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Abstract
We study single-frequency oscillations and pattern formation in the glycolytic process
modeled by a reduction in the well-known Sel’kov’s equations (Sel’kov in Eur J
Biochem 4:79, 1968), which describe, in the whole cell, the phosphofructokinase
enzyme reaction. By using averaging theory, we establish the existence conditions
for limit cycles and their limiting average radius in the kinetic reaction equations.
We analytically establish conditions on the model parameters for the appearance of
unstable nonlinear modes seeding the formation of two-dimensional patterns in the
formof classical spots and stripes.Wealso establish the existence of aHopf bifurcation,
which characterizes the reaction dynamics, producing glycolytic rotating spiral waves.
We numerically establish parameter regions for the existence of these spiral waves and
address their linear stability. We show that as the model tends toward a suppression
of the relative source rate, the spiral wave solution loses stability. All our findings are
validated by full numerical simulations of the model equations. Finally, we discuss
in vitro evidence of spatiotemporal activity patterns found in glycolytic experiments,
and propose plausible biological implications of our model results.
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1 Introduction

Sustained periodic oscillations have been observed in different biochemical systems
of varying complexity (Hess and Boiteux 1971; Olsen and Degn 1978; Gray and Scott
1990). In particular, glycolytic oscillations in yeast cell extracts and yeast cell popu-
lations have been widely reported (Goldbeter and Lefever 1972; Murray et al. 2007;
Weber et al. 2020). Understanding the exact conditions permitting the appearance
and regulation of such oscillations is an important problem that has been pursued
in both experimental settings and mathematical models (Weber et al. 2020; Bier
et al. 2000). Glycolysis is the fundamental biochemical process in the metabolic
pathway that explains how living cells may obtain energy by breaking down glu-
cose. More specifically, the glycolytic process, taking place in the cytosol, describes
how glucose is transformed into pyruvate (pyruvic acid) in a sequence of typically
ten enzyme-catalyzed reactions. As a result of the free energy released during the
whole process, adenosine triphosphate (ATP) is additionally produced alongwith pyru-
vate. The most prominent catalyzing enzymes hexokinase and phosphofructokinase
play their role in the glycolytic intermediate reactions for the conversions of glucose
into glucose-6-phosphate and fructose-6-phosphate into fructose 1,6-bisphosphate,
respectively (Goldbeter 1996; Voet et al. 2006). Additionally, different coenzymes
participate during glycolytic sugar degradation; among them, nicotinamide adenine
dinucleotide (NAD) plays a central role. This coenzyme can be present in both oxi-
dized (NAD+) and reduced form (NADH). The availability of NAD+ is decisive in
the regular development of the glycolysis, whereas NADH is produced during the gly-
colytic energy-release stage. Throughout the glycolytic pathway, NADH molecules
enter a feedback cycle and fluctuate between the oxidized and reduced states. In par-
ticular, if NAD+ is not obtainable, the glycolytic process can slow down or totally
stop. Therefore, the dynamics of NAD are essential to infer information about the
glycolytic dynamics (Casem 2016).
In the middle of the last century, one of the first biochemical oscillations were found
in the glycolysis process that takes place in metabolic systems. In this context, E. E.
Sel’kov, in his seminal paper (Sel’kov 1968), studied the problem of single-frequency
sustained oscillations by means of a kinetic model of a simplified enzyme reaction.
In his five-variable model, an enzyme (e) is inhibited by a monosubstrate (s1) and
activated by a monoproduct (s2). The remaining variables determine the information
regarding the enzyme substrate complex and the inactivated enzyme. By considering
a limiting process, Sel’kov obtained a reduction from his five-variable model to a
two-variable model to describe the main features relative to the concentrations of the
substrate and the product during the enzyme reaction. The biological motivation of
the previous models relies on experimental observations of the phosphofructokinase
enzyme reaction as a source of glycolytic oscillations. During this reaction, there exists
inhibition to the enzyme due to a substrate, ATP, and activation of the enzyme mainly
by a product, adenosine diphosphate (ADP). Indeed, Sel’kov’s model was found to
qualitatively describemost of the experimental conditions on single-frequency oscilla-
tions in the glycolytic process when the phosphofructokinase enzyme was considered,
thus improving the previous studies of Higgins (1964, 1965). Dynamical equations
describing the previous reaction, at very low flux rates, can be obtained from a sim-
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plified version of Sel’kov’s five-variable model (Ashkenazi and Othmer 1978). The
kinetic equations used in Ashkenazi and Othmer (1978) to describe single-frequency
oscillations in the glycolysis process are:

du

dt
= f (u, v) = −u + v

(
a + u2

)
, (1)

dv

dt
= g(u, v) = b − v

(
a + u2

)
, (2)

where a ≥ 0 is the dimensionless rate constant for the low activity state and b > 0
is the dimensionless input flux (relative source rate), while u and v are the average
concentrations of the substrate inhibition (ATP) and product activation (ADP), respec-
tively. In this model, it is assumed that the enzyme reaction exhibits two states: a low
activity state and a high activity product-activated state. We also note that in this for-
mulation as a → 0, we tend toward a version of the two-variable Sel’kov’s model
(Sel’kov 1968). Another approach, focusing on the allosteric regulation of the phos-
phofructokinase instead of the whole glycolytic pathway, was developed by Goldbeter
and Lefever (1972) for the ATP (inhibitor) and the ADP (allosteric activator) of the
phosphofructokinase. However, Goldbeter’s model presents more complex reaction
interactions than Sel’kov’s two-variable model, making it difficult for mathematical
treatment.

