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Abstract
On a global scale, biological invasions are seriously destroying the stability of ecosys-
tem, sharply decreasing biodiversity and even endangering human health and causing
huge economic losses. However, there exist few effective measures controlling bio-
logical invasions. To more accurately examine the prevention and control effects of
biological control on biological invasions in real environments of random fluctuations,
we construct a stochastic host–generalist parasitoid model. We first establish, respec-
tively, the sufficient conditions for the persistence and extinction of invasive hosts and
generalist parasitoids, including (1) only the intrusive hosts go extinct; (2) only the
generalist parasitoids are extinct, and (3) the intrusive hosts and generalist parasitoids
are both extinct or persistent. Then, we perform a series of numerical simulations to
verify the validity of the theoretical results obtained, based onwhichwe further discuss
the impacts of stochastic environmental fluctuations on the control of intrusive hosts,
especially the possible changes of qualitative behavior caused by environmental noises
in the bistable scenario. Our theoretical and numerical results indicate that compared
with the invasive hosts, the generalist parasitoids aremore vulnerable to environmental
noises, and the prevention and control effects of biological control on invasive hosts
are closely dependent to the initial population sizes. Thus, improving the ability of
early detection of ecosystems, including the initial densities of biological populations
and their dynamic characteristics, will provide effective predictive guidance for the
prevention and control of alien host invasions.
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1 Introduction

Biological invasion is the geographical expansion of a species into a region that it
has not previously occupied (Ehler 1998). In the context of applied entomology, the
invasionprocess is relevant to both theunintentional introductionof exotic pests and the
intentional introduction (i.e., planned invasion) of natural enemies (Ehler 1998). With
the rapid development of world trade globalization, people are increasingly aware
that biological invasion not only leads to the transformation and reconstruction of
ecosystemcomponents, but also changes the basic functions and features of ecosystem,
which eventually leads to the extinction of local species and the decline of biodiversity
as well as the seriously damages social and economic construction (Mack et al. 2000).
In order to mitigate the damage of biological invasion, various control techniques
have been developed and applied, including mechanical and physical techniques (such
as hand destruction and barriers (Simberloff 2003), chemical pesticide (Hall et al.
2004) and biological control (such as natural enemies and bio-pesticides (Barratt et al.
2018). Mechanical and physical techniques are simple and safe but requires lots of
manpower. Chemical pesticide is effective, however it will cause the alien invasive
species resistance and resurgence (Yuan et al. 2021). Biological control, the science
and technology of controlling pests using natural enemies, has had several recent
successes (Strong and Pemberton 2000). In contrast, biological control is the one of
the most promising solutions (Moffat et al. 2013; Li et al. 2014; Madec et al. 2017).

In (Owen and Lewis 2001), Owen and Lewis pointed out that when the invasive
populations have strong Allee effect, the specialist predators can effectively prevent or
even reverse their invasion processes; however, when they have onlyweakAllee effect,
the specialist predators can slow down but cannot reverse the invasion process of alien
species. In (Ehler 1998; Owen and Lewis 2001), the authors pointed out that no matter
whether the invasive populations have Allee effect or not, the generalist predators
can more easily reverse prey invasions than the specialist predators. Since generalist
predators do not need to consider the special dynamic properties of focus prey in terms
of controlling alien biological invasions, generalist predators can more extensively
characterize the scenarios of biological control. Especially, based on a real case that
the invasion of leaf-miningmicrolepidopteron attackinghorse chestnut trees inEurope,
Magal et al. (Magal et al. 2008) constructed a host–generalist parasitoid model. In the
specific model, the parasitoid is a generalist that is already established in a region
where the leafminers have been introduced and may spread. Since parasitoid survives
on other food resources in the absence of the leafminers, its population dynamics in
the absence of the leafminers is described by a logistic equation with a positive growth
rate. On the other hand, based on (Owen and Lewis 2001; Fagan et al. 2002), when
the leafminers began to invade European horse chestnut trees in 1985, leafminers also
followed a logistic growth. Meanwhile, since the introduction of leafminers provided
a new food source for the parasitoid, it was supposed that predation by the generalist
parasitoid on the leafminers satisfies the Holling II functional response. The biological
control system of invading leafminers they proposed takes the following form:
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{
du
dτ = r1u

(
1 − u

K1

) − ξuv
1+ξhu ,

dv
dτ = r2v

(
1 − v

K2

) + γ ξuv
1+ξhu ,

(1)

where u(τ ) and v(τ) are, respectively, the population densities of invading hosts
(leafminers) and generalist parasitoids at time τ ≥ 0. All the parameters in model
(1) are positive constants: r1 and K1 are, respectively, the intrinsic rate of natural
increase and the environment carrying capacity for invading hosts; r2 and K2 are the
intrinsic rate of natural increase and the environment carrying capacity for generalist
parasitoids in absence of focal hosts; ξ denotes the capture rate of invading hosts by
generalist parasitoids; h is the handling time; γ is the conversion rate of generalist
parasitoids feeding on invading hosts. By performing rigorous some mathematical
analyses and a series of numerical simulations, the authors mainly explored effective
biological control strategies of the generalist parasitoids and established the sufficient
conditions for the extinction of intrusive leafminers in European forest ecosystems.

In a recent paper (Xiang et al. 2020), Xiang et al. have nondimensionalized model
(1) as:

{
dx
dt = x(1 − x) − bxy

a+x ,
dy
dt = y(δ − y) + cxy

a+x ,
(2)

where x = u
K1

, y = r2v
r1K2

, t = r1τ , a = 1
K1ξh

, b = K2
r2K1h

, δ = r2
r1

and c = γ
r1h

. Their
results showed that there exists a threshold value K ∗ for the environment carrying
capacity of generalist parasitoids: When K2 < K ∗, the invading hosts survive, which
implies that the generalist parasitoids cannot prevent the invasion of hosts; when
K2 > K ∗, the invading hosts may survive or may die out, which closely depends on
the levels of initial populations. Notice that in both scenarios, the generalist parasitoids
are always persistent.

However, in nature ecosystems, environmental fluctuations are always everywhere,
which affects the survival status of biological populations at all times. May (May
2001) once clearly pointed out that in the real world, various attribute parameters of
biological populations, such as the birth rate, mortality, capture rate and transmission
coefficient, will inevitably be influenced by random environmental fluctuations to a
larger or smaller extent. To this end, many researchers (Neubert et al. 2000; Petrovskii
et al. 2005; O’Malley et al. 2009; Schreiber and Ryan 2011; Parsons 2018; Billiard and
Smadi 2020) have applied stochastic mathematical models to investigate the control
problem of biological invasion. For example, Petrovskii et al. (Petrovskii et al. 2005)
considered the patchy spread patterns of models on biological invasions and biological
control in deterministic and stochastic environments. Their findings indicated that the
tiny fluctuations of controlling parameters could bring the alien populations either
to extinction or to restoration of its invasion. Parsons (Parsons 2018) investigated a
class of discrete stochastic process population model with density-limited growth, and
showed that the population size exists a maximum value and greatly exceeds carrying
capacity at arbitrary times with high probability before population extinction.
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Motivated by above, it seems more proper to consider the influence of environ-
mental fluctuations in deterministic model (2). Applying standard method to include
environmental noises (Evans et al. 2013; Hening et al. 2018; Feng et al. 2021), we can
derive the following stochastic differential equations model:{

dx = (
x(1 − x) − bxy

a+x

)
dt + σ1xdB1(t),

dy = (
y(δ − y) + cxy

a+x

)
dt + σ2ydB2(t),

(3)

where σ 2
1 and σ 2

2 are the intensities of environmental interferences, B1(t) and B2(t) are
the mutually independent standard Brownian motions defined on a complete probabil-
ity space (�,F , {Ft }t≥0,P) with a filtration {Ft }t≥0 satisfying the usual conditions.
The main purpose of this paper is to explore how environmental fluctuations affect
the controlling strategies of biological invasions. Our findings indicate that compared
with the invasive hosts, generalist parasitoids are more vulnerable to environmental
noises, and the prevention and control effects of biological control on invasive hosts
are closely related to the initial population sizes. Thus, improving the ability of early
detection of ecosystems, including the initial densities of biological populations and
their dynamic characteristics, will provide effective predictive guidance for the pre-
vention and control of alien host invasions.

