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Abstract
We consider reaction networks that admit a singular perturbation reduction in a certain
parameter range. The focus of this paper is on deriving “small parameters” (briefly for
small perturbation parameters), to gauge the accuracy of the reduction, in amanner that
is consistent, amenable to computation and permits an interpretation in chemical or
biochemical terms. Our work is based on local timescale estimates via ratios of the real
parts of eigenvalues of the Jacobian near critical manifolds. This approach modifies
the one introduced by Segel and Slemrod and is familiar from computational singular
perturbation theory.While parameters derived by thismethod cannot provide universal
quantitative estimates for the accuracy of a reduction, they represent a critical first step
toward this end. Working directly with eigenvalues is generally unfeasible, and at best
cumbersome. Therefore we focus on the coefficients of the characteristic polynomial
to derive parameters, and relate them to timescales. Thus, we obtain distinguished
parameters for systems of arbitrary dimension, with particular emphasis on reduction
to dimension one. As a first application, we discuss the Michaelis–Menten reaction
mechanism system in various settings, with new and perhaps surprising results. We
proceed to investigate more complex enzyme catalyzed reaction mechanisms (uncom-
petitive, competitive inhibition and cooperativity) of dimension three, with reductions
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to dimension one and two. The distinguished parameters we derive for these three-
dimensional systems are new. In fact, no rigorous derivation of small parameters seems
to exist in the literature so far. Numerical simulations are included to illustrate the effi-
cacy of the parameters obtained, but also to show that certain limitations must be
observed.

Keywords Reaction network · Dimension reduction · Perturbation parameter ·
Timescale · Eigenvalue · Symmetric polynomial · Quasi-steady-state
approximation · Lyapunov function · Singular perturbation

Mathematics Subject Classification 92C45 · 34D15 · 80A30 · 13P10

1 Introduction

Reducing the dimension of chemical and biochemical reaction networks or mech-
anisms is of great relevance both for theoretical considerations and for laboratory
practice. For instance, the fundamental structure of a reactionmechanism is frequently
known, or assumed from educated guesswork, but reaction rate constants are a pri-
ori unknown. Moreover, due to possible wide discrepancies in timescales, as well as
limitations on experimentally obtainable data, it is important to identify scenarios and
parameter regions that guarantee accuracy of a suitably chosen reduction. Singular
perturbations frequently appear here,1 and the fundamental theorems by Tikhonov
(1952) and Fenichel (1979) provide a procedure to determine a reduced equation, and
reliable convergence results. These theorems require an a priori identification of a per-
turbation parameter (also called “small parameter”). From a qualitative perspective,
one actually considers a critical manifold together with an associated small parameter,
and a corresponding slow invariant manifold. Given a well-defined limiting process
for the small parameter, theory guarantees convergence of solutions of the full system
to corresponding solutions of the reduced system. From a practical (“laboratory”) per-
spective, however, convergence theorems are not sufficient, and quantitative results
are needed to gauge the accuracy of fitting procedures. This implies the need for an
appropriate small parameter, which we denote by εS for the moment, that also reflects
quantitative features. In contrast to the critical manifold, from a qualitative perspec-
tive the perturbation parameter is far from unique.2 From a quantitative perspective,
ideally εS should provide an upper estimate for the discrepancy between the exact
and approximate solutions over the whole course of the slow dynamics. From a bio-
chemical perspective it should elucidate the influence of reaction parameters. In many
application-oriented publications, the authors assume (explicitly or implicitly) that
certain perturbation parameters provide a quantitative estimate for the approximation;
see, e.g., Heineken et al. (1967), Segel (1988), Tzafriri (2003), Schnell (2014), Choi

1 Other types of reduction scenarios do occur, but we will not discuss these in the present work.
2 Even for the familiar Michaelis–Menten system there are several parameters in use.
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et al. (2017).3 However, while heuristical arguments may support such assumptions,
no mathematical proof is given [see the discussion of the Michaelis–Menten system
in Eilertsen et al. (2022)]. From the applied perspective, in absence of rigorous results
on quantitative error estimates for reductions of biochemical reaction networks or
mechanisms, there is no alternative to employing heuristics. Thus, there exists a siz-
able gap between available theoretical results and applications, and closing this gap
requires further theoretical results. The present paper is intended as a contribution
toward narrowing the gap, invoking mathematical theory.

From an overall perspective (based on a derivation of singular perturbation the-
orems), one could say that finding ideal small parameters for a given singular
perturbation scenario requires a three-step procedure:

1. In a first step, estimate the approach of a particular solution to the slow manifold:
A common method employs Lyapunov functions. Thus, one obtains a parameter
that measures the discrepancy between the right-hand sides of the full system and
the reduced equation, following a short initial transient.

2. In a second step, estimate a suitable critical time at which the slow dynamics sets
in, and estimate the solution at this critical time. This is needed to guarantee that
the transient phase is indeed short, and to obtain a suitable initial value for the
reduced equation.

3. In a third step, estimate the approximation of the exact solution by the correspond-
ing solution of the reduced equation.4

At first glance, this procedure seems to pose no problems. The feasibility of the steps
outlined above is guaranteed by standard results about ordinary differential equations.
But, the hard part lies in their practical implementation for a given parameter-
dependent system. Generally, it is not easy to obtain meaningful and reasonably
sharp estimates. A case-by-case discussion seems unavoidable [see, Schnell andMaini
(2000), Eilertsen et al. (2018, 2021a), Eilertsen and Schnell (2018, 2020) for examples
employing various alternative approaches], for each given system.

With the three steps as a background, our goal is to make a significant contribution
toward the first step, via linear timescale arguments. We will both expand and improve
existing results, and moreover obtain perturbation parameters for higher-dimensional
systems for which no rigorous results have previously been reported. In a biochemical
context, it seems that timescale arguments were first introduced by Segel (1988), and
Segel and Slemrod (1989). Conceptually, we build upon this approach, but we take
a consistent local perspective. Thus, we consider (real parts of) eigenvalue ratios,
based on the idea that underlies computational singular perturbation theory, going
back to Lam and Goussis (1994). Our emphasis is on obtaining parameters that are
workable for application-oriented readers in mathematical enzymology, and admit an
interpretation in biochemical terms.

3 In several instances this assumption seems to be coupled with a too literal interpretation of the expression
ε � 1.
4 The proximity of the phase–space trajectory to the slow manifold does not ensure that the time evolutions
of the approximate solution and the true solution are close; see, e.g., Eilertsen et al. (2022, Fig. 4).
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1.1 Background

A solid mathematical foundation for qualitative viability of most reduction procedures
in chemistry and biochemistry is provided by singular perturbation theory (Tikhonov
1952; Fenichel 1979). This was first clearly stated and utilized in Heineken et al.
(1967).

For illustrative purposes, and as further motivation, we consider a familiar system
from biochemistry, viz. the (irreversible) Michaelis–Menten reaction mechanism or
network (Michaelis and Menten 1913), which is modeled by the two-dimensional
differential equation

ṡ = −k1e0s + (k1s + k−1)c,
ċ = k1e0s − (k1s + k−1 + k2)c.

(1)

For small initial enzyme concentration with respect to the initial substrate concen-
tration, Briggs and Haldane (1925) assumed quasi-steady state (QSS) for complex
concentration, thus obtaining the QSS manifold given by

c = k1e0s

k−1 + k2 + k1s
; (2)

and reduction to the Michaelis–Menten equation

ṡ = − k1k2e0s

k−1 + k2 + k1s
. (3)

To quantify the notion of smallness for enzyme concentration, they introduced the
dimensionless parameter

εB H := e0
s0

(4)

[later utilized by Heineken et al. (1967) in the first application of singular pertur-
bation theory to this reaction], and required εB H � 1 as a necessary condition for
accuracy of the reduction. Further parameters to ensure accuracy of approximation by
the Michaelis–Menten equation were introduced later on. Reich and Selkov (1974)
introduced

εRS := k1e0/(k−1 + k2), (5)

for which Palsson and Lightfoot (1984) later gave a justification based on linearization
at the stationary point 0.5 Moreover, Segel and Slemrod (1989) derived

εSSl := k1e0
k−1 + k2 + k1s0

. (6)

5 In a recent paper, Patsatzis and Goussis (2019) suggested a parameter involving s and c along a trajectory;
taking the maximum over s and c yields εRS .
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The fundamental approach by Segel and Slemrod (1989), obtaining perturbation
parameters by comparing suitable timescales, has been used widely in the literature
ever since.6

For Michaelis–Menten reaction mechanism, singular perturbation theory shows
convergence of solutions of (1) to corresponding solutions of the reduced equation as
e0 → 0, in which case all of the parameters εB H , εRS, εSSl approach zero. But on the
other hand, it is not generally true that εB H → 0, or εRS → 0, or εSSl → 0, implies
convergence to the solution of the reduced system. This, as well as relatedmatters, was
discussed in detail in Eilertsen et al. (2022), with a presentation of counterexamples.
We also invite the readers to see other examples in Sect. 4.

These facts illustrate that considering a single parameter—without context and
without a clearly definednotionof the limiting process—will generally not be sufficient
to ensure the validity of some particular reduction. In a singular perturbation setting
the critical manifold is the basic object, and one generally needs to specify the way in
which corresponding small parameters approach zero.

With regard to the procedure outlined in Steps 1 to 3 above, a wish list for small
parameters includes the following physically motivated conditions:

• εS is dimensionless;
• εS is composed of reaction rates and initial values (admitting an interpretation in
physical terms);

• εS is controllable in experiments.

These requirements will be taken into account as well.
Our vantage point is work byGoeke et al. (2015, 2017), which provides an algorith-

mic approach to determine critical parameter values (Tikhonov–Fenichel parameter
values, TFPV), and their critical manifolds: Choosing a curve in parameter space (with
curve parameter ε) that starts at a TFPV gives rise to a singularly perturbed system,
based on a clearly defined approach of the small parameter to zero.

Pursuing a less ambitious goal than the one outlined in Steps 1 to 3 above, we will
utilize the separation of timescales on the slow manifold, adapting work by Lam and
Goussis (1994) on computational singular perturbation theory. We focus attention on
local considerations. Timescales are identified as inverse absolute real parts of eigen-
values of the linearization of a vector field, near stationary points. Restriction to the
vicinity of stationary points is an essential condition here. Given a singular pertur-
bation setting, Zagaris et al. (2004) proved that the approach via “small eigenvalue
ratios” is consistent. Unless some eigenvalues of large modulus are purely imaginary,
the eigenvalue approach provides a small parameter that satisfies the requirement in
Step 1 above, up to a multiplicative constant that remains to be determined.7 But deal-
ing directly with eigenvalues (even in the rare case when they are explicitly known)
is generally too cumbersome to allow productive work and concrete conclusions.

The emphasis of the present paper lies on local (linear) timescale estimates and
comparisons, using a mix of algebraic and analytic tools. We will obtain parameters

6 The particular argument in Segel and Slemrod (1989) is somewhat problematic since the notion of
timescale is ambiguous for nonlinear systems.
7 A proof of this fact is sketched in Appendix 9.1, which also indicates that eigenvalue ratios are relevant
for Step 3. The multiplicative constant reflects the effect of a coordinate transformation.
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that are palatable to application-oriented readers and allow for interpretation in a bio-
chemical context. Most of the parameters obtained have not appeared in the literature
before, and some perhaps are unexpected.

1.2 Overview of Results

Given a chemical or biochemical reaction network or mechanism, we will present
a method to obtain distinguished dimensionless parameters. These parameters are
directly related to the local fast-slow dynamics of the singularly perturbed system. In
contrast tomany existing timescale estimates in the literature, the one employed here is
conceptually consistent. Timescale considerations mutate from artwork to a relatively
routine procedure, and we establish necessary conditions for timescale separation and
singular perturbation reductions.

In the preparatory Sect. 2, we collect some notions and results related to singu-
lar perturbation theory. In particular, we recall Tikhonov–Fenichel parameter values
(TFPV). We also note properties of the Jacobian and its characteristic polynomial on
the critical manifold. It should be emphasized that our search always begins with iden-
tifying a TFPV and its associated critical manifold; all our small parameter estimates
are rooted in this scenario. We establish a repository of dimensionless parameters
from coefficients of the characteristic polynomial, and we recall the relation between
these coefficients and the eigenvalues of the Jacobian. Finally, we fix some notation
and establish some blanket nondegeneracy conditions that are assumed throughout the
paper.

Section 3 is devoted to one-dimensional critical manifolds, which are of consid-
erable relevance to experimentalists. Generally, the timecourse of a single product
or substrate is measured in an experiment. Specific kinetic parameters (such as the
Michaelis constant) are estimated via nonlinear regression, in which the recorded
timecourse data is fitted to a one-dimensional and autonomousQSSmodel that approx-
imates substrate depletion (or product formation) of the reaction on the slow timescale;
see, for example, Stroberg and Schnell (2016) and Choi et al. (2017). In the one-
dimensional setting, near the critical manifold there is one and only one eigenvalue
of the Jacobian with small absolute real part. From the characteristic polynomial,
we obtain distinguished small parameters, and we establish their correspondence to
timescales. The parameters thus obtained admit an interpretation in terms of reaction
parameters, so they satisfy a crucial practical requirement. They measure the ratio of
the slow to the fastest timescale, and thus provide a necessary condition for timescale
separation. But, in dimension greater than two, this condition is not strong enough
when there are large discrepancies within the fast timescales. According to Appendix,
Sect. 9.1, the ratio of the slow to the “slowest of the fast” timescales is the relevant
quantity. To estimate this ratio,we introduce another type of parameter that yields sharp
estimates whenever all eigenvalues are “essentially real” [borrowing terminology of
Lam and Goussis (1994)]. We then specialize our results to systems of dimensions
two and three.
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In Sect. 4, we apply the results from Sect. 3 to the (reversible and irreversible)
Michaelis–Menten system in various circumstances.We obtain a distinguished param-
eter for the reversible system with small enzyme concentration; this seems to be new.
Specializing to the irreversible case, we obtain a parameter εM M and conclude, via an
argument different from Palsson and Lightfoot (1984), that the Reich-Selkov parame-
ter εRS is the most suitable among the standard parameters in the irreversible system.
Moreover, we obtain a rather surprising distinguished parameter for the partial equi-
librium approximation with slow product formation. To support the claim that this is
indeed an appropriate parameter for Step 1, as stated above, we determine relevant
Lyapunov estimates, and we add some observations with regard to Step 3. To illustrate
the necessity of some technical restrictions in our results, we close this section by
discussing a degenerate scenario with a singular critical variety.

In Sect. 5, we turn to critical manifolds of dimension greater than one. Imitating
the approach for one-dimensional critical manifolds and invoking results from local
analytic geometry, we obtain distinguished parameters that measure the ratio of the
fastest timescale to the “fastest of the slow” timescales. We provide a detailed analysis
for three-dimensional systems with two-dimensional critical manifold.

In Sect. 6, we apply our theory to some familiar three-dimensional systems from
biochemistry, viz. cooperative systems with two complexes, and competitive as well
as uncompetitive inhibition, for low enzyme concentration. For these systems the only
available perturbation parameters in common use seem to be εB H = e0/s0, εSSl and
ad hoc variants of these. There seems to exist no derivation of small parameters via
timescale arguments (in the spirit of Segel and Slemrod) in the literature. We thus
break new ground, and we obtain meaningful and useful distinguished parameters.
We illustrate our results with several numerical examples, to verify the efficacy of
the parameters. But, we also include simulations to show their limited applicability in
certain regions of parameter space. Such limitations were to be expected, since Steps 2
and 3 are needed for a complete analysis. These examples also illustrate the necessity
of additional hypotheses imposed in the derivation of the distinguished parameters.

In Sect. 7, we consider some reductions of three-dimensional systems obtained via
projection onto two-dimensional critical manifolds. Specifically, we compute some
two-dimensional reductions of the competitive and uncompetitive inhibitory reaction
mechanisms, and we derive distinguished parameters that are relevant for the accuracy
of these reductions.Again,we illustrate our results by numerical simulations. To finish,
we discuss a three timescale scenario that leads to a hierarchical structure in which the
two-dimensional slow manifold contains an embedded one-dimensional “very slow”
manifold.

Section 9, anAppendix, is a recapitulation of the Lyapunov functionmethod for sin-
gularly perturbed systems, also outlining the relevance of the eigenvalue ratios for Step
1, and some observations on Steps 2 and 3. Moreover, Appendix contains a summary
of some facts from the literature, and proofs for some technical results. Sections2, 3
and 5 as well as Appendix (Sect. 9) are mostly technical. Readers primarily interested
in applications may want to skim these only, and focus on the applications in Sects. 4,
6 and 7.
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2 Preliminaries

We will discuss parameter-dependent ordinary differential equations

ẋ = h(x, π), x ∈ R
n, π ∈ �, � ⊆ R

m closed, (7)

with the right-hand side a polynomial in x and π . Our main motivation is the study of
chemical mass action reaction mechanisms and their singular perturbation reductions.

2.1 Tikhonov–Fenichel Parameter Values (a Review)

We consider singular perturbation reductions that are based on the classical work by
Tikhonov (1952) and Fenichel (1979). Frequently the pertinent theorems are stated
for systems in slow-fast standard form

u̇1 = ε f1(u1, u2, ε),

u̇2 = f2(u1, u2, ε),
(8)

with a small parameter ε, subject to certain additional conditions. In slow time, τ = εt ,
the reduced system takes the form

du1

dτ
= f1(u1, u2, ε),

0 = f2(u1, u2, ε),

and the above mentioned conditions ensure that the second equation admits a local
resolution foru2 as a function ofu1 and ε. For general parameter-dependent systems (7)
one first needs to identify the parameter values from which such reductions emanate.
We recall some notions and results (slightly modified from Goeke et al. 2015):

1. A parameter π̂ ∈ � is called a Tikhonov–Fenichel parameter value (TFPV) for
dimension s ( 1 ≤ s ≤ n − 1) of system (7) whenever the following hold:

(i) An irreducible component of the critical variety, i.e., of the zero set V(h(·, π̂))

of x �→ h(x , π̂), contains a (Zariski dense) local submanifold ˜Y of dimension
s, which is called the critical manifold.

(ii) For all x ∈ ˜Y one has rank D1h(x, π̂) = n − s and

R
n = Ker D1h(x, π̂) ⊕ Im D1h(x, π̂).

Here D1 denotes the partial derivative with respect to x .
(iii) For all x ∈ ˜Y the nonzero eigenvalues of D1h(x, π̂) have real parts < 0.

2. Given a TFPV, for any smooth curve ε �→ π̂ + ερ + · · · in parameter space �,
the system

ẋ =h(x, π̂+ερ+ · · · )=h(x, π̂)+εD2h(x, π̂) ρ+ · · · =:h(0)(x)+εh(1)(x) + · · · ,
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with D2 denoting the partial derivative with respect to π , admits a singular
perturbation (Tikhonov–Fenichel) reduction.
A standard method is to fix a parameter direction and a “ray” ε �→ π̂ + ερ in
parameter space. In a chemical interpretation this may correspond to a gradual
increase of some parameters, such as initial concentrations. Our work will always
be based on this procedure; by this specification we avoid ambiguities about the
range of parameters.

3. The computation of a reduction in the coordinate-free setting is described in Goeke
andWalcher (2014): Assuming the TFPV conditions in item 1, there exist rational
functions P , with values in Rn×(n−s), and μ, with values in Rn−s , such that

h(0)(x) = P(x)μ(x) on ˜Y ,

and P(x) as well as Dμ(x) have full rank on ˜Y . The reduced equation on ˜Y then
has the representation

ẋ = ε
(

I − P(x) (Dμ(x)P(x))−1 Dμ(x)
)

h(1)(x), (9)

which is correct up to O(ε2). By Tikhonov and Fenichel, solutions of (7) that
start near ˜Y will converge to solutions of the reduced system as ε → 0. But some
caveats are in order:

• The reduction is guaranteed only locally, for neighborhoods of compact subsets
of the critical manifold and for sufficiently small ε. Determining a neighbor-
hood explicitly for which the reduction is valid poses an individual problem
for each system.8

• In particular, the distance of the initial value of (7) from the slow manifold
(not only from the critical manifold) is relevant for the reduction. In general,
an approximate initial value for the reduced equation on the slow manifold
must be determined.

• If the transversality condition in (ii) above breaks down, standard singular
perturbation theory is no longer applicable. But, even when it is satisfied, the
range of validity for the reduction may be quite small. This reflects the effect
of a local transformation to Tikhonov standard form.

• Finally, the reduced equation may be trivial, in which case higher-order terms
in ε are dominant and no conclusion can be drawn from the first order reduction.
By the same token, if the term following ε in (9) is small, then the quality of
the reduction may be poor.