Organized patterns of activity—in the form of spots, stripes and spirals—have been
observed in both chemical and biological systems (Maini et al. 1997). These patterns
can be generated by the latency of nonlinear interactions, such as it occurs during the
glycolytic pathway, and transport processes (Nicolis and Prigogine 1977; Zaikin and
Zhabotinsky 1970). In Mair and Müller (1996), Mair et al. (2001), Vermeer (2008),
Müller et al. (1985, 1987), we find reports of in vitro experimental evidence of the
emergence of spatiotemporal patterns of NADH activity during glycolytic reactions.
Such patterns vary in complexity, from propagating glycolytic traveling waves and
propagating glycolytic spiral waves to more complex stationary patterns. In particular,
Turing-like patterns in the form of mosaic-like patterns were observed in Müller et al.
(1985, 1987). These transient patterns can qualitatively resemble Turing’s “stripes.”
Also, the work developed in Vermeer (2008) reported the evolution of dot-shaped
waves and short-distance propagating waves. Such patterns can also qualitatively
resemble Turing’s “spots.” Due to the previously mentioned relevance of the NADH
production during glycolysis, it is believed that NADH patterns are essential key fac-
tors that determine glycolytic spatiotemporal oscillations (Mair andMüller 1996;Mair
et al. 2001; Vermeer 2008; Corkey et al. 1988). Moreover, it has been suggested that
through these patterns, glycolysis plays a role in the processing of biological infor-
mation. For instance, experimental observations have determined a relation between
spatiotemporal glycolytic oscillations and insulin secretion of β cells in pancreatic
islets (Corkey et al. 1988). Additionally, it has been established a connection between
the propagation of NADH waves and the propagation direction of immune system’s
activated neutrophil cells (Petty et al. 2000). Also, an experimental setting developed
in Bulusu et al. (2017) has established that spatiotemporal glycolytic dynamics are
linked to the development of organogenesis in mouse embryos. Due to all of the pre-
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viously mentioned experimental evidence and, in order to understand the plausible
role of glycolysis in the processing of biological information, it is of importance to
determine theoretical conditions that allow the propagation of spatiotemporal activity
patterns and stationary activity patterns.

The main goal of this manuscript is to establish conditions for the existence of
single-frequency oscillations and two-dimensional spatial pattern formation in the
glycolytic process. To do so, Sect. 2 addresses on the existence of single-frequency
oscillations in the dynamics of the kinetic reactions describing the model. Here, we
propose a novel approach by considering the averaging theory on periodic solutions.
By using this approach, we successfully recover the limiting average radius of the limit
cycle, as well as its stability. In Sect. 3, by considering a spatially extended version
of the glycolytic model, we establish conditions for Turing pattern formation, and we
exhibit examples showing the appearance of spots and stripes of activity. In Sect. 4,
we show an existence region of spiral waves of activity in the glycolytic model by
considering a two-parameter numerical continuation of a stationary problem. We also
address the linear stability of such solutions and relate the existence of spiral solutions
determined by stationary solutions in a rotating frame to spiral solutions in the full
system of equations. Finally, in Sect. 5, we discuss plausible biological implications
of our work, according to the experimental evidence, and we present our concluding
remarks.

2 Dynamics of Kinetic Reactions

We start our analysis of the model Eqs. (1)–(2) by reproducing the well-known result
on the existence of aHopf bifurcation.Wefirst notice that the system (1)–(2) only holds
an equilibrium state at (u∗, v∗) = (b, b

a+b2
), whose stability explains the oscillatory

behavior in the glycolytic process. This type of periodic evolution is required for the
possibility of having aHopf bifurcation,which accounts for the transition to an isolated
periodic orbit. In contrast to the traditional stability analysis, we use the averaging
theory for periodic systems (Sanders and Verhulst 1985; Chow andMallet-Paret 1977)
to reproduce the model parameter conditions where the Hopf bifurcation takes place.
This theory affirms that a perturbed periodic system may be replaced, to order one in
the perturbation parameter, by its corresponding angular averaging in the appropriate
time scales (Chow and Mallet-Paret 1977). In the context of our biological model, the
dimensionless rate constant, a, plays the role of the perturbation parameter. Following
this theory, we use polar coordinates around the only equilibrium point (u∗, v∗). That
is, we consider the change of variables u = u∗ + r cos θ and v = v∗ + r sin θ into
Eqs. (1)–(2) to find the corresponding action-angle simplified system,

dr

dt
= (−1 + 2u∗v∗) r cos2 θ +

(
a + u∗2) r sin θ cos θ + v∗r2 cos3 θ + r3 sin θ

cos3 θ + 2u∗r2 sin θ cos2 θ − 2u∗v∗r sin θ cos θ −
(
a + u∗2) r sin2 θ

−v∗r2 cos2 θ sin θ − 2u∗r2 cos θ sin2 θ − r3 sin2 θ cos2 θ ≡ F (r , θ) , (3)
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dθ

dt
= (

1 − 2u∗v∗) sin θ cos θ −
(
a + u∗2) sin2 θ

−v∗r sin θ cos2 θ − 2u∗r sin2 θ cos θ

−r2 sin2 θ cos2 θ − 2u∗v∗ cos2 θ −
(
a + u∗2) cos θ sin θ − 2u∗r cos2 θ sin θ

−v∗r cos3 θ − r2 sin θ cos3 θ ≡ G (r , θ) . (4)

In the averaging theory, one then considers the average system in θ around a cycle on
[0, 2π ]. We thus consider the average variation r̄ in the form

dr̄

dt
= 1

2π

∫ 2π

0
F(r̄ , θ)dθ = r̄

2

(
−1 + 2u∗v∗ − a − u∗2 − r̄2

4

)

= r̄

2

(
−a + b2 − (

a + b2
)2

a + b2
− r̄2

4

)
. (5)