The organization of this paper is as follows: In Sect. 2, we first establish sufficient
conditions, respectively, for the persistence and extinction of the stochastic intrusive
host–generalist parasitoid model (3), which include (1) only the intrusive hosts go
extinct; (2) only the generalist parasitoids are extinct; (3) the entire stochastic model
(3) is extinct; and (4) both the intrusive hosts and generalist parasitoids are persistent.
Then, in Sect. 3, we perform a series of numerical simulations to verify the validity
of the theoretical results obtained, based on which we further discuss the impacts
of stochastic environmental fluctuations on the control of intrusive hosts, especially
the possible changes of qualitative behavior caused by environmental noises in the
bistable scenario. Finally, a brief discussion is presented in Sect. 4.

2 Main Results

2.1 Some Preliminaries

In order to analyze the survival of intrusive hosts and generalist parasitoids theoreti-
cally, respectively, further to explore the roles of random interferences on controlling
biological invasions of hosts, we first investigate some basis mathematical properties
of stochastic model (3), which include the existence, uniqueness and boundedness
of the positive solution. We will make use of some correlation theories of stochastic
differential equations (see Mao 1997; Klebaner 2005; Khasminskii 2012) to obtain
the desired conclusions. Since x(t) and y(t) are, respectively, the population densities
of intrusive hosts and generalist parasitoids, they exist biological significances only
when both x(t) ≥ 0 and y(t) ≥ 0. Thus, we need first to verify the existence and
uniqueness of global positive solution for stochastic model (3).
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Theorem 1 For any given positive initial value (x(0), y(0)) ∈ R
2+, stochastic model

(3) has a unique global positive solution (x(t), y(t)) for all t ≥ 0 almost surely (a.s.).

Proof See Appendix 1. ��
Then, we verify the boundedness for the solution of stochastic model (3), which

indicates that the densities of biological populations are bounded.

Theorem 2 The solution (x(t), y(t)) of stochastic model (3) established by Theorem
1 is bounded, that is

lim sup
t→+∞

(cx(t) + by(t)) < +∞ a.s.

Proof See Appendix 1. ��

2.2 Extinction of the Invading Hosts

The research focus of the paper is to explore the important effects of random environ-
mental noises on controlling the invasion of hosts. In this subsection we establish the
sufficiently conditions under which the intrusive hosts are extinct, while the generalist
parasitoids are persistent. Before that we first present a useful lemma.

Lemma 1 For one-dimensional stochastic differential equation:

dz = z(� − z)dt + σ zdB(t), (4)

where B(t) is standard Brownian motion, when σ 2

2 < �, Eq. (4) exists a unique
ergodic stationary distribution with the corresponding invariant density

π(ζ ) =
(

σ 2

2

)1− 2�
σ2

�−1
(
2�

σ 2 − 1

)
e− 2ζ

σ2 ζ
2�
σ2

−2
, for all ζ > 0, (5)

satisfying that for any integrable function h(·),

P

{
lim

t→+∞
1

t

∫ t

0
h(z(s))ds =

∫
R+

h(ζ )π(ζ )dζ
}

= 1. (6)

Proof See Appendix 2. ��
Theorem 3 Let (x(t), y(t)) be the nonnegative solution of stochasticmodel (3) derived

in Theorem 1.When
σ 2
1
2 > 1, the invading hosts x(t)will go to extinction almost surely,

i.e., limt→+∞ x(t) = 0 a.s.; Further when
σ 2
2
2 < δ, the generalist parasitoids y(t) are

persistent, there exists a unique ergodic stationary distribution with the corresponding
invariant density

π(ζ ) =
(

σ 2
2

2

)1− 2δ
σ22

�−1

(
2δ

σ 2
2

− 1

)
e
− 2ζ

σ22 ζ

2δ
σ22

−2
, for all ζ > 0, (7)
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satisfying that for any integrable function h(·),

P

{
lim

t→+∞
1

t

∫ t

0
h(y(s))ds =

∫
R+

h(ζ )π(ζ )dζ
}

= 1. (8)

In addition, the average persistence level of generalist parasitoids is
∫ +∞
0 ζπ(ζ )dζ =

δ − σ 2
2
2 .

Proof First, under the condition
σ 2
1
2 > 1, we justify the extinction of invading hosts.

Applying Itô’s formula to ln x(t), we have

d ln x(t) =1

x

((
x(1 − x) − bxy

a + x

)
dt + σ1xdB1(t)

)
+ 1

2

(
− 1

x2

)
σ 2
1 x

2dt

=
(
1 − x − by

a + x
− 1

2
σ 2
1

)
dt + σ1dB1(t)

≤
(
1 − 1

2
σ 2
1

)
dt + σ1dB1(t).

Integrating from 0 to t and dividing by t on both sides of the above equation and then
taking limit t → +∞, we yield

lim sup
t→+∞

ln x(t)

t
≤ lim

t→+∞
ln x(0)

t
+ 1 − 1

2
σ 2
1 + lim

t→+∞
M1(t)

t
, (9)

where M1(t) = ∫ t
0 σ1dB1(s) is a local and continuous martingale satisfying

M1(0) = 0. By simple computations we have the corresponding quadratic varia-
tion 〈M1,M1〉t = ∫ t

0 σ 2
1 ds = σ 2

1 t , and lim supt→+∞
〈M1,M1〉t

t = σ 2
1 < +∞ a.s.

Then with the help of the strong law of large numbers in (Mao 1997), we can obtain
that limt→+∞ M1(t)

t = 0 a.s. It then follows from (9) that

lim
t→+∞

ln x(t)

t
≤ 1 − 1

2
σ 2
1 < 0 a.s.,

which implies that

lim
t→+∞ x(t) = 0 a.s.

Next, on the premise of the extinction of invading hosts, we further consider the
limit system of the generalist parasitoids as follows:

dy = y(δ − y)dt + σ2ydB2(t). (10)

It follows from Lemma 1 that when
σ 2
2
2 < δ, system (10) possesses the conclusions

(7) and (8).
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Finally, combining conclusions (7) and (8), we can further calculate the average
persistence level of generalist parasitoids y(t) on the premise of the extinction of
invading hosts x(t) . That is,

∫ +∞

0
ζπ(ζ )dζ =

∫ +∞

0
ζ

(
σ 2
2

2

)1− 2δ
σ22

�−1

(
2δ

σ 2
2

− 1

)
e
− 2ζ

σ22 ζ

2δ
σ22

−2
dζ

=
(

σ 2
2

2

)1− 2δ
σ22

�−1

(
2δ

σ 2
2

− 1

) ∫ +∞

0
e
− 2ζ

σ22 ζ

2δ
σ22

−1
dζ

=
(

σ 2
2

2

)1− 2δ
σ22

�−1

(
2δ

σ 2
2

− 1

) ∫ +∞

0
e−θ

(
σ 2
2

2
θ

) 2δ
σ22

−1
σ 2
2

2
dθ

=σ 2
2

2
�−1

(
2δ

σ 2
2

− 1

) ∫ +∞

0
e−θ θ

2δ
σ22

−1
dθ

=δ − σ 2
2

2
.

This completes the proof of Theorem 3. ��

Remark 1 From Theorem 3 we know that when the influences of the environ-
mental interferences acting on the invading hosts population x(t) are larger(
namely,

σ 2
1
2 > 1

)
, the invading hosts will go to extinction. That is to say, large noise

is conducive to the control of invasive species as well as the maintaining stability of
ecosystem, which are in accord with the conclusions in (Davis et al. 2000; Davis and
Pelsor 2001) and (Wang et al. 2021). Moreover, when the intensities of random envi-
ronmental noises are smaller than the recruitment rate for the generalist parasitoids

y(t) (namely,
σ 2
2
2 < δ), we can know that the generalist parasitoids population is

persistent with the average level δ − σ 2
2
2 in the absence of invading hosts.