4. Turning to computational matters, consider the characteristic polynomial

χ(τ, x, π) = τ n + σ1(x, π)τ n−1 + · · · + σn−1(x, π)τ + σn(x, π) (10)

8 A similar problem is familiar from linearly stable stationary points.
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of the Jacobian D1h(x, π). Then, given 0 < s < n, a parameter value π̂ is a
TFPV with locally exponentially attracting critical manifold ˜Y of dimension s,
and x0 ∈ ˜Y , only if the following hold:

• h(x0, π̂) = 0.
• The characteristic polynomial χ(τ, x, π) satisfies

(i) σn(x0, π̂) = · · · = σn−s+1(x0, π̂) = 0;
(ii) all roots of χ(τ, x0, π̂)/τ s have negative real parts.

This characterization shows that x0 satisfies an overdetermined systemof equations
(more than n equations in n variables), which in turn allows to algorithmically
determine conditions on π̂ by way of elimination theory; see Goeke et al. (2015).
Due to the Hurwitz-Routh theorem (see, e.g., Gantmacher 2005),

σk(x0, π̂) > 0 for x0 ∈ ˜Y , 1 ≤ k ≤ n − s

is a necessary consequence of condition (ii). Necessary and sufficient conditions
for TFPV are stated in Goeke et al. (2015), but we will not need them here.

2.2 Dimensionless Parameters

FromGoeke et al. (2015), one finds critical parameter values and corresponding critical
manifolds, but there remains to specify the notion of “small perturbation,” and to relate
it to reaction parameters. Singular perturbation theory guarantees convergence in the
limit ε → 0, but for a given system estimates for the rate of convergence are desirable.

To be physically meaningful, relevant small parameters should be dimensionless.
The only dimensions appearing in reaction parameters are time and concentration, thus
by dimensional analysis (Buckingham Pi Theorem; see, e.g., Wan 2018), there exist≥
m−2 independent dimensionlessLaurentmonomials in the parameters, such that every
dimensionless analytic function of the reaction parameters can locally be expressed
as a function of these.9 This collection may be quite large; we impose the additional
requirement that parameters should correspond to timescales. In a preliminary step,
we therefore list an inventory of rational dimensionless quantities for the network or
mechanism.

Lemma 1 Let (7) correspond to a CRN with mass action kinetics, and χ as in (10).
Then:

(a) The coefficient σk of χ has dimension (Time)−k .
(b) Whenever i1, . . . , i p ≥ 1 and j1, . . . , jq ≥ 1 are integers such that i1+· · ·+ i p =

j1 + · · · + jq , the expression

σi1 · · · σi p

σ j1 · · · σ jq

(when defined) is dimensionless.

9 Generically, there are exactly m − 2.
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Proof Every monomial on the right-hand side of (7) has dimension
Concentration/Time, since this holds for the left-hand side. The entries of the Jacobian
D1h are obtained via differentiation with respect to some xi , hence have dimension
(Time)−1. Since σi is a polynomial in the matrix enries of degree i , part (a) follows.
Part (b) is an immediate consequence.

2.3 Timescales

There exist various notions of timescale in the literature, and in some cases this ambi-
guity influences the derivation of small parameters. For a case in point, we invite the
reader to see Segel and Slemrod (1989), who use different notions of timescale for
the fast and slow dynamics. But, for systems that decay or grow exponentially, and
by extension for linear and approximately linear systems, there exists a well-defined
notion:

Definition 1 Let A : R
n → R

n be a linear map, and consider the linear differential
equation ẋ = A x . For λ an eigenvalue of A, with nonzero real part, we call |Re λ|−1

the timescale corresponding to λ.
The timescale of an invariant subspace V ⊆ R

n (which is a subspace of a sum
of generalized eigenspaces) is defined as the slowest timescale of the eigenvalues
involved.

For a single eigenvalue, the timescale characterizes the speed of growth or decay
of solutions along the generalized eigenspace of λ. For an invariant subspace, it
characterizes the speed for generic initial values.

We will work with this consistent notion of linear timescale, and its extension
to linearizations of nonlinear systems near stationary points, throughout the paper.
Thus, we adopt the perspective taken in Lam and Goussis (1994), which is justified by
Fenichel’s local characterization of the dynamics near the criticalmanifold˜Y (Fenichel
1979, Section V), as proven by Zagaris et al. (2004). Indeed, the time evolution near ˜Y
is governed by the linearization D1h(x, π̂ +ερ), with π = π̂ +ερ close to a TFPV π̂ ,
and x ∈ ˜Y . For π = π̂ the Jacobian has vanishing eigenvalues, hence for π near π̂ one
will have eigenvalues of small modulus, while all nonzero eigenvalues of D1h(x, π̂)

have negative real parts.
From a practical perspective, eigenvalues are at best inconvenient to work with.

Moreover, in our context, resorting to numerical approximations is not a viable option.
To obtain more palatable parameters, we recall the correspondence between the eigen-
values λ1, . . . , λn of D1h(x, π̂ + ερ) and the coefficients σk of the characteristic
polynomial. One has

σk = (−1)k
∑

λi1 · · · λik

with the summation extending over all tuples i1, . . . , ik such that 1 ≤ i1 < · · · < ik ≤
n. In particular
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−σ1 = λ1 + · · · + λn;
(−1)n−1σn−1 =

n
∑

i=1

∏

j 
=i λ j ;
(−1)nσn = λ1 · · · λn;

σn−1

σn
= −∑ 1

λ j
.

(11)

2.4 Blanket Assumptions

The principal goal of the present paper is to provide consistent and workable local
timescale estimates in terms of the reaction parameters. Throughout the remainder of
the paper, the following notions will be used and the following assumptions will be
understood:

1. We consider a polynomial parameter-dependent system (7), and a TFPV π̂ for
dimension s ≥ 1, with critical manifold ˜Y . The entries of π̂ are not uniquely
determined by the critical manifold. We allow these entries to range in a suit-
able compact subset of parameter space (to be restricted by requirements in the
following items).

2. We fix ρ in the parameter space, and consider the singularly perturbed system for
the ray in parameter space π̂ +ερ, with 0 ≤ ε ≤ εmax, and restrictions on εmax > 0
to be specified.

3. Moreover, we let K ⊂ R
n be a compact set with nonempty interior, such that˜Y ∩K

is also compact. K should contain the initial values for all relevant solutions of
(7).10

4. Since π̂ is a TFPV, we have σk(x, π̂) > 0 for all x ∈ ˜Y ∩ K , 1 ≤ k ≤ n − s.
We choose εmax so that σk(x, π̂ + ερ) is defined and bounded above and below by
positive constants on

K ∗ = K ∗(εmax) = (

˜Y ∩ K
) × [0, εmax], (12)

for 1 ≤ k ≤ n − s. Such a choice is possible by compactness and continuity, given
a suitable compact set in parameter space.

5. As a crucial basic condition, we require that Tikhonov–Fenichel reduction is accu-
rate up to order ε2 in a compact neighborhood ˜K of ˜Y ∩ K , with ε ≤ εmax. Consult
Sect. 9.1 to verify that this requirement can be satisfied.

We emphasize that the present paper focuses on asymptotic timescale estimates near
the critical manifold, which are based on Fenichel’s local theory. The determination
of εmax (and by extension, the range of applicability) will not be addressed in general.
Moreover, in applications we may replace sharp estimates by weaker ones that permit
an interpretation in biochemical terms.

10 In many applications, it will be possible to choose a positively invariant compact neighborhood, but this
will not be required a priori.
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3 Critical Manifolds of Dimension One

In this technical section, we consider system (7) in Rn , n ≥ 2 with a critical manifold
of dimension s = 1. We will derive two types of distinguished parameters that char-
acterize timescale discrepancies, and discuss systems of dimensions two and three in
some detail.

We have σn(x, π̂) = 0 on ˜Y , and σk(x, π̂ + ερ) > 0 for 1 ≤ k ≤ n − 1, x ∈ ˜Y ∩ K
and 0 ≤ ε ≤ εmax. Moreover

σn(x, π̂ + ερ) = εσ̂n(x, π̂ , ρ, ε) (13)

with a polynomial σ̂n . We require the nondegeneracy condition

σ̂n(x, π̂ , ρ, 0) 
= 0 for all x ∈ ˜Y ∩ K . (14)

Denote by λ1, . . . , λn the eigenvalues of D1h(x, π), choosing the labels so that
λn(x, π̂) = 0 for all x ∈ ˜Y ∩ K .

The following facts are known.We recall some proofs in Appendix, for the reader’s
convenience.

Lemma 2 (a) One has

λn(x, π̂ + ερ) = ε̂λn(x, π̂ , ρ, ε),

witĥλn analytic, and̂λn(x, π̂ , ρ, 0) 
= 0 on K .
(b) Given β > 1, there exist � > 0, θ > 0 such that −�/β ≤ Re λi (x, π̂) ≤ −βθ

for all x ∈ ˜Y ∩ K , 1 ≤ i ≤ n − 1.
(c) For suitably small εmax, one has

−� ≤ Re λi (x, π̂ + ερ) ≤ −θ

for all (x, ε) ∈ K ∗, 1 ≤ i ≤ n − 1.

3.1 Distinguished Small Parameters

We turn to the construction of small parameters from the repository in Lemma 1.
Consider the rational function

(x, ε) �→ σn(x, π̂ + ερ)

σ1(x, π̂ + ερ) · σn−1(x, π̂ + ερ)
, x ∈ ˜Y ∩ K , ε ∈ [0, εmax]. (15)

Definition 2 (i) Let

L(π̂, ρ) := infx∈˜Y∩K

∣

∣

∣

∣

σ̂n(x, π̂ , ρ, 0)

σ1(x, π̂) · σn−1(x, π̂)

∣

∣

∣

∣

,

U (π̂, ρ) := supx∈˜Y∩K

∣

∣

∣

∣

σ̂n(x, π̂ , ρ, 0)

σ1(x, π̂) · σn−1(x, π̂)

∣

∣

∣

∣

.

(16)
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(ii) We call,

ε∗(π̂, ρ, ε) := ε · U (π̂, ρ), (17)

the distinguished upper bound for the TFPV π̂ with parameter direction ρ of
system (7), and we call,

ε∗(π̂, ρ, ε) := ε · L(π̂, ρ), (18)

the distinguished lower bound for the TFPV π̂ with parameter direction ρ.

By the nondegeneracy condition, one has U (π̂, ρ) ≥ L(π̂, ρ) > 0. We obtain the
following asymptotic inequalities:

Proposition 1 Given α > 0, for sufficiently small εmax, the inequalities

1

(1 + α)
L(π̂, ρ) ≤

∣

∣

∣

∣

σ̂n(x, π̂ , ρ, ε)

σ1(x, π̂ + ερ) · σn−1(x, π̂ + ερ)

∣

∣

∣

∣

≤ (1 + α)U (π̂, ρ) (19)

hold on K ∗.

Proof By analyticity in ε one has, for εmax sufficiently small,

∣

∣

∣

∣

σ̂n(x, π̂ , ρ, ε)

σ1(x, π̂ + ερ) · σn−1(x, π̂ + ερ)
− σ̂n(x, π̂ , ρ, 0)

σ1(x, π̂) · σn−1(x, π̂)

∣

∣

∣

∣

≤ const. · ε

for all (x, ε) ∈ K ∗. The assertion follows.

Remark 1 There are two points to make:

• By definition, determining the distinguished upper and lower bounds amounts to
determining the maximum and minimum of a rational function on a compact set.
It may not be possible (or not advisable) to determine ε∗ or ε∗ exactly, and one
may have be content with sufficiently tight upper resp. lower estimates.

• The derivation of the small parameters involves the critical manifold and the TFPV
π̂ , hence they depend on these choices. Moreover, there is some freedom of choice
for the parameter direction ρ, which also influences the bounds. For these reasons
one should not assume universal efficacy of any small parameter without further
context.

3.2 The Correspondence to Timescales

Wenowdiscuss the correspondencebetween timescales and the parameters determined
from (15). By direct verification, via (11) one finds for the eigenvalues λ1, . . . , λn of
D1h(x, π):
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Lemma 3 (a) The identity

∑

i 
= j

λi

λ j
= σ1σn−1

σn
− n (20)

holds whenever all λi 
= 0.
(b) With (x, ε) ∈ K ∗, for ε 
= 0 one has

1

ε

∑

i<n

λi/̂λn +
∑

i 
= j; i, j<n

λi/λ j + ε
∑

i<n

̂λn/λi = 1

ε

σ1σn−1

σ̂n
− n.

This gives rise to further asymptotic inequalities:

Proposition 2 Let β, θ and � be as in Lemma 2, and α > 0. Then, for sufficiently
small εmax > 0, the following hold:

(a) For all (x, ε) ∈ K ∗,

1

(1 + α)
ε∗(π̂, ρ, ε) ≤

∣

∣

∣

∣

λn(x, π̂ + ερ)
∑

i<n λi (x, π̂ + ερ)

∣

∣

∣

∣

≤ (1 + α)ε∗(π̂, ρ, ε). (21)

In particular, there exist constants C1, C2, such that

C1ε ≤
∣

∣

∣

∣

λn(x, π̂ + ερ)
∑

i<n λi (x, π̂ + ερ)

∣

∣

∣

∣

≤ C2ε.

(b) The global estimates

1

(1 + α)
ε∗ ≤ inf |λn|

(n − 1)�
≤ sup |λn|

(n − 1)θ
≤ (1 + α)ε∗ (22)

hold, with infimum and supremum being taken over all (x, ε) ∈ K ∗.

Proof From Lemma 3 one obtains that

|̂λn(x, π̂ , ρ, ε)|
| ∑n−1

i=1 λi (x, π̂ + ερ)| =
∣

∣

∣

∣

σ̂n(x, π̂ , ρ, ε)

σ1(x, π̂ + ερ)σn−1(x, π̂ + ερ)

∣

∣

∣

∣

+ εη(x, π̂ , ρ, ε)

for all (x, ε) ∈ K ∗, with bounded η. Combining this with Proposition 1 yields the
assertions of part (a), and also

1

(1 + α)
L(π̂, ρ) ≤

∣

∣

∣

∣

̂λn(x, π̂ , ρ, ε)
∑

i<n λi (x, π̂ + ερ)

∣

∣

∣

∣

≤ (1 + α)U (π̂, ρ)

for all (x, ε) ∈ K ∗, provided εmax is sufficiently small. Noting

|
n−1
∑

i=1

λi (x, π)| = |
n−1
∑

i=1

Re λi (x, π)| =
n−1
∑

i=1

|Re λi (x, π)|,
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the second statement follows by standard estimates.

Informally speaking, Proposition 2 provides estimates for the ratio of the slowest to the
fastest timescale, with

∑

i<n λi being dominated by the real part with largest modulus.
Thus, for dimension n > 2, the estimates may be unsatisfactory whenever� � θ . For
applications the second estimate in (22) is more relevant, since the fast dynamics will
be governed by the smallest absolute real part of λ1, . . . , λn−1 (see, Sect. 9.1). The
parameter ε∗ by itself does not completely characterize the timescale discrepancies,
as should be expected. If there is more than one eigenvalue ratio to consider then a
single quantity cannot measure all of them.

However, in the following—specialized but relevant—setting a general estimate
can be obtained from the coefficients of the characteristic polynomial.

Proposition 3 Let β, θ and � be as in Lemma 2, and α > 0. Moreover assume that
the eigenvalues λ1, . . . , λn−1 satisfy |Re λ j | > |Im λ j |, and let |Re λ1| ≥ · · · ≥
|Re λn−1|. Define

μ∗ := ε · sup
x∈˜Y∩K

∣

∣

∣

∣

σ̂n(x, π̂ , ρ, 0) · σn−2(x, π̂)

σn−1(x, π̂)2

∣

∣

∣

∣

. (23)

Then, for sufficiently small εmax > 0, one has

sup
(x,ε)∈K ∗

∣

∣

∣

∣

λn

Re λn−1

∣

∣

∣

∣

≤ √
2(1 + α) μ∗. (24)

Whenever λn−1 ∈ R, then the estimate can be sharpened to

sup
(x,ε)∈K ∗

∣

∣

∣

∣

λn

Re λn−1

∣

∣

∣

∣

≤ (1 + α) μ∗. (25)

Proof (i) Preliminary observation: Let k ≥ 2 and β1, . . . , βk ∈ C with negative real
parts, and |Re β1| ≥ · · · ≥ |Re βk |.Moreover denote by (−1)�τ� the �th elementary
symmetric polynomial in the β j . If |Re β j | > |Im β j | for j = 1, . . . , k, then

|Re βk | ≥ τk√
2τk−1

, and |βk | ≥ τk

τk−1
when βk ∈ R.

To verify this, recall

∑

i 
= j

βi

β j
= τ1τk−1

τk
− k ≤ τ1τk−1

τk
− 1.

Now, for complex numbers z, w with negative real parts and |Re z| > |Im z|,
|Rew| > |Imw|, one has Re z

w
> 0. Therefore, all Re βi/β j > 0, 1 ≤ i, j ≤
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k − 1, and since their sum is real we obtain the estimate

τ1

|βk | =
k

∑

i=1

βi

βk
= 1 +

k−1
∑

i=1

βi

βk
≤ τ1τk−1

τk
.

With |Re βk | ≥ |βk |/
√
2 the assertion follows. For real βk the factor

√
2 may be

discarded.
(ii) We apply the above to the λi (x, π̂) and σ j (x, π̂), 1 ≤ i ≤ n − 1, obtaining

σ1 ≤ √
2|Re λn−1| σ1σn−2

σn−1
.

By Lemma 3, we have (with arguments x ∈ ˜Y ∩ K , π̂ and ρ suppressed)

∣

∣

∣

∣

σ1σn−1

σ̂n

∣

∣

∣

∣

=
∣

∣

∣

∣

λ1 + · · · + λn−1

̂λn

∣

∣

∣

∣

=
∣

∣

∣

∣

σ1

̂λn

∣

∣

∣

∣

≤ √
2

∣

∣

∣

∣

Re λn−1

̂λn

∣

∣

∣

∣

·
∣

∣

∣

∣

σ1σn−2

σn−1

∣

∣

∣

∣

,

and in turn

∣

∣

∣

∣

̂λn(x, π̂ , ρ, 0)

Re λn−1(x, π̂)

∣

∣

∣

∣

≤ √
2

σ̂n(x, π̂ , ρ, 0)σn−2(x, π̂)

σn−1(x, π̂)2
.

By continuity and compactness the assertion readily follows when εmax is
sufficiently small. As in (i) the factor

√
2 may be discarded for real λn−1.

Remark 2 There are four observations to make:

• As with the distinguished upper bound, determining μ∗ amounts to finding the
maximum of a rational function on a compact set.

• The proofs of Propositions 2 and 3 implicitly impose further restrictions on εmax.
• Proposition 3 holds in particular in settings when all eigenvalues are “essen-
tially real,” meaning small |Imλ|/|Reλ|. This is frequently the case for chemical
networks and reaction mechanisms.

• One can obviously derive analogous, but weaker estimates, whenever the ratios
|Imλ|/|Reλ| are bounded above by some constant. Likewise, the estimates
underlying part (i) of the proof could be sharpened.

3.3 Two-Dimensional Systems

We turn to systems of dimension two, where a TFPV necessarily refers to a critical
manifold of dimension s = 1. We keep the notation and conventions from Sect. 2.4.
Rather than specializing the asymptotic results from Propositions 2 and 3, we will
retrace their derivation and obtain slightly sharper estimates.

First and foremost, the TFPV conditions imply that σ1 must be bounded above and
below by positive constants. The accuracy of the reduction is reflected in the ratio of
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the eigenvalues λ1, λ2 of D1h(x, π̂ + ερ) with x in the critical manifold, and λ2 = 0
at π̂ . Then

σ1 = −(λ1 + λ2), σ2 = λ1λ2

and moreover λ2 = ε̂λ2 and σ2 = εσ̂2. For n = 2 the familiar identity

λ2

λ1
+ λ1

λ2
= λ21 + λ22

λ1λ2
= σ 2

1 − 2σ2
σ2

= σ 2
1

σ2
− 2 (26)

for λ1 
= 0, λ2 
= 0 yields sharper estimates than Proposition 2. Similar estimates
were also used in Eilertsen et al. (2022).

Lemma 4 (a) For all M > 1, ˜M > 2, M∗ > 3 the implications

|λ1/λ2| > M ⇒ |σ 2
1 /σ2| > M + 2;

|σ 2
1 /σ2| ≤ ˜M ⇒ |λ1/λ2| ≤ ˜M − 2;

|σ 2
1 /σ2| > M∗ ⇒ |λ1/λ2| > M∗ − 3,

hold whenever |λ2/λ1| < 1.
(b) In the TFPV case,

1

ε
· σ 2

1

σ̂2
= 2 + ε

̂λ2

λ1
+ 1

ε

λ1

̂λ2

and with ε → 0

σ̂2(x, π̂ , ρ, 0)

σ 2
1 (x, π̂)

= ̂λ2(x, π̂ , ρ, 0)

λ1(x, π̂)
.