Then, the local periodic behavior of the original system (1)–(2) around the equilib-
rium point (u∗, v∗) is approximately predicted for a small average radius r̄ . Thus, the
previous equation near the equilibrium at r̄ = 0 becomes:

dr̄

dt
=

(
−a + b2 − (

a + b2
)2

a + b2

)
r̄

2
≡ �

r̄

2
. (6)

The solution of Eq. (6) is r̄(t) = A exp
(

�
2 t

)
, where A = constant . The previous

solution indicates the occurrence of aHopf bifurcation at� = 0,where the equilibrium
(u∗, v∗) changes its stability from an unstable spiral when � > 0 to a stable spiral for
� < 0. That is, the two-parameter relationship:

� = 0, or, b2 = −2a + 1 ± √
1 − 8a

2
, (7)

defines a parabolic parameter region for the model where a stable limit cycle takes
place, see Fig. 1a. The same result is obtained, for example, in Strogatz (1994) using
the traditional local (linear) stability analysis and Poincaré’s theorem. The existence
of the limit cycle agrees with the fact that the glycolysis process proceeds in an
oscillatory fashion due to the formation and breakdown of glucose. An approximation
to the average radius of the limit cycle is actually obtained from Eq. (5) as the nonzero
equilibrium solution at r̄ = 2

√
�, see Fig. 1b. Also, the relationship between the

kinetic parameters recovers the well-known conditions for the existence on the limit
cycles on the two-variables Sel’kov model (a = 0), where the source rate, b, needs
to be close to one. It is worth mentioning that, in contrast to the linear analysis, our
averaging approximation not only predicts the Hopf bifurcation but also provides
an order one approximation for the size of the limit cycle and its stability. Therefore,
under this approach as the source rate is varied, we obtain an estimation of quantitative
features of the glycolytic oscillations.
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(a) (b)

Fig. 1 Hopf bifurcation: a parabolic parameter region obtained from Eq. (7). The region � > 0 deter-
mines unstable spiral equilibrium points and � < 0 determines stable equilibrium points, respectively. b
Approximation to the radius of the limit cycle r̄(b) = 2

√
� for a = 0.02

For illustrative purposes, we now numerically solve Eqs. (1)–(2) using a fourth-
orderRunge–Kuttamethod for convenient initial conditions. Figure2a shows the phase
plane (u, v) indicating the existence of a limit cycle, as predicted from the bifurcation
analysis for the model parameters a = 0.02 and b = 0.2. The size of such limit
cycle is well-approximated from r̄(b), as Fig. 1b indicates. On the other hand, Fig. 2b,
c depicts the temporal evolution of the concentrations u and v obtained from the
initial conditions u(0) = 1.5, v(0) = 1 and u(0) = 0.5, v(0) = 4 corresponding to
inner and outer orbits around the associated limit cycle. The behavior shown in Fig. 2
characterizes the self-sustained oscillatory evolutions predicted in early publications
on the glycolytic process.

The rest of the paper is devoted to analyze the two-dimensional spatial diffusion of
the concentrations u and v obeying the kinetic reactions (1)–(2). As far as the authors
are aware, a detailed analysis of this problem has not been undertaken in the literature
yet. Our purpose is to show how the stable limit cycle appearing in the reaction
equations influence the dynamics in the spatial diffusion of the two concentrations.
We show that Turing instabilities give place to spots and stripes patterns, while spiral
waves may arise in the model parameters where there is a limit cycle.

3 Reaction–Diffusion Interactions: Pattern Formation

Assuming that the transport of the ATP and the ADP in the spatial domain occurs by
passive diffusion, determined by fixed constants Du > 0 and Dv > 0, we obtain the
following reaction–diffusion model:

∂u

∂t
= Du∇2u + f (u, v) = Du∇2u − u + v

(
a + u2

)
, (8)
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(a)

(b)

(c)

Fig. 2 Numerical solution of Eqs. (1)–(2) for a = 0.02 and b = 0.2. a Phase plane (u, v). b Solution
(t, u(t)) and c solution (t, v(t)). Continuous curves for the initial condition u(0) = 1.5, v(0) = 1 and dash
curves for u(0) = 0.5, v(0) = 4

∂v

∂t
= Dv∇2u + g(u, v) = Dv∇2v + b − v

(
a + u2

)
, (9)

where ∇2 is the Laplace operator in D spatial dimensions. Equations (8)–(9) are con-
sidered in the unit rectangle [0, 1]D since the scaling over an arbitrary rectangle [0, L]D
just adds an extra factor of D/L2 in front of the Laplacian. Thus, in D-dimensions,
it is possible to redefine the diffusion coefficients as Du → Du

D
L2 and Dv → Dv

D
L2

to absorb the spatial scalings. In this work, we focus on the two-dimensional case
D = 2. Also, to address the classical pattern formation problem, we consider no-
flux boundary conditions ux (0, y) = vx (0, y) = 0, ux (1, y) = vx (1, y) = 0; and
uy(x, 0) = vy(x, 0) = 0, uy(x, 1) = vy(x, 1) = 0. We are specially interested in
establishing model parameter conditions, including diffusivities coefficients, allowing
for the pattern formation in the different scenarios of Turing instabilities and spiral
rotating waves, as it is explained below.

