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Abstract
Demographic structure and latent phenomenon are two essential factors determin-
ing the rate of tuberculosis transmission. However, only a few mathematical models
considered age structure coupling with disease stages of infectious individuals. This
paper develops a system of delay partial differential equations to model tuberculo-
sis transmission in a heterogeneous population. The system considers demographic
structure coupling with the continuous development of disease stage, which is crucial
for studying how aging affects tuberculosis dynamics and disease progression. Here,
we determine the basic reproduction number, and several numerical simulations are
used to investigate the influence of various progression rates on tuberculosis dynamics.
Our results support that the aging effect on the disease progression rate contributes to
tuberculosis permanence.

Keywords Multi-group tuberculosis system · Distributed delay · Basic reproduction
number · Age-structured population model

1 Introduction

Tuberculosis (TB), a disease caused byMycobacterium tuberculosis (Mtb) (Flynn and
Chan 2001), has long been considered as a cause of mortality and is one of the top
10 diseases of mortality worldwide (World Health Organization 2018). Around 1.3
million died because of tuberculosis, and 10.0 million developed tuberculosis in 2017
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(a) (b)

Fig. 1 Tuberculosis tendency in Hong Kong. a Notification and death rates of tuberculosis in Hong Kong,
1947–2016 (data from Department of Health of the Government of the Hong Kong (2018)). b Tuberculosis
inducedmortality in HongKong for various age groups [data fromDepartment of Health of the Government
of the Hong Kong (2018)]

(World Health Organization 2018). Patients with smear-positive will generally infect
ten individuals annually and over 20 people during the natural period of the disease
until death (Styblo 1991). In Hong Kong, tuberculosis dynamics have declined in
recent years, but it persists (Fig. 1a) and causes various mortality in different age
groups (Fig. 1b). The transmission dynamics of tuberculosis is a complicated process
which includes latent phenomenon (Parrish et al. 1998; Selwyn et al. 1989; Vynnycky
and Fine 2000; Anderson and Trewhella 1985; Ma et al. 2017), aging effect (Marais
et al. 2004; Chan-Yeung et al. 2002; Mossong et al. 2008; Castillo-Chavez and Feng
1998), exogenous reinfection issue (Feng et al. 2000; Vynnycky and Fine 1997; Cohen
et al. 2006; Kasaie et al. 2014) and several stochastic factors (Liu et al. 2018).

Latent tuberculosis is the clinical syndrome that the immune system forces
pathogens into a quiescent state after infection (Parrish et al. 1998; Barry et al.
2009; Houben and Dodd 2016). Through adapting the immune system of infected
hosts,Mycobacterium tuberculosis-latent bacilli will break out several years later until
encountering a favorable environment and further reactive to contribute tuberculosis
break out (Cardona and Ruiz-Manzano 2004; Cardona 2016). Latent phenomenon
contributes pressure in tuberculosis control (Selwyn et al. 1989), and the effect was
studied in several susceptible-infected-infectious models (Castillo-Chavez and Feng
1998; Feng et al. 2000;Waaler et al. 1962; Jabbari et al. 2016; Kuniya 2011; Kapitanov
2015). This latent phenomenon was considered as the source of delay in tuberculosis
control. Many factors (World Health Organization 2006; Cai et al. 2015) contribute
to the delay phenomenon, and the longest total delay is larger than 120 days (Storla
et al. 2008), which results in difficulty for tuberculosis diagnosis and treatment.

Demographic dynamics is another significant factor affecting tuberculosis trans-
mission as individuals in various age groups may have different immune response
levels to Mtb and various primary infection rates (Marais et al. 2004; Arregui
et al. 2018). The probability of pulmonary disease for infants (less than one years
old) is 30–40%, and then decreases (10% for 1–2 years old, 5% for 2–5 years
old, 2% for 5–10 years old), and increases for larger than ten years old (10–20%)
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(Marais et al. 2004), which indirectly indicates the complicated relation between tuber-
culosis transmission and individuals’ age. In Hong Kong, longevity and the high rate
of tuberculosis in the elderly are the significant factors for the persistence of tubercu-
losis, stated by Chan-Yeung et al. (2002). After infection byMtb, extensive symptoms
result in many concrete stages. In Aagaard et al. (2011), Aagaard et al. studied various
vaccination methods for different stages to determine the efficient protection strategy
before and after exposure to tuberculosis.

