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Abstract

The dynamics of a chemical reaction network (CRN) is often modeled under the
assumption of mass action kinetics by a system of ordinary differential equations
(ODEs) with polynomial right-hand sides that describe the time evolution of concen-
trations of chemical species involved. Given an arbitrarily large integer K € N, we
show that there exists a CRN such that its ODE model has at least K stable limit cycles.
Such a CRN can be constructed with reactions of at most second-order provided that
the number of chemical species grows linearly with K . Bounds on the minimal number
of chemical species and the minimal number of chemical reactions are presented for
CRNs with K stable limit cycles and at most second order or seventh-order kinetics.
We also show that CRNs with only two chemical species can have K stable limit
cycles, when the order of chemical reactions grows linearly with K.

Keywords Chemical reaction networks - Limit cycles - Mass action kinetics

1 Introduction

Chemical reaction networks (CRNs) are often modeled by reaction rate equations,
which are systems of first-order, autonomous, ordinary differential equations (ODEs)
describing the time evolution of the concentrations of chemical species involved.
Considering CRNs which are subject to the law of mass action, their reaction rate
equations have polynomials on their right-hand sides (Yu and Craciun 2018; Craciun
etal. 2020). The mathematical investigation of ODEs with polynomial right-hand sides
has a long history and includes a number of challenging open mathematical problems,
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for example, Hilbert’s 16" Problem (Ilyashenko 2002), which asks questions about
the number and position of limit cycles of the planar ODE system of the form

& _ 1
a_f(-xsy)’ ( )
dy _

E_g(x’y)a (2)

where f(x, y) and g(x, y) are real polynomials of degree at most n. Denoting H (n)
the maximum number of limit cycles for the system (1-2), neither the value of H (n)
(forn > 2) nor any upper bound on H (n) has yet been found (Ilyashenko 1991). Since
a quadratic system with 4 limit cycles has been constructed (Shi 1980), we know that
H(2) > 4. Similarly, H (3) > 13, because cubic systems with at least 13 limit cycles
have been found (Li et al. 2009; Yang et al. 2010).

Considering CRNs with two chemical species undergoing chemical reactions of at
most n-th order, their reaction rate equations are given in the form (1-2), where f(x, y)
and g(x, y) are real polynomials of degree at most n. In particular, if we denote by
C(n) the maximum number of stable limit cycles in such reaction rate equations, then
we have C(n) < H(n). Considering CRNs with two chemical species undergoing
chemical reactions of at most second order, it has been previously shown (Péta 1983;
Schuman and Téth 2003) that their reaction rate equations cannot have any limit cycles
(i.e., C(2) = 0), while general ODEs with quadratic right-hand sides can have multiple
limit cycles, with H(2) > 4. In particular, we observe that finding CRNs with two
chemical species which have, under mass action kinetics, multiple stable limit cycles,
is even more challenging than finding planar polynomial ODEs with multiple limit
cycles. Considering cubic systems, we have H(3) > 13, but most of the chemical
systems (with at most third-order reactions) in the literature often have at most one
limit cycle (Field and Noyes 1974; Schnakenberg 1979; Plesa et al. 2016). A chemical
system with two stable limit cycles has been constructed (Plesa et al. 2017), giving
C(3) > 2, but this is still much less than 13 limit cycles which can be found in
some ODE systems with cubic right-hand sides in the literature (Li et al. 2009; Yang
et al. 2010). To obtain multiple stable limit cycles in chemical systems, we have to
consider higher-order chemical reactions or systems with more than two chemical
species (Boros and Hofbauer 2021, 2022).

Considering CRNs with N chemical species undergoing chemical reactions of at
most n-th order, their reaction rate equations are given as the following system of
ODEs

"t 3)
— = f(x),
dr

where x = (x1, x2,...,xy) € RY is the vector of concentrations of N chemical

species and its right-hand side f : RY — R¥ is a vector of real polynomials of degree
at most 7. In this paper, we prove the following first main result:
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Theorem 1 Let K be an arbitrary positive integer. Then there exists a CRN with N (K)
chemical species which are subject to M (K) chemical reactions of at most seventh
order such that

(i) Reaction rate equations (3) have at least K stable limit cycles,

(ii) We have N(K) < K +2 and M(K) <29K.

Theorem 1 provides a stronger result than finding K limit cycles in a polynomial ODE
system of the form (3), because not every polynomial ODE system corresponds to
a CRN and, therefore, the set of reaction rate equations is a proper subset of ODEs
with polynomial right-hand sides. To make the existence of K limit cycles possible
while restricting to polynomials of degree at most n = 7, we allow for more than two
chemical species, replacing the ODE system (1-2) by a more general ODE system (3)
with N (K) equations. In particular, the next important question is how small the CRN
canbesothatithas K limitcycles. Our answer is partially given in part (ii) of Theorem 1
where we provide upper bounds on the number of chemical species involved and the
number of chemical reactions (of at most seventh order). Another important parameter
to consider is the maximum order of the chemical reactions involved, i.e., the degree
n of the polynomials on the right-hand side of the ODE system (3). Since systems of
at most second-order reactions (the case n = 2) are of special interest in the theory of
CRNs and applications (Wilhelm 2000), we state our second main result as:

Theorem 2 Let K be an arbitrary positive integer. Then there exists a CRN with N (K)
chemical species which are subject to M (K) chemical reactions of at most second
order such that

(i) Reaction rate equations (3) have at least K stable limit cycles,

(ii) We have N(K) < 7K + 14 and M(K) < 42 K + 24.

By restricting to second-order (bimolecular) reactions, we obtain CRNs with more
realistic second-order kinetics, but our construction increases the number of species
and chemical reactions involved, as it can be seen by comparing parts (ii) of Theorems 1
and 2. The precise definitions of CRNs, mass action kinetics, reaction rate equations
and limit cycles in N-dimensional systems are given in Sect. 2.

In both Theorems 1 and 2, we restrict our considerations to systems described
by polynomial ODEs where the degree of polynomials is bounded by a constant
independent of K, i.e., we consider polynomials of the degree at most n = 7 (in
Theorem 1) or at most n = 2 (in Theorem 2), and we increase the number of chemical
species, N(K), as K increases, to get K stable limit cycles. Another approach is to
restrict our considerations to chemical systems with only N = 2 chemical species.
In Sect. 8, we construct two-species CRNs with K stable limit cycles which include
chemical reactions of at most n(K)-th order, where n(K) = 6 K — 2. This establishes
our third main result:

Theorem 3 Let C(n) be the maximum number of stable limit cycles of reaction rate
equations (1-2) corresponding to CRNs with two chemical species undergoing chem-
ical reactions of at most n-th order. Then we have

Cn) > {#J : (4)

@ Springer



76 Page4of29 R. Erban, H.-W. Kang

where the floor function |.| denotes the integer part of a positive real number.

To prove Theorems 1, 2 and 3, we first construct a planar system given by Egs. (1-2),
where f and g are continuous non-polynomial functions chosen in such a way that the
ODE system (1-2) has K stable limit cycles in the positive quadrant [0, co) x [0, 00).
Such a planar non-polynomial ODE system is constructed in Sect. 3. In Sect.4, we
then increase the number of chemical species from 2 to N(K) to transform the non-
polynomial ODE system to a polynomial one. In Sect. 5, we modify this construction by
using an x-factorable transformation to arrive at reaction rate equations corresponding
to a CRN (Samardzija et al. 1989). Theorem 1 is then proven in Sect.6 by showing
that the reaction rate equations have at least K stable limit cycles. This is followed by
our proofs of Theorems 2 and 3 in Sects. 7 and 8, respectively.