3.1 Turing Instabilities

We start following Turing’s criteria in our model equations for diffusion to cause
instabilities in the only stable equilibrium state. Aswementioned above, in the absence
of diffusion, Du = Dv = 0, the corresponding reaction system (1)–(2) has a stable
equilibrium point at (u∗, v∗) when the following two conditions are satisfied
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fu(u
∗, v∗) + gv(u

∗, v∗) < 0, (10)

fu(u
∗, v∗)gv(u

∗, v∗) − fv(u
∗, v∗)gu(u∗, v∗) > 0, (11)

where subscripts denote partial derivatives. Since diffusion has a smoothing effect,
Alan Turing asked whether diffusion can destabilize a system from a homogeneous
stable steady state (Turing 1952). To answer this question, one needs to linearize the
full PDE system (8)–(9) around the equilibrium point (u∗, v∗) in the form u(x, y, t) =
u∗ + eλtη(x, y), v(x, y, t) = v∗ + eλtμ(x, y) for η,μ � 1, to find the eigenvalue
problem:

λ

[
η

μ

]
=

[
fu − κ2Du fv

gu gv − κ2Dv

]

︸ ︷︷ ︸
M

[
η

μ

]
,

for the wave number κ satisfying κ2 = κ2
x + κ2

y where κx = nπ and κy = mπ are
the wave numbers in the x and y directions, respectively. Thus, the diffusive effects
are taken into account as a perturbation of the original Jacobian in the reaction system
through the introduction of the wave number κ . In this way, Turing instabilities take
place when κ is such that the matrix M accepts eigenvalues with positive real part,
that is, when tr(M) > 0 or det(M) < 0. By considering the condition (10), we obtain
that tr(M) = fu + gv − κ2 (Du + Dv) < 0. We thus only have to satisfy,

h
(
κ2

)
= det(M) = DuDvκ

4 − (Dv fu + Dugv) κ2 + fugv − fvgu < 0. (12)

Since h
(
κ2

)
is parabolic in κ2 and opening upward, real wave numbers are obtained

when there exist positive real solutions of h
(
κ2

) = 0. We thus obtain the following
two conditions for Turing instabilities:

d fu + gv > 0, (13)

(d fu + gv)
2 > 4d ( fugv − fvgu) , (14)

where d = Dv/Du > 0 is the diffusion ratio. We may notice that d 	= 1 otherwise
the conditions (10) and (13) contradict each other. Also, Eqs. (10) and (13) imply that
fu and gv have opposite signs, that is, fugv < 0. Thus, from Eq. (11), we must have
fvgu < 0.
In the case of the glycolysis model, the conditions (10)–(11) are satisfied for −a +

b2 < (a + b2)2 or � < 0, see Fig. 1. On the other hand, Turing’s conditions given
by Eqs. (13)–(14) applied to the glycolysis model yield,

d
(
b2 − a

)
>

(
b2 + a

)2
, (15)

[
d

(
b2 − a

)
−

(
b2 + a

)2]2
> 4d

(
b2 + a

)3
. (16)
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Fig. 3 Turing’s instability region obtained from Eqs. (15)–(16) for a d = 6.4, b d = 8 and c d = 10

Our previous observations lead to d > 0 and d 	= 1, implying that in order to obtain
Turing patterns in the glycolysis model the diffusivities of the product and substrate
need to be sufficiently unequal. We now proceed to numerically analyze the Turing
regions determined by � < 0 in Eqs. (15) and (16). In Fig. 3, we show examples of
the Turing instability region for different diffusion rates. We find that as the diffusivity
of the product is near to 6.2 times stronger than the diffusivity of the substrate, Turing
patterns emerge. Our results in Fig. 3 provide a scenario in which glycolytic Turing
patterns emerge under sufficiently strong diffusivity of the product, sufficiently large
source rate, and a sufficiently low rate constant for the low activity state.

In order to validate our findings, we numerically solve the full reaction diffusion
system (8)–(9) by means of a second-order central difference scheme in space and a
first-order forward difference approximation in time (Strikwerda 2004), with the steps
δx = δy = 0.01 and δt = 0.001, which is adapted into the MEX-CUDA environment
of MATLAB due to the amount of computational work. It is worth to mention that the
discretization of the Laplacian is embedded in CUDA, while the temporal iterations
are dealt in a MATLAB code. Additionally, in all of our numerical simulations, we are
taking initial conditions as perturbations by uniformly distributed random numbers in
[0, ε], for sufficiently small ε, of the only equilibrium (u∗, v∗). Thus, we are choosing,
for example, parameter values in the shaded region of Fig. 3b (that is, the diffusivity
of the product is acting 8 times faster than the diffusivity of the substrate) to get two-
dimensional patterns of the Turing type. The first scenario corresponds to relatively
small wave numbers κ . For instance, taking a = 0.1, b = 0.85 and Du = 0.0025
into the condition (12) provides 48.8 ≤ κ ≤ 80.3 or 10.6 ≤ n2 + m2 ≤ 15.8. It is
easily seen that this last condition is only satisfied for (n,m) = (3, 2) or (n,m) =
(2, 3) where n and m indicate the number (integer) of oscillations in the x and y
directions, respectively. Figure 4 displays the full numerical evolution of Eqs. (8)–
(9) for a perturbed initial condition u and v obtained from these model parameters.
From this simulation, we may observe how this temporal evolution leads to (3, 2)
spots in Fig. 4c, d, as it was previously predicted. On the other hand, the model
parameters a = 0.025, b = 0.961 and Du = 0.0001 yield, fromEq.(12), the condition
186.2 ≤ n2 +m2 ≤ 653.3 which allows several large enough integer values for n and
m. In this case, the larger number of allowed spots are packed in the form of stripes
oriented in different directions. For instance, Fig. 5 shows a particular arrangement of
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Fig. 4 Spots formation. Turing’s instability in u and v for a = 0.1, b = 0.85, d = 8 and Du = 0.0025. a,
b at t = 0 for ε = 0.01. c, d at t = 1000

the spots in the form of this stripe pattern formation accordingly to the full numerical
solution of Eqs. (8)–(9) for these model parameters.