(c) For given α > 0, suitable choice of εmax yields

1

(1 + α)
ε∗ ≤ inf

|λ2|
|λ1| ≤ sup

|λ2|
|λ1| ≤ (1 + α)ε∗, (27)

with infimum and supremum taken over all (x, ε) ∈ K ∗.

Lemma 4 shows that ε∗ provides a tight global upper estimate for the eigenvalue
ratio (and thus for the timescale ratio) as ε → 0, with x running through ˜Y ∩ K .
Moreover, in the analysis of particular systems, one may retrace the arguments lead-
ing to the lemma, and determine estimates for εmax, e.g., from higher-order Taylor
expansions.
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3.4 Three-Dimensional Systems

We specialize the general results to dimension three. Given the blanket assumptions
from Sect. 2.4, we denote by λ1, λ2, and λ3 = ε̂λ3 the eigenvalues of the linearization.
We have

U (π̂, ρ) = sup
x∈˜Y∩K

∣

∣

∣

∣

σ̂3(x, π̂ , ρ, 0)

σ1(x, π̂) · σ2(x, π̂)

∣

∣

∣

∣

, ε∗(π̂, ρ, ε) = εU (π̂, ρ), (28)

and similar expressions for L and ε∗.

Proposition 4 As for applicability of the parameter μ∗, one has:

(a) • The eigenvalues λ1 and λ2 are real if and only if σ 2
1 − 4σ2 ≥ 0.

• Given that λ1 /∈ R and λ2 = λ1, one has |Re λ1| > |Im λ1| if and only if
σ 2
1 − 2σ2 > 0.

(b) Assume that one of the conditions in part (a) holds. Then, given α > 0, for
sufficiently small εmax one has

sup
(x,ε)∈K ∗

∣

∣

∣

∣

λ3

Re λ2

∣

∣

∣

∣

≤ √
2(1 + α) μ∗,

resp.

sup
(x,ε)∈K ∗

∣

∣

∣

∣

λ3

λ2

∣

∣

∣

∣

≤ (1 + α) μ∗ whenever λ2 ∈ R;

with

μ∗ = ε · sup
x∈˜Y∩K

∣

∣

∣

∣

σ̂3(x, π̂ , ρ, 0) · σ1(x, π̂)

σ2(x, π̂)2

∣

∣

∣

∣

.

Proof To determine the nature of the eigenvalues on the critical manifold, we use the
identity

(

λ1 − λ2

λ1 + λ2

)2

= 1 − 4
σ2

σ 2
1

on ˜Y . (29)

This implies the (of coursewell known)first statement of part (a). The second statement
follows from

−
(

Im λ1

Re λ1

)2

= 1 − 4
σ2

σ 2
1

.

The rest is straightforward with Proposition 3.

Remark 3 We make the following two points
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• For λ1 and λ2 real and negative, one obtains a lower estimate from

∣

∣

∣

∣

2λ2
̂λ3

∣

∣

∣

∣

≤
∣

∣

∣

∣

λ1 + λ2

̂λ3

∣

∣

∣

∣

=
∣

∣

∣

∣

σ1σ2

σ̂3

∣

∣

∣

∣

�⇒ 2

∣

∣

∣

∣

σ̂3

σ1σ2

∣

∣

∣

∣

≤
∣

∣

∣

∣

̂λ3

λ2

∣

∣

∣

∣

on ˜Y ∩ K .

• If λ1 is not real and λ2 = λ1, with negative real parts, then the specialization of
(20), viz.

λ1 + λ2

λ3
+

(

λ1

λ2
+ λ2

λ1

)

+
(

λ3

λ1
+ λ3

λ2

)

= σ1σ2

σ3
− 3,

for real λ3, |λ3| < |Re λ1|, shows that both the second term and the third term on
the left-hand side are bounded below by −2 and above by 2, and we obtain

σ1σ2

σ3
− 7 ≤ 2Re λ1

λ3
≤ σ1σ2

σ3
+ 1.

In particular this yields an asymptotic timescale estimate

∣

∣

∣

∣

̂λ3

Re λ1

∣

∣

∣

∣

→ 2

∣

∣

∣

∣

σ̂3

σ1σ2

∣

∣

∣

∣

as ε → 0.

Remark 4 When all eigenvalues are real then one obtains the ratio of λ1 and λ2, with
|λ2| ≤ |λ1|, from

σ2

σ 2
1

= λ1λ2 + ε(· · · )
(λ1 + λ2 + ε(· · · ))2 = λ2/λ1

(1 + λ2/λ1)2
+ ε(· · · )

and the arguments leading up to Lemma 4. With

κ∗ := inf
x∈˜Y∩K

∣

∣

∣

∣

σ2(x, π̂)

σ1(x, π̂)2

∣

∣

∣

∣

, κ∗ := sup
x∈˜Y∩K

∣

∣

∣

∣

σ2(x, π̂)

σ1(x, π̂)2

∣

∣

∣

∣

, (30)

the following hold for every α > 0, with sufficiently small ε:

• On ˜Y ∩ K one has
∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

≥ κ∗
1 + α

.

• If |λ2/λ1| ≤ δ for all x ∈ ˜Y ∩ K then κ∗ ≤ δ

2δ + 1
.

Large discrepancy between λ1 and λ2 (in addition to μ∗ � 1) may indicate a scenario
with three timescales (informally speaking): slow, fast andvery fast.Cardin andTexeira
(2017) provided a rigorous extension of Fenichel theory for such settings, providing
solid ground for their analysis. Note that large discrepancy between ε∗ andμ∗ implies
large discrepancy between λ1 and λ2, in view of the definitions.
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4 Michaelis–Menten ReactionMechanism Revisited

The reader may wonder why we include a rather long section on the most familiar
reaction in biochemistry. The basic motivation is that some widely held beliefs on
its QSS variants are problematic [see, Eilertsen et al. (2022), for a recent study].
Beyond this, the timescale ratio approach actually yields new results for the reversible
Michaelis–Menten (MM) system, as well as for MM with slow product formation.

4.1 The Reversible Reaction with Low Enzyme Concentration

The reversible MM reaction mechanism with low enzyme concentration corresponds
to the system

ṡ = −k1e0s + (k1s + k−1)c
ċ = k1e0s − (k1s + k−1 + k2)c + k−2(e0 − c)(s0 − s − c)

(31)

with standard initial conditions s(0) = s0, c(0) = 0. The earliest discussion of (31)
dates back to Miller and Alberty (1958), but the reversible reaction has garnered
relatively little attention compared to the irreversible one.

The parameter space � = R
6≥0 has elements (e0, s0, k1, k−1, k2, k−2)

tr , and we set
x = (s, c)tr . As is well known, setting e0 = 0 and all other parameters > 0 defines
a TFPV, with the critical manifold ˜Y given by c = 0. For the reduced equation, one
finds (see, e.g., Noethen and Walcher 2011)

ṡ = −e0 · s(k1k2 + k−1k−2) − k−1k−2s0
k1s + k−1 + k2 + k−2(s0 − s)

.

By the first blanket assumption in Sect. 2.4, we restrict (s0, k1, k−1, k2, k−2)
tr to

a compact subset of the open positive orthant. With fixed e∗
0 > 0 (with dimension

concentration), we let ρ = (e∗
0, 0, . . . , 0)

tr . We will work with both e0 and εe∗
0. Rather

than obtaining ε∗ and ε∗ directly from Lemma 4, we retrace their derivation and get
error estimates in the process. The coefficients of the characteristic polynomial with
x ∈ ˜Y are

σ1(x, π̂ + ερ) = k1e0 + k1s + k−1 + k2 + k−2(e0 + s0 − s);
σ2(x, π̂ + ερ) = e0 (k1k−2(e0 + s0) + k1k2 + k−1k−2) .

The set K (compatible with the standard initial conditions), defined by 0 ≤ s ≤ s0
and 0 ≤ c ≤ e∗

0, is compact and positively invariant.
We only discuss the case k1 ≥ k−2. The other case amounts to reversing the roles

of s and p. Note that σ2 is independent of s. The minimum of σ1(x, π̂ + ερ) on ˜Y ∩ K
equals

k1e0 + k−1 + k2 + k−2(e0 + s0),
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and the maximum is

k1(e0 + s0) + k−1 + k2 + k−2e0.

In particular, the minimum of σ1(x, π̂) on ˜Y ∩ K equals

k−1 + k2 + k−2s0.

Moreover, we have

σ̂2(x, π̂ , 0) = k1k−2s0 + k1k2 + k−1k−2,

a positive constant.
By Lemma 4 and its derivation, we find

e0 (k1k−2(e0 + s0) + k1k2 + k−1k−2)

(k1(e0 + s0) + k−1 + k2 + k−2e0))2
≤ σ2

σ 2
1

≤ e0 (k1k−2(e0 + s0) + k1k2 + k−1k−2)

(k1e0 + k−1 + k2 + k−2(e0 + s0))2
,

valid for all ε > 0. Neglecting higher-order terms in ε yields

ε∗ = e0 (k1k−2s0 + k1k2 + k−1k−2)

(k−1 + k2 + k1s0)2
; ε∗ = e0 (k1k−2s0 + k1k2 + k−1k−2)

(k−1 + k2 + k−2s0)2
.

Therefore, it seems appropriate to define the distinguished local parameter for the
reversible MM system as

εM M R := ε∗ = e0 (k1k−2s0 + k1k2 + k−1k−2)

(k−1 + k2 + k−2s0)2
. (32)

It appears that this particular parameter has not been introduced so far, nor has any
close relative. Indeed, there seem to exist no parameters in the literature that were
specifically derived for the reversible reaction. In their discussion of the reversible
system, Seshadri and Fritzsch (1980) worked with the parameter εRS that Reich and
Selkov had designed for the irreversible system; see Eq. (5).

4.2 The Irreversible Reaction with Low Enzyme Concentration

We specialize to the irreversible case, and thus we have the differential equation
(1) with e0 = εe∗

0. The QSS manifold of this system is defined by c = g(s) :=
e0s/(KM + s).

4.2.1 Distinguished Small Parameters

The parameters from the reversible scenario simplify to

ε∗ = e0k1k2
(k1s0 + k−1 + k2)2

; ε∗ = εM M := e0k1k2
(k−1 + k2)2

,
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with

min σ1 = k−1 + k2; σ̂2 = k1k2.

Note that the TFPV and nondegeneracy conditions, together with the compactness
condition in parameter space, require that k2 is bounded below by some positive
constant.

As in the previous section, we find that εM M is a sharp upper estimate for the
eigenvalue ratio. In fact,

σ2

σ 2
1

≤ k2k1e0
(k1e0 + k−1 + k2)2

≤ εM M

throughout.
As noted in Introduction, various small parameters have been proposed for the

irreversible MM system. Comparing these, we note

εM M = e0k1
k−1 + k2

· k2
k−1 + k2

≤ e0k1
k−1 + k2

= εRS,

with the Reich-Selkov parameter. Whenever k−1 and k2 have the same order of mag-
nitude (in any case k2 must be bounded away from 0 by nondegeneracy), the disparity
between εM M and εRS may be seen as inessential.

The parameters εM M and εRS differ markedly from themost familiar small parame-
ters, viz. εB H [see (4) as used byHeineken et al. (1967)], and εSSl [see (6) as introduced
in Segel and Slemrod (1989)], which both involve the initial substrate concentration.
As shown in Noethen andWalcher (2007), smallness of the Segel–Slemrod parameter
is necessary and sufficient to ensure negligible loss of substrate in the initial phase.
But, as noted in Patsatzis and Goussis (2019) and in Eilertsen et al. (2022), large ini-
tial substrate concentration—while ensuring a fast approach to the QSS manifold—is
not sufficient to guarantee a good QSS approximation over the whole course of the
reaction. A general argument in favor of ε∗ and εM M is that they directly measure the
local ratio of timescales.

4.2.2 Further Observations

We briefly discuss what can be inferred from

εM M = k1k2e0
(k−1 + k2)2

→ 0

alone, with no further restriction on the limiting process.
In the simplest imaginable scenario, letting a parameter tend to zero might auto-

matically imply validity of some QSS approximation, but this is not the case here.
The TFPV conditions on σ1 imply that k−1 is bounded above and we obtain three
cases: In addition to the case e0 → 0, we have the case k1 → 0, yielding a singular

123



48 Page 24 of 75 J. Eilertsen et al.

perturbation reduction with the same critical manifold but a linear reduced equation.
Furthermore we have the case k2 → 0, which leads to a singular perturbation scenario
with a different critical manifold and different reduction (see, the next subsection).

This observation supports a statement from Introduction. A given small parameter
by itself will in general not determine a unique singular perturbation scenario, and a
transfer without reflection of the reduction procedure from one scenario to a differ-
ent one may yield incorrect results. It is necessary to consider the complete setting,
including TFPV, critical manifold and small parameter. Moreover, one needs to care-
fully stipulate how limits are taken. For instance, letting s0 → ∞, while ensuring
εSSl → 0, will fail to ensure convergence. Likewise, letting, e.g., k−1 → ∞ in the
Reich-Selkov parameter does not imply convergence.

For the irreversible reaction with substrate inflow at rate k0, one obtains the same
expressions for σ2/σ

2
1 at the TFPV with k0 = 0 and e0 = 0 (all other parameters

> 0), the critical manifold being given by c = 0. Before obtaining ε∗, ε∗ one needs to
choose appropriate initial conditions; we take s(0) = c(0) = 0 here. Solutions are not
necessarily confined to compact sets, so one may not be able to choose the set K from
Sect. 2.4 to be positively invariant. In the case s(0) = c(0) = 0 the computation of the
distinguished upper bound ε∗ works as in the case with no influx; the supremum exists
and is equal to εM M . However, one gets ε∗ → 0 with increasing s when there exists
no positive stationary point (all solutions are unbounded in positive time), hence the
lower estimate provides no information. If there exists a finite positive stationary point
s̃ of the reduced equation, then one obtains ε∗ > 0 by replacing s0 by s̃ in the lower
estimate in 4.2.1. In this case, a compact positively invariant set exists with s ≤ s̃, as
was shown in Eilertsen et al. (2021b).

4.3 The Irreversible Reaction with Slow Product Formation

We turn to the scenario with slow product formation, the other reactions being fast.11

Here k2 = 0, with all other parameters > 0, defines a TFPV with critical manifold ˜Y
given by

c = k1e0s

k1s + k−1
.

Although setting up k2 = 0 appears counterintuitive for an enzyme catalayzed reac-
tion, there is a family of enzymes, known as pseudoenzymes, that have either zero
catalytic activity (k2 = 0), or vestigial catalytic activity (k2 ≈ 0) due to the lack
of catalytic amino acids or motifs (Eyers and Murphy 2016). These enzymes exist
in all the kingdoms of life and are also named as “zombie” enzyme, dead enzyme,
or prozymes. Pseudoenzymes play different functions in signaling network, such as
serving as dynamic scaffolds, modulators of enzymes, or competitors in canonical sig-
naling pathways (Murphy et al. 2017). Since one frequently finds incorrect reductions
in the literature, it seems appropriate to recall correct ones. Heineken et al. (1967) pro-
vided a correct reduction (see, (34) below). In Goeke and Walcher (2013), a version

11 Historically, this was the mechanism first discussed by Michaelis and Menten (1913).
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for substrate concentration is given:

ṡ = − k2k1e0s(k1s + k−1)

k1k−1e0 + (k1s + k−1)2
= − k2e0s(s + KS)

KSe0 + (s + KS)2
; KS := k−1/k1.

With known e0, this equation12 in principle allows to identify the limiting rate k2e0
and the equilibrium constant KS . It should be noted that one also needs an appropriate
initial time and initial value for the reduction. Since one cannot assume negligible
substrate loss in the transient phase, an appropriate fitting would require completion
of Step 2 of the program outlined in Introduction.

4.3.1 Distinguished Small Parameters

Intersecting ˜Y with the positively invariant compact set K defined by 0 ≤ s ≤ s0 and
0 ≤ c ≤ e0, amounts to restricting 0 ≤ s ≤ s0. The elements of the parameter space
� = R

5≥0 have the form (e0, s0, k1, k−1, k2)tr , and a natural choice of ray direction is
ρ = (0, 0, 0, 0, k∗

2)
tr , with k2 = εk∗

2 .
The coefficients of the characteristic polynomial on ˜Y are

σ1 = k−1k1e0
k1s + k−1

+ k1s + k−1 + k2,

σ2 = e0k1k2 · k−1

k1s + k−1
.

To distinguish small parameters, we need to consider the following steps:

• We first evaluate the nondegeneracy conditions for the coefficients of the char-
acteristic polynomial, from TFPV requirements and compactness. The minimum
of σ1(x, π̂) on ˜Y ∩ K is equal to k−1 + k1e0 when k1e0 ≤ k−1, and equal to
2
√

k−1k1e0 otherwise. This minimum must be bounded below by some positive
constant. Combining this observation with the boundedness of the maximum of

σ̂2 = k∗
2k−1k1e0

k1s + k−1
on [0, s0],

which is equal to k∗
2k1e0, one sees that k1e0 and k−1 must be bounded above and

below by positive constants.
• Turning to small parameters, in the asymptotic limit one obtains

ε∗ = k2 sup
av

(a + v2)2
with a = k−1k1e0, v = k1s + k−1,

where the supremum is taken over k−1 ≤ v ≤ k−1 + k1s0. By elementary calculus
one finds the global maximum of this function on the unbounded interval v ≥ 0,

12 The commonly used quasi-steady state reduction (see, for instance, Keener and Sneyd 2009, Sec-

tion 1.4.1) reads ṡ = − k2e0s

s + KS
and thus neglects the term involving e0 in the denominator, although

e0 is not negligible here.
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thus for sufficiently large s0 we obtain the maximum at v = √
k−1k1e0/3, and find

the estimate

ε∗ ≤ 3
√
3

16

k2√
k−1 · k1e0

=: 3
√
3

8
· εP E , with εP E := 2k2√

k−1 · k1e0
.

Note that εP E always yields an upper estimate for the eigenvalue ratio near the
critical manifold. One could thus discard the factor 1 + α in Lemma 4.

• Depending on the given parameters, in some cases one may obtain sharper esti-
mates for ε∗ from the endpoints of the interval [0, s0]. In any case, to determine
ε∗ one needs to consider the boundary points of this interval.

• The expression for εP E may look strange, but
√

k2/k−1 · √
k2/(k1e0) is the geo-

metric mean of two reaction rate ratios, thus admits a biochemical interpretation.
There is little work in the literature on small parameters for the case of slow prod-
uct formation. Heineken et al. (1967) suggested k2/(k1s0), while Patsatzis and
Goussis introduced a parameter depending on s and c along a trajectory, taking the
maximum over all s, c yields k2/k−1. The latter represents a commonly accepted
“small parameter” for this scenario; see, Keener and Sneyd (2009, Section 1.4.1).
In the limiting case k2 → 0, one also has εM M → 0, but one should not con-
clude that the standard QSS approximation is valid here. Recall that, in the low
enzyme setting, k2 needs to be bounded away from zero due to nondegeneracy
requirements.

4.3.2 Approach to the SlowManifold

For MM reaction mechanism with slow product formation, we specialize the argu-
ments in Appendix 9.1.1 to determine εL , and show that εP E appears naturally in this
estimate.13 We use the results (and refer to the notation) of Sect. 9.1.

We rewrite the system in Tikhonov standard form. Since d
dt (s + c) = −k2c, s + c

is a first integral of the fast system in the limit k2 = 0, with x = s + c, y = s (so
c = x − y, x ≥ y ≥ 0), and k2 = εk∗

2 we obtain

ẋ = −k2(x − y)

ẏ = −k1e0y + (k1y + k−1)(x − y)

= −k1(y − h−(x)) · (y − h+(x))

(33)

with

h±(x) := 1

2
(−(KS + e0 − x) ± q(x)) ; q(x) :=

√

(KS + e0 − x)2 + 4KS x .

We focus on the particular initial conditions with zero complex, thus

x(0) = y(0) = s0.

13 Step 1 for the case of low enzyme concentration is more involved. A complete discussion of Steps 1–3
will be given in a forthcoming paper.
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The QSS variety ˜Y is defined by y = h+(x), and the reduced equation reads

ẋ = −k2
2

(

(KS + e0 + x) −
√

(KS + e0 − x)2 + 4KS x
)

. (34)

We use the notation and apply the general procedure from the Sect. 9.1, with

A = −k1(y − h−(x)) = −k1q(x) on ˜Y ,

and g(x) = h+(x). We will use some properties of q in the following. The calculation
of q ′(x) leads to

q ′(x) = KS + x − e0
√

(KS + e0 − x)2 + 4KS x
,

hence |q ′(x)| ≤ 1 for all x ≥ 0. Moreover, the sign of q ′ changes from − to + at
x = e0 − KS when e0 − KS ≥ 0, and is otherwise positive for all x ≥ 0. Thus, the
minimum of q is attained at 0, with value KS + e0, when e0 < KS , and is attained
at e0 − KS , with value 2

√
KSe0, when e0 ≥ KS . By the arithmetic–geometric mean

inequality, we thus have

q(x) ≥ 2
√

KSe0 for all x ≥ 0.