2 Notation and Mathematical Terminology

Definition 1 A chemical reaction network (CRN) is defined as a collection (S, C, R)
consisting of chemical species S, reaction complexes C and chemical reactions .
We denote by N the number of chemical species and by M the number of chemical
reactions, i.e., |S| = N and |R| = M. Each chemical reaction is of the form

N N
Zui,jx,- — Zv,{jxi, forj=1,2,..., M, (5)

i=1 i=1

where X;, i = 1,2,...,N, are chemical species, and linear combinations

N . N oy, ; ; e . /
YoimpvijXiand ) ;L Vi, le of species with non-negative integers v; ; and v; j are
reaction complexes.

Definition 2 Let (S, C, R) be a CRN with N chemical species and M chemical reac-
tions. Let x; (r) be the concentration of chemical species X; € S,i = 1,2, ..., N.The
time evolution of x; (¢) is, under the assumption of the mass action kinetics, described
by the reaction rate equations, which are written as a system of N ODEs in the form

M N
d)C' A .
d—tl(t) => ki —vip) [[x". for i=12._...N, (6)
j=1 (=1
where k;, j =1,2,..., M, is a positive constant called the reaction rate for the j-th
reaction.

To illustrate Definitions 1 and 2, we present a simple example system, which is known
to have a stable limit cycle for certain parameter values (Schnakenberg 1979; Erban
and Chapman 2020).

Example Consider a chemical reaction network with two chemical species X and X,
which are subject to the following four chemical reactions

X1+ X 253X, -2 X, X 2p 02 x, %)
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Then N = |S| = 2, M = |R| = 4 and the set of reaction complexes is given as
C = {2X1 + X5, 3X1, X1, X2, #}. Denote v and v" as matrices with elements v; ;
and vi” j Then, both are N x M = 2 x 4 matrices given by

12010 = 3100
“|11000]° ~|10001]°
The reaction rate equations (6) are given as the following system of two ODEs

dx
—1<r> = kix¥xy + ky — k3,

?(n = —kixix2 + ks,

which describes the time evolution of the concentrations x () and x;(¢) of chemical
species X1 and X», respectively.

In general, the reaction rate equations (6) in Definition 2 are ODEs of the form (3),
where the right-hand side f : R¥ — R is a vector of real polynomials. However, not
every polynomial ODE system can be obtained as the reaction rate equations of a CRN
as we formalize in Lemma 1, where we provide a necessary and sufficient condition
(9) when a polynomial ODE system can be written as reaction rate equations of a
CRN. The condition is that any polynomial right-hand side terms not proportional
to x; in the equation for chemical species X; are non-negative. The necessity of the
condition (9) is shown based on the fact that any reaction rate equations of a CRN
satisfy this condition. The sufficiency of the condition is provided by showing that
each term satisfying the condition in a polynomial ODE system can correspond to a
chemical reaction.

Lemma 1 Consider a system of N ODEs with polynomial right-hand sides describing

the time evolution of x; (t), i = 1,2, ..., N, in the form

—(t)—Zoz,jan’, for i=1,2,...,N, )
where ; ; are real constants and v; j are non-negative integers, fori =1,2,..., N
and j =1,2,..., M. Then the polynomial ODE system (8) can be written as reaction

rate equations (6) of a CRN if and only if
vi,j =0 implies o; ;>0 foranyi=1,2,....,.Nand j=1,2,...,M. (9)

Proof Reaction rate equations (6) are of the form (8). The non- negativity condition (9)
follows from v; ; = 0 and the non-negativity of both k; and v/ 1n Eq. (6).
Conversely, if an ODE is of the form (8) and «; ; > 0, then we can choose v/ =
v;,j+11in Eq. (6) and put the reaction rate as k; = «; ;. On the other hand, if o;; ; < 0,
then the condition (9) implies that v; ; > 1, because V;,j are non-negative integers.
Therefore, we can put v{’j =v;;—landk; = —a; ; > 0. m|
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In this paper, we prove the existence of limit cycles in chemical systems in Sects. 6, 7
and 8 by proving the existence of limit cycles in systems of ODEs (8) with polynomial
right-hand sides satisfying the condition (9). Then the approach used in the proof of
Lemma 1 can be used to construct the corresponding CRN. However, the construction
of a CRN corresponding to reaction rate equations is not unique. For example, consider
a term of the form —x? on the right-hand side of Eq. (8). Using the construction in
the proof of Lemma 1, it would correspond to the chemical reaction 3X — 2X with
the rate constant equal to 1, but the same term can also correspond to the chemical
reaction 3X — X with the rate constant equal to 1/2. We conclude this section by a
formal definition of a stable limit cycle.

Definition 3 Consider a system of N ODEs given by (3), where their right-hand side
f : RN — RV is continuous. A stable limit cycle is a trajectory x.(¢) for t € [0, c0)
such that

(1) x.(?) is a solution of the ODE system (3),
(i) There exists a positive constant 7 > 0 such that x.(7T) = x.(0) and
X (1) #x.(0)for0 <t < T,
(ii1) There exists € > 0 such that

dist{x(0), x.} < ¢ implies dist{x(z), x.} — 0 ast — oo.
In Definition 3, the constant T is the period of the limit cycle and the property (iii)

states that the limit cycle attracts all trajectories which start sufficiently close to it. The
distance in the property (iii) of Definition 3 is the Euclidean distance defined by

N 1/2
dist{z, x.} = 11[1011} dist{z, x.(1)} = min (Z —xc,(t) )

t€[0,T]
i=1

forz =1[z1,22,...,2n8] € RY and Xc(t) = [xc,l(t), xc,2(t), cen 7-xC,N(t)] e RN,

3 Planar ODE Systems with Arbitrary Number of Limit Cycles

In this section, we construct a planar ODE system of the form (1-2) with K limit cycles
in the positive quadrant. It is constructed as a function of 2K parameters denoted by
ay, dz, ..., dg andbl, bz, ey b[(, as

e —afl - —a)? = (- - (v —b)
e Z T —a)b + (5 — b IR
—(x —a)? — b)? _
dy Z(y bi){1 — (x —a)” — (v = bp)?} + (0 — @) — ey, (D)

1+ (x —ap)b+ (y — bp)®
An illustrative dynamics of the ODE system (10-11) is shown in Fig. 1(a) for K = 4,
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(a) (b)
8 6

5
6

IN

>4 =3

Fig. 1 a Twenty illustrative trajectories of the ODE system (10-11) for K = 4 and the parameter choices
ap = by =ay = b3 =2andaz = by = a4 = by = 6. Ast — o0, all presented trajectories
approach one of the four limit cycles, which are plotted as the black dashed lines. b Twenty illustrative
trajectories of the ODE system (10-11) for K = 4 and the parameter choices a; = b; = ap = b3 =2 and
a3 = by = aq = by = 4. Ast — o0, some trajectories converge to the stable limit cycle denoted by the
black dashed line, while some trajectories, which started inside the limit cycle, converge to the stable fixed
point denoted as the red dot (Color figure online)

where the ODE system has four limit cycles, which is highlighted in Fig. 1a by plotting
some representative trajectories. The existence of K stable limit cycles for the ODE
system (10—11) can also be proven analytically, as it is done in Lemma 2.

Remark To construct the ODE system (10-11), one can first consider a planar ODE
system written as dr /dt = r(1 — r2) in the polar coordinate system. It has one stable
limit cycle (a unit circle) and can be rewritten in the Cartesian coordinate system as

dx

5 =+ —x? =y -y, (12)
dy
o =y(1—x>—y?) +x. (13)

To obtain the ODE system (10-11), we translate the right-hand sides of ODEs (12—
13) by (x,y) — (x — ax, y — by) so that the corresponding limit cycle is centered
at the point (ax, by). Then we add the K terms (corresponding to K limit cycles)
together with suitable weights. Note that the denominator of the k-th term in (10-11)
is approximately one when (x, y) is close to (ag, b), while the k-th term in (10-11)
is approximately zero when (x, y) is far away from the point (ay, by).