For the sake of completeness, we are now developing the standard linear stability
analysis of the full PDE system (8)–(9) around the equilibrium solution (u∗, v∗). Our
aim is to complement our analysis of the loss of stability of the equilibrium solution
that permits the emergence of Turing patterns. To this end, we take the transformations
u(x, y, t) = u∗ + eλtφ(x, y) and v(x, y, t) = v∗ + eλtψ(x, y) for sufficiently small
functions φ and ψ . Thus, Taylor expansions yield the following eigensystem:

λ

[
φ

ψ

]
=

[
Du∇2 + fu(u∗, v∗) fv(u∗, v∗)

gu(u∗, v∗) Dv∇2 + gv(u∗, v∗)

]

︸ ︷︷ ︸
M̃

[
φ

ψ

]
, (17)

where the eigenfunctions φ and ψ satisfy no flux conditions at the boundaries
φx (0, y) = ψx (0, y) = 0, φx (1, y) = ψx (1, y) = 0 and φy(x, 0) = ψy(x, 0) = 0,
φy(x, 1) = ψy(x, 1) = 0. The eigenvalue problem stated in Eq. (17) is numerically

123



Turing Instabilities and Rotating Spiral Waves... Page 11 of 22 100

Fig. 5 Stripes formation. Turing’s instability in u and v for a = 0.025, b = 0.961, d = 8, Du = 0.0001.
a, b at t = 0 for ε = 0.01. c, d at t = 1000

solved using a second-order central finite difference scheme in the Laplacian operator
and in the boundary conditions.

We show in Fig. 6 an example of the linear stability analysis of the equilibrium
point located in the Turing’s region for d = 8. We use the same parameter values
as in Fig. 4 where the spots were exhibited. As expected, the equilibrium point has
lost stability due to the diffusive interactions. It is also shown the leading unstable
eigenvalue λ = 0.011 and its corresponding eigenfunctions φ and ψ which show
smooth bumps sufficiently spaced that permit the emergence of spots of activity, as it
is shown in Fig. 6.

We now analyze the stability of the equilibrium solution in Turing’s region for
the parameters used in Fig. 5. In this case, the spectrum contains several unstable
eigenvalues, as Fig. 7c, d indicate, while the eigenfunctions φ and ψ corresponding
to the largest eigenvalue λ = 0.1198 display sharp peaks positioned close to each
other, see Fig. 7a, b. These close packed arrangements give place to the instability that
allows the emergence of the stripes. In the next section, we use the Hopf bifurcation
property to develop spiral waves which will complement the Turing patterns found in
this section.
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Fig. 6 Linear instability of the equilibrium point for a = 0.1, b = 0.85, d = 8, Du = 0.0025. a and b
Eigenfunctions corresponding to the largest eigenvalue λ = 0.011. c Spectrum. d Close up of the spectrum
to detect the largest positive eigenvalue

4 Glycolytic Spiral Waves

It is expected that any diffusion-less system exhibiting a Hopf bifurcation experiences,
under diffusive interactions, rotating spiral wave solutions (Hagan 1982). Spiral wave
solutions in reaction–diffusion systems have been previously investigated in Hagan
(1982), Cohen et al. (1978) andKopell andHoward (1981), among others. Particularly,
rotating spiral waves have been numerically observed for glycolytic activity under
Goldbeter’s approach (Straube et al. 2010). In this section, we focus on numerically
establishing a region for the existence of glycolytic spiral solutions to complement the
description of pattern formation in the glycolysis process for the two-variable Sel’kov
model (8)–(9). To establish such solutions, we first perform a change of variables to
Eqs. (8)–(9) to set the equilibrium point (u∗, v∗) at the origin. Spiral wave solutions
can be defined by stationary solutions in the rotating polar coordinate frame (r , φ),
where φ = θ − ωt . That is, spiral solutions satisfy the following steady state system
in the rotating frame:

Du∇2
r ,φU

∗ − (
U∗ + u∗) + (

V ∗ + v∗) (
a + (

U∗ + u∗)2) + ω
∂U∗

∂φ
= 0, (18)

Dv∇2
r ,φV

∗ + b − (
V ∗ + v∗) (

a + (
U∗ + u∗)2) + ω

∂V ∗

∂φ
= 0, (19)
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Fig. 7 Linear instability of the equilibrium solution for a = 0.025, b = 0.961, d = 8, Du = 0.0001. a and
b Eigenfunctions corresponding to the largest eigenvalue λ = 0.1198. c and d) Spectrum

where ∇2
r ,φ is the Laplacian operator in polar coordinates and ω is the appropriate

rotation frequency of the spiral wave. Since the frequency ω generates, in a general
setting, an infinite set of solutions established by all possible spiral rotations, it is
necessary to consider an extra pinning condition. This can be done by complement-
ing the system of Eqs. (18)–(19) with the extra conditions ∂U∗

∂φ
|r=Rfixed,φ=φfixed= 0,

and ∂V ∗
∂φ

|r=Rfixed,φ=φfixed= 0. The aim of the previous conditions is to analyze a spi-
ral solution by pinning the rotation at a fixed radius and angle, R f ixed and φ f i xed ,
respectively. Additionally, we consider a bounded domain determined by a circle of
sufficiently large radius R, and complement the system with the Neumann boundary
conditions ∂U∗

∂r |R= ∂V ∗
∂r |R= 0.