This shows

A ≤ −2k1
√

KSe0 = −2
√

k1e0k−1,

and we arrive at

γ = √

k1e0k−1.

According to Sect. 9.1, γ −1 is an appropriate timescale for the approach to the slow
manifold.

To determine κ , we have g(x) = h+(x) = 1
2 (x − KS −e0+q(x)), thus |g′(x)| ≤ 1,

and

| f1(x, y)| = k2(x − y) ≤ k2e0, since x − y = c ≤ e0,

hence we may set κ = k2e0.
Altogether, we obtain from the Lyapunov function the (dimensional) parameter

εL = 2κ

γ
= e0 · εP E . (35)
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To obtain a non-dimensional small parameter, normalization by e0 seems to be the
natural choice here, which yields

ε̂L = εP E . (36)

In this particular setting, the local timescale parameter completely characterizes the
approach of the solution to the slow manifold.

4.3.3 Estimates for Long Times

We will not attempt to estimate a critical time for the onset of the slow dynam-
ics, and without this we cannot determine approximation errors for solutions of the
reduced equation (as outlined in Sect. 9.1.3). In this respect, the discussion of the
MM reaction mechanism with slow product formation remains incomplete. But the
following observation provides a relevant condition for the long-term behavior. Since
|y − g(x)| → e0 · εP E , the solution will enter the domain with |y − g(x)| ≤ 2e0 · εP E

after some short transitory phase.14 In this domain, we obtain the reduced equation
with error term:

ẋ = −k2(x − g(x)) + k2(y − g(x))

≤ −k2
2

(

(KS + e0 + x) − √

(KS + e0 − x)2 + 4KS x
)

+k2 · 2k2e0√
k1e0 · k−1

=: U (x).

(37)

By a differential inequality argument, the solution of ẋ = U (x), with positive initial
value, is an upper bound for the first entry of the solution of (33), given appropriate
initial values near the QSS variety. Moreover the solution of the reduced equation (34)
with the same initial value remains positive. For t → ∞, the absolute value of the
difference of these solutions converges to the stationary point of ẋ = U (x), which
therefore indicates the discrepancy. We determine the stationary point, neglecting
terms of order > 1 in k2:

(

(KS + e0 + x) − 4
k2e0√

k1e0 · k−1

)2

= (KS + e0 − x)2 + 4KS x

⇒ e0x = 2k2e0√
k1e0 · k−1

· (KS + e0 + x) + · · ·

⇒ x

e0
= 2

k2√
k1e0 · k−1

· k1e0 + k−1

k1e0
+ · · · .

Thus, we obtain the parameter

ε∞ = k1e0 + k−1

k1e0
· 2k2√

k1e0 · k−1
= k1e0 + k−1

k1e0
· εP E , (38)

14 The factor 2 could be replaced by any constant > 1.
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which provides an upper bound for the long-term discrepancy of the true solution and
its approximation.

4.4 A Degenerate Scenario

To illustrate the limitations of the approach via Proposition 2, consider the irre-
versible system with TFPV k−1 = k2 = 0, the other parameters positive, and
ρ = (0, 0, 0, k∗−1, k∗

2)
tr . Here the critical variety is reducible, being the union of

the lines Y1, Y2 defined by e0 − c = 0 resp. s = 0, and the TFPV conditions fail at
their intersection. We consider the case e0 < s0, and define ˜Y1 by c = e0, s > 0. The
fast system admits the first integral s + c, so the initial value of the slow system on ˜Y1
is close to (s0 − e0, e0)tr . Proceeding, one may choose

K = {

(s, c)tr; s + c ≤ s0, s ≥ s̃
}

, 0 < s̃ < s0 − e0.

Then, ˜Y1 ∩ K is compact, but not positively invariant, and on this set one has

σ1 = k1s, σ2 = 0, and σ̂2 = 0.

Here, the nondegeneracy condition in (13) fails, and we obtain no timescale ratio by
way of Lemma 4. A direct computation in a neigborhood of ˜Y1 yields

λ2/λ1 = εk1k∗
2(e0 − c),

but this obscures the fact that both eigenvalues approach zero as s → 0. Standard
singular perturbation methods are not sufficient to analyze the dynamics of this system
for small ε.

5 TFPV for Higher Dimensions

Wekeep the notation and conventions fromSects. 2.1 and 2.4, but nowwewill focus on
a TFPV π̂ for dimension s > 1. The goal of this technical section is to identify distin-
guished parameters and discuss their relation to timescales. There is a rather obvious
direct extension of results from the s = 1 case, but the timescale correspondence will
be not as pronounced. Moreover, we will need to impose a stronger nondegeneracy
condition. We abbreviate

σ̃i (x, ε) := σi (x, π̂ + ερ), 1 ≤ i ≤ n, (39)

keeping in mind that σ̃i (x, 0) > 0 for all x ∈ ˜Y ∩ K and 1 ≤ i ≤ n − s, due to π̂

being a TFPV. Additionally, we set σ̃0 := 1.

123



48 Page 30 of 75 J. Eilertsen et al.

5.1 Distinguished Small Parameters

Some notions and results from Sect. 3 can easily be modified for the case s > 1. For
suitable εmax > 0, we have

σi (x, π̂ + ερ) > 0 for all (x, ε) ∈ K ∗, 1 ≤ i ≤ n − s,

and due to σn−s+1(x, π̂) = 0 for x ∈ ˜Y ∩ K , we obtain

σn−s+1(x, π̂ + ερ) = εσ̂n−s+1(x, π̂ , ρ, ε)

with a polynomial σ̂n−s+1, for all (x, ε) ∈ K ∗.

Definition 3 Let

L(π̂, ρ) := infx∈˜Y∩K

∣

∣

∣

∣

σ̂n−s+1(x, π̂ , ρ, 0)

σ1(x, π̂) · σn−s(x, π̂)

∣

∣

∣

∣

,

U (π̂, ρ) := supx∈˜Y∩K

∣

∣

∣

∣

σ̂n−s+1(x, π̂ , ρ, 0)

σ1(x, π̂) · σn−s(x, π̂)

∣

∣

∣

∣

.

(40)

Now, we define

ε∗(π̂, ρ, ε) := εU (π̂, ρ) (41)

the distinguished upper bound for the TFPV π̂ for dimension s, with parameter
direction ρ, of system (7). Moreover we call

ε∗(π̂, ρ, ε) := εL(π̂, ρ) (42)

thedistinguished lower bound for the TFPV π̂ for dimension s with parameter direction
ρ.

As in the case of reduction to dimension one, determining the distinguished param-
eters amounts to determining the extrema of a rational function on a compact set, or
(when this is not possible, or not sensible) determining reasonably sharp estimates for
these extrema. We note the following straightforward variant of Proposition 1.

Proposition 5 Given α > 0, for sufficiently small εmax, the estimates

ε

(1 + α)
L(π̂, ρ) ≤

∣

∣

∣

∣

σn−s+1(x, π̂ + ερ)

σ1(x, π̂ + ερ) · σn−s(x, π̂ + ερ)

∣

∣

∣

∣

≤ ε(1 + α)U (π̂, ρ) (43)

hold on K ∗.
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5.2 The Correspondence to Timescales

Proofs of the following statements are given in Appendix (Lemmas 6 and 7).
Let π̂ be a TFPV for dimension s, with critical manifold ˜Y . Then for all x ∈ ˜Y ∩ K

one has

σ̃i (x, ε) = εi−n+s σ̂i (x, ε) for all x ∈ ˜Y ∩ K , n − s ≤ i ≤ n, (44)

with polynomials σ̂i .
Assume that (44) is given, and furthermore assume the nondegeneracy condition

σ̂n−s(x, 0) 
= 0 and σ̂n(x, 0) 
= 0 on ˜Y ∩ K . (45)

Then the zeros λi (x, π̂ + ερ) of the characteristic polynomial can be labeled such
that

λ1(x, π̂) 
= 0, . . . , λn−s(x, π̂) 
= 0 on ˜Y ∩ K ,

and

λi (x, π̂ + ερ) = ε̂λi (x, π̂ , ρ, ε), n − s + 1 ≤ i ≤ n

with continuous functions in ε.
Given the nondegeneracy assumptions, we turn to discussing the correspondence

of ε∗ and ε∗ to timescales. By (11), and by the definition of σ̃i in (39), one has

−σ̃1 = λ1 + · · · + λn−s + ε (· · · );
(−1)n−s σ̃n−s = ∑

λ j1 · · · λ jn−s = λ1 · · · λn−s + ε (· · · );
(−1)n−s+1σ̃n−s+1 = ∑

λi1 · · · λin−s+1

= λ1 · · · λn−s (λn−s+1 + · · · + λn) + ε2 (· · · ).

This directly provides a result on separation of timescales.

Proposition 6 Assume that the nondegeneracy condition (45) holds.

(a) The identity

σ̃n−s+1

σ̃1σ̃n−s
= λn−s+1 + · · · + λn

λ1 + · · · + λn−s
+ ε2 (· · · ) = ε

̂λn−s+1 + · · · +̂λn

λ1 + · · · + λn−s
+ ε2 (· · · )

holds on K ∗, with (· · · ) representing a continuous function.
(b) Given α > 0, and εmax sufficiently small, the estimates

1

(1 + α)
ε∗(π̂, ρ, ε) ≤

∣

∣

∣

∣

∣

∑

i≤n−s λi (x, π̂ + ερ)
∑

j>n−s λ j (x, π̂ + ερ)

∣

∣

∣

∣

∣

≤ (1 + α)ε∗(π̂, ρ, ε) (46)
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hold for all (x, ε) ∈ K ∗. In particular, there exist constants C1, C2 such that

C1ε ≤
∣

∣

∣

∣

∣

∑

i≤n−s λi (x, π̂ + ερ)
∑

j>n−s λ j (x, π̂ + ερ)

∣

∣

∣

∣

∣

≤ C2ε.

Thus, for higher dimensions of the criticalmanifold the coefficients of the characteristic
polynomial still provide—albeit weaker—estimates for timescale ratios. Informally
speaking, σ̃n−s+1/(̃σ1σ̃n−s) measures the ratio of the “fastest slow timescale” and the
“fastest fast timescale.” Similar to the situation for s = 1, a more relevant ratio is
the one of the “fastest slow timescale” and the “slowest fast timescale.” We invite
readers to compare Sect. 9.1 in Appendix. We remark that for real or “essentially real”
λ1, . . . , λn−s one may obtain results similar to Proposition 3, but we will not pursue
this further.

5.3 Further Dimensionless Parameters

Given the setting of (44), it is natural to ask about different types of dimensionless
small parameters, in addition to the distinguished ones obtained from Proposition 5.
We consider terms of the form

σ̃n−s+k

σ̃ j1 · · · σ̃ j� · σ̃n−s+v1 · · · σ̃n−s+vm

with k ≥ 1, � ≥ 0, m > 0, and the indices 1 ≤ j1 ≤ · · · ≤ j�, 1 ≤ v1 ≤ · · · ≤ vm

subject to the following conditions:

(1) “Dimensionless”: This mean by Lemma 1

j1 + · · · + j� + (n − s) + v1 + · · · + (n − s) + vm = (n − s) + k.

(2) “Order one in ε”:

v1 + · · · + vm = k − 1.

Proposition 7 The only classes of dimensionless small parameters that satisfy (1) and
(2) are the following:

(a) m = 1 with � = 1 and j1 = 1, with parameters

σ̃n−s+k

σ̃1 σ̃n−s+k−1
, 2 ≤ k ≤ s. (47)

(b) m = 2, n ≥ 4, s = n − 1 and � = 0, with parameters

σ̃2+v1+v2

σ̃1+v1 σ̃1+v2

, 1 ≤ v1 ≤ v2, v1 + v2 ≤ n − 2. (48)
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Proof Combining (1) and (2) one finds

j1 + · · · + j� + (m − 1) (n − s) = 1,

thus, necessarily m ≤ 2 due to s < n. In case m = 1, one has � = 1 and j1 = 1. In
case m = 2, one necessarily has s = n − 1 and � = 0.

To obtain explicit parameter bounds in the first case, use

σn−s+ j (x, π̂ + ερ) = ε j σ̂n−s+ j (x, π̂ , ρ, ε), j ≥ 1

to determine

˜L j (π̂, ρ) := infx∈˜Y∩K

∣

∣

∣

∣

σ̂n−s+ j (x, π̂ , ρ, 0)

σ̂n−s+ j−1(x, π̂ , ρ, 0) σ1(x, π̂)

∣

∣

∣

∣

,

˜U j (π̂, ρ) := supx∈˜Y∩K

∣

∣

∣

∣

σ̂n−s+ j (x, π̂ , ρ, 0)

σ̂n−s+ j−1(x, π̂ , ρ, 0) σ1(x, π̂)

∣

∣

∣

∣

,

and small parameters

δ j∗ := ε · ˜L j (π̂, ρ, 0), δ∗
j := ε · ˜U j (π̂, ρ, 0), j ≥ 2.

Remark 5 In the first case, there is a notable correspondence to eigenvalues (thus to
timescales). A variant of the argument in Proposition 6 shows that

σ̃n−s+k

σ̃1 σ̃n−s+k−1
= ε

τk(̂λn−s+1, . . . ,̂λn)

(λ1 + · · · + λn−s) · τk−1(̂λn−s+1, . . . ,̂λn)
+ ε2(· · · ),

where τ� denotes the �th elementary symmetric polynomial in s variables.

5.4 Dimension Three

We specialize the results to dimension three and s = 2, assuming nondegeneracy. By
(44), σ̃2 is of order ε, and σ̃3 is of order ε2.

In view of Propositions 5 and 6, we consider

σ̃2

σ̃ 2
1

= ε
̂λ2 +̂λ3

λ1
+ ε2 · · · .

Informally speaking, this expression governs the ratio of the fastest slow timescale to
the fast timescale, which is the pertinent ratio according to Sect. 9.1.2. We obtain

U = sup
x∈˜Y∩K

∣

∣

∣

∣

σ̂2(x, π̂ , ρ, 0)

σ1(x, π̂)2

∣

∣

∣

∣

, ε∗ = ε · U
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as well as

L = inf
x∈˜Y∩K

∣

∣

∣

∣

σ̂2(x, π̂ , ρ, 0)

σ1(x, π̂)2

∣

∣

∣

∣

, ε∗ = ε · L.

Similar to the observations in Remark 4, disparate slow eigenvalues may indicate
a scenario with three timescales (informally speaking, fast, slow and very slow). To
measure the disparity, we use Proposition 7 and consider

σ̃3

σ̃1σ̃2
= ε

λ1̂λ2̂λ3

(λ1 + ε · · · )(λ1(̂λ2 +̂λ3) + ε · · · ) = ε
̂λ2̂λ3

λ1(̂λ2 +̂λ3)
+ ε2 · · · .

Combining parameters shows

σ̃1σ̃3

σ̃ 2
2

= ̂λ2̂λ3

(̂λ2 +̂λ3)2
+ ε · · · = ̂λ3/̂λ2

(1 +̂λ3/̂λ2)2
+ ε · · · .

Thus, the constants

κ∗ := sup
x∈˜Y∩K

σ1(x, π̂ )̂σ3(x, π̂ , ρ, 0)

σ̂2(x, π̂ , ρ, 0)2
and κ∗ := inf

x∈˜Y∩K

σ1(x, π̂ )̂σ3(x, π̂ , ρ, 0)

σ̂2(x, π̂ , ρ, 0)2

measure the disparity of̂λ2 and̂λ3. In particular, given that |λ3| ≤ |λ2| one has
∣

∣

∣

∣

λ3

λ2

∣

∣

∣

∣

≥ κ∗ throughout ˜Y ∩ K .

6 Case Studies: Reduction fromDimension Three to One

In this section, we discuss two biochemically relevant modifications of the MM reac-
tion mechanism and a non-Michaelis–Menten reaction mechanism, with low enzyme
concentration, and their familiar (quasi-steady state) reductions to dimension one.
This seems to be the first instance that small parameters in the spirit of Segel and
Slemrod—although consistently based on linear timescales—are derived for these
reaction mechanisms in a systematic manner. Note that, in the application-oriented
literature, the perturbation parameter of choice mostly seems to be εB H = e0/s0, on
loan from the MM reaction mechanism.

Wewill directly consider the asymptotic small parameters ε∗, ε∗, μ∗ by application
of the results in Sect. 3, and obtain rather satisfactory estimates for these. Considering
the steps outlined in the Introduction, we thus complete a substantial part of Step 1.
Proceeding beyond this, along the lines of Sect. 9.1, would involve considerable and
lengthy work for each system, so we will not go further. However, to test and illustrate
the efficacy of the parameters, we include extensive numerical simulations. We also
include examples that demonstrate the limitations of the local timescale approach,
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and in particular show that the nondegeneracy conditions imposed on the “non-small”
parameters are necessary.

6.1 Cooperativity ReactionMechanism

The (irreversible) cooperative reaction mechanism

E + S
k1�

k−1
C1

k2
⇀ E + P,

S + C1
k3�

k−3
C2

k4
⇀ C1 + P

(49)

is a non-Michaelis–Menten reaction mechanism of enzyme action. It is modeled by
the mass action equations

ṡ = − k1(e0 − c1 − c2)s + k−1c1 − k3sc1 + k−3c2,
ċ1 = k1(e0 − c1 − c2)s − (k−1 + k2)c1 − k3sc1 + (k4 + k−3)c2,
ċ2 = k3sc1 − (k4 + k−3)c2,

(50)

via stoichiometric conservation laws. Typical initial conditions are s(0) = s0, e(0) =
e0, and c1(0) = c2(0) = p(0) = 0. The conservation laws yield the compact
positively invariant set

K := {(s, c1, c2) ∈ R
3≥0 : 0 ≤ s ≤ s0, 0 ≤ c1 + c2 ≤ e∗

0}, (51)

with some reference value e∗
0 > 0. The parameter space � = R

8≥0 has elements
(e0, s0, k1, k−1, k2, k3, k−3, k4)tr, and setting e0 = 0 defines a TFPV,

π̂ := (0, s0, k1, k−1, k2, k3, k−3, k4)
tr

for dimension one, subject to certain nondegeneracy conditions on the ki . The
associated critical manifold is

˜Y := {(s, c1, c2) ∈ R
3≥0 : c1 = c2 = 0}. (52)

We now set ρ = (e∗
0, 0, . . . , 0)

tr , and consider the perturbed system with parameter
π = π̂+ερ. The singular perturbation reduction (according to formula (9) in Sect. 2.1)
was carried out in Noethen and Walcher (2007, Section 4) and Goeke and Walcher
(2013, Examples 8.2 and 8.7). This reduction agrees with the well known classical
quasi-steady state reduction for complexes of the cooperativity reaction mechanism
(see Keener and Sneyd 2009, Section 1.4.4). We have

ṡ = − k1e0s (k3k4s + k2(k−3 + k4))

(k1s + k−1 + k2)(k−3 + k4) + k1k3s2
, s(0) = s0. (53)
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The quasi-steady state variety (see, Keener and Sneyd 2009) is given parametrically
by

(

c1
c2

)

= k1e0s

(k−1 + k2)(k−3 + k4) + k1(k−3 + k4)s + k1k3s2
·
(

k−3 + k4
k3s

)

, 0≤s ≤s0,

and agrees with the first order approximation of the slow manifold. Fenichel theory
guarantees that (53) holds for sufficiently small e0 = εe∗

0, up to errors of order ε2.
The initial value for the reduced equation is generally chosen as s0, and we adopt this
choice here (refraining from a closer analysis of the approximation error).

6.1.1 Asymptotic Small Parameters

According to the first blanket assumption in Sect. 2.4, we will assume that
(s0, k1, k−1, k2, k3, k−3, k4)tr is contained in a compact subset of R7≥0. In particu-
lar s0 and all the ki are bounded above by some positive constants. We now further
specify this compact parameter set. On ˜Y ∩ K with π = π̂ , we have

σ1 = (k1 + k3)s + k−1 + k2 + k−3 + k4;
σ2 = k1k3s2 + k1(k−3 + k4)s + (k−1 + k2)(k−3 + k4);
σ̂3 = k1e∗

0 · (k3k4s + k2(k−3 + k4)) .