In Fig. 1a, we have presented an example with K = 4 and parameter choices

(a1, b1) = (2,2), (a2,b2) =(2,6), (a3, b3) =(6,2) and (a4, bs) = (6,06).
In particular, the distance between points (a;, b;), i = 1,2, 3, 4, is at least four. If we
decrease this distance, then the ODE system (10—11) can have less limit cycles. This

is highlighted in Fig. 1b, where we present an example with K = 4 and parameter
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choices
(a1,b1) = (2,2), (a2,b2) =(2,4), (a3z,b3) =(4,2) and (a4,bs) = (4,4).

In Fig. 1b, we observe that there is only one limit cycle, denoted as the black dashed
line. This limit cycle is stable and a number of illustrative trajectories converge to
this limit cycle as t — oo. However, there is also a stable equilibrium point at (3, 3),
which attracts some of the trajectories. In particular, we can only expect that the
ODE system (10—11) will have K stable limit cycles provided that points (a;, b;) are
sufficiently separated. This is formally proven in Lemma 2, by defining K disjoint open
sets (15), where each is an annulus with a center (a;, b;) fori = 1,2, ..., K. First,
we show that each annulus does not contain any equilibrium points. Then, we show
that a directional vector of the ODE system (10—11) on the boundary of each annulus
points inside the domain. Applying the Poincaré-Bendixson theorem (Strogatz 2015),
we conclude that each annulus contains at least one stable limit cycle; thus, the ODE
system (10—11) has at least K stable limit cycles.

Lemma 2 Let us assume that
(@i —aj)* + (b —bj)? > 15 <K2/3 +2) forall i # j, (14)

where i, j = 1,2,..., K. Then the ODE system (10-11) has at least K stable limit
cycles.

Proof We define the sets
Q = {(x,y) 12 < (x—a)? + (v — b)? < 2}, for i =1,2,...,K. (15)
Then the condition (14) implies that
Q;NQ; =0, forall i #j, where i,j=1,2,...,K,
i.e., the sets €2; are pairwise disjoint sets. We will show that each of them contains at

least one stable limit cycle. The boundary of €2 consists of two parts: outer and inner
circles defined by

021 = [ 3) s (=) + (& —b)? =2} (16)
and
092 = {(x. ) —a)? + 6 —b)? = 12}, a7

respectively, that is, 0€2; = 02;1 U 0. Define the following functions for k =
1,2,...,K:

a{l-zi-23) -2
1+25+28

Sfi(z1,22) = (18)
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ofl-zi-2B)+2a

8k(z1,22) = 5548 (19)
Then, the ODE system (10—11) can be rewritten as
dx
a=f(x,y), (20)
i—f=g(x,y), 21

where

K K
Oy =) fik —a, y—by) and g(x,y) =Y g (x —a, y —bp). (22)
k=1 k=1

First, we will show that ©2; for i = 1,2,..., K does not contain any equilibrium
points. Let us consider any point (x*, y*) € ;. Substituting

x*=a; +rcosf, y*=b;+rsinf, (23)

in the terms for k = i in (22), we obtain

_rcos6 {1 —r2) —rsinf

K
+ ) AW —any —bo, (24

fx*, yH=
6 06 6 oin0
1+ r%cos®f + rbsin® 6 KT kot
"L y%) rsin@ {1 —r?} 4 rcosé XK: o b 25)
HCNIES 66 o6 8k (X" —ag, y* = br).
1+ r%cos®0 + rbsin® 6 KT kot

The first terms in (24) and (25) can be rewritten as

4r P =12+ 1 sin(0 +6)

4+ 76 (4 — 3sin”20)

. (26)

where 6 = o with tanae = r2 — 1 and 7/2 < a < 37/2 in the case of (24) and
6 = a — /2 in the case of (25). Since we have

max(| sin(0 + )|, |sin(@ + o« — 7/2)|) > 1/\/5

for any 0 and «, at least one of the two terms expressed in the form (26) is greater
than

1 r@?2—=12+1

V2 1476
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which has a minimum +/2/9 when 1/2 < r? < 2. Therefore, at least one of the
absolute values of the i-th components, f;(x* —a;, y* —b;) and g; (x™ — a;, y* — b;),
in (24) and (25) at any point (x*, y*) € €; is greater than or equal to +/2/9. Without
loss of generality, we assume

|fi(x™ —ai, y* —bi)| = [gi(x" —a;i, y* — by)l.
Then we have | f; (x* — a;, y* — b;)| > +/2/9. We want to show that the second term
in (24) (i.e., the sum) has a smaller magnitude than the first term f; (x* — a;, y* — b;)

so that we could conclude that f(x*, y*) # 0. The k-th component in the second term
in (24) is bounded by

lz1] 11 = 22 — 23| + | 22|

[ fi(z1, 22)| < ] (27
where (21, z2) = (x* — ax, y* — by). Denoting ¢> = z% + z%, we have
6
1+Z§1+z?+zg§1+c6. (28)
Using |z;| < ¢ and (28), we estimate (27) as
2
[ fi(z1, z2)| < % (29)

Since (x*, y*) € ©; and (ag, by) € Q2 where k # i, our assumption (14) implies that
c? > 2. Thus, (29) becomes

3 4
| fr(z1, 22)] < m =< 3 (30)

Therefore, the magnitude of the second term in (24) is bounded by 4(K — 1)/ 3. Since
| fi (x* — a;, y* — b;)| = +/2/9, a sufficient condition for f(x*, y*) # 0 is

4K —-1) 2

Using the assumption (14), the distance ¢ = /(x* — ax)? + (y* — by)? is bounded
by

¢ > V(@i —a? + (b —b)? — V2 > 15 (K23 +2) — V2, 32)

which implies the sufficient condition (31). Therefore, (x*, y*) is not an equilibrium
point.
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Next, consider an arbitrary point (xp, y5) € 9€2;1. Letus calculate the scalar product
of vectors

(.Xb—ai, yb_bi) and (f(-xbv yb)s g(.Xb, yb)) (33)

Using (22), we obtain this scalar product as

(xp — a;) fi(xp — ai, yp — b;) + (yp — bi)gi(xp — ai, yp — b;)

K K
oo —a) Y Sl —ar yp —bi) + b —bi) Y gkl — ar. yp — bi).
k=1,k#i k=1,k#i

(34)

The first two terms in (34) become

-2
14 (xp —ai) + (yp — ai)®’

which has a magnitude greater than 2/9 by using (28) with = (xp—a)r+ (v —
bi)? = 2. Using (30), |xp — ai| < ~/2 and |y, — b;| < +/2, we can estimate the third
and fourth terms in (34), namely, we have

442 4v2
|(ep — ai) fi(z1, 22)| < d—{ and |(yp — bi) 8k (21, 22)| =< d—{, (35)

where d? = (xp — ax)® + (y» — br)?. Then the sum of the third and fourth terms in

(34) is bounded by 8v2(K — 1) /d?. Therefore, the sufficient condition that the scalar
product in (34) is negative is

8vV2(K — 1 2

Using the assumption (14), the distance d = \/ (xp — ar)? + (yp — by)? is bounded
by

d > (@ —a)?+ (b —bp)? — V2 > /15 (K23 +2) — V2, (37)
which implies the sufficient condition (36). Therefore, the vector

(f (xp. ¥6). 8 (X6, Y1)

always points inside the domain €2; for each boundary point (xj, yp) € 9<2;1.
Similarly, for an arbitrary point (xp, yp) € 922, we can show that the scalar product
of vectors in (33) is always positive due to that the sum of the first two terms in (34)
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is equal to

1/4
L4+ (xp —ai)® + (yp — )0’

which is greater than 2/9 by using (28) with ¢> = 1/2, and the sum of the third
and fourth terms in (34) is bounded by 8§(K — 1)/ (d3+/2). Therefore, the sufficient
condition that the scalar product in (34) is positive is

8(K — 1)
d3V2

which is a weaker condition than the condition (36), i.e., it is again satisfied because
of our assumption (14). This implies that the scalar product in (34) is positive. Thus,
the directional vector always points inside the domain €2; on all parts of the boundary
0%2;.