Mathematical and computational model can be used to study all these phenomenon
with to provide new hypotheses and design therapeutic approaches to TB (Kirschner
et al. 2017). Recently, Renardy and Kirschner (2020) considered a network-based
model to study tuberculosis transmission in school, household and workplace. They
obtained that the disease prevalence is sensitive to the contact weight assigned to
transmissions between casual contacts. This result suggests a direction to prevent
the spread of TB. Arregui et al. (2018) applied a data-driven model with demographic
dynamics to demonstrate a greater burden level for those areas with heavy tuberculosis
nowadays. The study in Okuonghae and Omosigho (2011) considered susceptible by
two stages and infectious population by three stages to investigate how various stages
affect tuberculosis transmission in the population.

Infection age is often utilized in mathematical systems for tuberculosis transmis-
sion (Castillo-Chavez and Feng 1998; Feng et al. 2002), but only a few mathematical
models consider age structure coupling with disease stages of infectious individuals.
Instead of using latent state in mathematical model (Feng et al. 2001), we utilize dis-
tributed delay to reflect latent phenomenon after infection as the distributed delay can
capture the delay difference among individuals. In this paper, we develop amathemati-
calmodel for tuberculosis transmission,which involves age structure for all individuals
and age-specific disease progression for infectious populations. Our model considers
demographic structure coupling with the continuous development of disease stage,
which is a crucial component for studying tuberculosis transmission. In this paper, we
apply the local stability analysis to determine the basic reproduction number, demon-
strating that the age-specific progression rate may affect tuberculosis permanence.
Several numerical simulations are applied to investigate the influence of various pro-
gression rates on tuberculosis dynamics.

2 Mathematical Model

In our model, we differentiate the population into two groups, susceptible and infec-
tious individuals, with demographic structure and multiple disease stages, and a delay
term applied to represent the latent state.

Here, we let a and s be the individual’s age and the disease stage, respectively. To
represent two types of population distribution at time t , we define the following two
variables: S(t, a) for susceptible individuals, and I (t, a, s) for infectious individuals.
We also consider several age-dependent parameters for modeling tuberculosis trans-
mission as individuals of different ages may have different immune response levels
and various transmission patterns after infection (Arregui et al. 2018; Makinodan and
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Fig. 2 Schematic diagram representing how tuberculosis are transmitted within the population. Population
in the system is recruited through immigration and natural birth. Susceptible individuals (S(t, a)) are
infected by infectious individuals (I (t, a, s)) and become new infectious individuals and this process exists
with delay phenomenon (Makinodan and Kay 1980; World Health Organization 2006; Storla et al. 2008).
Infectious individuals in I (t, a, s) will move back to susceptible state S(t, a) after effective treatment and
may be reinfected later (Kasaie et al. 2014). The individuals in the population have natural mortality and
tuberculosis-induced mortality (World Health Organization 2018)

Kay 1980). The mathematical model for tuberculosis transmission in the population
is based on the schematic diagram shown in Fig. 2.

2.1 Susceptible Population

Here, we consider the interaction between susceptible individuals and infectious indi-
viduals to explain the susceptible population dynamics. Newly infected individuals
in the population at time t depend on the number of effective interactions between
susceptible and infectious individuals (Mossong et al. 2008) modeled by the following
term

∫ smax

0

∫ amax

0
S(t, a)I (t, a′, s)T (a, a′, s)da′ds,

where amax and smax are the maximum survival age and stage, respectively. If an
individual’s age is larger than amax or the disease stage is over smax, we consider that
the individual is dead or removed from the system. The term T (a, a′, s) is the infection
rate for a susceptible individual with age a infected by an infectious individual with
age a′ and stage s at time t . After successful treatment, an infectious individual will
be recovered back to susceptible state (Feng et al. 2001; Castillo-Chavez and Song
2004) with the recovery rate γ (a, s) for an individual with age a and stage s and the
process is modeled by the term