The existence of spiral wave solutions and their stability has been recently studied
in Sandstede and Scheel (2002), and examples of spiral wave solutions in reaction–
diffusion systems have been rigorously analyzed in Dodson and Sandstede (2019a).
The aforementioned authors have also developed a numerical MATLAB routine to
determine spiral wave solutions and their stability in bounded domains. The code is
available in Dodson and Sandstede (2019b). In this work, we adapted the preceding
routine to numerically study the existence of glycolytic spiral solutions. To do so,
we discretized space by considering polar nodes consisting of Nr = 100 radial and
Nθ = 200 azimuthal grid points. We then look for numerical spiral waves determined
by the steady state solutions of Eqs. (18)–(19). For instance, Fig. 8a, b shows an
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Fig. 8 a, b Spiral wave U∗ and V ∗ component, respectively, at the steady state. b, c Linear stability
analysis: Real parts of the eigenfunctions associated with translational symmetries λ = 0+ 0.4565i . Fixed
parameters: a = 0.04, b = 0.4, Du = 0.0006, and Dv = 0.00001

example of the substrate and product producing spiral wave solutions according to
the model parameters a = 0.04, b = 0.4, Du = 0.0006 and Dv = 0.00001 for the
adjusted frequency ω = 0.4565 obtained from the numerical algorithm in the rotating
frame. In this case, the spiral solution of the substrate is narrow, whereas the spiral
solution of the product is wide.

Once the existence of steady-state solutions in the rotating frame is established, we
may study their linear stability by considering whether the dynamics of a perturbation
of the steady-state solution remains sufficiently close. To establish the stability problem
to be addressed, we let U∗=(U∗, V ∗)T and Ū=(Ū (r , φ, t), V̄ (r , φ, t))T , where Ū and
V̄ are sufficiently small. We then write the dynamics of the perturbation of the steady
state as:

∂

∂t
(U∗ + Ū) = ω

∂

∂φ
(U∗ + Ū) + D∇2

r ,φ(U∗ + Ū) + h(U∗ + Ū , V ∗ + V̄ ), (20)

where h(U , V ) = (− (U + u�) + (V + v�)
(
a + (U + u�)2

)
, b − (V + v�)

(
a + (U + u�)2

)
)T , andD =

(
Du 0
0 Dv

)
. By formally linearizing the previous system
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around the steady-state solution, and assuming Ū = eλtU and V̄ = eλt V , we obtain
the following eigenvalue problem:

λW =
(

ω
∂

∂φ
+ D∇2

r ,φ + Jh(U∗, V ∗)
)
W , (21)

where W = (U , V )T and J denotes the corresponding Jacobian matrix. By differ-
entiating the stationary solution, ∂U∗

∂φ
, we obtain an eigenfunction of the previous

eigenvalue problem with a corresponding zero eigenvalue. This is due to the fact that
rotations of the stationary spiral solutions are also spiral solutions.Also,when posed on
an infinite domain a pair of complex eigenvalues,±iω, is expected due to translational
symmetries of the spiral wave. However, when posed on a finite domain, these eigen-
values are expected to remain numerically close by considering a sufficiently large
domain (Barkley 1994). In our work, instabilities due to eigenvalues with positive real
part were established for eigenvalues such that Re(λ) > 10−3 in correspondence with
the order of approximation of the numerical scheme.

The spectrum ensuing from Eq. (21) establishes the linear stability of the spiral
wave solution and consists of point eigenvalues and a set determined by the dynamics
in the far-field limit.When posed on an unbounded domain, the spectrum is determined
by the dynamics of the spiral core and the far-field, whereas when posed on a bounded
domain, the boundary effects also determine the spectral properties. The linear and
nonlinear stability of spiral wave solutions has been rigorously studied in Sandstede
and Scheel (2002) and Dodson and Sandstede (2019a). In particular, in Dodson and
Sandstede (2019a), the authors have introduced amethodology to determine the source
of instabilities in spiral solutions by analyzing the spectral properties arising from the
spiral core, boundary effects, and the far-field limit.

The linear stability of spiral solutions is here addressed only by analyzing the set
of leading eigenvalues of the spectra. Following this stability analysis in the examples
established in Fig. 8a, b, we find in Fig. 8c, d the real part of the eigenfunctions
associated with the pure imaginary eigenvalue λ = 0.4565i arising from translation
symmetries. Both eigenfunctions resemble the substrate spiral solution. We are thus
getting in Fig. 8a, b stable spiral waves of the substrate U and product V . We may
actually obtain a stability diagram for fixed diffusivities in the Hopf bifurcation region
as it is shown in Fig. 9. To get this picture, we performed a two-parameter numerical
continuation based on the stability of steady states of Eqs. (18)–(19) by considering the
spiral solutions of Fig. 8a, b as an initial iterate for the fixed diffusivities Du = 0.0006
and Dv = 0.00001 and varying the model parameters a and b each time. We note that
for such a choice of parameters, there is no coexistence of Turing patterns and spiral
solutions since spirals lie inside the Hopf bifurcation region while Turing’s condition
holds in a small band out of it. As we have mentioned, the existence of spiral waves
requires for the diffusivity of the substrate to be faster than the diffusivity of the product
in contrast to the Turing pattern conditions previously established.