Therefore, applying Poincaré-Bendixson theorem (Strogatz 2015), we conclude

2
< =,
9

that each €2; contains at least one stable limit cycle. Since 2;,i = 1,2, ..., K, are
pairwise disjoint, this implies that the ODE system (10-11) has at least K stable limit
cycles. O

4 ODE Systems with Polynomial Right-Hand Sides and Arbitrary
Number of Limit Cycles

Considering an auxiliary variable

1

=1+(x—ai)6+(y—bi)67f0r i=12....K (38)

Ui

we can formally convert the non-polynomial ODE system (10-11) to a system of
(K + 2) ODEs with polynomial right-hand sides (Kerner 1981). We obtain

dx K
PP [ —anft = = a0? = v = b0%) = v = b0 (39)
dy K
2 2
5=k§uk[<y—bk>{1—(x—ak> — (= b+ -], (40)
du; K
= —a)’ Y m [ —an{l — = ap? = 0= b} = 0 = b
k=1
K
—6ur = b)* Yk [ = {1 = (¢ = @) = 0 = b} + (x— ap)].
k=1

(41)

@ Springer



Chemical Systems with Limit Cycles... Page 130f29 76

fori =1, 2,..., K. The dynamics of the original ODE system (10—11) with the initial
condition (x(0), ¥(0)) = (xo, yo) is the same as the dynamics of the extended ODE
system (39—41), when we initialize the additional variables by

1
14 (xo — ai)® + (yo — bi)®’

u; (0) = for i=1,2,...,K. (42)

However, when we use a general initial condition,
x(0), y(0), u1(0), u(0), ..., ug(0)) € RK+2

the trajectory of the extended ODE system (39—-41) may become unbounded and it
may not converge to a limit cycle. To illustrate this behavior, let us consider the initial
condition

C
1+ (xo — ai)® 4+ (yo — bi)®’

u; (0) = for i=1,2,...,K, 43)

where ¢ > 0 is a constant. If ¢ = 1, then the initial condition (43) reduces to (42). In
particular, Fig. 1a shows an illustrative behavior of both the extended ODE system (39—
41) for ¢ = 1 and the planar ODE system (10-11), assuming that we use a sufficiently
accurate numerical method to solve ODEs (39—41) and plot the projection of the
calculated trajectory to the (x, y)-plane. Changing ¢ = 1 to ¢ = 0.5, we plot the
dynamics of the extended ODE system in Fig.2a, where the black dots denote the
end points of the calculated trajectories at the final time (+ = 100). We observe that
only the trajectories which started ‘inside a limit cycle’ (i.e., their projections to the
(x, y)-plane are initially inside a black dashed circle) seem to converge to it, while the
other trajectories do not seem to approach the ‘limit cycles’. This is indeed the case
even if we continue these trajectories for times # > 100. In fact, depending on the
accuracy of the numerical method used, all trajectories eventually stop somewhere in
the phase plane, because u;(t) — 0 ast — oo.

On the other hand, considering the extended ODE system (39-41) with the initial
condition (43) for ¢ > 1, some additional variables u;(¢) tend to infinity as t — oo,
and we again do not observe sustained oscillations in our numerical experiments
(results not shown). In particular, the formal conversion of the non-polynomial ODE
system (10-11) into the polynomial system (39-41) does not preserve the dynamics
well. Therefore, we augment our polynomial ODE system (10-11) in a different way.
We introduce K new variables v;, i = 1,2, ..., K, and formulate the extended ODE
system as the following (K + 2) equations:

d K
Ty u|e -l —a’-o-b -0 -] @
k

Il
—-

&[&
Il
Mw

v —bofl - —a? = b+ —an]. @)
k

Il
_-
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Fig. 2 a Twenty illustrative trajectories of the ODE system (39-41) for K = 4, the parameter choices
ay = by =ay = b3 =2,a3 = by = ag4 = by = 6 and initial condition (43) with ¢ = 1/2. The black
dots denote the final position of each calculated trajectory at time + = 100. The black dashed lines are
limit cycles shown in Fig. 1a. b Twenty illustrative trajectories of the ODE system (44—46) for K = 4, the
parameter choices ¢ = 1,a; = by = ap = b3 =2, a3 = by = as = by = 6 and the initial condition (43)
with ¢ = 1/2. Ast — o0, all trajectories approach one of the four limit cycles, which are plotted as the
black dashed lines. The black dots denote the final position of each calculated trajectory at time t = 100
(Color figure online)

dv; 6 6 .
sazl—vi[l-i—(x—ai) +(y—b,~)], for i=1,2,....K, (46)

where ¢ > 0 is a constant. The first two ODEs (44-45) are the same as ODEs (39-40)
with vy taking place of uy. The difference is in the dynamics of the additional vari-
ables, i.e., in Eq. (46) which removes the non-polynomial factor (38) in a different
way. Rather than defining new variable u; in the form (38) and deriving ODEs which
have equivalent dynamics to the ODE system (10-11) for very special initial condi-
tion (42), we have written the ODE (46) in such a way that it formally recovers the
non-polynomial factor (38) in the limit ¢ — 0, which will be used in our proof of
Lemma 3, where we consider small values of ¢. However, even for larger values of ¢,
the ODE system (44—46) has multiple limit cycles for general initial conditions, as it
is illustrated for ¢ = 1 and K = 4 in Fig. 2b, where all plotted trajectories finish on a
limit cycle (see the final calculated positions, at time t = 100, plotted as black dots).

Next, we prove that the extended ODE system (44—46) has K limit cycles in the
sense of Definition 3 for general values of K. Since (44—46) is a system of (K + 2)
ODEs, we cannot directly apply the Poincaré-Bendixson theorem as we did for the
planar system in the proof of Lemma 2. While one possible approach to proving the
existence of limit cycles is to work with generalizations of the Poincaré-Bendixson the-
orem to higher-dimensional ODEs (Hirsch 1982; Li and Muldowney 1996; Sanchez
2010), we will base our proof of Lemma 3 on the application of Tikhonov’s theo-
rem (Tikhonov 1952; Klonowski 1983) and the result of Lemma 2. In particular, we
show that the extended system (44-46) is a polynomial system which has K limit
cycles for sufficiently small values of ¢ provided that the points (a;, b;) are suffi-
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ciently separated, as we have previously established in Lemma 2 for the planar ODE
system (10—11).

Lemma 3 Let us assume that parameters a; > Qand b; > 0,i = 1,2, ..., K, satisfy
the inequality (14). Then there exists &g > 0 such that the ODE system (44—46) has at
least K stable limit cycles for all € € (0, g9).