∫ smax

0
γ (a, s)I (t, a, s)ds.
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In addition, immigration, natural birth and death will be considered with rates β(t, a),
β0(t) and δS(a)S(t, a), respectively. Hence, the following equation can be utilized to
describe the dynamics of S(t, a):

∂S(t, a)

∂t
+ ∂S(t, a)

∂a
= −

∫ smax

0

∫ amax

0
S(t, a)I (t, a′, s)T (a, a′, s)da′ds

︸ ︷︷ ︸
TB infection

+ β(t, a)︸ ︷︷ ︸
Immigration

− δS(a)S(t, a)︸ ︷︷ ︸
Natural death

+
∫ smax

0
γ (a, s)I (t, a, s)ds

︸ ︷︷ ︸
Recovery

,

with the boundary condition S(t, 0) = β0(t) to represent the number of newborn in
the population.

2.2 Infectious Population

After tuberculosis infection, individuals will either enter into a state that has no clinic
symptom and noninfectious (World Health Organization 2018; Parrish et al. 1998;
Blower et al. 1995) or directly become infectious (direct progression) (Okuonghae and
Omosigho2011;Blower et al. 1995) representedby I (t, a, s)with stage s. Reactivation
(Cohen et al. 2006) and exogenous refection (Cohen et al. 2006;Kasaie et al. 2014)will
transform quiescent individuals into infectious group again after several years, which
also contributes to difficulty in tuberculosis control (WorldHealth Organization 2018).
Here, we utilize the delay phenomenon (World Health Organization 2006; Storla et al.
2008; Cai et al. 2015) to reflect latent phenomenon since various individuals may
have different immune response levels after infection. Hence, the number of total new
infectious individuals is modeled by the term

∫ ∞
0

∫ smax

0

∫ amax

0
S(t − τ, a − τ)I (t − τ, a′, s)T (a − τ, a′, s)e−

∫ a
a−τ δS(μ)dμK (τ )da′dsdτ.

In the delay period, individuals are still under the mortality process from a − τ to

a, which implies the term e− ∫ a
a−τ δS(μ)dμ. Moreover, we introduce the delay kernel

function K (s) to describe the distribution of the influence under delay, which satisfies

∫ ∞

0
K (s)ds = 1, τ̄ =

∫ ∞

0
sK (s)ds.

Here, τ̄ is known as the average time delay for the kernel.
In biological models, the delay kernel with Gamma distribution is often utilized as

follows (Macdonald 1978)

K (s) = snαn+1e−αs

n! , s ∈ (0,∞),
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where α > 0 is known as exponentially fading memory, and the integer n ≥ 0. Here,
we consider the weak kernel function (n = 0 in the above formula), that is,

K (s) = αe−αs .

After infected by Mtb, individuals will have an extensive spectrum of symptoms
(World Health Organization 2018) since the antigens, such as Rv3407, are expressed
in various states of tuberculosis infection (Ma et al. 2017). We apply the following
term to represent the progression of disease stage:

v(a)
∂ I (t, a, s)

∂s
,

where v(a) is the age-dependent progression rate of disease stage. We assume that
the progression rate v(a) is a non-decreasing function. Without loss of generality, we
further assume that 0 ≤ v(a) ≤ 1. Individuals flowed out from S(t, a)will be counted
as the inflow of I (t, a, 0) at stage 0 and all newborn will be susceptible. Hence, the
boundary conditions are

I (t, 0, s) = 0,

I (t, a, 0)

=
∫ ∞

0

∫ smax

0

∫ amax

0
S(t − τ, a − τ)I (t − τ, a′, s)T (a − τ, a′, s)e− ∫ a

a−τ δS (μ)dμαe−ατda′dsdτ.