Due to the TFPV requirement, σ1 and σ2 must be bounded below on K ∩˜Y by positive
constants,

k−1 + k2 + k−3 + k4 = min σ1 > 0,

(k−1 + k2)(k−3 + k4) = min σ2 > 0,

and from this one sees that the TFPV conditions hold if and only if both k−1 + k2
and k−3 + k4 are bounded below by positive constants. Nontriviality of the reduced
equation (53) also imposes conditions on k1, k2, k3, and k4. Moreover, for instance, in
the limit k3 → 0, with k4 bounded below by a positive constant, the reduced equation
is nontrivial but approaches the Michaelis–Menten equation. We will take a closer
look at this situation below.

Generally, the TFPV and nondegeneracy conditions will certainly hold whenever
(s0, k1, k−1, k2, k3, k−3, k4)tr is contained in a compact subset of the open positive
orthant. Our aim is now to determine a suitable dimensionless parameter that cor-
responds to the legitimacy of (53). The typical requirement in the literature, that
e0/s0 � 1, yields a sufficient asymptotic condition for bounded s0, since singular per-
turbation theory guarantees convergence as e0 → 0, but no quantitative information
can be inferred. In contrast, we use the results of Sect. 3 to provide a correspondence
to linear timescales.

The explicit calculation of ε∗ according to Proposition 2, i.e., determining the
maximum of

s �→ r(s) := σ̂3

σ1σ2
, 0 ≤ s ≤ s0 (55)

123



Natural Parameter Conditions for Singular Perturbations of… Page 37 of 75 48

involves the computation of the roots of the numerator of the derivative, thus of a
parameter-dependent cubic polynomial q in s. The signs of all the coefficients15 are
negative, except possibly the constant coefficient. By the Descartes rule of signs, the
polynomial q has at most one positive zero. If there exists no positive zero, then r is
strictly decreasing for 0 ≤ s < ∞ and attains its maximum at s = 0,16 and in any
case one has

ε∗ ≥ r(0) = εM M · k−1 + k2
k−1 + k2 + k−3 + k4

.

If a positive zero s∗ exists17, then the maximum of r will be attained there. An exact
calculation via Cardano does not provide any palatable information, but an upper
bound for ε∗ is obtained rather easily from the monotonicity of the σ j :

ε∗ ≤ ε
sup

˜Y∩K σ̂3

inf
˜Y∩K σ1 inf˜Y∩K σ2

= k1e0
k−1 + k2

·
(

k3k4s0 + k2(k−3 + k4)

(k−1 + k2 + k−3 + k4)(k−3 + k4)

)

= εM M ·
(

k3k4s0(k−1 + k2)

k2(k−1 + k2 + k−3 + k4)(k−3 + k4)
+ k−1 + k2

k−1 + k2 + k−3 + k4

)

=:εC .

(56)

Comparing this to the lower estimate r(0), one finds that the upper estimate by εC

is acceptable as long as s0 is not too large, but weakens with increasing s0. As noted
in Sect. 3, ε∗—and by extension εC—provides an estimate for the ratio of slowest to
fastest timescale. Thus, smallness of ε∗ is a necessary condition, but it may not be
sufficient when the fast timescales are far apart.

We therefore consider an estimate for the ratio of the slow timescale to the slower
of the fast ones via μ∗. It is straightforward to verify that σ 2

1 − 4σ2 ≥ 0, thus all
eigenvalues are real, and Proposition 4(b) is applicable. The explicit calculation of μ∗
again involves a cubic polynomial in s, for 0 ≤ s ≤ s0. In this case, the Descartes sign
rule allows for two or no positive zeros, and there exist at most two local maxima for
0 ≤ s < ∞. One of these is located at s = 0, yielding in any case the lower estimate

μ∗ ≥ εM M · k−1 + k2 + k−3 + k4
k−3 + k4

, (57)

15 It is unproblematic to determine these explicitly, but the expressions are unwieldy.
16 Straightforward computation yields a condition on k3 that ensures the maximum of r being attained at
s = 0.
17 This case does occur.
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but an explicit computation of the maximum provides little information. Instead, we
again resort to an upper bound

μ∗ ≤ ε
sup

˜Y∩K σ̂3 sup˜Y∩K σ1

inf
˜Y∩K σ 2

2

= εM M ·
(

k3k4s0 + k2(k−3 + k4)

k2(k−3 + k4)
· (k1 + k3)s0 + k−1 + k2 + k−3 + k4

k−3 + k4

)

=: μC .

(58)

Comparison with (57) shows that the estimate by μC is satisfactory as long as s0
is not too large, but it will become rather weak with increasing s0.

All estimates involve the distinguished Michaelis–Menten parameter εM M , multi-
plied by some positive factor. For both estimates in (57), (58) this factor is > 1.

6.1.2 Numerical Simulations

While we have obtained asymptotic timescale estimates for given reaction parameters,
these estimates are unsatisfactory for large substrate concentrations. Moreover, by its
nature our approach alone does not provide an upper estimate for the distance of the
solution to the slow manifold. So, to obtain a priori gauge of the efficacy of (53), it
is natural to resort to numerical simulations. These simulations serve two purposes: a
positive and a negative. On the positive side, they illustrate that the small parameters
ε∗ and μ∗ are good indicators for viability of the QSS reduction, in a wide parameter
range. On the negative side, numerical examples highlight parameter combinations
where consideration of ε∗ and μ∗ is misleading. Such cases can be traced back to
problems with the blanket assumptions from Sect. 2.4, or with assumptions implicit
in the proofs of Propositions 2 and 3.

We will consider some specific examples, and instead of relying on εC and μC we
will compute both ε∗ and μ∗ numerically in the simulations that follow. This is still
far less computationally involved than working with eigenvalues of linearizations on
˜Y ∩K . In the figures illustrating all the simulations, to show the behavior of trajectories
over the interval 0 ≤ t < ∞, time is mapped to

τ = t/T , τ ∈ [0, 1],

where the numerical solution has been computed on the interval [0, T ], and T is chosen
large enough to ensure the numerical simulations capture the long-time dynamics of
the reaction.We start with some examples that document the efficacy of the parameters
in “normal” parameter domains:

1. In a first numerical study, we compare the numerical solution to the mass action
equations (50) with the numerical solution to (53) in the scenario when all parame-
ters except e0 are of the same order of magnitude. In the simulations, all parameter
values except e0 are set equal to 1, and e0 is varied from 100–10−3. The simulation
results are reported in Fig. 1 , which reinforces the assertion that ε∗ � 1 and
μ∗ � 1 support the validity of (53). Moreover, we see that smallness of μ∗ is the
more relevant condition.
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Fig. 1 Cooperativity reactionmechanism:Numerical simulations indicate that the accuracy of (53) improves
along the parameter ray direction as both ε∗ → 0 and μ∗ → 0. In both panels, the parameters (in arbitrary
units) are: s0 = 1.0, k1 = 1.0, k2 = 1.0, k−1 = 1.0, k3 = 1.0, k−3 = 1.0 and k4 = 1.0. Time has been
mapped to the τ scale: τ = t/T , τ ∈ [0, 1]. The solid black curve is the numerical solution to themass action
system (50). The broken red curve is the numerical solution to (53). Top left panel: Simulation performed
with e0 = 1.0. The numerically computed dimensionless parameters are: ε∗ = 1.25 × 10−1, μ∗ =
5×10−1, and there is visible error.Top Right panel: Simulation performedwith e0 = 10−1. The numerically
computed dimensionless parameters are: ε∗ = 1.25 × 10−2, μ∗ = 5 × 10−2. There is visible error, but
the approximation (53) appears to improve. Bottom Left panel: Simulation performed with e0 = 10−2.
The numerically computed dimensionless parameters are: ε∗ = 1.25 × 10−3, μ∗ = 5 × 10−3. The QSS
reduction (53) is virtually indistinguishable from (50). Bottom Right panel: Simulation performed with
e0 = 10−3. The numerically computed dimensionless parameters are: ε∗ = 1.25×10−4, μ∗ = 5×10−4.
The QSS reduction (53) is again virtually indistinguishable from (50) (Color figure online)

2. In a second numerical study, we examine a case with varied parameter values,
but all (except e0) within the same order of magnitude. The results are reported
in Fig. 2, and once again support the claim that the accuracy of (53) improves as
ε∗ → 0 and μ∗ → 0, with higher relevance for μ∗.

3. As a third numerical example, we consider a combination of parameter values that
are somewhat disparate in terms of the magnitudes. Nevertheless, we once again
confirm that that the accuracy of (53) improves as ε∗ → 0 andμ∗ → 0, again with
higher relevance for μ∗ (see, Fig. 3). This simulation also debunks the commonly
accepted notion that e0/s0 � 1 is sufficient for the accuracy of (53).
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Fig. 2 Cooperativity reaction mechanism: Numerically computed μ∗ and ε∗ give an a priori indication of
the accuracy of (53). In both panels, the parameters (in arbitrary units) are: s0 = 102, k1 = 20, k2 = 50,
k−1 = 50, k3 = 10, k−3 = 20 and k4 = 40. The solid black curve is the numerical solution to the mass
action system (50). The broken red curve is the numerical solution to (53). Time has been mapped to the τ

scale: τ = t/T , τ ∈ [0, 1]. Left panel: e0 = 1.0 and ε∗ = 6.25 × 10−2 but μ∗ is roughly 2.67 × 10−1

and the QSS approximation (53) is inaccurate. Right panel: e0 = 10−2, ε∗ is numerically estimated to be
6.25 × 10−4 and μ∗ is numerically estimated to be roughly 2.67 × 10−3. In this simulation the validity
of (53) clearly improves along the parameter ray ρ = (e∗

0 , 0, . . . , 0)tr as μ∗ → 0. Thus, e0 must be small
enough so that 0 < μ∗ � 1 (recall that μ∗ � 1 implies ε∗ � 1). We see that ε∗ � 1 provides a too
optimistic prediction and that μ∗ � 1 is a better indicator for the accuracy of the reduction (50) (Color
figure online)

Fig. 3 Cooperativity reaction mechanism: Numerically computed μ∗ and ε∗ give an a priori indication of
the long-time accuracy of (53). In both panels, the parameters (in arbitrary units) are: s0 = 100, k1 = 1.0,
k2 = k−1 = 102, k3 = 2 × 103, k−3 = k4 = 105. The solid black curve is the numerical solution to the
mass action system (50). The broken red curve is the numerical solution to (53). Time has been mapped to
the τ scale: τ = t/T , τ ∈ [0, 1]. Left panel: e0 = 1.0 and ε∗ ≈ 6.5 · 10−4 but μ∗ is roughly 1.0. Right
panel: e0 = 10−3, ε∗ ≈ 6.5 × 10−7 and μ∗ ≈ 10−3; the reduction (53) is an excellent approximation
to (50). Note that although e0/s0 � 1 the reduction (53) is inaccurate: The failure in the left panel is
immediate (and severe), despite the fact that e0/s0 = 10−2 (Color figure online)

Throughout these simulations we observe that themagnitude ofμ∗ is more relevant for
the quality of the QSS approximation than the magnitude of ε∗. This is in accordance
with the results of Sect. 3.2.

6.1.3 Exceptional Cases: Near-Degeneracy and Near-Invariance

Here, we briefly discuss two special scenarios withμ∗ � 1, but precede this by a word
of caution. Obviously, whenever μ∗ > 1, then the implicit assumptions in the proofs
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of Propositions 3 and 4 are violated for the given values of e0, and the propositions are
not applicable in this range. To enable applicability, εmax would have to be adjusted
to a smaller value. However, the consideration of such extreme cases provides insight
into the significance of various parameters.

The first case involves a near-degeneracy scenario. The critical variety contains a
degenerate point and 1 � μ∗, while at first sight the QSS reduction (53) appears to
be highly accurate. In the second case, a two-dimensional nearly invariant subspace
emerges within phase space. Here we present a description of the cases:

1. Consider the parameter point

π‡ = (s0, 0, k1, 0, 0, k3, k−3, k4)
tr,

thus in addition to e0 = 0 one has k−1 = k2 = 0 (which is problematic in view
of nondegeneracy conditions). The associated critical variety, Y , consists of two
intersecting lines of equilibria (and is therefore not a manifold)18

Y := {(s, c1, c2) ∈ R
3≥0 : c1 = c2 = 0} ∪ {(s, c1, c2) ∈ R

3≥0 : s = c2 = 0}.

The perturbation form of the mass action equations with e0 = εe∗
0, k2 = εk∗

2 and
k−1 = εk∗−1 is

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ =
⎛

⎝

(k1 − k3) k1s + k−3

−(k1 + k3) −k1s + k4 + k−3

k3 −(k−3 + k4)

⎞

⎠

(

sc1
c2

)

+ ε

⎛

⎝

k1e∗
0s + k∗−1c1

k1e∗
0s − (k∗−1 + k∗

2)c1
0

⎞

⎠ .

(59)

In this case, the rank of the Jacobian is not constant

rank D1h(s, c1, c2, π
‡) = 1, if (s1, c1, c2) = (0, 0, 0);

rank D1h(s, c1, c2, π
‡) = 2, otherwise.

While the rank condition from Sect. 2.1 fails19 on Y , it is straightforward to verify
that the compact submanifolds defined by

˜Y1 := {(s, c1, c2) ∈ K : c1 = c2 = 0 and s ≥ θ1}, 0 < θ1 < s0,

˜Y2 := {(s, c1, c2) ∈ K : s = c2 = 0 and c1 ≥ θ2}, 0 < θ2 < e∗
0,

are normally hyperbolic and attracting. Thus, for π sufficiently close to π‡, and
for s0 > 0, trajectories will rapidly approach the attracting branch ˜Y1. Projection

18 Recall a similar scenario for Michaelis–Menten in Sect. 4.4.
19 A dynamic transcritical bifurcation occurs at the point where the rank of D1h(x, π‡) is 1. See Krupa
and Szmolyan (2001) for a general discussion of such scenarios.
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Fig. 4 Cooperativity reaction mechanism: Numerically computed μ∗ and ε∗ give an a priori indication of
the long-time accuracy of (53). In both panels, the parameters (in arbitrary units) are: e0 = 10−5, k1 = 1.0,
k2 = k−1 = 10−3, k3 = 104, k−3 = 102 and k4 = 106. The solid black curve is the numerical solution to
the mass action system (50). The broken red curve is the numerical solution to (53). Time has been mapped
to the τ scale: τ = t/T , τ ∈ [0, 1]. Left panel: s0 = 100 and ε∗ ≈ 10−8 but numerically computed μ∗ is
roughly 101. Nevertheless, the QSS reduction (53) appears to be very good. However, the reduction fails
near the origin, which is not captured in the Left panel due to limited resolution. Right panel: s0 = 10−1,
and the reduction (53) clearly fails to approximate the timecourse of s. This example illustrates thatμ∗ � 1
is necessary for the long-time validity of (53) (Color figure online)

of the perturbation onto the tangent space of ˜Y1, according to (9), yields

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ =ε

⎛

⎝

1 k1(k3s+k4+k−3)−k3k4
k1(k3s+k4+k−3)

(2k3s+k4+2k−3)k1−k3k4
k1(k3s+k4+k−3)

0 0 0
0 0 0

⎞

⎠

⎛

⎝

−k1e∗
0s

k1e∗
0s

0

⎞

⎠

and the corresponding reduction on ˜Y1 is

ṡ = − e0k4k3s

k−3 + k4 + k3s
. (62)

Remarkably, one can recover (62) by setting k−1 = k2 = 0 in (53). Thus, equa-
tion (62) can be viewed as a special case of (53) in the limit of small k2 and k−1.
Moreover, numerical simulations seem to indicate that the reduction (53) is valid
over the full time course, even when μ∗ is quite large (see, Fig. 4 , Left panel.
But, this is illusory. Both (53) and (62) fail to approximate the depletion of s near
the origin, as the Right panel shows. Thus, near-degeneracy scenarios can gen-
erate conditions in which (53) may appear to yield an excellent approximation.
But recall that small ε∗ combined with large μ∗ indicates that two eigenvalues
are small, and this necessarily prohibits the reduction from being valid over the
complete time course.
There are other degenerate scenarios for this reaction (for instance, k−3 = k4 = 0
or k−3 = k4 = k2 = k−1 = 0 with all other parameters bounded below by a
positive constant). We will not further investigate these.

2. In the final numerical example of this case study, we exhibit a scenario for which
(53) provides a valid approximation even though 1 � μ∗. This can happen, for
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instance, in the limit of small e0 and small k3. For k3 = 0, the two-dimensional
subspace V := {(s, c1, c2) ∈ R

3 : c2 = 0} is invariant. One approach to such a
scenario is to consider a singular perturbation reduction with both e0 = εe�

0, k3 =
εk�

3 of order ε. The perturbation form of the mass action system is

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ =
⎛

⎝

k1s + k−1 k1s + k−3
− k1s − (k−1 + k2) k1s + (k−3 + k4)

0 −(k−3 + k4)

⎞

⎠

(

c1
c2

)

+ε

⎛

⎝

−k1e∗
0s − k∗

3c1s
k1e∗

0s − k∗
3c1s

k∗
3c1s

⎞

⎠ , (63)

with the critical manifold given by c1 = c2 = 0. Projection onto the critical
manifold according to (9) yields

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ = ε

⎛

⎜

⎜

⎝

1
k1s + k−1

k1s + k−1 + k2

k1s(k2 + k4) + k4k−1 − k2k−3

(k1s + k−1 + k2)(k−3 + k4)
0 0 0
0 0 0

⎞

⎟

⎟

⎠

⎛

⎝

−k1e∗
0s

k1e∗
0s

0

⎞

⎠ ,

and thus the QSS reduction

ṡ = − k1k2e0s

k1s + k−1 + k2
,

which corresponds to the sQSSA of the MM reaction mechanism.
One may regard this also from a different perspective: For fixed k3, one obtains
the reduction (53). Then, letting k3 → 0 yields the Michaelis–Menten equation.
Notably, the lower estimate (57) forμ∗ is independent of k3, and thus largeμ∗ will
remain large as k3 → 0. On the other hand, the upper estimate for ε∗ decreases as
k3 → 0.We recover theMichaelis–Menten equation, because a slight perturbation
to k3 = 0 results in V being nearly invariant (see, e.g., Goeke et al. 2017 for the
notion). Biochemically, near invariance of V is equivalent to gradually “turning
off” the cooperativemechanism, since the secondary complexC2 is beingproduced
at a very small rate. Mathematically, the near invariance of V implies for the given
initial values, thus c2(0) = 0, that the relevant dynamics are essentially two-
dimensional even prior to reduction, and further reduction to a one-dimensional
manifold depends only on a single eigenvalue ratio. In the simulation example, the
fast eigenvalue with smaller absolute value—which generally is responsible for
the slow-fast separation—has negligible influence, since the dynamics evolves on
an invariant manifold very near c2 = 0. Consequently ε∗ (or indeed εM M ) is the
relevant quantity rather than μ∗; see Fig. 5.
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Fig. 5 Cooperative reactionmechanismwith nearly invariant subspace:When the three-dimensional dynam-
ics is nearly two-dimensional, ε∗ provides a good a priori measure for the accuracy of (53). In both panels
the solid black curve is the numerical solution to the mass action equations (50). The broken red curve is the
numerical solution to the QSS reduction (53). Time has been mapped to the τ scale: τ = t/T , τ ∈ [0, 1],
and the parameters (in arbitrary units) are: e0 = 1.0, k1 = 1.0, k2 = k−1 = 102, k3 = 10−5, k−3 = 10−1

and k4 = 10−1. Left panel: s0 = 100 and ε∗ ≈ 2.5 × 10−3 but the numerically computed μ∗ is roughly
2.5. Nevertheless, the QSS reduction (53) is very accurate. By near-invariance of V , (53) effectively reduces
to the Michaelis–Menten equation, and the pertinent dynamics unfold in the two-dimensional subspace V .
Right panel: s0 = 10−1, and we have confirmation that the long-time accuracy of the reduction (53) holds,
even though μ∗ ≈ 2.5 remains of order unity (Color figure online)

6.2 Uncompetitive Inhibition ReactionMechanism

The irreversibleMMreactionmechanism in the presence of an uncompetitive inhibitor

E + S
k1�

k−1
C1

k2
⇀ E + P,

C1 + I
k3�

k−3
C2,

(64)

is modeled deterministically by the system

ṡ = − k1(e0 − c1 − c2)s + k−1c1,
ċ1 = k1(e0 − c1 − c2)s − (k−1 + k2)c1 − k3(i0 − c2)c1 + k−3c2,
ċ2 = k3(i0 − c2)c1 − k−3c2,

(65)

via stoichiometric conservation laws. The standard initial conditions are
(s, c1, c2)(0) = (s0, 0, 0).Wefix a reference value e∗

0 and obtain from the conservation
laws the compact positively invariant set

K := {(s, c1, c2) ∈ R
3≥0 : 0 ≤ s ≤ s0, c1 + c2 ≤ e∗

0, c2 ≤ min{e∗
0, i0}}.