Proof Let us consider ¢ = 0. Then the right-hand side of the ODE (46) is equal to
zero. This equation can be solved for v;, i = 1,2, ..., K, to obtain v; = ¢g;(x, ),
where we define

1
L4+ (x —a)® + (y = b)°

qi(x,y) = (47)

Substituting v; = ¢;(x, y) into (44-45), we obtain that the reduced problem in the
sense of Tikhonov’s theorem (Tikhonov 1952; Klonowski 1983) is equal to

dx

T VACROR (48)
Y _ @y 49
I 8(x.y), (49)

where functions f(-,-) and g(-, -) are defined in (10) and (11). This means that the
reduced system (48—49) corresponding to the fast—slow extended ODE system (44—
46) is the same as our original non-polynomial ODE system (10-11). Therefore, using
Lemma 2, we know that the reduced system (48—49) has (at least) K stable limit cycles
in the sense of Definition 3, i.e., there exist K solutions

(Xe,i(0),yc; (@) for re€[0,00), i=12,...,K, (50)

of the reduced system (48-49) which are periodic with period 7; > 0 for i =
1,2,..., K. Moreover, there exist ¢ > 0,i = 1,2, ..., K, such that any solution
(x(2), ¥(1)) of the reduced systems (48—49) approaches the limit cycle (X, ; (1), y. ; (£))
as t — oo provided that the initial condition (x(0), ¥(0)) satisfies

L _ 2 = - 2
min (F0) = Xe.i(0)" + (FO0) = e (1)” < &i. (51)
Next, we define pairwise disjoint sets ; ¢ RK*2 fori =1,2,..., K by
Q= {(x, Yy, V1, V2,...,VK) € RX*2 guch that

K
i (6= Xei0)" + (v = 5o, ) + ; (v = 4 Fei (). Te: ) < & }

(52)
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where functions g (-, -) are defined by (47). Let us define

&0 = min Ei.
i€{l,2,...K}

Let ¢ € (0, &9) be chosen arbitrarily. To show that the extended fast—slow polynomial
ODE system (44-46) has (at least) K stable limit cycles, it is sufficient to show that
each set €2; contains one stable limit cycle. We will do this by applying Tikhonov’s
theorem (Tikhonov 1952; Klonowski 1983). Considering the ODEs (46) for i =
1,2,..., K, where x > 0 and y > 0 are taken as parameters, we obtain the adjoined
system as a K -dimensional system of ODEs with an isolated stable equilibrium point
[g1(x,y), q2(x,y), ..., qk (x,y)], where g; (-, -) is defined in (47). This equilibrium
point attracts the solutions of the adjoined system for any initial condition. Therefore,
the ODE system (44—46) has a limit cycle in €2;. Moreover, this limit cycle attracts
any solution (x (1), y(t), vi (1), v2(t), ..., vg (1)) of the ODE system (44-46) with the
initial condition satisfying (x(0), y(0), v1(0), v2(0), ..., vk (0)) € ;. ]

5 Chemical Systems with Arbitrary Many Limit Cycles

To construct a CRN with K limit cycles, we first construct a system of ODEs with
polynomial right-hand sides which satisfy the condition (9) in Lemma 1, i.e., it will
be a system of reaction rate equations, which correspond to a CRN. Once we have
such reaction rate equations, there are infinitely many CRNs described by them, so
we conclude this section by specifying some illustrative CRNs corresponding to the
derived reaction rate equations.

Our starting point is the polynomial ODE system (44—46), which has K limit cycles
provided that the conditions of Lemma 3 are satisfied. The reaction rate equations are
constructed by applying the so-called x-factorable transformation (Plesa et al. 2016)
to the right-hand sides of equations (44) and (45). We do not modify the right-hand
sides of ODEs (46), because they already satisfy the conditions of Definition 2. We
obtain the ODE system:

d K
=y ru[c—afl-r—a)? - 0-t} - -b0]. 63
k=1

d K
B R (R e Ol R0 P

k=1
8%:1—UiI:l“1‘()6—Cli)6—i-(y_bl-)6:|7 for i=1,2,...,K. (55)

The illustrative dynamics of the ODE system (53-55) is presented in Fig. 3a, where
we use the same parameters as we use in Fig.2b for the ODE system (44-46). We
observe that the presented trajectories converge to one of the four limit cycles as in
Fig.2b. The shape of the limit cycles is slightly modified by using the x-factorable
transformation, but the limit cycles are still there as we formally prove in Sect. 6.
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Fig. 3 a Twenty illustrative trajectories of the ODE system (53-55) for K = 4, the parameter choices
ay =by =ay) =b3 =2,a3 = by =ayg = by = 6,¢ =1 and the initial condition (43) with ¢ = 1/2. As
t — 00, all trajectories approach one of the four limit cycles, which are plotted as the black dashed lines.
As in Fig. 2, the black dots denote the final position of each calculated trajectory at time r = 100. b Twenty
illustrative trajectories of the ODE system (53-55) for K = 9, the parameter choices a; = by = ap =
by =ag =byj=2,a3 =by =a4 =by =a5 =bg =6,a7 =ag =a9g =bs =bg =bg =10, =1
and the initial condition (56). As t — o0, all trajectories approach one of the nine limit cycles, which are
plotted as the black dashed lines. The black dots denote the final position of each calculated trajectory at
time t = 100 (Color figure online)

The x-factorable transformations modify the dynamics on the x-axis and y-axis. In
Fig.3a, we present illustrative trajectories which all start with the positive values of
x(0) and y(0), while in Fig.2b, some of the illustrative trajectories have zero initial
values of x(0) and y(0). To get a comparable plot, we use the same initial conditions
in both Fig.2b and Fig.3a, with the only exception that all initial conditions with
x(0) = 0 (resp. y(0) = 0) in Fig. 2(b) are replaced by x(0) = 1/2 (resp. y(0) = 1/2)
in Fig. 3a. We note that if we start a trajectory of the ODE system (53-55) on the x-axis
or the y-axis, then it stays on the axis.

In Fig. 3b, we present illustrative dynamics of the ODE system (53-55) for K = 9,
showing that each computed trajectory converges to one of the 9 limit cycles denoted
by black dashed lines. To illustrate that this behavior does not require special choices
of initial conditions, we used different initial conditions for x(0) and y(0) together
with the initial conditions for variables v; satisfying

v; (0) =1, fori =1,2,..., K. (56)

However, a similar figure can be obtained if we replace (56) with the initial condition
(43), or if we initialize all values of v;,i =1, 2, ..., K as zero (results not shown).

A CRN corresponding to reaction rate equations (53—55) can be obtained (by apply-
ing the construction in the proof of Lemma 1)) as the CRN with K +2 chemical species,
i.e., using the notation in Definition 1, we have

S={X,Y, Vi, Vo, ..., Vg}. (57)
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To specify the reaction complexes and chemical reactions, we expand the right-hand
side of reaction rate equations (53-55). First, we rewrite ODEs (55) as

dv;
d_tl = —ki 1 vi +kipvix + ki3 vy — ki avix? — ki s viy® + ki g vix® +ki7 vy}
— ki gvix* —kigviy* + kiovix® + ki1 viy® —vix®/e —v;y®/e + 1/,
(58)
where k; j,i =1,2,..., K, j=1,2,..., 11, are positive constants given by

kiv=0+a®+b0) /e, kia=6a’/e, ki3 =06b/s, kis=15a}/¢,
kis = 15b% /e, kig=20a>/e, ki7=20b3/e, kig=15a7/e, (59)
kio = 15b7/e, ki 10 =6a;/e and ki 1y = 6b;/e.

