strategies perform significantly better than CEsc. This
with respect to both average rewards received and conservation goals. In this sense,
an approximate solution to a more complicated and expressive model, can outperform
the optimal solution of the single-species problem—even when the parameters of the
single-species solution are empirically optimized.

We found that the optimal CMort policy surprisingly performs much better than
CEsc (Fig. 4). However, it can be observed in Fig. 6 that the CMort strategy faces a
trade-off: high sustainability is achieved for sub-optimal mortality rates, but only at
a significant decrease in the mean episode reward. We expect that with increasing
ecosystem complexity this phenomenon might become more pronounced. We can
understand this as a consequence of the rigidity of classical strategies: the simplicity of
their expressions, depending only on a few parameters, means that policy optimization
is constrained to a rather reduced subset of the space of possible policies.

The question of when multi-species models are well-approximated by single-
species models was studied in detail in (Burgess et al. 2017). Here our approach is
dual to that of the aforementioned paper. Rather than first optimizing a single-species
model to approximate a more complex model and then finding the MSY value for the
single-species model, we used simulated data to optimize CMort and CEsc directly
on the three-species model. We do not investigate further whether our three-species
models are well approximated by a single-species model in the sense of (Burgess
et al. 2017). However: (1) Because the interaction terms in (4) are about an order of
magnitude smaller than rX and rY , Models 2-4 are “close” in parameter-space to a
single-species model. (2) The fact that for Model 2 all strategies match in performance
suggests that (4) might be well-approximated by a single species model. This in turn
suggests that the reason that DRL outperforms both single-species strategies for Mod-
els 3 and 4 is not due a lack of a single-species approximation for either X or Y , but
due to the complexity of having two harvested species. Moreover, the non-stationarity
in Model 4 maintained the advantage of DRL over CEsc and CMort. Here, one may
have expected an exacerbation of that advantage due to non-stationarities introducing
biases to single-species approximate models (Burgess et al. 2017). We did, however,
measure a decrease in the sustainability of CEsc in Model 4 with respect to Model 3.

Finally, we performed a stability analysis to ensure that the advantage ofDRL-based
techniques over CEsc is a ubiquitous phenomenon and not a result of a lucky selection
of parameter values. We found (in Fig. 10) that an advantage can be observed even for
relatively high-noise perturbations of the parameters—noise with a variance of 20%
of the parameter values. The aforementioned Figure summarizes the statistics of 100
parameter perturbations so that we may expect perturbations of up to 60% (i.e. three
sigmas) in the parameter values to appear in these statistics.

6.1 Future Directions

There are a number of interesting directions that would be interseting to explore in
future work.
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First, benchmarking our results against increasingly more compex and realistic
fishery models. This would include non-stationarities in the dynamical parameters to
accurately reflect the effects of climate change on the ecosystem. This added complex-
ity would likely pose a computational challenge—in future work we will likely need
to test several different DRL training algorithms (see e.g. (Lapeyrolerie et al. 2022)
for a non-exhaustive list), and it is very likely that hyperparameter tuning will need to
be performed. Moreover, it may be that larger neural networks than the one we used
in this research will be needed for the policy function. This all will mean that consid-
erable technical work will be needed in order to make this next step computationally
feasible (e.g. we might need to make more extensive use of GPUs and parallelization).

Second, to account for noisy estimates of the system’s state and imperfect policy
implementation. This could be done straightforwardly, albeit it might increase the
training time before DRL approaches converge, as well as introducing the need for
hyperparameter tuning.

Third, to account for the systematic uncertainties behind the dynamics of the
ecosystem—that is, to account for model biases with respect to reality. Here, one
can employ tools from curriculum learning in order to train an agent that is generally
capable of good management over a range of different dynamical models. This way,
one can incorporate differentmodels—expressing different aspects of the ecosystem—
into the learning process of the agent. We believe that this step will likely be necessary
if DRL algorithms are to be applied successfully in the fishery management prob-
lem. Curriculum learning is rather expensive computationally, however, and involves
a non-trivial curriculum designwhich will guide the agent in its learning process. This
way, considerable technical work would be needed for this direction.