The parameter space� = R
8≥0 has elementsπ = (e0, s0, k1, k−1, k2, k3, k−3, i0)tr .

Given suitable nondegeneracy conditions on the parameters (to be specified below),
setting e0 = 0 defines a TFPV for dimension one:

π̂ := (0, s0, k1, k−1, k2, k3, k−3, i0)
tr,
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with associated critical manifold

˜Y := {(s, c1, c2) ∈ R
3≥0 : c1 = c2 = 0}.

We set ρ = (e∗
0, 0, . . . , 0)

tr and consider the ray ε �→ π̂ + ερ in parameter space.
Then, the perturbed system has the form

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ =
⎛

⎝

k1s + k−1 k1s
− k1s − (k−1 + k2) − k3(i0 − c2) −k1s + k−3

k3(i0 − c2) −k−3

⎞

⎠

(

c1
c2

)

+ε

⎛

⎝

−k1e∗
0s

k1e∗
0s

0

⎞

⎠ . (66)

According to (9), the singular perturbation reduction of (66) is given by

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ =ε

⎛

⎝

1 (k1s+k−1)k−3+i0k1k3s
(k1s+k2+k−1)k−3+i0k1k3s

(k1s+k−1)k−3+(i0k3+k2)k1s
(k1s+k2+k−1)k−3+i0k1k3s

0 0 0
0 0 0

⎞

⎠

⎛

⎝

−k1e∗
0s

k1e∗
0s

0

⎞

⎠ , (67)

thus ċ1 = ċ2 = 0 and

ṡ = − k1e0k2k−3 s

(k1s + k2 + k−1)k−3 + i0k1k3s
, s(0) = s0, (68)

in the limiting case of small e0 = εe∗
0, up to errors of order ε2.

The reduced equation (77) has been previously reported in the literature (see, e.g.,
Schnell and Mendoza 2001). It is different from the classical QSS reduction, which
is obtained by substituting exact equations for the c1—and c2—nullclines into (65).
But, in accordance with (Goeke et al. 2017, Proposition 5), the difference between
the classical reduction and (68) will be of order ε2. Typically, in numerical simula-
tions there will only be noticeable differences between the classical reduction and the
Fenichel reduction at very large substrate concentrations.

6.2.1 Asymptotic Small Parameters

On ˜Y ∩ K , we have at π = π̂

σ1 = k1s + k−1 + k2 + k3i0 + k−3,

σ2 = k1s(k3i0 + k−3) + (k−1 + k2)k−3,

σ̂3 = k2k1e∗
0k−3.

As always, we assume that all the parameters are contained in a suitable compact
subset of parameter space, in particular they are bounded above by positive constants.
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The TFPV property requires, in addition, that σ1 and σ2 are bounded below on K ∩ ˜Y
by positive constants, thus

k3i0 + k−3 + k−1 + k2 = min σ1 > 0,
(k−1 + k2)k−3 = min σ2 > 0,

and therefore theTFPVconditions hold if andonly if both k−1+k2 and k−3 are bounded
below by positive constants. Moreover, the reduction (68) should be significantly
different from a trivial equation, and hence one also requires k2 to be bounded below
by somepositive constant.No lower bound for k3i0 is imposed by theTFPVconditions,
but note that (68) approaches the Michaelis–Menten equation as i0 → 0 or k3 → 0.
We will discuss this scenario below.

As before, we will obtain usable estimates for the timescale ratio from Propo-
sitions 2, 3 and 4. For uncompetitive inhibition, the maxima can be determined
explicitly.

The distinguished small parameter ε∗, with σ1, σ2 and σ̂3 evaluated at π = π̂ , may
be determined from

ε∗ = εmax0≤s≤s0
σ̂3(s, π̂ , ρ, 0)

σ1(s, π̂)σ2(s, π̂)

= ε
σ̂3(0, π̂ , ρ, 0)

σ1(0, π̂)σ2(0, π̂)

= k2k1e0
(k−1 + k2)2

· k−1 + k2
k3i0 + k−3 + k−1 + k2

= εM M · k−1 + k2
k3i0 + k−3 + k−1 + k2

=: εU ,

(69)

with the distinguished parameter εM M from the MM reaction mechanism. Note that
to see why the first equality sign in (69) holds, you can determine the derivative and
verify that it is negative for s ≥ 0.

It is straightforward to verify that all eigenvalues are real, since σ 2
1 − 4σ2 ≥ 0.

Thus, from σ1, σ2 and σ̂3 evaluated at π̂ , the parameter μ∗ is obtained from

μ∗ = εmax0≤s≤s0
σ̂3(s, π̂ , ρ, 0)σ1(s, π̂)

σ2(s, π̂)2

= k2k1e0
(k−1 + k2)2

·
(

k3i0 + k2 + k−1 + k−3

k−3

)

= εM M ·
(

k3i0 + k2 + k−1 + k−3

k−3

)

=: μU .

(70)

Note that the first equality holds, because the derivative of

s �→ σ̂3(s, π̂ , ρ, 0)σ1(s, π̂)

σ2(s, π̂)2

is negative for all s ≥ 0.
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Fig. 6 Uncompetitive inhibition reaction mechanism: Numerical simulations indicate that the accuracy
of (68) improves as both εU → 0 and μU → 0 along the parameter ray direction. In both panels, the
parameters (in arbitrary units) are: s0 = 1.0, k1 = 1.0, k2 = 1.0, k−1 = 1.0, k3 = 1.0, k−3 = 1.0 and
i0 = 1.0. The solid black curve is the numerical solution for s to the mass action system (65). The broken
red curve is the numerical solution to (68). Time has been mapped to the τ scale: τ = t/T , τ ∈ [0, 1].
Top Left panel: Simulation performed with e0 = 1.0. There is visible error with εU = 1.25 × 10−1 and
μU = 1.0. Top Right panel: Simulation performed with e0 = 10−1. Although there is visible error with
μU = 10−1 and εU = 1.25 × 10−2, the approximation (68) does appear to be improving along the
parameter ray direction. Bottom Left panel: Simulation performed with e0 = 10−2 and thus μU = 10−2

and εU = 1.25× 10−3. The QSS reduction (68) is nearly indistinguishable from (65). Bottom Right panel:
Simulation performed with e0 = 10−3 with μU = 10−3 and εU = 1.25× 10−4. The QSS reduction (68)
is again practically indistinguishable from (65). Note that μU � 1 is still a better indicator of accuracy
than εU � 1 (Color figure online)

6.2.2 Numerical Simulations

We now turn to numerical simulations, with the same dual motivation as in Sect. 6.1.
Parallel to our analysis of (56) and (58), we discuss the reliability of the qualifiers
εU � 1 and μU � 1 in gauging the validity of (68):

1. We begin with the special case π = (e0, 1, 1, 1, 1, 1, 1, 1), representing a scenario
where all parameters except e0 are of the same order 1, and vary e0 from 1 to 10−3.
The results are reported in Fig. 6, and collectively support the statement that (68)
holds when μU is sufficiently less than 1. With all “non-small” parameters having
the same order, one also sees that sufficiently small εU suffices.

2. Parallel to our analysis of the cooperative reaction, we next consider parameters
with widely disparate magnitude. In this simulation, the accuracy of (68) improves
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Fig. 7 Uncompetitive inhibition reaction mechanism: The accuracy of (68) is reflected in the magnitude of
the dimensionless parameter μU . The solid black curve is the numerical solution for s to (65). The broken
red curve is the numerical solution to (68). Time has been mapped to the τ scale: τ = t/T , τ ∈ [0, 1]. The
parameters (in arbitrary units) are: s0 = 101, k−3 = 10−1, k3 = 101, i0 = 101, k1 = 1.0, k2 = k−1 = 103.
Top Left panel: e0 = 1.0 and εU ≈ 2.38 × 10−4, μU ≈ 5.25. Top Right panel: e0 = 10−1 and
εU ≈ 2.38× 10−5, μU ≈ 5.25× 10−1. Bottom Left panel: e0 = 10−2 and εU ≈ 2.38× 10−6, μU ≈
5.25× 10−2. Bottom Right panel: e0 = 10−3 and εU = 2.38× 10−7, μU ≈ 5.25× 10−3. Note that the
solutions to (65) and (68) are virtually indistinguishable in the last panel (Color figure online)

only as μU → 0, and this illustrates the relevance of μU as the dimensionless
parameter that indicates the accuracy of (68); see Fig. 7.

6.2.3 Near-Invariance

As in the case of the cooperative reaction mechanism, near-invariance scenarios also
exist for uncompetitive inhibition. Setting e0 = i0 = 0 (also) yields a TFPV for
dimension one, viz.

̂π̄ := (0, s0, k1, k−1, k2, k3, k−3, 0)
tr,

with the same associated critical manifold ˜Y , defined by c1 = c2 = 0. We fix a further
reference value i∗0 and consider the ray direction ρ† = (e∗

0, 0, . . . , 0, i∗0 )tr . Then, the
perturbed system with π = ̂π̄ + ερ† has the form

123



Natural Parameter Conditions for Singular Perturbations of… Page 49 of 75 48

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ =
⎛

⎝

k1s + k−1 k1s
− k1s − (k−1 + k2) + k3c2 −k1s + k−3

− k3c2 k−3

⎞

⎠

(

c1
c2

)

+ ε

⎛

⎝

−k1e∗
0s

k1e∗
0s − k3i∗0c1
k3i∗0c1

⎞

⎠

(71)

Applying the reduction according to (9) yields

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ = ε

⎛

⎜

⎜

⎝

1
k1s + k−1

k1s + k−1 + k2

(k1s + k−1)k−3 + k1k2s

k−3(k1s + k−1 + k2)
0 0 0
0 0 0

⎞

⎟

⎟

⎠

⎛

⎝

−k1e∗
0s

k1e∗
0s

0

⎞

⎠

and thus, with ċ1 = ċ2 = 0,

ṡ = − k1e0k2s

k1s + k2 + k−1
, s(0) = s0, (72)

which is valid asymptotically as ε → 0. Here, we recover the familiar Michaelis–
Menten equation in the limit when the concentrations of both enzyme and inhibitor
approach zero of order ε. (The same reduction is obtained for k3 = εk∗

3 and e0 = εe∗
0.)

From a different perspective, when the term k3i0 vanishes, the subspace W :=
{(s, c1, c2) ∈ R

3 : c2 = 0} is invariant, and a slight perturbation (not necessarily
of order ε) results in the near-invariance of W . Considering the expressions (69) and
(70) for ε∗ and μ∗, respectively, one sees that k3i0 → 0 has no strong effect on these
parameters and that εM M is a good upper estimate for εU . One may rewrite (68) as

ṡ = − k1e0k2s

k1s(1 + k3i0/k−3) + k−1 + k2
, (73)

thus, when k3i0/k−3 � 1, then the standard Michaelis–Menten reduction is approx-
imately valid. In this case, the dynamics are effectively two-dimensional. Hence (for
the given initial values) the magnitude of μU is irrelevant, and (68) will hold even if
1 < k1e0/k−3 and 1 < μU

20 since εM M � 1 automatically ensures the validity of
(68) when W is nearly invariant (see, Fig. 8).

6.3 Competitive Inhibition ReactionMechanism

The irreversible competitive inhibition reaction mechanism

E + S
k1�

k−1
C1

k2
⇀ E + P,

E + I
k3�

k−3
C2

(74)

20 The implicit assumptions in the proof of Proposition 3 are then not satisfied.
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Fig. 8 Uncompetitive inhibition reaction mechanism: Near-invariance may lead to scenarios in which the
reduction 68) is accurate even when 1 < μU . The solid black curve is the numerical solution to (65).
The broken red curve is the numerical solution to (68). Time has been mapped to the τ scale: τ = t/T ,
τ ∈ [0, 1]. The parameters (in arbitrary units) are: k1 = 1.0, e0 = 1.0, k−3 = 10−1, k3 = 10−2,
i0 = 10−3, k2 = k−1 = 102 with εU ≈ 2.5 × 10−3 and μU ≈ 5.0. Left panel: s0 = 10.0. Right panel:
The long-time validity is verified with s0 = 10−1. Note that k1e0/k−3 is large, thus μU is of order one.
However, since k3i0/k−3 = 10−2 and c1(0) = c2(0) = 0, the dynamics prior to reduction are essentially
two-dimensional. Consequently, (68) holds since εM M � 1 (Color figure online)

corresponds (with mass action kinetics and stoichiometric conservation laws) to the
ODE system

ṡ = − k1(e0 − c1 − c2)s + k−1c1,
ċ1 = k1(e0 − c1 − c2)s − (k−1 + k2)c1,
ċ2 = k3(e0 − c1 − c2)(i0 − c2) − k−3c2.

(75)

The usual initial conditions are s(0) = s0, e(0) = e0, i(0) = i0 and c1(0) = c2(0) =
p(0) = 0. We fix a reference value e∗

0, and then from the conservation laws we obtain
the compact positively invariant set

K := {(s, c1, c2) ∈ R
3≥0 : 0 ≤ s ≤ s0, 0 ≤ c1 ≤ e∗

0, 0 ≤ c2 ≤ min{e∗
0, i0}}.

The parameter space � = R
8≥0 has elements

(e0, s0, i0, k1, k−1, k2, k3, k−3)
tr,

and it is known that e0 = 0, with all other parameters positive, defines a TFPV,

π̂ := (0, s0, i0, k1, k−1, k2, k3, k−3)
tr (76)

with corresponding critical manifold

˜Y := {(s, c1, c2) ∈ R
3≥0 : c1 = c2 = 0}.

(see, below for nondegeneracy conditions on the remaining parameters.)We choose the
parameter ray direction ρ = (e∗

0, 0, . . . , 0)
tr , with e0 = εe∗

0. The singular perturbation
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reduction (see, Goeke and Walcher 2014, Section 3.2) yields the equation

ṡ = − k1k−3k2e0s

(k1s + k−1 + k2)k−3 + k3i0(k−1 + k2)
. (77)

The reduced equation (68) has been previously reported in the literature (see, e.g.,
Schnell andMendoza 2001). Note that the reduction (77) again differs from the classi-
calQSS reduction (see, e.g., Keener andSneyd 2009, Section 1.4.3).However, (77) and
the classical reduction agree up to a term of order ε2 and are therefore asymptotically
equivalent.

6.3.1 Asymptotic Small Parameters

The coefficients of the characteristic polynomial on the critical manifold are

σ1 = k1s + k−1 + k2 + k3i0 + k−3;
σ2 = k−3k1s + (k3i0 + k−3)(k−1 + k2);
σ̂3 = k2k1e∗

0 · (k3i0 + k−3) .

We generally assume that all parameters are contained in a compact subset of the
positive orthant, hence are bounded above by certain positive constants. Moreover
σ1(π̂, s) and σ2(π̂, s) satisfy the TFPV property

k3i0 + k−3 + k−1 + k2 = min σ1 > 0,
(k−1 + k2)(k3i0 + k−3) = min σ2 > 0

if and only if k−1+k2 and k3i0+k−3 are bounded below by certain positive constants.
More restrictively, we will assume that i0 is bounded below by some positive constant.
Finally k2 and k−3 should be bounded below by positive constants, lest the reduced
equation (77) is too close to trivial.

With σ1, σ2 and σ̂3 evaluated at π̂ , we obtain the distinguished small parameter

ε∗ = ε sup
̂Y∩K

σ̂3(s, π̂ , ρ, 0)

σ1(s, π̂)σ2(s, π̂)

= k2k1e0
(k−1 + k2)2

· k−1 + k2
k−1 + k2 + k3i0 + k−3

= εM M · k−1 + k2
k−1 + k2 + k3i0 + k−3

:= εI

(78)

To verify the equalities, note that σ̂3 is constant while σ1, σ2 are increasing with s.
It is straightforward to check that σ 2

1 − 4σ2 ≥ 0, thus all eigenvalues are real, and
Proposition 3 is applicable. Determining the parameter μ∗ requires a distinction of
cases. The derivative of

s �→ q(s) := σ̂3(s, π̂ , ρ, 0)σ1(s, π̂)

σ2(s, π̂)2
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is a rational function in s with numerator of degree one. Both coefficients are negative
if and only if

2k−3(k3i0 + k−3) + k−3(k−1 + k2) ≥ (k−1 + k2)i0k3, (79)

otherwise they have opposite signs.Note that (79) is satisfiedwhenever (k3i0)/(k−3) ≤
1. This inequality admits a direct interpretation in terms of the reactionmechanism. On
the one hand, it places a lower bound on the allowable size of k−3. More importantly,
it holds whenever the inhibitor concentration is not too high, thus it is controllable by
experimental design.

When (79) holds then s �→ q(s) is strictly decreasing for s ≥ 0, and

μ∗ = μ
(1)
I := ε

σ̂3(0, π̂ , ρ, 0)σ1(0, π̂)

σ2(0, π̂)2
= εM M · k−1 + k2 + k3i0 + k−3

k3i0 + k−3
. (80)

Whenever (79) does not hold then a straightforward calculation shows that the
maximum of s �→ q(s) for 0 ≤ s < ∞ is given by

μ∗ = μ
(2)
I = k2k1e0 · (k3i0 + k−3)

4k−3 ·
(

k3i0(k−1 + k2) − k−3(k3i0 + k−3)

)

= εM M · (k−1 + k2)2 · (k3i0 + k−3)

4k−3 ·
(

k3i0(k−1 + k2) − k−3(k3i0 + k−3)

) .

(81)

This expression is somewhat unwieldy. But μ
(2)
I admits an obvious lower bound,

obtained by discarding the negative term in the denominator:

μ
(2)
I ≥ 1

4
· k1k2e0

k−3(k−1 + k2)
·
(

1 + k−3

k3i0

)

.

Moreover, the negation of (79) provides an estimate for the denominator which yields
an upper bound

μ
(2)
I ≤ 1

4
· k2k1e0(k3i0 + k−3)

k2−3(k3i0 + k−3 + k−1 + k2)
.

The lower bound shows that it is necessary to require k1e0 � min{k−3, k3i0}whenever
k−1 and k2 are of the same order.
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Finally, whenever s0 is not too large one may also consider the estimate

μ∗ ≤ ε
σ̂3(s0, π̂ , ρ, 0)σ1(s0, π̂)

σ2(0, π̂)2

= k2k1e0
(k−1 + k2)2

· k1s0 + k−1 + k2 + k3i0 + k−3

k3i0 + k−3

= εM M · k1s0 + k−1 + k2 + k3i0 + k−3

k3i0 + k−3
=: μ̃I ,

(82)

which is a direct consequence of monotonicity properties of the σ j . This inequality is
exact whenever (79) does not hold and s0 is smaller than the argument of max q.

6.3.2 Numerical Simulations

Generally, by Fenichel theory the accuracy of the reduction (77) improves along the
parameter ray as εI → 0 and μ

(i)
I → 0, for i = 1, 2, respectively. Continuing

the procedure employed in the previous case studies, we illustrate the efficacy of
the qualifiers εI � 1, μ(i)

I � 1 (with appropriate index i) with several numerical
simulations:

1. For our first example, we once again consider the case in which all parameters
except e0 are equal, which is a representative of parameters of the samemagnitude.
Numerical simulations confirm that the accuracy of (77) improves as εI → 0 and
μ

(1)
I → 0 (see, Fig. 9).

2. In our second example, we demonstrate the effectiveness of εI and μ
(i)
I with

parameters that have disparate magnitudes. We observe that μ
(1)
I is the definitive

indicator of the accuracy of (77) when (79) holds, whileμ
(2)
I is the indicator of the

accuracy of (77) whenever (79) fails, reflecting the fact that one eigenvalue must
have much smaller absolute value than the other two (see, Figs. 10, 11).

6.3.3 Near-Invariance

As in the previous sections, we now discuss special instances of near-invariance. The
inhibitory mechanism can be turned off by requiring k3i0 = 0, which implies that,
for sufficiently small k3 or i0, the subspace U := {(s, c1, c2) ∈ R

3 : c2 = 0} will
be nearly invariant. One perspective is to define the parameter ray by k3 = εk∗

3 and
e0 = εe∗

0. Then, the perturbation form of the mass action equations is

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠=
⎛

⎝

k1s + k−1 k1s
−k1s − (k−1 + k2) −k1s

0 −k−3

⎞

⎠

(

c1
c2

)

+ ε

⎛

⎝

−k1e∗
0s

k1e∗
0s

−k∗
3(c1 + c2)(i0 − c2)

⎞

⎠+O(ε2).
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Fig. 9 Competitive inhibition reaction mechanism: With parameters of unit magnitude, and (79) valid,
numerical simulations indicate that the accuracy of (77) improves along the parameter ray as both εI → 0

and μ
(1)
I → 0. In all panels, the parameters (in arbitrary units) are: s0 = 1.0, k1 = 1.0, k2 = 1.0,

k−1 = 1.0, k3 = 1.0, k−3 = 1.0 and i0 = 1.0. The solid black curve is the numerical solution to the mass
action system (75). The broken red curve is the numerical solution to (77). Time has been mapped to the τ

scale: τ = t/T , τ ∈ [0, 1] Top Left panel: e0 = 1.0 with εI = 1.25 × 10−1 and μ
(1)
I = 5 × 10−1. Top

Right panel: e0 = 10−1 with εI = 1.25 × 10−2 and μ
(1)
I = 5 × 10−2. Bottom Left panel: e0 = 10−2

with εI = 1.25 × 10−3 and μ
(1)
I = 5 × 10−3. The reduction (77) is nearly indistinguishable from (75).