2.3 Extinction of the Generalist Parasitoids

Notice that all living populations in nature are inevitably affected by environmental
noises. In this subsectionwe consider the situationwhen the intensity of environmental
fluctuations suffered by the generalist parasitoids is large, while that of the invading
hosts is small. The detailed conclusions are as follows:

Theorem 4 Denote by (x(t), y(t)) the solution of stochastic model (3) established by

Theorem 1. When
σ 2
1
2 < 1 and

σ 2
2
2 > δ + c(1−σ 2

1 /2)

a+1−σ 2
1 /2

, the generalist parasitoids y(t) are

extinct, namely, limt→+∞ y(t) = 0 a.s.; while the invading hosts x(t) are persistent,
there exists a unique ergodic stationary distribution with the corresponding invariant
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density

μ(ζ ) =
(

σ 2
1

2

)1− 2
σ21

�−1

(
2

σ 2
1

− 1

)
e
− 2ζ

σ21 ζ

2
σ21

−2
, for all ζ > 0, (11)

satisfying that for any integrable function h(·),

P

{
lim

t→+∞
1

t

∫ t

0
h(x(s))ds =

∫
R+

h(ζ )μ(ζ )dζ
}

= 1. (12)

In addition, the average persistence level of intrusive hosts is
∫ +∞
0 ζμ(ζ )dζ = 1− σ 2

1
2 .

Proof Considering the first equation of stochastic model (3), further with the help
of the comparison theorem for stochastic differential equations, we can obtain the
following 1-dimensional auxiliary stochastic differential equation

dX(t) = X(1 − X)dt + σ1XdB1(t) (13)

with the initial value X(0) = x(0) > 0. Obviously X(t) ≥ x(t) a.s. It follows from

Lemma 1 that when
σ 2
1
2 < 1, it is easy to acquire that the Eq. (13) possesses a unique

stationary density

μ(ζ ) =
(

σ 2
1

2

)1− 2
σ21

�−1

(
2

σ 2
1

− 1

)
e
− 2ζ

σ21 ζ

2
σ21

−2
, for all ζ > 0, (14)

and the ergodic stationary distribution satisfies

P

{
lim

t→+∞
1

t

∫ t

0
h(X(s))ds =

∫
R+

h(ζ )μ(ζ )dζ
}

= 1. (15)

Furthermore, we can compute the average persistent level of system (13) as follows:

∫ +∞

0
ζμ(ζ )dζ =

∫ +∞

0
ζ

(
σ 2
1

2

)1− 2
σ21

�−1

(
2

σ 2
1

− 1

)
e
− 2ζ

σ21 ζ

2
σ21

−2
dζ

=
(

σ 2
1

2

)1− 2
σ21

�−1

(
2

σ 2
1

− 1

) ∫ +∞

0
e
− 2ζ

σ21 ζ

2
σ21

−1
dζ.

Applying variable substitution t = 2ζ
σ 2
1
, the above equation becomes
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∫ +∞

0
ζμ(ζ )dζ =

(
σ 2
1

2

)1− 2
σ21

�−1

(
2

σ 2
1

− 1

) ∫ +∞

0
e−t

(
σ 2
1

2
t

) 2
σ21

−1
σ 2
1

2
dt

=σ 2
1

2
�−1

(
2

σ 2
1

− 1

) ∫ +∞

0
e−t t

2
σ21

−1
dt

=σ 2
1

2
�−1

(
2

σ 2
1

− 1

)
�

(
2

σ 2
1

)
= σ 2

1

2

(
2

σ 2
1

− 1

)

=1 − σ 2
1

2
.

Next, we analyze that under what conditions the generalist parasitoids of stochastic
model (3) die out. Making use of Itô’s formula to ln y(t), we have

d ln y(t) = 1

y

((
y(δ − y) + cxy

a + x

)
dt + σ2ydB2(t)

)
+ 1

2

(
− 1

y2

)
σ 2
2 y

2dt

=
(

δ − y + cx

a + x
− 1

2
σ 2
2

)
dt + σ2dB2(t)

≤
(

δ + cX

a + X
− 1

2
σ 2
2

)
dt + σ2dB2(t), (16)

where the inequality sign of Eq. (16) mainly relies on the conclusion of random
comparison theorem X(t) ≥ x(t) a.s. Then integrating on the both sides of (16) from
0 to t , and dividing by t and simultaneously taking t → +∞, we gain that

lim sup
t→+∞

ln y(t)

t
≤ δ − 1

2
σ 2
2 + lim

t→+∞
1

t

∫ t

0

cX(s)

a + X(s)
ds + lim

t→+∞
M2(t)

t
,

whereM2(t) = ∫ t
0 σ2dB2(s)denote a locally continuousmartingalewithM2(0) = 0.

Further computing 〈M2,M2〉t = ∫ t
0 σ 2

2 ds = σ 2
2 t , which shows limt→+∞ 〈M2,M2〉t

t
= σ 2

2 < +∞ a.s. So then it follows from the strong law of large numbers that

limt→+∞ M2(t)
t = 0 a.s. Further using the Jensen’s inequality to the above equation,

we yield

lim sup
t→+∞

ln y(t)

t
≤δ − 1

2
σ 2
2 + c · limt→+∞ 1

t

∫ t
0 X(s)ds

a + limt→+∞ 1
t

∫ t
0 X(s)ds

=δ − 1

2
σ 2
2 + c

(
1 − σ 2

1
2

)
a + 1 − σ 2

1
2

.
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Hence, under the conditions
σ 2
1
2 < 1 and

σ 2
2
2 > δ + c(1−σ 2

1 /2)

a+1−σ 2
1 /2

, we have

lim sup
t→+∞

ln y(t)

t
< 0 a.s.,

which implies that

lim
t→+∞ y(t) = 0 a.s.

On the premise of the extinction of the generalist parasitoids y(t), we further con-
sider the following limit system of the intrusive hosts:

dx(t) = x(1 − x)dt + σ1xdB1(t). (17)

Notice that the limit system (17) and the auxiliary system (13) are in complete agree-

ment. It then follows from (14), (15) and the average persistence level 1− σ 2
1
2 of system

(13) that for limit system (17), we have (11) and (12), as well as the average persistence

level 1 − σ 2
1
2 for the intrusive hosts. The proof of Theorem 4 is completed. ��

Remark 2 Theorem 4 indicates that when the intensity of environmental fluctuations

acting on the intrusive hosts is small enough such that
σ 2
1
2 < 1, and at the same time

when the intensity of environmental fluctuations acting on the generalist parasitoids

is sufficiently large such that
σ 2
2
2 > δ + c(1−σ 2

1 /2)

a+1−σ 2
1 /2

, then the generalist parasitoids go to

extinction, while the invading hosts are stochastically weakly persistent with average

level 1− σ 2
1
2 . That is to say, using generalist parasitoids cannot succeed in the control

of invasive hosts in this situation.
Recall also that the generalist parasitoids are always persistent in the deterministic

model (1) or (2) (Magal et al. 2008; Xiang et al. 2020). This means that using the
deterministic model may lead to incorrect predictions on the dynamics of populations
living in an environment of random fluctuation, and therefore, it is necessary to con-
sider the effect of environmental fluctuations on the populations when using biological
control strategies to prevent the invasion of the exotic species (Petrovskii et al. 2005;
Perrings 2005; Schreiber and Lloyd-Smith 2009; Kadoya andWashitani 2010; Chalak
et al. 2017).

2.4 Total Extinction of Stochastic Model (3)

The following theorem indicates that both the intrusive hosts and generalist parasitoids
will go to extinction when the intensities of environmental noises are large enough.

Theorem 5 Let (x(t), y(t)) be the solution of stochastic model (3) established by The-

orem 1. When
σ 2
1
2 > 1, the intrusive hosts are extinct, that is, limt→+∞ x(t) = 0 a.s.;
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Furtherwhen
σ 2
2
2 > δ, the generalist parasitoids also die out, namely, limt→+∞ y(t) =

0 a.s.