Consequently, the right-hand side of Eq. (55) can be interpreted as the set of 14
chemical reactions foreachi =1, 2, ..., K. We define it as

k,‘» k,’ ki. ki
Ri={w—‘>@, Vit X 32V 4+ X, Vi+Y-32vi+v, Vi+2x 2ox,

ki, ki, ki,
Vi 2y 222y, V43X 2802V 43X, Vi +3Y 222V 4 3y,

ki 10

ki ki
Vi+4x 254x,  Vi+4y 224y, Vi +5X 282V 45X,
ki 1 1 1
Vi 45y “Mov 4 sy, virex LSex, vi+er Loy, @ﬁw,-}.
(60)

Consequently, reaction rate equation (55) corresponds to 14 K chemical reactions in
sets R;,i = 1,2,..., K. Similarly, we rewrite ODEs (53-54) as

K
dx
4 3 2 2
Frie E —Uix" ki 12 vix” — ki 13vix7 + ki 14 vix + a; vixy
i=1

+ki 15 vix%y — ki 16 vixy — Uix2y2i|» (61)

K

dy

i E [ — vyt ki viy? — ks vyt 4+ kigo viy + by vix?y
k=1

+ki 20 vixy? — ki 21 vixy — vixzyz], (62)

where k; ;,i=1,2,..., K, j =12,13,..., 21, are constants given by

kina=3ai, kinz=3a; +b7 —1, kia=a] +abj+bi —ai, kiys=2b;,
kite =14 2a;ibi, kiy7=3b;, kiig=al+3b} —1,
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kig = b} +alb; —a;i —bi, kizo =2ai, kia =2aib; — 1. (63)

Considering sufficiently large a; and b; (say, fora; > 1 and b; > 1), the constants (63)
are positive. Moreover, since the term —v;x%y? appears in both Egs. (61) and (62),
the right-hand sides of Eqs. (53-54) can be interpreted as the set of 15 K chemical
reactions. We define

ki 13

ki,
'R?‘:{Vi—i—4X—1>Vi+3X, Vi—i—3X—12>Vi+4X, Vi+2X—=V,+ X,

i,14

Vit XS5S v 10X, Vi X 42V < v 42X 42,
Vi 42X+ Y B v 43X +Y, V4 X+YSSvy4y,
Vit2X42Y S Vit X4Y,  Vi+4y —Sv43y,
Vi43r v pay, vy S8 vy, vy 5% v oy,

i,20

by k
Vi42X+Y 5V, 42X +2Y,  Vi+X+2Y -5V + X +3Y,

ki 21

\/i—i-X—l—Y—)I/i—i—X}, for i=1,2,...,K. (64)

Then, we conclude that the reaction rate Eqs. (53-55) correspond to the CRN with
N = K + 2 chemical species and 29 K chemical reactions of at most seventh order
given by

K
R=|JRiUR;. (65)
i=1

The CRN (S, C, R) consisting of chemical species S given by (57) and chemical
reactions R given by (65) is the CRN which we will use to prove Theorem 1 in Sect. 6.
The corresponding set of reaction complexes C can be inferred from the provided lists
of reactions R; and R;“, i=1,2,..., K, given by (60) and (64).

6 Proof of Theorem 1

Theorem 1 Let K be an arbitrary positive integer. Then there exists a CRN with N (K)
chemical species which are subject to M (K) chemical reactions of at most seventh
order such that

(1) Reaction rate equations (3) have at least K stable limit cycles,
(i1) We have N(K) < K +2and M(K) <29K.

The idea of the proof of Theorem 1 is similar to the one chosen in Sects. 3 and 4, where
we have first proven Lemma 2 about the existence of K limit cycles in the planar ODE
system (10—11) and then we have used it to prove the existence of K limit cycles in
the (K + 2)-dimensional ODE system in Lemma 3. In this section, we will again start
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by formulating Lemma 4 for a planar ODE system, establishing that it has K stable
limit cycles. This is again proven by using K disjoint sets (15). The result of Lemma 4
is then used in Lemma 5 to prove Theorem 1 by considering the (K + 2)-dimensional
ODE system (53-55).

The planar ODE system in Lemma 4 is derived by applying the x-factorable trans-
formation to the planar ODE system (10-11). We obtain

K

dx

az,;x felx —ag, y —bp)=x f(x,y), (66)
K

dy

5:];)7 gk(x —ak,y —br)=y g(x,y), (67)

where we have used the notation fi (-, -) and g (-, -) introduced in Eqgs. (18), (19) and
(22).

The dynamics of the ODE system (66—67) is similar to the dynamics of the
original planar ODE system (10-11) in the same way as the dynamics of the
(K + 2)-dimensional extended ODE system (53-55) is similar to the dynamics of
the (K + 2)-dimensional extended ODE system (44-46). We have already observed
in Fig.3(a) that the limit cycle around the point (a;, b;) = (6, 6) of the ODE sys-
tem (44-46) is relatively circular. On the other hand, the shape of the limit cycles can
more significantly differ between Figs.2b and 3a if the corresponding parameters a;
and b; are not equal to each other. Motivated by this observation, we will study the
case a; = b; in Lemma 4 and prove that it is possible to choose these parameters in
a way that the planar ODE system (66—67) have (at least) K stable limit cycles. This
result is sufficient for the proof of Theorem 1. However, we also note that the existence
of limit cycles of the ODE system (66—67) is not restricted to the case a; = b; and
a more general lemma could be stated and proven, as we did in Lemma 2 where the
existence of K limit cycles has been proven under a relatively general condition (14).
The advantage of the case a; = b; is that it simplifies the proof of Lemma 4, because
we can use the approach and notations introduced in the proof of Lemma 2.

Lemma4 Let us assume that
a; = bl' =8iK (68)

fori=1,2,..., K. Then the ODE system (66—67) has at least K stable limit cycles.

Proof Let us define regions 2; C R%,i=1,2,...,K, together with their boundary
parts 9€2;1 and 922 by (15), (16) and (17). Our choice of values of a; and b; in (68)
satisfies the assumption (14) in Lemma 2. Therefore, the ODE system (10-11) has
with parameters given by (68) at least K stable limit cycles. Moreover, in the proof of
Lemma 2, we have shown that each region €2; does not include any equilibrium of the
planar ODE system (10-11). Any equilibrium of the ODE system (66—67) is either
located on the x-axis or y-axis, or it is also an equilibrium of the ODE system (10-11).
However, our assumption (68) implies that no region 2;,i = 1,2, ..., K, intersects
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with the x-axis or y-axis. Therefore, we conclude that each ;, fori = 1,2,..., K,
does not contain any equilibrium of the ODE system (66—67). Next, consider any point
(xp, yp) € 02;. We will compute the scalar product of vectors

(xp — ai, yo — bi) and (xp f (xp, ). Yb §(Xb. yb)) (69)

by rewriting the second vector as a sum of two vectors

(xb f (X2 Yb)s Yb 8 (X2 Y5)) = X6 (f (b ¥6) 8 ¥6)) + (0. (v6 — x5) 8 (X6, Yb)).
(70)

The scalar product of vectors

(xp — ai, yb — bi) and xp(f (xp, yb), &(xp, ¥b)) (71)

has already been calculated in the proof of Lemma 2 starting with Eq. (33). We obtained
that it is negative for (xp, yp) € 9€2;1 and positive for (xp, yp) € 9€2j>. Therefore,
the vector x; ( f(xp, yb), g(xp, yb)) always points inside the domain €2; on all parts
of the boundary 9€2;. Next, we want to show that this conclusion also holds if vec-
tor xp (f (xp, ¥»), g(xp, y»)) is modified by adding the vector (0, (y» — x5) g(xp. y»))
as itis done in Eq. (70). To do this, we note that our choice of parameters (68) implies
that

(ai —ap)’ + (bi —bj)* = 128 — j)°K?

foralli, j = 1,2,..., K, which not only satisfies the assumption (14), but it can be
used in Eq. (37) to make a stronger conclusion that the scalar product of vectors (71)
is at most —1.45 for (xp, yp) € 92;1 and at least 1.45 for (xp, yp) € 9Q2;2. Thus, we
only need to show that the scalar product of vectors

(xp —ai,yp — b)) and (0, (yp — xp) g(xp. b)) (72)

is in absolute value less than 1.45 to conclude that the original scalar product (69) is
negative for (xp, yp) € 9€2;1 and positive for (xp, yp) € 9€2;2. Using the definition of
g(+,+) in (22) and the notation z1 = x;, — a;, 22 = yp — b; introduced in the proof of
Lemma 2, we have y, — x;, = zo — z1 and the scalar product (72) can be written as

K
-z &2+ (@2 — 2022 Y g — ak. b — ). (73)
k=1,k+i
Since we have
max  |(z2 —z21) 22 gi(21.22)| = max (22— z21) 22 gi(z1. 22)| < 1.4
(Xb,yp) €08 3423=2 (or 1/2)
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and the second term in (73) is also less than 0.05, we conclude that the scalar prod-
uct (69) is negative for (xp, yp) € 9<2;1 and positive for (xp, yp) € 9<2j2. Therefore,
the vector (xb f (b, Yb), yb 8(xp, yb)) always points inside the domain €2; on all parts
of the boundary 9€2;. In particular, applying Poincaré-Bendixson theorem (Strogatz
2015), we conclude that each €2; contains at least one stable limit cycle. Since €2;,
i=1,2,..., K, are pairwise disjoint, this implies that the ODE system (66—67) has
at least K stable limit cycles. O

The following lemma shows that the extended ODE system (53-55) has at least K
stable limit cycles when ¢ is small enough. The detailed proof is omitted since one
can use similar steps as in the proof of Lemma 3.