In Figs. 10 and 11, we provide examples of the loss of stability of the spiral wave
solution as point eigenvalues cross the imaginary axis. In Fig. 10, we depict the loss
of stability of a spiral solution when the kinetic parameter a is sufficiently low and
the source rate is decreased. In this case, as the parameters b decreases, we observe
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Fig. 9 Existence region of spiral
wave solutions for R = 1. The
filled and empty points denote
linearly stable and linearly
unstable spiral solutions,
respectively. Fixed parameters:
Du = 0.0006 and
Dv = 0.00001

(a) (b)

Fig. 10 Spiral wave solution loses stability through a Hopf bifurcation. The black circles denote point
eigenvalues of the spiral solution and the red marks denote the eigenvalues associated with the translational
and rotational invariance of the spiral solution. The black line determines Re(λ) = 0. As the parameter b
decreases, the spiral solution loses stability. a a = 0 and b = 0.45. b a = 0 and b = 0.4. Fixed parameters:
Du = 0.0006 and Dv = 0.00001

an isolated conjugate pair of eigenvalues crossing the imaginary axis and producing a
Hopf bifurcation. On the other hand, we observe in Fig. 11 the loss of stability of the
spiral solution when the kinetic parameter a is sufficiently low, and the source rate is
increased. In this case, there is an accumulation of eigenvalues on the imaginary axis
near the eigenvalues corresponding to the translational and rotational properties of the
wave solution. Eventually, the accumulated eigenvalues start to cross the imaginary
axis and the spiral solution becomes linearly unstable.

Finally, we aim to numerically validate the existence region for the spiral solutions
established in Fig. 9. Our purpose is to recover the spiral dynamics and some of
their features in the full reaction–diffusion system. To do so, we numerically solve
the complete glycolytic model determined in Eqs. (8)–(9) by considering the model
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(a) (b)

Fig. 11 Spiral wave solution loses stability. The black circles denote point eigenvalues of the spiral solution
and the red marks denote the eigenvalues associated with the translational and rotational invariance of the
spiral solution. The black line determines Re(λ) = 0. As the parameter b increases, the spiral solution loses
stability. a a = 0 and b = 0.85. b a = 0 and b = 0.9. Fixed parameters: Du = 0.0006 and Dv = 0.00001

Fig. 12 Spiral wave solutions obtained from the full numerical solution of Eqs. (8)–(9) for the model
parameters a = 0.04, b = 0.4, Du = 0.0006, Dv = 0.00001, δt = 0.001 and δx = δy = 0.01. Evolution
of u at a t = 0 for ε = 0.01, c t = 800 and e t = 1300. Evolution of v at b t = 0 for ε = 0.01, d t = 800
and f t = 1300

parameters that were used to produce the stable spirals of Fig. 8a, b, that is, a = 0.04,
b = 0.4, Du = 0.0006 and Dv = 0.00001. In Fig. 12, we successfully recover spiral
solutions for the full system of equations. In this figure, we see how an equilibrium
solution randomly perturbed at t = 0 evolves to a single armed solution for both the
substrate, Fig. 12c, e, and the product, Fig. 12d, f.
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Fig. 13 a Phase diagram of the spiral wave rotation determining a closed loop in the ||u||vs||v|| plot that
suggest periodicity of the solution. b, c ||u|| and ||v||, respectively. The motion of b and c suggest that
the solutions display periodic oscillations. The estimated dominant frequency of oscillations is ω = 0.46.
Fixed parameters: a = 0.04, b = 0.4, Du = 0.0006 and Dv = 0.00001

In order to get more insight about the dynamics of these solutions, we fol-
low the idea developed in Amdjadi (2010) by computing the time-dependent

Euclidean norms determined by ||u|| =
(∫ 1

0

∫ 1
0 | u(x, y, t) |2 dxdy

) 1
2
and ||v|| =

(∫ 1
0

∫ 1
0 | v(x, y, t) |2 dxdy

) 1
2
for convenient discretizations of the numerical solu-

tions u and v. Our aim is to extract feature dynamics of the solutions by analyzing
their corresponding norms in the whole spatial domain looking for a global behavior
of the rotating waves. We point out that a local analysis of the solutions can be made
by numerically following the spiral tips; however, this idea is more difficult to imple-
ment. In Fig. 13a, we depict the phase diagram of the spiral rotation waves obtained in
Fig. 12, and we recover a closed loop in the ||u||vs||v|| diagram. This result suggests
that the rotating spiral waves u and v, displayed in Fig. 12, are periodic. Also, in
Fig. 13b, c, we show the evolution of the norms ||u|| and ||v||, respectively, between
the times t = 500 and t = 800 where the dynamics of the spiral solutions are well-
defined. From these two figures, it is clear the periodicity of the oscillations which
agrees with the expected features of the spiral rotations. Furthermore, by perform-
ing a Fourier analysis of these periodic norms, we recover a dominant frequency of
ω = 0.46 which is in concordance with the frequency previously obtained for these
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spiral solutions in Fig. 8. In this way, we are able to relate feature dynamics of peri-
odicity and frequency from the spiral waves described as steady state solutions of
Eqs. (18)–(19) to the numerical solutions of the full reaction diffusion system (8)–(9),
thus validating our previous findings.