Proof Similar to the proof of Theorem 3, under the condition 1
2σ

2
1 > 1 we have

limt→+∞ x(t) = 0 a.s. Hence, when the intrusive hosts x(t) are extinct, we can
easily see that there are a pair of factors: a time T > 0 and a set �ε ⊂ � such that
P(�ε) > 1 − ε and cx

a+x ≤ cε
a for all t ≥ T and ω ∈ �ε . In what follows, we further

prove the extinction of the generalist parasitoids. Applying Itô’s formula to ln y(t),
we have

d ln y(t) = 1

y

((
y(δ − y) + cxy

a + x

)
dt + σ2ydB2(t)

)
+ 1

2

(
− 1

y2

)
σ 2
2 y

2dt

=
(

δ − y + cx

a + x
− 1

2
σ 2
2

)
dt + σ2dB2(t)

≤
(
δ + cε

a
− 1

2
σ 2
2

)
dt + σ2dB2(t). (18)

Integrating on both sides of Eq. (18) from 0 to t , dividing by t , and then taking limit
t → +∞, we can obtain

lim sup
t→+∞

ln y(t)

t
≤ lim

t→+∞
ln y(0)

t
+ δ + cε

a
− 1

2
σ 2
2 + lim

t→+∞
M2(t)

t
,

where M2(t) = ∫ t
0 σ2dB2(t), then limt→+∞ M2(t)

t = 0 a.s. Further based on the
condition 1

2σ
2
2 > δ, the bounded of the initial value y(0) > 0 and taking ε → 0, we

yield

lim sup
t→+∞

ln y(t)

t
≤ δ − 1

2
σ 2
2 < 0 a.s.,

which implies that

lim
t→+∞ y(t) = 0 a.s.

In summary, under the two conditions of Theorem 5 the whole invading hosts-
generalist parasitoids model (3) goes to extinction. ��
Remark 3 From Theorem 5 we know that when the negative effects of external envi-
ronmental interferences acting on the intrusive hosts and generalist parasitoids are both
large enough such that 1

2σ
2
1 > 1 and 1

2σ
2
2 > δ, then the two biological populations

will go to extinction. This is clearly contrasted with the dynamics of the correspond-
ing deterministic model (2), where E0(0, 0) is a unstable node, implying that both
the invading hosts and generalist parasitoids will not go to extinction. That is to say,
the stochastic fluctuations of external environments can significantly influence the
ultimate survivability of the two biological populations, and therefore, it is necessary
to consider the impact of stochastic environmental disturbances on the dynamics of
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biological populations (Liu andMa 2021; Chang et al. 2019; Liu and Bai 2020; Zhang
and Wang 2020; Song et al. 2020; Wang et al. 2020; Guo et al. 2021; Zhang et al.
2022).

2.5 Permanence of Stochastic Model (3)

In this subsection, we will discuss the sufficient conditions for the persistent coex-
istence of both the invading hosts and generalist parasitoids under the influences of
external environmental interferences. For convenience, for any integrable function
g(t), t ≥ 0, define

〈g〉(t) := 1

t

∫ t

0
g(s)ds, g∗ := lim inf

t→+∞ g(t) and g∗ := lim sup
t→+∞

g(t).

We have the following result.

Theorem 6 Stochastic model (3) is persistent in the mean provided that

max

{
σ 2
1

2
,

σ 2
2

2δ
,

σ 2
1

2
+ b

a

(
δ − σ 2

2

2
+ c(1 − σ 2

1 /2)

a + 1 − σ 2
1 /2

)}
< 1. (19)

More precisely,

1 − σ 2
1

2
≥ 〈x〉∗ ≥ 〈x〉∗ > 1 − σ 2

1

2
− b

a

(
δ − σ 2

2

2
+ c(1 − σ 2

1 /2)

a + 1 − σ 2
1 /2

)
a.s., (20)

δ − σ 2
2

2
+ c(1 − σ 2

1 /2)

a + 1 − σ 2
1 /2

≥ 〈y〉∗ ≥ 〈y〉∗ ≥ δ − σ 2
2

2
a.s. (21)

Proof From stochastic model (3) we have that

dx ≤ x(1 − x)dt + σ1xdB1(t),

dy ≥ y(δ − y)dt + σ2ydB2(t).

It then follows from the stochastic comparison theorem that

x(t) ≤ X(t), y(t) ≥ Y (t) a.s.,

where X(t) and Y (t) are, respectively, the solutions of Eq. (13) with initial value
X(0) = x(0) and equation

dY = Y (δ − Y )dt + σ2YdB2(t)
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with initial value Y (0) = y(0). Thus, we have from Theorems 3 and 4 that

〈x〉∗ ≤
∫ +∞

0
Xμ(X)dX = 1 − σ 2

1

2
a.s. (22)

and

〈y〉∗ ≥
∫ +∞

0
Yν(Y )dY = δ − σ 2

2

2
a.s. (23)

Now making use of the Itô’s formula to ln y(t), we have from the second equation of
stochastic model (3) that

d
(
ln y(t)

) =
(

δ − y + cx

a + x
− 1

2
σ 2
2

)
dt + σ2dB2(t). (24)

Integrating from 0 to t and then dividing by t on the two sides of Eq. (24), we obtain
that

1

t
ln

y(t)

y(0)
=

(
δ − 1

2
σ 2
2

)
+ 1

t

∫ t

0

cx(s)

a + x(s)
ds − 1

t

∫ t

0
y(s)ds + M2(t)

t

≤
(
δ − 1

2
σ 2
2

)
+ c〈x(t)〉

a + 〈x(t)〉 − 〈y〉(t) + M2(t)

t
,

(25)

whereM2(t) = ∫ t
0 σ2dB2(s) and we have used the Jensen’s inequality in the last step.

Notice from (22) that for any ε > 0, there is a T = T (ε) > 0 such that when t > T ,

we have 〈x〉(t) < 1 − σ 2
1
2 + ε. It then follows from (25) that

1

t
ln

y(t)

y(0)
≤ δ − 1

2
σ 2
2 + c(1 − σ 2

1 /2 + ε)

a + 1 − σ 2
1 /2 + ε

− 〈y〉(t) + M2(t)

t
. (26)

Notice the arbitrariness of ε. Applying the first conclusion in (Liu et al. 2011,
Lemma 4), we have from (26) that

〈y〉∗ ≤ δ − 1

2
σ 2
2 + c(1 − σ 2

1 /2)

a + 1 − σ 2
1 /2

a.s. (27)

Now applying Itô’s formula to ln x(t), we have from the first equation of stochastic
model (3) that

d
(
ln x(t)

) =
(
1 − 1

2
σ 2
1 − x − by

a + x

)
dt + σ1dB1(t). (28)
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Proceeding similarly as for (24), we have from (28) that

1

t
ln

x(t)

x(0)
=

(
1 − 1

2
σ 2
1

)
− 1

t

∫ t

0
x(s)ds − 1

t

∫ t

0

by(s)

a + x(s)
ds + M1(t)

t

≥
(
1 − 1

2
σ 2
1

)
− 1

t

∫ t

0
x(s)ds − b

a

1

t

∫ t

0
y(s)ds + M1(t)

t

(29)

where M1(t) = ∫ t
0 σ1dB1(s). Notice from (27) that for any ε > 0, there exists a

T1 = T1(ε) > 0 such that when t > T1, we have 〈y〉(t) ≤ δ − σ 2
2
2 + c(1−σ 2

1 /2)

a+1−σ 2
1 /2

+ ε a.s.

It then follows from (29) that when t > T1,

1

t
ln

x(t)

x(0)
≥1 − σ 2

1

2
− 1

t

∫ t

0
x(s)ds − b

a

(
δ − σ 2

2

2
+ c(1 − σ 2

1 /2)

a + 1 − σ 2
1 /2

+ ε

)
+ M1(t)

t
a.s.