Bottom Right panel: e0 = 10−4 with εI = 1.25× 10−4 and μ
(1)
I = 5 × 10−4. The QSS reduction (77) is

again practically indistinguishable from (75) (Color figure online)

The QSS reduction is obtained by projecting the leading order perturbation onto the
critical manifold, thus

⎛

⎝

ṡ
ċ1
ċ2

⎞

⎠ = ε

⎛

⎜

⎜

⎝

1
k1s + k−1

k1s + k−1 + k2

k1k2s

(k1s + k−1 + k2)k−3
0 0 0
0 0 0

⎞

⎟

⎟

⎠

⎛

⎝

−k1e∗
0s

k1e∗
0s

0

⎞

⎠ ,

from which we recover

ṡ = − k1k2e0s

k1s + k−1 + k2
,
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Fig. 10 Competitive inhibition reaction mechanism: When parameter values are disparate in magnitude,

numerical simulations indicate that the accuracy of (77) improves along the parameter ray as μ
(1)
I → 0

when (79) holds. In all panels, the parameters (in arbitrary units) are: s0 = 10.0, k1 = 1.0, k2 = k−1 = 102,
k3 = k−3 = 10−1 and i0 = 1.0. The solid black curve is the numerical solution for s to the mass action
system (75). The broken red curve is the numerical solution to (77). Time has been mapped to the τ scale:

τ = t/T , τ ∈ [0, 1]. Top Left panel: e0 = 1.0, εI ≈ 2.5 × 10−3, and μ
(1)
I ≈ 2.5. Top Right panel:

e0 = 10−1, εI ≈ 2.5 × 10−4, and μ
(1)
I ≈ 2.5 × 10−1. Bottom Left panel: e0 = 10−2, εI ≈ 2.5 × 10−5,

and μ
(1)
I ≈ 2.5 × 10−2. Bottom Right panel: e0 = 10−3, εI ≈ 2.5 × 10−6, μ

(1)
I ≈ 2.5 × 10−3 and

the QSS reduction (77) is nearly indistinguishable from (75). Collectively, these simulations indicate that

μ
(1)
I � 1 is the qualifier that ensures the validity of (77) when (79) holds (Color figure online)

i.e., the sQSSA of the MM reaction mechanism. This is not surprising. With initial
conditions s(0) = s0, c1(0) = c2(0) = 0, the dynamics are approximately two-
dimensional. From a different perspective (taking independent limits), we can write
(77) as

ṡ = − k1k2e0s

k1s + (k−1 + k2)

(

1 + k3i0
k−3

)
,

fromwhich it is clear by inspection that the sQSSA is recoverable from (77) whenever
k3i0/k−3 � 1. Consequently, whenever k3i0/k−3 � 1 we need only consider the
magnitude of εI to ascertain the accuracy of (77) (see, Fig. 12).
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Fig. 11 Competitive inhibition reaction mechanism: When parameter values are disparate in magnitude,

numerical simulations indicate that the accuracy of (77) improves along the search direction as μ
(2)
I → 0

when (79) fails. In all panels, the parameters (in arbitrary units) are: s0 = 10.0, k1 = 1.0, k2 = k−1 = 102,
k−3 = 10−2 and k3 = i0 = 1.0. The solid black curve is the numerical solution for s to the mass action
system (75). The broken red curve is the numerical solution to (77). Time has been mapped to the τ scale:

τ = t/T , τ ∈ [0, 1]. Top Left panel: e0 = 1.0, εI ≈ 2.5 × 10−3, and μ
(2)
I ≈ 12.6. Top Right panel:

e0 = 10−1, εI ≈ 2.5× 10−4, and μ
(2)
I ≈ 12.6× 10−1. Bottom Left panel: e0 = 10−2, εI ≈ 2.5× 10−5,

and μ
(2)
I ≈ 12.6 × 10−2. Bottom Right panel: e0 = 10−3, εI ≈ 2.5 × 10−6, and μ

(2)
I ≈ 12.6 × 10−3.

Observe the QSS reduction (77) is nearly indistinguishable from (75), which indicates that μ(2)
I � 1 is the

qualifier that ensures the validity of (77) when (79) fails (Color figure online)

7 Case Studies: Reduction fromDimension Three to Two

In this section,we further discuss the uncompetitive and competitive inhibition reaction
mechanisms, but now we consider exemplary cases of reduction to dimension two.
These scenarios are of less practical relevance than those in the previous section, but
we present them for illustrative purposes. We will provide less detailed discussions,
and will be content to show the feasibility of the method. The results from Sect. 5,
in particular Proposition 5 and Sect. 5.4, will be employed. The determination of
distinguished parameters now amounts to finding (or estimating) the maximum and
minimum of rational functions in two variables on some compact set.
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Fig. 12 Competitive inhibition reaction mechanism: If k3i0/k−3 � 1, the subspace U is nearly invariant,
and (77) will be accurate provided εRS � 1. In both panels, the parameters (in arbitrary units) are:
e0 = 10.0, k1 = 1.0, k2 = k−1 = 103, k3 = 10−7, k−3 = 10−1 and i0 = 100. It is straightforward

to verify that (79) is satisfied, and that εM M = 2.5 × 10−3, and μ
(1)
I ≈ 50. The solid black curve is the

numerical solution for s to the mass action system (75). The broken red curve is the numerical solution to
(77). Time has beenmapped to the τ scale: τ = t/T , τ ∈ [0, 1].Left panel: s0 = 10.0 and the reduction (77)
is very accurate. Right panel: Here s0 = 10−1 and the reduction (77) is still accurate; this confirms the
long-time validity of (77) is regulated by the magnitude of εM M whenever k3i0/k−3 � 1 (Color figure
online)

7.1 Uncompetitive Inhibition ReactionMechanism

For the uncompetitive inhibition reaction mechanism, (64) and (65), one sees that
k1 = k−3 = 0, with all other parameters contained in some compact subset of the open
positive orthant, defines a TFPV π̂ , with a two-dimensional critical manifold ˜Y given
by c1 = 0. The TFPV conditions mean that both elementary reactions responsible for
the formation of C1 are slow.

We consider system (65) with initial values s(0) = s0, c1(0) = c2(0) = 0 on the
compact positively invariant set

K := {(s, c1, c2) ∈ R
3≥0 : 0 ≤ s ≤ s0, c1 + c2 ≤ e0, c2 ≤ min{e0, i0}},

and take the ray direction

ρ = (0, 0, k∗
1 , 0, 0, 0, k∗−3)

tr

in parameter space, with ki = εk∗
i , k∗

i > 0, for i ∈ {1, −3}. Straightforward
computations yield the reduced system

(

ṡ
ċ2

)

= 1

k−1 + k2 + k3(i0 − c2)

(−k1(e0 − c2)(k2 + k3(i0 − c2))s + k−3k−1c2
k1k3(e0 − c2)(i0 − c2)s − k−3(k−1 + k2)c2

)

,

(83)

with initial conditions s(0) = s0, c2(0) = 0. A straightforward phase plane analysis
of system (83) (respectively, of the orbitally equivalent system with the common
denominator discarded) shows that every solution in the positive quadrant converges
to the stationary point 0.
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7.1.1 Asymptotic Small Parameters

We now determine dimensionless parameters that gauge the accuracy of (83). For the
sake of brevity, we will restrict attention to the case e0 > i0. The coefficients of the
characteristic polynomial on ˜Y are given by

σ̃1 = k−1 + k2 + k3(i0 − c2) + ε (· · · )
σ̃2 = k1 (k3(i0 − c2)(e0 − c2 + s) + k2(e0 − c2)) + k−3(k−1 + k2) + ε2 (· · · )
σ̃3 = k1k−3k2(e0 − c2).

Thus,

σ1 = k−1 + k2 + k3(i0 − c2)
σ̂2 = k∗

1 (k3(i0 − c2)(e0 − c2 + s) + k2(e0 − c2)) + k∗−3(k−1 + k2)
σ̂3 = k∗

1k∗−3k2(e0 − c2),

and the first nondegeneracy condition from Lemma 7 is satisfied since e0 > i0.
According to Propositions 5 and 6 and their proofs, for timescale comparisons we

consider the rational function

q(s, c2) = σ̂2(s, c2.π̂ , ρ, 0)

σ1(s, c2, π̂)2
, 0 ≤ s ≤ s0, 0 ≤ c2 ≤ i0.

Since σ̂2 decreases with c2 and increases with s, while σ1 decreases with c2, we obtain
an upper estimate from

ε∗ ≤ ε
max σ̂2

(min σ1)2
= k1(k3i0(e0 + s0) + k2e0) + k−3(k−1 + k2)

(k−1 + k2)2
=: δ∗.

Moreover from ε∗ ≥ q(s0, 0), we find that

k1(k3i0(e0 + s0) + k2e0) + k−3(k−1 + k2)

(k−1 + k2 + k3i0)2
≤ ε∗.

Likewise, we obtain lower timescale estimates from

ε∗ ≥ ε
min σ̂2

(max σ1)2
= k1k2(e0 − i0) + k−3(k−1 + k2)

(k−1 + k2 + k3i0)2
=: δ∗.

Thus, for i0 not too large, the estimates by δ∗ and δ∗ are quite acceptable.
To estimate the disparity of the sloweigenvalues, according toSect. 5.4,we consider

κ∗ = max
σ1σ̂3

σ̂ 2
2

≤ (k−1 + k2 + k3i0)k∗
1k∗−3k2e0

(k∗
1k2e0 + k∗−3(k−1 + k2))2

=: ν∗
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Fig. 13 Uncompetitive inhibition reaction mechanism with reduction to dimension two. In all panels, the
parameters (in arbitrary units) are: e0 = 2.0, s0 = 1.0, k2 = k−1 = 1.0, k3 = 1.0, and i0 = 1.0. The
solid black curve is the numerical solution to the mass action system (65). The dashed/dotted red curve is
the numerical solution to (83). Time has been mapped to the τ scale: τ = t/T , τ ∈ [0, 1]. Top panels:
k1 = k−3 = 10−1 with δ∗ = 1.75× 10−1 and δ∗ = 3.33× 10−2. Bottom panels: k1 = k−3 = 10−3 with
δ∗ = 1.75 × 10−3 and δ∗ = 3.33 × 10−4. As expected, the accuracy of (83) improves as the perturbation
decreases along the parameter ray (Color figure online)

as well as

κ∗ = min
σ1σ̂3

σ̂ 2
2

≥ (k−1 + k2)k∗
1k∗−3k2(e0 − i0)

(k∗
1(k3i0(e0 + s0) + k2e0) + k∗−3(k−1 + k2))2

=: ν∗.

Whenever i0 is not too large, these two parameters are close, and so are the slow
eigenvalues.

7.1.2 Numerical Simulations

From Fenichel theory, it is known that the accuracy of the reduction (83) improves
along the perturbation direction as ε → 0. We include some numerical simulations to
gauge the efficacy of the parameter δ∗:

1. Following the outline established in Sect. 6, we first consider a case when all
parameters are of unit order. Numerical simulations confirm that the accuracy of
(83) improves as δ∗ → 0 along the parameter ray direction (see, Fig. 13 ). We
include the values of δ∗ to indicate the variation of timescale ratios.
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Fig. 14 Uncompetitive inhibition reactionmechanismwith reduction to dimension two and disparate param-
eter values. In all panels, the parameters (in arbitrary units) are: e0 = 10.0, s0 = 5.0, k2 = 103, k−1 = 102,
k3 = 10.0, and i0 = 1.0. The solid black curve is the numerical solution to the mass action system (65).
The broken red curve is the numerical solution to (83). Time has been mapped to the τ scale: τ = t/T ,
τ ∈ [0, 1]. Top panels: k1 = k−3 = 102 with δ∗ ≈ 9.3 × 10−1 and δ∗ ≈ 8.2 × 10−1. Bottom panels:
k1 = k−3 = 1.0 with δ∗ ≈ 9.3 × 10−3 and δ∗ ≈ 8.3 × 10−3. Again, it is clear that the accuracy of (83)
improves as the perturbation decreases along the parameter ray. Notably, the approximation in the second
case is very good although k1 = k−3 = 1. (As always, the expression “� 1” should not be taken too
literally.) As for measuring the discrepancy of the “slow” eigenvalues, one finds κ∗ ≥ ν∗ ≈ 7.8 · 10−2 and
κ∗ ≤ ν∗ ≈ 9.0 · 10−2. This indicates a ratio of about 10−1 (Color figure online)

2. In a second set of simulations, we consider the case of parameter values that
are disparate in magnitude. Numerical simulations confirm once again that the
accuracy of (83) improves along the parameter ray direction as δ∗ → 0 (see,
Fig. 14).

7.2 Competitive Inhibition ReactionMechanism

For the competitive inhibition reaction mechanism, (74) and (75), we consider the
case that formation of complex C1, and both formation and degradation of complex
C2, are slow. Setting k1 = k3 = k−3 = 0, with all the other parameters contained in
a compact subset of the positive orthant, defines a TFPV π̂ for dimension s = 2, the
critical manifold ˜Y being given by c1 = 0 (see, Kruff andWalcher 2019). We consider
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the system on the compact positively invariant set K defined by

K := {(s, c1, c2) ∈ R
3≥0 : 0 ≤ s ≤ s0, 0 ≤ c1 ≤ e0, 0 ≤ c2 ≤ min{e0, i0}},

choosing the ray direction

ρ = (0, 0, k∗
1 , 0, 0, k∗

3 , k∗−3)
tr

in parameter space, and ki = εk∗
i with k∗

i > 0 for i ∈ {1, 3, −3}. Standard
computations yield the reduced system

ṡ = − k1k2
k−1 + k2

(e0 − c2)s

ċ2 = k3(e0 − c2)(i0 − c2) − k−3c2
(84)

with initial conditions s(0) = s0, c2(0) = 0. The qualitative behavior of this system
is easily determined. All solutions in the positive quadrant converge to a stationary
point (0, c∗

2), with 0 < c∗
2 < min{e0, i0}.21

7.2.1 Asymptotic Small Parameters

For the sake of brevity, we will consider only the case e0 > i0. The coefficients of the
characteristic polynomial on ˜Y are

σ̃1 = k−1 + k2 + ε (· · · )
σ̃2 = k1k2(e0 − c2) + k3(e0 + i0 − 2c2)(k−1 + k2) + k−3(k−1 + k2) + ε2 (· · · )
σ̃3 = k1k3 · (k2e0(e0 + i0 − 2c2) + k2c2(2c2 − e0 − i0)) + k1k−3 · k2(e0 − c2),

and we obtain

σ1 = k−1 + k2
σ̂2 = k∗

1k2(e0 − c2) + k∗
3(e0 + i0 − 2c2)(k−1 + k2) + k∗−3(k−1 + k2)

σ̂3 = k∗
1k2(e0 − c2)

(

k∗
3(e0 + i0 − 2c2) + k∗−3

)

.

The nondegeneracy conditions are satisfied (also at c2 = i0), due to e0 > i0. As for
timescales, we need to analyze the rational function

q(s, c2) = σ̂2(s, c2, π̂ , ρ, 0)

σ1(s, c2, π̂)2
, 0 ≤ s ≤ s0, 0 ≤ c1 ≤ e0, 0 ≤ c2 ≤ i0.

Since σ1 is constant and σ̂2 is decreasing with c2, attaining its maximum at c2 = 0,
and its minimum at c2 = i0, we find the distinguished parameters

ε∗ = k1k2e0 + (k3(e0 + i0) + k−3)(k−1 + k2)

(k−1 + k2)2

21 Incidentally, it is possible to compute the solutions to (84) via quadratures. The second equation is
separable, and upon substitution the first equation is non-autonomous linear.
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and

ε∗ = k1k2(e0 − i0) + (k3(e0 − i0) + k−3)(k−1 + k2)

(k−1 + k2)2
.

Furthermore, according to Sect. 5.4, we consider

κ∗ = max
σ1σ̂3

σ̂ 2
2

≤ k∗
1k2e0(k∗

3(e0 + i0) + k∗−3)(k−1 + k2)
(

k∗
1k2(e0 − i0) + (k∗

3(e0 − i0) + k∗−3)(k−1 + k2)
)2 =: ν∗

(85)

and

κ∗ = min
σ1σ̂3

σ̂ 2
2

≥ k∗
1k2(e0 − i0)(k∗

3(e0 − i0) + k∗−3)(k−1 + k2)
(

k∗
1k2e0 + (k∗

3(e0 + i0) + k∗−3)(k−1 + k2)
)2 =: ν∗ (86)

to measure the disparity between the eigenvalues λ2 and λ3.

7.2.2 Numerical Simulations

We present numerical examples to gauge the accuracy of the reduction (84) with
decreasing ε∗:

1. For our first example, we consider the case with π :=
ε(k∗

1 , 1.0, 1.0, 1.0, 1.0., k∗
3 , k∗−3, 1.0)

tr. (see, Fig. 15 ). We include the values
of ε∗, ε∗ to indicate the variation of timescale ratios.

2. For our second example, we again consider a case when parameters are of
differing magnitudes. Once more, numerical simulations confirm that the QSS
reduction (84) improves as ε∗ → 0 along the parameter ray (see, Fig. 16).

7.2.3 The Case of Very Small k1: Three Timescales

Finally, we discuss a scenario mentioned in Sect. 5.4. From equations (85) and (86),
below one sees that both κ∗ and κ∗ approach zero as k∗

1 → 0. This may indi-
cate three timescales. Moreover, from equation (75), one sees that the plane defined
by c1 = 0 is invariant when k1 = 0, thus nearly invariant when k1 is small. A
coordinate-independent approach to a three-timescale scenario was presented in Kruff
and Walcher (2019), based on work of Cardin and Texeira (2017). We introduce two
small parameters ε1, ε2 and

k3 = ε1k†3, k−3 = ε1k†−3, k1 = ε1ε2k†1,

and rewrite system (75)with three timescales.As detailed inKruff andWalcher (2019),
the system admits a sequence of two reductions, with nested invariant manifolds:
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Fig. 15 Competitive inhibition reaction mechanism with reduction to dimension two. The accuracy of
(84) improves along the parameter ray. In all panels, the parameters (in arbitrary units) are: e0 = 1.0,
s0 = 1.0, k2 = 1.0, k−1 = 1.0, and i0 = 1.0. The solid black curve is the numerical solution to the
mass action system (75). The broken red curve is the numerical solution to (84). Time has been mapped
to the τ scale: τ = t/T , τ ∈ [0, 1]. Top panels: Simulation performed with k1 = k−3 = k3 = 10−1

and ε∗ = 1.75 × 10−1, ε∗ = 5.0 × 10−2. Bottom panels: Simulation performed with k1 = k−3 = k3 =
10−3 and ε∗ = 1.75 × 10−3, ε∗ = 5.0 × 10−4. The singular perturbation reduction (84) is practically
indistinguishable from (75) (Color figure online)

A reduction to slow dynamics on a two-dimensional invariant manifold close to
c1 = 0, with reduced system

⎛

⎜

⎝

ds

dτ1
dc2
dτ1

⎞

⎟

⎠
=

(

0
k†3(e0 − c2)(i0 − c2) − k†−3c2

)

(87)

with τ1 = ε1t .
A subsequent reduction to “very slow” dynamics on a one-dimensional invariant

manifold close to c1 = 0, c2 = c̃2, with

c̃2 =
k3(e0 + i0) + k−3 −

√

(k3(e0 + i0) + k−3)2 − 4e0i0k23
2k3

.
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Fig. 16 Competitive inhibition reaction mechanism with reduction to dimension two and disparate param-
eters. In all panels, the “non-small” parameters (in arbitrary units) are: e0 = 102, s0 = 102, k2 = 102,
k−1 = 1.0, and i0 = 10.0. The solid black curve is the numerical solution to the mass action system (75).
The broken red curve is the numerical solution to (84). Time has been mapped to the τ scale: τ = t/T ,
τ ∈ [0, 1]. Top panels: Simulation performed with k1 = k−3 = k3 = 1.0 and ε∗ ≈ 2.08, ε∗ ≈ 1.78.
This scenario is outside the range of applicability for Proposition 6. Bottom panels: Simulation performed
with k1 = k−3 = k3 = 10−2 and ε∗ ≈ 2.08 × 10−2, ε∗ ≈ 1.78 × 10−2. The singular perturbation
reduction (84) here is very close to (75) (Color figure online)

The fully reduced one-dimensional equation is then

ds

dτ2
= −k2 · k†1(e0 − c̃2)

k−2 + k−1
s

with τ2 = ε1ε2t , or, restated in fast time,

ṡ = −k2 · k1(e0 − c̃2)

k−2 + k−1
s. (88)

Figure 17 illustrates the “slow–very slow” dynamics for a numerical example.