Acknowledgements The title of this piece references a mathematical biology workshop at NIMBioS orga-
nized by Paul Armsworth, Alan Hastings, Megan Donahue, and Carl Towes in 2011 which first sought to
emphasize ‘pretty darn good’ control solutions to more realistic problems over optimal control to ideal-
ized ones. This material is based upon work supported by the National Science Foundation under Grant
No. DBI-1942280.

A Appendix: Results for StationaryModels

In the main text we focused on the non-stationary model (“three species, two fish-
eries, non-stationary” in Table 1) for the sake of space and because our results were
most compelling there. Here we present the reward distributions for the other models
considered—the three stationary models, lines 1-3 in Table 1. These results are shown
in Figs. 11, 12 and 13.
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Fig. 11 Reward distributions for the four strategies considered. These are based on 100 evaluation episodes
of Model 3 in Table 1. We denote CEsc for constant escapement, CMort for constant mortality, PPO for
the output policy of the PPO optimization algorithm, and PPO GP for the Gaussian process interpolation
of the PPO policy

Fig. 12 Reward distributions for the four strategies considered. These are based on 100 evaluation episodes
of Model 2 in Table 1. We denote CEsc for constant escapement, CMort for constant mortality, PPO for
the output policy of the PPO optimization algorithm, and PPO GP for the Gaussian process interpolation
of the PPO policy
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Fig. 13 Reward distributions for the four strategies considered. These are based on 100 evaluation episodes
of Model 1 in Table 1. We denote CEsc for constant escapement, CMort for constant mortality, PPO for
the output policy of the PPO optimization algorithm, and PPO GP for the Gaussian process interpolation
of the PPO policy

B Appendix: PPO Policy Function for Non-StationaryModel

In the main text, Fig. 7, we presented a visualization of the PPO+GP policy function
obtained for the “three species, two fisheries, non-stationary” model. This policy func-
tion is a Gaussian process regression of scatter data of the PPO policy function. In
Fig. 14 we present a representation of this scatter data in a similar format as Fig. 7.

C Appendix: Gaussian Process Interpolation

Here we summarize the procedure used to interpolate the PPO policy (visualized in
Fig. 14). We use the GaussianProcessRegressor object of the sklearn Python library
with a kernel given by

RBF(length scale = 10) + WhiteNoise(noise level = 0.1).

This interpolation method is applied to scatter data of the PPO policy evaluated on 3
different grids on (X ,Y , Z) states: GX , a 51× 5× 5 grid; GY , a 5× 51× 5 grid; and
GZ , a 5×5×51 grid. This combination of grids was used instead of a single dense grid
in order to reduce the computational intensity of the interpolation procedure. For GX ,
the 5 values for Y and Z were varied in a “popular window,” i.e. episode time-series
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Fig. 14 Plots of the PPO policy πPPO along several relevant axes. Here MX and MY are the X and Y
components of the policy function. The values of the plots are generated in the following way: For each
variable X , Y , and Z , the time-series of evaluation episodes are used to generate a window of typical values
that variable attains when controlled by πPPO. Then, for each plot either X or Y was evaluated on 100 values
in [0, 1] along the x axis, while the other variables (resp. Y and Z , or X and Z ) were varied within the
typical window computed before. Within this window, 5 values are used. The value of one of the latter two
variables were visualized as color. This scatter data was used as an input to generate πPPO+GP, visualized
in the main text

data was used to determine windows of Y and Z values which were most likely. The
grids GY and GZ were generated in a similar fashion, mutatis mutandis.10 The length
scale and noise level values of this kernel were chosen arbitrarily—no hyperparameter
tuning was needed to produce satisfactory interpolation, as will be shown in the results
section.
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