(30)

Applying the second conclusion provided in (Liu et al. 2011, Lemma 4), we obtain
from (30) that

〈x〉∗ ≥ 1 − σ 2
1

2
− b

a

(
δ − σ 2

2

2
+ c(1 − σ 2

1 /2)

a + 1 − σ 2
1 /2

)
a.s. (31)

Combining (22), (23), (27) and (31), it then follows form (19) that (20) and (21)
hold. The proof is thus completed. ��
Remark 4 Theorem 6 indicates that when the effect of environmental fluctuations is
not too large such that (19) holds, then the invading hosts and generalist parasitoids
can coexist in an natural environment of random fluctuations. This implies that in
this situation the generalist parasitoids cannot effectively control the invasion of alien
hosts, and consequently may lead to the destruction of original ecosystem stability.

3 Numerical Simulations

In (Xiang et al. 2020), authors havemade a detailedmathematical analysis of determin-
istic model (2), and their results indicate that themodel can exhibit complex dynamics,
including various bifurcations and bistability phenomena, and therefore, its dynamics
is sensitive to and easily affected by the fluctuations of environment. In order to com-
prehensively explore the effects of environmental stochasticity on biological control
of alien invasive species, based on the different attributes of deterministic population
dynamics, we use different simulation analysis methods to fully reflect the influences
of environmental white noises on the complex dynamics of the population model, and
then propose effective measures to reasonably control biological invasions.

More specifically, in the first case, under the premise of fixing a set of parameters
to ensure that the deterministic model (2) possesses a unique globally asymptotically
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stable positive equilibrium, we apply the Milstein’s higher order method proposed by
Higham in (Higham 2001) to verify the correctness of the theoretical results obtained
by this paper, and further analyze the effects of environmental noises on biological
control of alien invasive species; in the second case, under the premise of fixing
a set of parameters to ensure that the deterministic model (2) possesses bistability
phenomena, we use the method of probability statistics to investigate the qualitative
impact of environmental noises on the dynamical behaviors of stochastic model (3)
with different initial sizes. The numerical simulations in each case are described as
follows:

3.1 The Effects of Environmental Noises on the Persistence of Stochastic Model (3)

In view of the Milstein’s higher-order method, we first discretize the stochastic model
(3) as follows:

{
xk+1 = xk + (

xk(1 − xk) − bxk yk
a+xk

)
�t + σ1xk

√
�tW1k + 1

2σ
2
1 xk(W

2
1k − 1)�t,

yk+1 = yk + (
yk(δ − yk) + cxk yk

a+xk

)
�t + σ2yk

√
�tW2k + 1

2σ
2
2 yk(W

2
2k − 1)�t,

where �t > 0 denotes the enough small time increment, Wik, i = 1, 2 denote the
independent Gaussian random variables with standard normal distribution N (0, 1).
Then, we fix the partial parameters of stochastic model (3) from (Xiang et al. 2020):

a = 5/27, b = 32/27, c = 32/135, δ = 2/15. (32)

Further choose the initial value x(0) = 0.15 and y(0) = 0.30. By simple computa-
tions, we can obtain that the corresponding deterministic model (2) has two positive
equilibria: An unstable cusp E1(1/9, 2/9) and a globally asymptotically stable focus
E2(11/27, 8/27), see Fig. 1a. In what follows, with the help of numerical simulations
we examine the correctness of the obtained theoretical results, and further discuss the
significant changes in the persistence and extinction of biological populations under
the influences of environmental noises with varying degrees. More specifically, on
the premise of fixed parameters (32), we apply four sets of different noise intensi-
ties to investigate the corresponding dynamics changes of stochastic host–generalist
parasitoid model (3). The specific contents are as follows:

Example 1 Taking σ1 = 1.45 and σ2 = 0.02. By simple computations, we obtain that
σ 2
1
2 = 1.05125 > 1 and

σ 2
2
2 = 0.0002 < 2

15 = δ. The two conditions of Theorem
3 are satisfied. It then follows from Theorem 3 that the invading hosts x(t) die out
exponentially (see Fig. 1b), while the generalist parasitoids y(t) are persistent and exist

a unique ergodic stationarydistributionwith averagepersistence level δ−σ 2
2
2 ≈ 0.1331,

which are consistent with Fig. 1c and d. This demonstrates that when the influence
of the environmental fluctuations on the invasive hosts is large enough (such that
σ 2
1 /2 > 1) but it is not too significant on the generalist parasitoids (i.e., σ 2

2 /2 < δ),
then the invasive hosts will go extinct while the generalist parasitoids will persist in the
ecosystem. In other words, the hosts cannot successfully invade the system, which is
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(a) (b)

(d)(c)

Fig. 1 a is the time series diagrams of the invading hosts x(t) and generalist parasitoids y(t) for deterministic
model (2); b and c are, respectively, the time series diagrams of the invading hosts x(t) and generalist
parasitoids y(t) for stochastic model (3), and d is the density function of generalist parasitoids y(t)

mainly due the existence of environmental fluctuations, independent of the predation
by generalist parasitoids. Of course, in this situation the generalist parasitoids will
persist with a lower average level compared with the corresponding deterministic
model (2) due to the lack of extra food provided by invading hosts.

From Example 1 we can clearly see that deterministic model (2) predicts that an
alien species can successfully invade a new ecosystem but it fails to invade for the
corresponding stochastic model (3). This indicates that using the deterministic model
(2) to predict the invasion of an alien species may lead to an inconsistent conclusion
with real ecosystems.

Example 2 Let σ1 = 0.02 and σ2 = 0.82. It is easy to check that
σ 2
1
2 = 0.0002 < 1

and
σ 2
2
2 = 0.3362 > δ + c(1−σ 2

1 /2)

a+1−σ 2
1 /2

≈ 0.3333, which show that the two conditions of

Theorem 4 hold. Hence, by Theorem 4we can know that the generalist parasitoids y(t)
go to extinction exponentially (see Fig. 2c), but the invading hosts x(t) are persistent
and exist the unique ergodic stationary distribution with the average persistence level

1 − σ 2
1
2 = 0.9998, which are consistent with Fig. 2a and b. This demonstrates that

when the impact of noises on the invading hosts is not too significant (i.e., σ 2
1 /2 < 1)
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(a) (b) (c)

Fig. 2 a and c are, respectively, diagrams of time series for the invading hosts x(t) and generalist parasitoids
y(t), and b is the density function of the invading hosts x(t) for stochastic model (3) with σ1 = 0.02 and
σ2 = 0.82

(a) (b)

Fig. 3 a and b are, respectively, diagrams of time series for the invading hosts x(t) and generalist parasitoids
y(t) for stochastic model (3) with σ1 = 1.45 and σ2 = 0.54

but it is large enough

(
such that

σ 2
2
2 > δ + c(1−σ 2

1 /2)

a+1−σ 2
1 /2

)
, then the invading hosts will be

persistent but the generalist parasitoids will go to extinction. This is clearly contrasted
with the prediction by the corresponding deterministic model (2) that the generalist
parasitoids are predicted to be always persistent.

Example 3 Choose σ1 = 1.45 and σ2 = 0.54. It is easy to compute that
σ 2
1
2 =

1.05125 > 1 and
σ 2
2
2 = 0.1458 > δ = 2

15 , then two conditions of Theorem 5 hold. It
follows from Theorem 5 that both the invading hosts x(t) and generalist parasitoids
y(t) are extinct exponentially, which are confirmed by the observations in Fig. 3a and
b. That is to say, the large environmental noises could lead to the extinction of both
the invading hosts x(t) and generalist parasitoids y(t).

Example 4 Let σ1 = 0.02 and σ2 = 0.02. It is easy to check that the condition
of Theorem 6 is satisfied. It thus follows from Theorem 6 that both the invading
hosts x(t) and generalist parasitoids y(t) are persistent, which are consistent with the
observations in Fig. 4a and b. This indicates that when the environmental noises are
small, then the stochastic model (3) can have the same predictions as deterministic
model (2), i.e., both the invading hosts x(t) and the generalist parasitoids y(t) can
persist in the ecosystem considered. That is to say, in this situation the alien hosts
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(a) (b)

Fig. 4 a and b are, respectively, diagrams of time series for the invading hosts x(t) and generalist parasitoids
y(t) for stochastic model (3) with σ1 = σ2 = 0.02

can successfully invade the ecosystem. From the viewpoint of biological control, the
generalist parasitoids y(t) cannot successfully control the invasion of the alien hosts
in a small fluctuating environment.