Lemma5 Let us assume that constants a;, bi, i = 1,2, ..., K are given by (68). Then
there exists &g > 0 such that the reaction rate equations (53)—(55) have at least K
stable limit cycles for all ¢ € (0, o).

Proof This follows directly from Lemma 4 and Tikhonov’s theorem (Tikhonov 1952;
Klonowski 1983). O

The existence of K limit cycles in the CRN (65) follows by application of Lemma 5.
The Chemical system (65) has (K + 2) chemical species X, Y, Vi, Va, ..., Vk, which
are subject to 29K chemical reactions, so, by construction, we also establish bounds
in part (ii) of Theorem 1 on N (K) and M (K). This concludes the proof of Theorem 1.

7 Proof of Theorem 2

Theorem 2 Let K be an arbitrary positive integer. Then there exists a CRN with N (K)
chemical species which are subject to M (K) chemical reactions of at most second
order such that

(1) Reaction rate equations (3) have at least K stable limit cycles,
(ii) We have N(K) <7K + 14 and M(K) <42 K +24.

In Theorem 1, we have established that the reaction rate equations (53-55) describ-
ing the CRN (65) have at least K stable limit cycles. Since the right-hand sides of
ODEs (53-55) include polynomials up to the order 7, the resulting chemical reac-
tions (65) are reactions of the order at most 7. However, in practice, every higher-order
reactions can be subdivided into elementary steps, which are at most bimolecular (sec-
ond order). Therefore, we focus here on the proof of Theorem 2 which restricts our
considerations to at most second-order kinetics. We prove it by further extending the
number of variables in the reaction rate equations (53-55), i.e., by adding intermediary
chemical species and elementary reactions into the CRN (65). The resulting CRN has
N = 7K + 14 chemical species denoted by

K
S={X, v, Wi, Wa, ..., W} U {Vi. Zi.1, Zia, Zis, Zia, Zis, Zig) (74)
i=1
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where we use the notation introduced in Definition 1 of CRNs. The concentrations x,
Y, Vi, Wi, wa, ..., wi2,zijfori =1,2,...,Kand j = 1,2, ..., 6 evolve according
to reaction rate equations

K
dx
T =Z [ —xzi3 +ki12 viwa — ki 13 x2i,1 + ki14 vix 4 a; viwig
i=1
+ki 15 viwia — ki16 X2i2 — xzz',s], (75)
dy K
a = | = yzia + ki viws — kiig yzio + kio viy + bi viwn
k=1
+ki 20 viwir — ki 21 yzi,1 — yZi,()], (76)
dvi
P —ki 1 vi +kipvix +kizviy — ki aviwy — ki 5 v;we
+ki6viwa + ki 7viw7 — k; g viws — k; 9 v;ws (77
+ ki 10 viwg + ki 11 viwg — viws/e — viwio/e + 1/e,
dw 2 dwy dws
§—=x"—w, §—= =xw; — wa, § — =xwy — w3, 78
5 1 m 1 2 " 2 3 (78)
dwy dws dwg 5
§ — =xw3 — wy, § — = xwy4 — ws, § — = y° — wg, 79
” 3 4 ” 4 5 o y 6 (79)
dwy dwg dwg (80)
— =ywg — W7, — = Yw7 — wg, —— = Ywg — Wo,
dr YWwe 7 dar ywz 8 a yws 9
dw10 s dw11 dw12 (81)
— =YyYW9 — W]1Q, - = XWe — W11, =Ywp — w12,
dr ywg 10 a 6 11 ar ywi 12
dz; 1 dz; 2 dz; 3
Bd—’t=vix—zl-,1, 8d—'t = vy — Zi2, 8d—'t =vwr—2z3 (82)
dzia dzi s dzi 6
s d_lt =vw7 —Zi4, O d_lt = VWil — Zi 5, d_lt =viwp —zi6 (83)
where§ > 0,¢ > Oandk; ;,i =1,2,...,K,j=1,2,...,21, are positive constants
given by (59) and (63). Considering the limit § — 0 in Eqgs. (78-83), we obtain
wi=x% wr=x>, wy=x* wi=x, ws=x% we=>"%
wr =y, wg=y' wo=1y wio=y° wn=xy% wp=x%y, (84

3 3 2 2
Zi,l = VX, Zi2 =0y, Z;3=ViX", Zi4=Vy, Zi5=VXY, Zi6=VUX")Y.

Substituting the limiting values (84) forwyand z; ;, £ =1,2,...,12,i =1,2..., K,
j=12,...,6,into Egs. (75-77), we obtain Egs. (61), (62) and (58), which are equal
to the reaction rate equations (53-55). In particular, we deduce the following lemma,
establishing that the extended ODE system (75-83) with N = 7K + 14 variables has
at least K stable limit cycles when § and ¢ are small enough.
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Lemma 6 Let us assume that constants a;, b;,i = 1,2, ..., K are given by (68). Then
there exist 5o > 0 and eg > 0 such that reaction rate equations (75-83) have at least
K stable limit cycles for all 5 € (0, §9) and ¢ € (0, &9).

Proof This follows directly from Lemma 5 and Tikhonov’s theorem (Tikhonov 1952;
Klonowski 1983). O

The right-hand sides of reaction rate equations (75—83) only include quadratic terms.
Therefore, there exists a CRN corresponding to the reaction rate Egs. (75-83) which
includes (at most) second-order reactions. We can obtain it by applying the construction
in the proof of Lemma 1. The right-hand sides of Egs. (75) and (76) can be interpreted
as the set of 16 K chemical reactions (compare with (64) for ODEs (53-54))

ki 13

Rf’*:{X+Zi,3—1>Z,-,3, V+W2—>V—|—W2+X X+Zii—Z;,

ki 14

V+X—>V+2X V+W11—>V+W11+X

ki 16

V+W12—>V+W12+X X+Zir—Zio,
1
X+Zi5—>Zi5, Y+Zi6—>Zi6, Y+Zis—Z4,

117 ki 19

Vi+ W ==V, +W7+Y, Y+Z z—>Z,2, Vi+Y —V; +2Y,

Vit Wi L Vi k W+ Y, Vit Wi 22V w4 Y,

i,21

Y+Zl1—>le} for i=1,2,...,K. (85)

The right-hand side of equations (77) can be interpreted as the set of 14 chemical
reactions for each i = 1,2,..., K (compare with (60) for the right-hand side of
ODE (55))

s ki1 ki ki3
Ri=1Vi—0, Vi+X—=2Vi+X, Vi+Y—=2Vi+7Y,

k,‘_ ki_ ki
Vit Wi =5 Wy, Vit We—>We,  Vi+Wo—32V, + Wy,
ki ki ki
Vit Wy =52V + Wy, Vi + Wz —> W3, Vi + Wy —> W,