5 Discussion and Concluding Remarks

Reaction–diffusion systems are commonly used to exhibit the existence, or to describe
the conditions for the appearance of spatiotemporal activity patterns. In his fundamen-
tal work, Turing (1952), Alan Turing established that under specific conditions and
convenient difference of diffusion rates of the underlying chemicals, stable activity
patterns can arise. Different works have generalized the efforts developed by Turing,
and have established some conditions for pattern formation, specifically in glycolytic
processes. For example, in Strier and Dawson (2007), the authors established the exis-
tence of cell-sized Turing spots in the five-variable Sel’kov model by using parameter
values in agreement with experimental observations. In their work, they used the same
diffusion coefficient for both ATP and ADP. Under this scenario they proposed that
Turing patterns are mainly regulated by the enzyme concentration and the intrinsic
glycolytic flux. They suggested that Turing patterns could play a part during the cell
division process in eukaryotic cells. Moreover, they proposed that the pattern size (and
as a consequence the number of spots) could be determined by the glycolytic flux.
In this way, their work established possible connections between oscillations, pattern
formation and key features in the glycolytic pathway. In comparison, in our work,
we have established parameter ranges for Turing pattern formation that are directly
determined by the diffusion rates. In our simplified modeling scenario, it is imperative
to have unequal diffusion rates to obtain Turing pattern formation. This discrepancy
with the aforementionedmodel could be due to the change of order ofmagnitude of the
diffusion and reaction terms in the reduction in the enzyme variables (fast variables)
from the f ive-variable Sel’kov model to the two-variable Sel’kov model (Strier and
Dawson 2004). Nevertheless, our work generalizes the existence of not a single set of
parameters, but rather a range of parameters that support pattern formation and, that
are connected to the emergence of glycolytic oscillations. That is, under convenient
diffusion the parameter ranges for glycolytic oscillations (Hopf bifurcation region in
Fig. 1), provides a lower bound for Turing pattern regions (blue region in Fig. 3). As
suggested by numerical evidence fromStrier andDawson (2007), ourwork determines
that both the glycolytic flux (model input flux and rate constants) and the ATP and
ADP established an estimate of the number of spots present. In particular, our results
strengthens the hypothesis that the glycolytic pathway can play a role in the process-
ing of biological information. Therefore, we established the theoretical setting that
estimates the number of spots that can plausibly fit a cell during the division process.
This is also in concordance with experimental evidence that shows the influence of
glycolytic flux on the organogenesis stage in mouse embryos (Bulusu et al. 2017).
Additionally, different works in the literature have also studied the conditions for pat-
tern formation in glycolytic models. In Prigogine et al. (1969), the authors established
that the emergence of Turing patterns was restricted to the case where the substrate
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ATP and the product ADP diffused at adequately different rates. This result is in
agreement with our observations. Also, in Hasslacher et al. (1993), Turing patterns in
a glycolytic model were presented in the case where the substrate was diffusing 25
times faster than the product. The previous assumption was intuitively problematic,
due to the expected similar dynamics of both the substrate and the product during the
enzymatic reaction. In comparison to the previously mentioned research, our work
provides a complete description on the conditions of the diffusivity rates that allow
for the emergence of Turing patterns. In particular, we have established a region for
Turing instabilities depending on the choice of the diffusion coefficients. Numerical
analysis of our conditions established that in order for Turing patterns to emerge the
diffusivity of the product needs to be at least 6.2 times faster than the diffusivity of the
substrate. Also, the source rate b needs to be sufficiently large and the kinetic parame-
ter a needs to be sufficiently low. The difussivity rates that we found are in agreement
with the observations established in Strier and Dawson (2007) and Prigogine et al.
(1969). More recently, in Basu and Bhattacharjee (2020), the authors established a
rigorous mathematical analysis of a glycolytic model that determines that a uniform
oscillatory state, or a periodic pattern, could emerge according to the choice of initial
conditions and the diffusivities of the substrate and the product. In comparison with
the aforementioned works, we have provided explicit parameter relations that connect
the emergence of glycolytic oscillations and pattern formation.

As it has been previously mentioned, there is evidence of the existence of in vitro
spiral NADH waves during glycolytic experiments in yeast extracts (Vermeer 2008;
Mair and Müller 1996; Mair et al. 2001). However, as far as the authors are aware, the
mathematical modeling of such glycolytic patterns and their linear stability has not
been formerly addressed. In our work, we have been able to establish the existence of
spiral wave solutions in a spatially extended glycolytic model. Also, we have analyzed
the effect of the model parameters on the stability of the spiral solutions. Our results
showed that in general, as we tend toward a diminished rate constant of the low activity
enzyme state in a cell (a → 0), and the source rate b is varied, the spiral wave solution
loses stability by means of a Hopf bifurcation regarding the full PDE. Our results
on the existence of spiral solutions established that it might be necessary a 60 times
faster diffusivity of the substrate in comparison with the diffusivity of the product to
allow for the emergence of glycolytic spirals. This also suggests that the conditions
for Turing patterns and spiral waves are exclusive among them. This is consistent with
experimental evidence realized in open spatial reactors established in Vermeer (2008).
Here, it is described a transition from propagating waves to complex patterns; among
them, stationary Turing-like patterns such as dot waves; to spiral waves. In Vermeer
(2008) and Müller et al. (1985, 1987), the experimental conditions for Turing-like
patterns were determined by a change in the protein content. However, there is also
experimental evidence of a connection between protein content and glycolytic flux
(Yagi et al. 2021). Thus, our results support that indeed, the glycolytic flux determines
the spatial patterns obtained under experimental conditions by a difference in protein
content.

In summary, this work provides a novel description of parameter conditions nec-
essary for the emergence of patterns in a simplified two-variable glycolytic model.
However, the problem of establishing parameter conditions for the emergence of such
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patterns in more realistic glycolytic models containing more accurate biochemical
descriptions, including the five-variables Sel’kov’s model, still remains open. Due
to the believed role of pattern formation on biological information processing, it is
of key importance to determine the exact conditions that allow the emergence of
different patterns during the glycolytic pathway. Although our work cannot provide
parameter ranges that quantitatively describe observable patterns in glycolytic exper-
imental settings, it does provide a qualitative description of the relation between the
model parameters that allow for the emergence of distinct patterns. Additionally, our
parameter ranges might determine qualitative glycolytic dynamics necessary for the
propagation direction of activated neutrophil cells as suggested in Petty et al. (2000).
As a consequence of our analysis, the question can be posed of whether activated
neutrophil cells can have propagation directions in the form of spiral rotating waves,
as it is observed in this glycolytic model. Future research directions can be directed to
establishing the conditions for the propagation of traveling waves, and their stability,
of glycolytic activity. Therefore, there is still ample dynamics that needs to be inves-
tigated to establish a complete description of the mathematical models that are used
to describe glycolytic dynamics.
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