In summary, as a natural factor that cannot be ignored, environmental noise may
have profound impacts on the dynamics of biological populations in the real ecosystem.
Thus, it is more reasonable to explore the prevention and control of invasive species as
well as the protection of biodiversity by stochastic differential equation models, which
can more realistically and comprehensively characterize the evolution of ecological
populations dynamics in real ecosystems.

3.2 The Effects of Environmental Noises on Invasive Hosts with Different Initial
Values

Notice that deterministic model (2) can exhibit complex dynamics, including bistabil-
ity and multiple types of bifurcations. This means that the dynamics of the model is
sensitive to the fluctuations of the external environment, that is small environmental
fluctuations may significantly change the dynamics of the original model. For fixed
parameter values

a = 1/4, b = 1, c = 1/60, δ = 1/3, (33)

it is shown in (Xiang et al. 2020) that model (2) exists three boundary equilibria:
A1 = (0, 1

3 ) (a stable node), A2 = (0, 0) (an unstable node) and A3 = (1, 0) (a
saddle); and two positive equilibria: E2 = (0.14902, 0.33956) (a saddle) and E3 =
(0.58853, 0.34503) (a stable focus). Figure 5 comprehensively describes the vector
field of deterministic model (2). The separatrix � (red solid line), consisting of the two
stable manifolds of equilibrium E2, divides the positive quadrant into two parts: any
trajectory originated from the initial point on the left of the separatrix� will tend to the
invading hosts extinction equilibrium A1, meaning that the generalist parasitoids can
successfully prevent the invasion of alien hosts; and that on the right of the separatrix
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Fig. 5 The vector field of deterministic model (2) with parameters (33)

� will tend to the coexistence equilibrium E3, meaning that the generalist parasitoids
cannot effectively prevent the invasion of alien hosts.

From abovewe know that for deterministicmodel (2) having bistability, whether the
alien hosts can successfully invade an ecosystem is completely determined by its initial
state. As we have argued above, the environmental noise may have profound impacts
on the dynamics of biological populations in the real ecosystems. A natural question
is how the fluctuations of environment affect the invasion of the alien hosts and its
relative biological control using generalist parasitoids. Under the premise of parameter
values fixed in (33), in the following, we will use the corresponding stochastic model
(3) to address this problem for four different types of initial values based on the vector
field in Fig. 5 of deterministic model (2):

• The initial values in the neighborhood of coexistence equilibrium E3;
• The initial values in the right neighborhood of separatrix �;
• The initial values in the left neighborhood of separatrix �;
• The initial values in the right neighborhood of invading hosts extinction equilib-
rium A1.

For convenience, in the following numerical simulations we always assume that
σ1 = σ2 = σ . Meanwhile, we fix the initial value of generalist parasitoids as y(0) =
0.33 and let the initial value of invading hosts x(0) vary to comprehensively analyze
the influence of environmental interferences on the biological control of intrusive hosts
for different scenarios of initial values.

Type 1. The Initial Values in the Neighborhood of Coexistence Equilibrium E3

Suppose that the initial population size of the invading hosts is x(0) = 0.55. It then
follows from the vector field in Fig. 5 that the trajectory of deterministic model (2)
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(a) (b) (c)

Fig. 6 Time series diagrams of the invading hosts x(t) and generalist parasitoids y(t) for stochastic model
(3) with parameters (33) and the initial value (0.55, 0.33)

starting from the initial point (x(0), y(0)) = (0.55, 0.33) will tend asymptotically to
the coexistence equilibrium E3, which implies that the alien hosts can successfully
invade the ecosystem. Now we consider the effect of environmental noises on the
dynamics of the two populations. We first take two small noise intensity values σ =
0.02 and 0.2, and obtain the corresponding time series shown, respectively, in Fig. 6a
and b, from which we can see that both the alien hosts and the generalist parasitoids
are persistent, and the fluctuation ranges of population densities increase with the
intensities of environmental noises. This indicates that the mild environmental noises
cannot lead to the extinction of the two populations. Now we increase the intensity
value to σ = 0.82 (see Fig. 6c), we observe that the generalist parasitoids y(t) will
go extinct, but the invasive hosts x(t) remain persistent and have a large range of
population density fluctuations. This further indicates that compared with the invading
hosts x(t), the generalist parasitoids y(t) are more vulnerable to the influences of
environmental interferences.

Type 2. The Initial Values in the Right Neighborhood of the Separatrix 0

Now we take the initial population size of the invading hosts x(0) = 0.16, then the
initial point (x(0), y(0)) = (0.16, 0.33) lies in the right neighborhood of the separatrix
�. It then follows from the vector field in Fig. 5 that the corresponding trajectory
of deterministic model (2) tends asymptotically to the coexistence equilibrium E3,
meaning that the alien hosts can successfully invade the ecosystem.

Next, we explore the impact of environmental noises on the dynamics of the two
species. We take three different intensities of environmental noises: σ = 0.02, σ =
0.11, σ = 0.2, and run, respectively, 3000 numerical simulations in the same length
period of time to obtaining the corresponding Fig. 7a, b and c. Since the generalist
parasitoids y(t) are always persistent, their time series diagrams are not drawn in the
figure. By counting we can know that within the 3000 sample paths of the invasive
hosts x(t), in Fig. 7a there are 0 sample paths going to extinction, that is to say, the
invading hosts go to extinction with a proportion of 0%; in Fig. 7b, there are 325
sample paths going to extinction with a proportion of 10.83%; and in Fig. 7c, there
are 418 sample paths going to extinction with a proportion of 13.93%. This to some
extent demonstrates that for this scenario, the existence of environmental noises may
be helpful to the control of the invasive hosts.
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Fig. 7 a, b and c are the time series diagrams of the invading hosts x(t) with parameters (33) and the initial
value (0.16, 0.33), respectively

Fig. 8 a, b and c are the time series diagrams of the invading hosts x(t) with parameters (33) and the initial
value (0.14, 0.33), respectively

Type 3. The Initial Values in Left Neighborhood of the Separatrix 0

For this scenario,we take x(0) = 0.14. It then follows from the vector field inFig. 5 that
the trajectory of deterministic model (2) with initial point (x(0), y(0)) = (0.14, 0.33)
will tend asymptotically to the invading hosts extinction equilibrium A1, that is, the
alien hosts cannot successfully invade the ecosystem.

Analyzing as in Type 2, we take three different intensities of environmental noises:
σ = 0.02, σ = 0.11, σ = 0.2, and run, respectively, 3000 numerical simulations to
obtaining the corresponding Fig. 8a, b and c, where for the same reason as in Type
2, we only draw the time series diagrams of x(t). Among the 3000 sample paths, by
counting we know that in Fig. 8a there are 2091 sample paths going to extinction with
a proportion of 69.7%; in Fig. 8b there are 1289 sample paths going to extinction
with a proportion of 42.97%; and in Fig. 8c there are 958 sample paths going to
extinction with a proportion of 31.93%. This to some extent demonstrates that for this
scenario, the existence of environmental noises may be unconducive to the control of
the invasive hosts, which is clearly contrasted with the observations in Type 2.

Type 4. The Initial Values in Right Neighborhood of Invading Hosts
Extinction Equilibrium A1

Assume that the initial population size of invading hosts is x(0) = 0.01, by the vector
field Fig. 5, it is easy see that the trajectory of deterministic model (2) with initial value
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(a) (b)

(d)(c)

Fig. 9 a, b and c are the time series diagrams of the invading hosts x(t) with parameters (33) and the
initial value (0.01, 0.33), respectively; d is the time series diagrams of invading hosts x(t) and generalist
parasitoids y(t) for stochastic model (3) with the same parameters as (c)

(x(0), y(0)) = (0.01, 0.33) will tend asymptotically to the invading hosts extinction
equilibrium A1, which implies that the alien hosts cannot successfully invade the
ecosystem.