110 zll

Vit Wy —=2Vi+ Wy, Vi+Wo—2V; 4+ Wy,

1
Vi + Ws L5 ws, Vi Wio -5 Wi, wﬁv} (86)

Consequently, reaction rate equations (75-77) correspond to 30 K chemical reactions
in sets Rf* and Rf ,i = 1,2,..., K. This is already more than 29 K chemical
reactions used in Theorem 1, because we did not combine two terms on the right-hand
sides into one reaction as we did in the set R} (this is further discussed in Eq. (92)
in Sect.9). Moreover, there are additional chemical reactions corresponding to the
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dynamics of additional chemical species in Eqgs. (78-83). The right-hand sides of
equations (78—81) can be interpreted as the set of 24 chemical reactions given as

1/8 1/8
Rw={2X—/>2X—i—W1, 27 280y + W,

1/8
X+Wj—/>X+Wj+Wj+1, for j=1,2,3,4,
1/8
Y+ W -5 Y+ W+ W, for j=67.8.9,
s 1/8
X+W6—>/ X+ We+ Wiy, Y+W1—/>Y+W1+W12,

)
W, -2 g, for e=1,2,...,12}. (87)

Finally, the right-hand sides of Eqgs. (82—83) can be interpreted as the set of 12 chemical
reactions foreachi = 1,2, ..., K given by

1/8 8
R§={X+v,~—/>x+vi+z,~,1, Y+ Vi By Vit Zio,

1/8 1/6
Vie s Bviewat Zis, Vit WLV 4 Wy + Zia,

1/ 1/5
Vi+W11—/>Vi+W11+Zi,Sv Vi+W12—/>Vi+W12+Zi,6a

)
Zi: 29, for j=1,2,...,6}. (88)

In summary, we conclude that the reaction rate equations (75-83) correspond to the
CRN with N = 7K + 14 chemical species and 42 K + 24 chemical reactions given
by

K
R=R"U[JRIUR]*UR. (89)

i=1

Using Lemma 6, we deduce that the CRN (S, C, R) consisting of chemical species S
given by (74) and chemical reactions R given by (89) is an example of a CRN which
satisfies Theorem 2. The corresponding set of reaction complexes C can be inferred
from the provided lists of reactions Rf’*, Ri, R* and Rf, fori =1,2,..., K, given
by (85), (86), (87) and (88).

8 Proof of Theorem 3

Theorem 3 Let C(n) be the maximum number of stable limit cycles of reaction rate
equations (1-2) corresponding to CRNs with two chemical species undergoing chem-
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ical reactions of at most n-th order. Then we have

Cn) > {%J , )

where the floor function |.] denotes the integer part of a positive real number.

Given an arbitrarily large integer K € N, we will show that there exists a CRN with
two chemical species such that its reaction rate equations have at least K stable limit
cycles and the order of the chemical reactions is at most n(K) = 6K — 2. To do that,
we start with the planar ODE system (10-11) and renormalize time ¢ to get a planar
system with polynomial ODEs. Using an auxiliary function

K

ney) =T (1+ & —a®+ o —b0°),

k=1

we define our new time variable t by

t
o= [
0 (). ()

Then we obtain

dr _drdr _ (x—ap{l = (x —a)* — (y —b)*} — (v — bw)
dr ~ drdt h(xy)z 1+ (x —ap)b+ (y —b)®

k=1 ’
(90)

dy _dydr )Z)’ b {l — (x —ap)? — (v — b)) + (x — az)

i arar M 1+ (x —ap)® + (y — br)®

O

which is a planar ODE system with its right-hand side given as polynomials of degree
n(K)—1 = 6K — 3. Since we only rescaled the time, Fig. 1(a) provides an illustrative
dynamics of the ODE system (90-91) for K = 4. The illustrative trajectories are
calculated in Fig. 1a by solving ODEs (10-11) in time interval ¢ € [0, 100], and we
can obtain the same result by solving ODEs (90-91) numerically in time interval
7 € [0, 107°]. Applying x-factorable transformation to ODEs (90-91), we obtain

’

dx S —apfl = —a)? = = b = (= bW
szh(x’y)z(x a) X — ag y—b)*} = (y — b

= I+ (x —a)® + (y — b)®

’

~ O — bl — (@ —a? — (v — b} + (x — ap)
=y hix, )Z 1+ (x —ap)® + (y — b)b

@ Springer



Chemical Systems with Limit Cycles... Page 27 0f29 76

which is a kinetic system of ODEs with polynomials of degree n(K) = 6K — 2 and
which has K stable limit cycles. Solving for K, we obtain K = (n(K) + 2)/6, which
establishes the lower bound (4) in Theorem 3.

9 Discussion

The main results of this paper have been formulated as Theorems 1, 2 and 3, which
show that there exist CRNs with K stable limit cycles for any integer K € N. The CRN
presented in our proof of Theorem 1 consisted of N(K) = K + 2 chemical species S
givenby (57)and M (K) = 29 K chemical reactions R (of at most seventh order) given
by (65). The number of species and chemical reactions further increases in our proof
of Theorem 2, where we restrict our investigation to CRNs with (at most) second-order
kinetics. On the other hand, if we restrict to CRNs with only N = 2 chemical species,
then the order of the chemical reactions increases with K as n(K) = 6K — 2 in our
proof of Theorem 3.

An important question is whether we can further decrease N (K) (the number of
chemical species) and M (K) (the number of chemical reactions) in Theorems 1 and 2
and still obtain a CRN with K stable limit cycles. One possibility to decrease M (K)
is to use one chemical reaction to interpret multiple terms on the right-hand sides of
ODE:s (53-55). We have already done this in the reaction set R} given by (64) with
the reaction

Vi42X +2Y -5 Vi 4 X 4V, (92)

which corresponds to terms of the form —uv;x?y? appearing in both equations (53)
and (54). Another way to construct a CRN with reactions modeling the two terms,
—v,‘x2 yz, in the reaction rate equations (53-54), is to use one chemical reaction per
one term on the right-hand side. That is, the chemical reaction (92) could be replaced
by two chemical reactions

Vi b 2X 42V -5 Vi + X 42V, and Vi 42X +2Y —> V, 42X + Y
without modifying the form of the reaction rate equations (53-54). In particular, if
our aim is to decrease the number M (K) of chemical reactions, we could consider to
‘merge’ some other reactions, which have the same reactants. For example, reaction

lists (60) and (64) contain chemical reactions

ki 17

ki,
Vi +3Y =52V, +3Y, V; +3Y —2 Vv, +4v.

If these chemical reactions had the same reaction rate constants k; 7 and k; 17, then we
could replace them by one chemical reaction given by

ki,
Vi +3Y 232V 44y
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and we would obtain a CRN which has 28 K chemical reactions rather than 29 K,
which we use in Theorem 1. Consequently, there is potential to decrease the size of
the constructed CRN by a careful choice of our parameters or by modifying the right-
hand sides of reaction rate equations (53-55). However, the focus of our paper was on
the existence proofs and we leave the improvement of bounds on N (K) and M (K) to
future work.

Another possible direction to investigate is to consider more detailed stochastic
description of CRNs, written as continuous-time discrete space Markov chains and
simulated by the Gillespie algorithm (Erban and Chapman 2020). Such simulations
would help us to investigate how our parameters a;, b;, i = 1,2,..., K, need to
be chosen that the system not only has the limit cycles of comparable size (as we
visualized in Fig.3 in the ODE setting), but it also follows each of these limit cycles
with a similar probability (comparable to 1/K). This could also be achieved by using
the noise-control algorithm (Plesa et al. 2018) for designing CRNs. This algorithm
structurally modifies a given CRN under mass-action kinetics, in such a way that (i)
controllable state-dependent noise is introduced into the stochastic dynamics, while
(ii) the reaction rate equations are preserved. In particular, it could be used to introduce
additional chemical reactions (which do not change the ODE dynamics), but lead to
controllable noise-induced switching between different limit cycles.
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