8 Discussion

While the underlying theory and the qualitative analysis concerning the reduction of
biochemical and chemical reaction networks is well understood and rests on solid

123



Natural Parameter Conditions for Singular Perturbations of… Page 65 of 75 48

Fig. 17 Competitive inhibition reaction mechanism with a three timescale scenario. In both panels, the
parameters (in arbitrary units) are: s0 = 10.0, e0 = 102, k1 = 1 × 10−4, k2 = 2 × 103, k−1 =
1.0,k3 = 10−1, k−3 = 10−3 and i0 = 50.0. The solid black curve is the numerical solution to the
mass action system (75). The dashed/dotted red curves are the numerical solutions to (87) and (88). Time
has been mapped to the τ scale: τ = t/T . For the chosen parameter values, ε∗ ≈ 7.5 × 10−3 and
ε∗ ≈ 2.5×10−3. Moreover, the two slow eigenvalues are disparate since ν∗ ≈ 6×10−3, this is consistent
with a three timescale scenario. Top Left panel: The initial accumulation of c1 occurs on the fast timescale;
the concentrations of c2 and s are approximately constant on the fast timescale. Top Right panel: The
reduction (87) is accurate on the slow timescale as c2 approaches its threshold value, c̃2. Bottom Left panel:
The reduction (88) is accurate on the very slow timescale, τ2, on which the depletion of s is significant.
Bottom Right panel: On the very slow timescale, c2 is effectively constant: c2 ≈ c̃2 (Color figure online)

ground, there is a sizable gap between available theory and applications to parameter
identification problems in laboratory settings, where heuristics and ad hoc approaches
are (perforce) still prevalent. Closing the gap requires further, more precise theoreti-
cal results. The present paper contributes toward this goal, by introducing a general
consistent method to obtain perturbation parameters, based on local linear timescales.
Note that by its nature, our approach is focused on and limited to the local behavior.

We briefly recall the context and reviewing the results of the present paper:

1. We start from a singular perturbation reduction with a well-defined critical man-
ifold. This is crucial to ensure appropriateness of linearizability. Considering the
three steps (as outlined in Introduction) that are necessary for a global quantita-
tive estimate of the approximation error, our results amount to an essential part of
Step 1. In absence of results concerning Steps 2 and 3, direct applications are lim-
ited. But, our results permit consistency checks, which show that certain common
perturbation parameters are not feasible.
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2. Using classical results from algebra to approximate eigenvalue ratios in the asymp-
totic limit, we obtained parameters that are computable, palatable, and admit a
biochemical interpretation.

3. We first applied our methods to the Michaelis–Menten reaction mechanism. As it
turns out, even for such a familiar system our approach provides new and elucidat-
ing perturbation parameters. Moreover, we included a partial discussion of Step 3
for the irreversible system with small product formation rate.

4. For two relevant extensions of the Michaelis–Menten reaction mechanism (like
the uncompetitive inhibition and competitive inhibition), and a non-Michaelis–
Menten reaction mechanism (like the cooperative system with two complexes),
we derived perturbation parameters in the spirit of Segel and Slemrod (1989), but
without resorting to nonlinear timescales. This stands in contrast to the practice of
using εB H or εSSl , or ad hoc modifications of these. We augmented these results
by an extensive discussion of numerical examples to illustrate the efficacy of these
parameters, but also to highlight the importance of the compactness requirements
we impose throughout. We also discussed one case that leads to a system with
three timescales.

5. Finally, we discussed exemplary cases of reduction from dimension three to
dimension two for both reaction inhibition scenarios, to verify the feasibility of
our approach. Numerical simulations illustrate the quality and accuracy of the
approximations.

The remaining items (Step 2 and Step 3) as stated in the Introduction need to be
handled on a case-by-case basis.Wewill provide a complete analysis of the irreversible
Michaelis–Menten reaction mechanism with low enzyme in forthcoming work.

9 Appendix

In this section, we collect some technical matters and proofs, as well as recalling some
known results for which a concise presentation seems appropriate and useful.

9.1 Lyapunov Function Arguments

Lyapunov functions can be used to estimate the approach to the slow manifold in a
singularly perturbed system, as was mentioned in Introduction. This estimate gives
rise to a small parameter εL which controls the distance of the solution to the slow
manifold. We give an account of the relevant facts here.

We first state an auxiliary result that goes back to Lyapunov.

Lemma 5 Let Q be a real n × n-matrix, with eigenvalues μ1, . . . , μn, and let δ > 0.
Then there exists a scalar product 〈·, ·〉 on R

n such that for all x one has

(

min
1≤i≤n

Reμi − δ

)

〈x, x〉 ≤ 〈x, Qx〉 ≤
(

max
1≤i≤n

Reμi + δ

)

〈x, x〉 ,
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and
(

min
1≤i≤n

|μi |2 − δ

)

〈x, x〉 ≤ 〈Qx, Qx〉 ≤
(

max
1≤i≤n

|μi |2 + δ

)

〈x, x〉 .

This can be proven as in Walter (1998, Chapter VII, §30) [see, also Arnold (1992,
Chapter 22)]. For matrices that are diagonalizable over C build a real basis from real
and imaginary parts of a complex eigenbasis. For the non-diagonalizable case, by
suitable choice of basis elements the nilpotent part can be chosen to have norm < δ.

9.1.1 Estimates

This presentation follows (Berglund andGentz 2006, Section2.1 ff.), but for illustrative
purposes, we are satisfied with a local version. Consider a smooth system

ẋ = ε ˜f1(x, y, ε)

ẏ = f2(x, y, ε)
, briefly

(

ẋ
ẏ

)

= F(

(

x
y

)

) (89)

with

(

x
y

)

in some open subset of Rn , x ∈ R
m , and a nonnegative parameter ε. More-

over let

(

x0
y0

)

be such that f2(x0, y0, 0) = 0, and M a suitable compact neighborhood

of this point. (More conditions on M will be implicitly imposed below, by further
assumptions.)

• Assume furthermore that

f2(x, y, ε) = 0 ⇐⇒ y = g(x, ε)

for

(

x
y

)

∈ M and ε ≤ εmax, with some positive εmax and a smooth function g. The

zero set Yε of f2(·, ·, ε) in M will be called the slowmanifold, or QSS manifold,22

for ε. By Hadamard’s lemma, after possibly shrinking M there exists a smooth
matrix valued function A such that

f2(x, y, ε) = A(x, y, ε) · (y − g(x, ε)).

Thus, we may rewrite system (89) as

ẋ = ε ˜f1(x, y, ε)

ẏ = A(x, y, ε) · (y − g(x, ε)).
(90)

With

Dy f2(x, y, ε) = A(x, y, ε) + (

Dy A(x, y, ε)
)

(y − g(x, ε)),

22 This is an order ε approximation of the slow manifold in a singular perturbation setting.
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one finds in particular

Dy f2(x, y, ε) = A(x, y, ε) on Yε.

• Now assume that all eigenvalues of A(x0, y0, 0) have negative real parts. By conti-
nuity and suitable choice of M and εmax, all eigenvalues of A(x, y, ε) have negative

real part for

(

x
y

)

∈ M and 0 ≤ ε ≤ εmax. Due to Lemma 5, there exists a scalar

product 〈·, ·〉 on R
n−m and some γ > 0 such that

〈z, A(x0, y0, 0)z〉 ≤ −2γ 〈z, z〉 , all z ∈ R
n−m .

(Recall the correspondence between 2γ and eigenvalues.) Thus, we may assume
that

〈z, A(x, y, ε)z〉 ≤ −γ 〈z, z〉 , all z ∈ R
n−m, (91)

on M , with 0 ≤ ε ≤ εmax. Denote by ‖ · ‖ the norm associated with this scalar
product.

The following line of arguments is a slight variant of classical reasoning [which uses
Gronwall’s lemma, see, e.g., Evans (2014, Appendix B) for the latter]. For solutions
of (89) we find

d

dt
〈y − g(x, ε), y − g(x, ε)〉 = 2 〈y − g(x, ε), ẏ − Dx g(x, ε) f1(x, y, ε)〉

= 2 〈y − g(x, ε), A(x, y, ε) (y − g(x, ε))〉
−2 〈y − g(x, ε), Dx g(x, ε) f1(x, y, ε)〉 .

The first term on the right-hand side can be estimated by −γ · 〈y − g(x, ε),

y − g(x, ε)〉. As for the second term, by Cauchy-Schwarz one has

2 |〈y − g(x, ε), Dx g(x, ε) f1(x, y, ε)〉| ≤ 2‖y − g(x, ε)‖2 · ‖Dx g(x, ε) f1(x, y, ε)‖2
≤ 2‖y − g(x, ε)‖2 · (‖Dx g(x, ε)‖ · ‖ f1(x, y, ε)‖)

with suitable norms in the second and third factor.
Now, there exists a positive constant κ = εκ̃ such that

‖Dx g(x, ε)‖ · ‖ f1(x, y, ε)‖ ≤ κ.

So, for V := ‖y − g(x, ε)‖2 one obtains the differential inequality

dV

dt
≤ −2γ V + 2κ

√
V .
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Comparison with the solution of the corresponding Bernoulli equation yields

V ≤ V (0) exp(−γ t) +
(

κ

γ

)2

· (1 − exp(−γ t)), (92)

thus ‖y − g(x, ε)‖ = √
V (t) can be estimated, e.g., by

√
2 κ

γ
as t → ∞.23 Therefore,

after a transient phase the proximity of the solution to the slow manifold is controlled
by

εL := √
2

κ

γ
= √

2ε
κ̃

γ
. (93)

More precisely, once V (0) exp(−γ t) ≤
(

κ

γ

)2

, the stated estimate holds. The

inequality is satisfied whenever

t ≥ 1

γ
log

(

γ 2V (0)

κ2

)

∼ log
1

εL
,

and this indicates that the time span for the approach to the QSS manifold is of order
| log εL | in the fast timescale, and of order εL | log εL | in the slow timescale εL t . (A
more detailed analysis will provide a lower estimate by a variant of (91), and confirm
that the asymptotic estimate cannot be improved.) In particular time spans of order 1
will not suffice for the transient.

In reaction network settings, εL is a dimensional parameter (with dimension
concentration); a suitable normalization needs to be chosen.

9.1.2 A Correspondence to Eigenvalues

We sketch the relation of the small parameter εL to eigenvalues of the Jacobian. For the
sake of simplicity, we only consider the linearization here, disregarding higher-order
terms. Given the system

ẋ = −ε˜U x + ε˜V y
ẏ = W x − Z y = −Z

(

y − Z−1W
)

x
, briefly

(

ẋ
ẏ

)

= F(x, y, ε),

and keeping the notation from above, we have A = −Z , g(x) = Z−1W x , Dx g =
Z−1W . The slow manifold Yε is given by W x − Z y = 0, up to higher-order terms.
Moreover

˜f1 = −˜U x + ˜V y =
(

−˜U + ˜V Z−1W
)

x on Yε.

23 One may replace
√
2 by any smaller constant which is > 1.
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Now consider the eigenvalues of the matrix DF =
(−ε˜U ε˜V

W −Z

)

; see also Lemma 7.

Thus, letα0+εα1+· · · be an eigenvaluewith eigenvector
(

x0 + εx1 + · · ·
y0 + εy1 + · · ·

)

;

(

x0
y0

)


=
0. For α0 
= 0, comparing lowest order terms in the eigenvalue condition yields

x0 = 0 and W x0 − Z y0 = α0y0,

thus −α0 is an eigenvalue of Z . By Lemma 5, we see that 2γ can be chosen near the
nonzero eigenvalue of DF(x, y, 0) with smallest absolute real part.

For α0 = 0, thus the eigenvalue has order ε, comparing lowest orders in the
eigenvalue condition yields

−˜U x0 + ˜V y0 = α1x0 and W x0 − Z y0 = 0,

hence α1 is an eigenvalue for −˜U + ˜V Z−1W = ˜f1. An upper estimate for ε‖ ˜f1‖
can be obtained from Lemma 5: Choose the order ε eigenvalue with greatest absolute
value, multiplied by some factor accounting for a coordinate change. Thus, we see that
κ is composed of the factor ‖Z−1W‖ (which reflects the geometry of the slow man-
ifold), the absolutely largest eigenvalue of order ε and some multiplicative constants
from coordinate transformations. In our local setting, all the multiplicative constants
mentioned above are of order one.

To summarize, the small parameter εL = κ/γ is determined by the ratio of the
largest absolute eigenvalue of order ε to the smallest absolute real part of eigenvalues
of order one. From this perspective, for slow manifolds of dimension one in partic-
ular, the relevance of the parameters ε∗ and μ∗ is obvious. Their advantage lies in
their (relative) computational accessibility. Likewise, ε∗ is a both relevant and compu-
tationally accessible parameter for three-dimensional systems with two-dimensional
slow manifolds.

9.1.3 Remarks on Steps 2 and 3

Lyapunov function arguments provide a small parameter εL which characterizes close-
ness of a solution of (89) to the slow manifold. This takes care of Step 1 described in
Introduction, and clarifies the role of eigenvalues up to (ε-independent) factors due to
coordinate changes.

For the ultimate goal of obtaining quantitative estimates for the discrepancy between
the true solution and the singular perturbation approximation, one needs to go further.
In Step 2, an appropriate critical time for the onset of the slow dynamics, as well as
an appropriate initial value for the reduced system, must be determined. As for Step
3, by a continuity and compactness argument, the right-hand sides of the full and the
reduced equation differ by εL times some constant. With this, and an error estimate for
the initial value for the reduced system, continuous dependence provides an estimate
of the approximation error on compact time intervals. Further work may be required,
since one is mostly interested in unbounded time intervals, so one cannot rely only on
standard continuous dependence theorems.
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In the present manuscript, we generally did not address the determination of εL in
examples and case studies. The only exception is irreversible Michaelis–Menten with
slow product formation (see, Sect. 4.1), which also contains partial results for Step
3. For the (more familiar and more relevant) irreversible Michaelis–Menten system
with small enzyme concentration all three steps can dealt with completely (even if
some complications arise), as will be shown in a forthcoming paper. For any system
of dimension > 2, even completing Step 1 seems quite demanding.

9.2 A Proof of Lemma 2

Proof Part (a) is a special case of Lemma 7 below. To prove part (b), abbreviate
σ ∗

i (x) := σi (x, π̂) for x ∈ ˜Y ∩ K , 1 ≤ i ≤ n − 1. Then the nonzero roots of the
characteristic polynomial χ are the roots of

ζ(x, τ ) := τ n−1 + σ ∗
1 (x)τ n−2 + · · · + σ ∗

n−1(x).

By the blanket assumptions, theσ ∗
i are bounded above and belowby positive constants,

hence the absolute values of all zeros of the ζ(x, ·) are bounded aboveby someconstant.
Since π̂ is a TFPV, all zeros have negative real parts.Nowassume that for every positive
constant δ, some ζ(x, τ ) has a zerowith real part≥ −δ. Then there exist sequences (xk)

in ˜Y ∩ K and (μk) in C such that ζ(xk, μk) = 0 and Reμk → 0. Due to boundedness
of the sequence (μk) and compactness of ˜Y ∩ K we may assume that the μk converge
to μ∗, Reμ∗ = 0, and the xk converge to x∗ ∈ ˜Y ∩ K . By continuity ζ(x∗, μ∗) = 0;
a contradiction. Part (c) follows by continuity and compactness arguments.

9.3 Parameter Dependence of Eigenvalues

Recall from (39) the definition

σ̃i (x, ε) := σi (x, π̂ + ερ), 1 ≤ i ≤ n, σ̃0 := 1.

We first prove (44), concerning the orders of the σ̃i whenever s > 1.

Lemma 6 Let π̂ be a TFPV for dimension s, with critical manifold ˜Y . Then for all
x ∈ ˜Y ∩ K one has

σ̃i (x, ε) = εi−n+s σ̂i (x, ε) for all x ∈ ˜Y ∩ K , n − s ≤ i ≤ n,

with polynomial σ̂i .

Proof The arguments we will use are similar to those in the proof of Goeke et al.
(2015, Proposition 3). We set

˜h(x, ε) := h(x, π̂ + ερ) for x ∈ ˜Y ∩ K .
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There exists a local transformation of ˜h into Tikhonov standard form. Thus, there
exists a local analytic diffeomorphism � and a vector field q̃ such that

D�(x)˜h(x, ε) = q̃(�(x), ε)

and consequently

D�(x)D˜h(x, ε) = Dq̃(�(x), ε)D�(x), x ∈ ˜Y ∩ K .

Therefore the Jacobian of˜h at x and the Jacobian of q̃ at�(x) are conjugate; in partic-
ular they have the same characteristic polynomial. Denoting by ν̃i (y) the coefficients
of the characteristic polynomial of Dq̃(y), this means

σ̃i (x, ε) = ν̃i (�(x), ε) for all x ∈ ˜Y ∩ K .

Since q̃ is in Tikhonov standard form, we have

q̃(y, ε) =
(

εq̃1(y, ε)

q̃2(y, ε)

)

,

with q1 having s entries, and

Dq̃(y, ε) =
(

εDq̃1(y, ε)

Dq̃2(y, ε)

)

.

Thus, every entry of the first s rows of the Jacobian is a multiple of ε, and with the
Laplace expansion of the determinant this implies

ν̃i (x, ε) = εi−n+s ν̂i (x, ε), n − s < i ≤ n,

and finally (44).

Now we turn to determining the orders of the eigenvalues.

Lemma 7 With objects and notation as in Lemma 6, let (44) hold, and furthermore
consider the nondegeneracy conditions:

(i) σ̂n−s(x, 0) 
= 0 and σ̂n(x, 0) 
= 0 on ˜Y ∩ K .
(ii) The polynomials

σ̂n−s(x, 0)τ s + σ̂n−s+1(x, 0)τ s−1 + · · · + σ̂n(x, 0) (94)

admit only simple zeros, for all x ∈ ˜Y ∩ K .

(a) Whenever (i) holds, the zeros λi (x, ε) of the characteristic polynomial can be
labeled such that

λ1(x, 0) 
= 0, . . . , λn−s(x, 0) 
= 0 on ˜Y ∩ K ,
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and

λi (x, ε) = ε̂λi (x, ε), x ∈ ˜Y ∩ K , i > n − s,

with continuouŝλi such that̂λi (x, 0) 
= 0 on ˜Y ∩ K , n − s + 1 ≤ i ≤ n.24

(b) Whenever (ii) holds in addition to (i) then all̂λi , n − s + 1 ≤ i ≤ n, are analytic
in (x, ε).

Proof The proof rests on the Newton–Puiseux theorem and on Hensel’s lemma; we
refer specifically to Abhyankar (1990, Lectures 12 and 13). According to Newton–
Puiseux, the equation λn + ∑

σ̃iλ
n−i = 0 admits series solutions

λ = αεγ + · · ·

in rational exponents of ε, with a positive rational number γ and α 
= 0. For such an
expansion to hold with some γ and α 
= 0, cancellation of lowest order terms in (10)
is necessary. The lowest orders of the terms in the monomials are

(n − i)γ for 0 ≤ i ≤ s, and (n − j)γ + j − n + s for s + 1 ≤ j ≤ n,

and for cancellation one must have equality between two of these orders. Clearly two
orders in the first block cannot be equal. Assuming that an order from the first block
equals an order in the second block, we get

(n − i)γ = (n − j)γ + j − n + s ⇒ γ = j − (n − s)

j − i
< 1 unless i = n − s.

But in case γ < 1 the lowest order equals sγ , with no cancellation; so only γ = 1
remains. Finally, if two orders in the second block are equal then one directly sees
γ = 1. This shows part (a).

Continuing the argument, γ = 1 implies that precisely the monomials of degree
≤ n − s contribute to the lowest order, and the ansatz yields

σ̂n−s(x, 0)αs + σ̂n−s+1(x, 0)αs−1 + · · · + σ̂n(x, 0) = 0,

thus s distinct choices for α by condition (ii), and α 
= 0. By Hensel’s lemma, each
choice for α yields a series λ = αε + · · · , in positive integer powers of ε. This shows
part (b).

Remark 6 In case s = 1 the second condition is automatic. Therefore Lemma 2 (a) is
also proven.

24 Thêλi can be represented as convergent power series in (x, ε1/m ) for some positive integer m.
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