Similarly, we carry out 3000 numerical simulations to obtain the corresponding
Figure 9a, b and c, respectively, for three different intensities of environmental noises:
σ = 0.2, 0.5 and 0.82. Notice that when σ = 0.2 and σ = 0.5, the generalist
parasitoids y(t) are persistent, here we omit verification by drawing. However when
σ = 0.82, the generalist parasitoids y(t) are extinct, see Fig. 9d. Among the 3000
sample paths, by counting we know that in Fig. 9a there are 2995 sample paths going
to extinction with a proportion of 99.83%; in Fig. 9b there are 221 sample paths going
to extinction with a proportion of 7.37%; in Fig. 9c there are 0 sample paths going
to extinction. This to some extent demonstrates that for this scenario, the existence of
environmental noises may be unconducive to the control of the invasive hosts.

To summarize, when the deterministic invading hosts-generalist parasitoids model
(2) has bistability, whether the alien hosts can successfully invade a system is com-
pletely determined by the initial population sizes. On the premise of fixed model
parameters, we carry out a series of numerical simulations, and discuss the influ-
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ence of environmental interferences on the biological control of intrusive hosts under
different initial values. Through comparative analysis, we can find that:

(1) The generalist parasitoids y(t) are more vulnerable to the influences of environ-
mental interferences than invading hosts x(t);

(2) When the initial population sizes are different, the effects of environmental stochas-
tic fluctuations on the dynamics of the invasive host–generalist parasitoid model
may be opposite. Thus, improving the ability of early detection of ecosystems,
including initial densities of biological populations and corresponding properties
of population dynamics, will provide effective predictive guidance for the preven-
tion and control of alien host invasions.

4 Conclusion

In order to explore the influence of environmental interferences on the biological con-
trol of intrusive hosts, we construct the stochastic host–generalist parasitoid model
(3) based on the deterministic model (2). We first perform the persistence and extinc-
tion analysis of the model, then through a series of numerical simulations we not
only validate the correctness of the theoretical results but also more comprehensively
discuss the significant roles of random environmental noises in terms of generalist
parasitoids controlling intrusive hosts. It is demonstrated that large environmental
fluctuations may seriously threaten the sustainable survival of biological populations,
and when the environmental fluctuations are mild and the deterministic model (2)
exhibits bistability between the invading hosts extinction equilibrium and a coexis-
tence equilibrium, the effects of environmental noises on the biological control of the
invading hosts becomes complex, which is closely related to the initial population
sizes. To be specific,

(1) When the deterministic model (2) has a unique globally stable coexistence equilib-
rium, relatively mild environmental fluctuations cannot significantly change the
survival states of invasive hosts and generalist parasitoids. In this situation, the
predictions made by stochastic model are the same as those by the deterministic
one: the generalist parasitoids cannot effectively control the invasion of external
hosts.

(2) For the situation when deterministic model (2) exhibits bistability between the
invading hosts extinction equilibrium and a coexistence equilibrium, the environ-
mental fluctuations can significantly affect the survival states of populations:

– When the initial value is seated in the attraction domain of the invasive hosts
extinction equilibrium A1 (namely, on the left of the separatrix �), the prob-
ability of successful invasion of the alien hosts increases with the intensity of
environmental fluctuations. That is to say, the existence of environmental white
noise is conducive to the successful invasion of foreign hosts. In this scenario,
using the deterministic model to predict the invasion of an alien species may
lead to an inconsistent conclusion with real ecosystems.

– When the initial value is seated in the attraction domain of the coexistence
equilibrium E3 (namely, on the right of separatrix �), we note that gener-
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alist parasitoids are more vulnerable to the effects of random environmental
fluctuations than the invasive hosts, and the probability of successful invasion
of alien hosts may significantly decrease with the increase of the intensity of
environmental fluctuations.

By comparing above, we can know that improving the ability of early detection of
ecosystems has important guiding significance for biological control of alien host
invasions.

To summarize, the theoretical and numerical results obtained in this paper not
only enrich the dynamic research of the host–generalist parasitoid model, but also
provide guidance in considering the biological control for alien invasive species using
generalist predators in the sense of random environmental fluctuations. However, it
is worth noting that spatial dispersal is also an important factor affecting biological
control of invasive species. Therefore, applying stochastic partial differential equations
to explore the dynamic relationship between invasive hosts and generalist parasitoids
will be one of our further research directions.
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Appendix

A Proof of Theorem 1

Proof In order to verify the existence and uniqueness of global positive solution, we
divide two steps to prove the conclusion.

Step 1 The proof of the existence and uniqueness for local positive solution. In
order to obtain this conclusion, we generally need to test the linear growth conditions
and local Lipschitz conditions of model (3) (see (Mao 1997; Hu et al. 2008; Wang
2010)). However it is easy to see that neither of these two criteria of model (3) holds.
Hence, to prove the existence and uniqueness of local positive solution, when t ≥ 0
we let X1(t) = ln x(t) and X2(t) = ln y(t). Then for any given positive initial value
(x(0), y(0)) ∈ R

2+, we can obtain the following stochastic differential equations:

⎧⎪⎪⎨
⎪⎪⎩
dX1 =

(
1 − eX1 − beX2

a+eX1
− σ 2

1
2

)
dt + σ1dB1(t),

dX2 =
(

δ − eX2 + ceX1
a+eX1

− σ 2
2
2

)
dt + σ2dB2(t),

(34)
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with initial value X1(0) = ln x(0), X2(0) = ln y(0). It is easy to check that system
(34) satisfies the linear growth conditions and local Lipschitz conditions, which imply
the system (34) exists a unique local solution (X1(t), X2(t)) for any time t ∈ [0, τe)
(Mao 1997), where τe is the explosion time. It then follows from Itô’s formula that
x(t) = eX1(t) and y(t) = eX2(t) are the solution of model (3) with any given initial
values x(0) > 0 and y(0) > 0. Thus, it proves the existence and uniqueness of local
positive solution (x(t), y(t)) of model (3) for all t ∈ [0, τe).

Step 2 The proof of global property. In order to testify the global property of the
solution (x(t), y(t)) for model (3), we only need to prove τe = +∞. To this end, we
let n0 > 1 be a sufficiently large constant such that the initial values both x(0) > 0
and y(0) > 0 lying in [ 1

n0
, n0]. Thus, for each positive integer n > n0, we define the

following stopping time:

τn = inf

{
t ∈ [0, τe)

∣∣min{x(t), y(t)} ≤ 1

n
or max{x(t), y(t)} ≥ n

}
.

Obviously, τn is monotonic increase as n → +∞. We further define τ∞ =
limn→+∞ τn , then τ∞ ≤ τe a.s. Next, we only need to prove τ∞ = +∞. By proof of
contradiction, if τ∞ < +∞, which implies that there are a pair of constants T > 0 and
ε ∈ (0, 1) satisfying P{τ∞ ≤ T } > ε. Thus, there exists the positive integer n1 ≥ n0
such that

P{τn ≤ T } ≥ ε, n ≥ n1. (35)

We further construct a C2 function V (x, y) = (x − 1 − ln x) + b
c (y − 1 − ln y), by

Itô’s formulate one yields

dV (x, y) = LV (x, y)dt + σ1(x − 1)dB1(t) + bσ2
c

(y − 1)dB2(t),

where L denotes the operator of stochastic differential equation defined by Mao in
(Mao 1997). Then

LV (x, y) =(
1 − 1

x

) [
x(1 − x) − bxy

a + x

]
+ σ 2

1

2
+ b

c

(
1 − 1

y

) [
y(δ − y) + cxy

a + x

]
+ bσ 2

2

2c

= − (x − 1)2 + by

a + x
+ σ 2

1

2
+ bδy

c
− by2

c
− bδ

c
+ by

c
− bx

a + x
+ bσ 2

2

2c

≤ − by2

c
+ by

c
(δ + 1) + by

a
− bδ

c
+ σ 2

1

2
+ bσ 2

2

2c

≤b[a(1 + δ) + c]2
4a2c

− bδ

c
+ σ 2

1

2
+ bσ 2

2

2c
:=C3,

where C3 denotes the bounded positive constant. Hence, we can obtain

dV (x, y) ≤ C3dt + σ1(x − 1)dB1(t) + bσ2
c

(y − 1)dB2(t). (36)
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Integrating from 0 to τn ∧T := min{τn, T }, then taking expectation on both two sides
of (36), we can get

EV (x(τn ∧ T ), y(τn ∧ T )) ≤ V (x(0), y(0)) + C3T . (37)

Let �n = {τn ≤ T }, it then follows from (35) that P(�n) ≥ ε. By the definition
of stopping time, we can know when t = τn and for any ω ∈ �n , at least one of
between x(t) and y(t) either is equal to 1

n or is equal to n. Thus, we can derive that
V (x(τn, ω), y(τn, ω)) is not less than

(n − 1 − ln n) ∧
(
1

n
− 1 + ln n

)
∧ b

c
(n − 1 − ln n) ∧ b

c

(
1

n
− 1 + ln n

)
.

Further combining with the above conclusion and (37), we have

V (x(0), y(0)) + C3T ≥E[1�n V (x(τn ∧ T ), y(τn ∧ T ))]
≥ε

[
(n − 1 − ln n) ∧ (1

n
− 1 + ln n

)
∧ b

c
(n − 1 − ln n) ∧ b

c

(1
n

− 1 + ln n
)]

,

where 1�n is the indicator function of �n . When n → +∞, one can have

+∞ > V (x(0), y(0)) + C3T = +∞,

which is obviously contradictory. This completes the proof of global property.
In summary, we derive the conclusion of Theorem 1. ��

Proof of Theorem 2

Proof Let Z(t) = cx(t) + by(t), then by simple computations we can yield

dZ(t) =cdx(t) + bdy(t)

=[cx(1 − x) + by(δ − y)]dt + cσ1xdB1(t) + bσ2ydB2(t)

=(2cx − cx2 − cx + bδy − by2 + by − by)dt + cσ1xdB1(t) + bσ2ydB2(t)

≤
(
c + (1 + δ)2

4
− Z(t)

)
dt + cσ1xdB1(t) + bσ2ydB2(t).

Let N (t) be the solution of the following stochastic differential equation:

{
dN (t) =

(
c + (1+δ)2

4 − N (t)
)
dt + cσ1xdB1(t) + bσ2ydB2(t),

N (0) = Z(0) = cx(0) + by(0).
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Then we can derive the following formal solution:

N (t) =
(
c + (1 + δ)2

4

)
+ e−t

(
N (0) − c − (1 + δ)2

4

)
+ M(t), (38)

whereM(t) = ∫ t
0 e

−(t−θ)[cσ1x(θ)dB1(θ) + bσ2y(θ)dB2(θ)] is a locally continuous
martingale satisfying M(0) = 0. Further, Eq. (38) can be rewritten as

N (t) = N (0) + A(t) −U (t) + M(t),

where A(t) =
(
c + (1+δ)2

4

)
(1 − e−t ) and U (t) = N (0)(1 − e−t ). It is obvious that

A(t) andU (t) are bounded and are two continuous adapted increasing processes with
A(0) = U (0) = 0 for all t ≥ 0. It then follows from (Mao 1997, Theorem 1.3.9) that
limt→+∞ N (t) exists and is finite. With the help of stochastic comparison theorem,
we have limt→+∞ Z(t) ≤ limt→+∞ N (t) < +∞, a.s. This completes the proof of
the Theorem 2. ��

Proof of Lemma 1

Proof With the help of Fokker-Plank equation as well as the ergodic stationary distri-
bution, we investigate the main conclusions of (4). Let

f (ζ ) = ζ(� − ζ ), g(ζ ) = σζ, for all ζ > 0.

By simple computations, we can obtain that

∫
f (ζ )

g2(ζ )
dζ =

∫
ζ(� − ζ )

σ 2ζ 2 dζ = �

σ 2

∫
1

ζ
dζ − 1

σ 2

∫
dζ = �

σ 2 ln ζ − ζ

σ 2 + C1,∫ +∞

0

1

g2(ζ )
e
∫ ζ
1

2 f (s)
g2(s)

ds
dζ = 1

σ 2

∫ +∞

0
ζ

2�
σ2

−2e
2

σ2
(1−ζ )dζ < +∞,

where C1 denotes any constant. Based on the sufficiently criteria for the existence of
invariant density (see Klebaner 2005, PP. 170–171), it then follows from the above
computed results that Eq. (4) exists the stationary distribution with the following
density

π(ζ ) = C2

g2(ζ )
e
∫ ζ
1

2 f (s)
g2(s)

ds = C2

σ 2 ζ
2�
σ2

−2e
2

σ2
(1−ζ )

, ζ > 0, (39)

where C2 is a constant such that

∫ +∞

0
π(ζ )dζ =

∫ +∞

0

C2

σ 2 ζ
2�
σ2

−2e
2

σ2
(1−ζ )dζ = 1. (40)
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In order to derive the explicit expression of π(ζ ), we use variable substitution θ = 2ζ
σ 2

to Eq. (40) getting

21−
2�
σ2 C2e

2
σ2 σ

4�
σ2

−4
∫ +∞

0
θ

2�
σ2

−2e−θdθ = 1. (41)

Considering the definition of Gamma function in one-dimensional real number
domain, we can know that only when 2�

σ 2 − 1 > 0, Eq. (41) has practical signifi-

cance. Further we can obtain 21−
2�
σ2 C2e

2
σ2 σ

4�
σ2

−4
�

( 2�
σ 2 − 1

) = 1, that is to say,

C2

σ 2 e
2

σ2 =
(

σ 2

2

)1− 2�
σ2

�−1
(
2�

σ 2 − 1

)
. (42)

Thus, substituting expression (42) into (39), we finally derive the desired result (5).
In what follows, we verify the Markov process z(t) for system (4) admits a unique

ergodic stationary distributionwith the invariant density (5)when t > 0,which implies
that for any integrable function h(·) possesses the conclusion (6). The specific verifi-
cation processes are as follows:

With the help of the definition of ergodic stationary distribution in (Khasminskii
2012, Theorems 4.1 and 4.2), it is easy to check that the diffusion matrix of system
(4) is non-degenerate for all bounded open set S = ( 1n , n). Moreover, we need to
construct a C2 function V (z) : R+ → R+ satisfying LV (z) < 0 for all z ∈ R+\S.
Thus, under the condition σ 2

2 < �, we define

V (z) = −M ln z + z,

where M > 0 is a sufficiently large value such that

−M
(
� − 1

2
σ 2) + sup

z∈R+
{−z2 + (M + �)z} ≤ −2.

It is easy to see that V (z) is a continuous function and lim infn→+∞,z∈R+\S V (z) =
+∞, which show that when z ∈ R+, the function V (z) can reach the lowest value at a
point z. Hence, we further construct a new C2 function V (z) = V (z)− V (z) : R+ →
R+ as follows:

V (z) = −M ln z + z − V (z).

Applying Itô’s formula to V (z) along the sample path of system (4), we have

dV (z) = LV (z)dt + (z − M)σ2dB2(t),
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where

LV (z) =
(

−M

z
+ 1

)
z(� − z) + 1

2

M

z2
σ 2z2

= − M� + Mz + �z − z2 + 1

2
Mσ 2

= − M

(
� − 1

2
σ 2

)
+

(
−z2 + (M + �)y

)
.

Therefore, we easily know that

LV (z) =
{
LV (+∞) → −∞, as z → +∞,

−M
(
� − 1

2σ
2
) + supz∈R+{−z2 + (M + �)z} ≤ −2, as z → 0+.

In summary, we prove LV (z) < 0 for all z ∈ R+\S. It thus follows from the above
two conditions that the system (4) exists a unique ergodic stationary distribution and
the conclusion (6) holds. ��
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