There are two ways of outflow from an infectious state: recovery after success-
ful treatment and mortality. Patients with various symptoms need different treatment
methods (Nahid and Hopewell 2017), and hence we use the following terms to model
recovery and mortality processes, respectively,

γ (a, s)I (t, a, s) and δI (a, s)I (t, a, s),

where γ (a, s) and δI (a, s) depends on age and disease stage. Therefore, we have the
following equation for modeling the dynamics of infectious individuals:

∂ I (t, a, s)

∂t
+ ∂ I (t, a, s)

∂a
+ v(a)

∂ I (t, a, s)

∂s︸ ︷︷ ︸
Disease progression

= − δI (a, s)I (t, a, s)︸ ︷︷ ︸
Death

− γ (a, s)I (t, a, s)︸ ︷︷ ︸
Recovery

,

I (t, a, 0)

=
∫ ∞

0

∫ smax

0

∫ amax

0
S(t − τ, a − τ)I (t − τ, a′, s)T (a − τ, a′, s)e− ∫ a

a−τ δS (μ)dμαe−ατda′dsdτ
︸ ︷︷ ︸

Transmission from S(t,a)

,

I (t, 0, s) = 0.
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2.3 Governing Equations

On the basis of the discussion above and combining all the equations, we have

∂S(t, a)

∂t
+ ∂S(t, a)

∂a

= −
∫ smax

0

∫ amax

0
S(t, a)I (t, a′, s)T (a, a′, s)da′ds + β(t, a)

−δS(a)S(t, a) +
∫ smax

0
γ (a, s)I (t, a, s)ds,

∂ I (t, a, s)

∂t
+ ∂ I (t, a, s)

∂a
+ v(a)

∂ I (t, a, s)

∂s
= −δI (a, s)I (t, a, s) − γ (a, s)I (t, a, s), (1)

for a ∈ (0, amax) and s ∈ (0, smax). Initial and boundary conditions are as follows

S(0, a) = S0(a), I (0, a, s) = I0(a, s), S(t, 0) = β0(t), I (t, 0, s) = 0,

I (t, a, 0) =
∫ ∞

0

∫ smax

0

∫ amax

0
S(t − τ, a − τ)I (t − τ, a′, s)

×T (a − τ, a′, s)e− ∫ a
a−τ δS(μ)dμαe−ατda′dsdτ.

Here, S0(a) and I0(a, s) are the initial conditions for susceptible and infectious
classes, respectively. In our simulations, the values of the initial conditions are based
on the data obtained in Hong Kong (Department of Health of the Government of the
Hong Kong 2018; Census and Statistics Department of the Government of the Hong
Kong SAR 2018; Census and Statistics Department 2018). The biological meanings
of the parameters are summarized in Table 1.

Table 1 Biological meaning of parameters

Parameters Biological meaning

δS(a) Death rate for S(t, a)

β(t, a) Immigration rate for S(t, a)

β0(t) Birth rate for S(t, a)

γ (a, s) Recovery rate for I (t, a, s)

T (a, a′, s) Infection rate for susceptible individual with age a

infected by an infectious individual with age a′ and stage s
v(a) Disease progression rate

δI (a, s) Death rate for I (t, a, s) with specific age a and stage s
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3 Infection-free Equilibrium

For studying the equilibria, we assume that there exist β̂(a) and β̂0 such that

lim
t→∞ β(t, a) = β̂(a), lim

t→∞ β0(t) = β̂0,

that is, the immigration rate β(t, a) only depends on age a and the birth rate β0(t) is a
constant when time approaches infinity. The equilibria of system (1) satisfy following
equations

dŜ(a)

da

= −Ŝ(a)

∫ smax

0

∫ amax

0
Î (a′, s)T (a, a′, s)da′ds + β̂(a) − δS(a)Ŝ(a)

+
∫ smax

0
γ (a, s) Î (a, s)ds,

∂ Î (a, s)

∂a
+ v(a)

∂ Î (a, s)

∂s
= −δI (a, s) Î (a, s) − γ (a, s) Î (a, s), (2)

and

Ŝ(0) = β̂0, Î (0, s) = 0,

Î (a, 0) =
∫ ∞

0
αe−ατ e

∫ a
a−τ δS(μ)dμ Ŝ(a − τ)

×
∫ smax

0

∫ amax

0
Î (a′, s)T (a − τ, a′, s)da′dsdτ. (3)

For the infection-free equilibrium E0 = (S(a), 0), we have the following equation

dŜ(a)

da
= β̂(a) − δS(a)Ŝ(a) with Ŝ(0) = β̂0,

then we obtain that

Ŝ(a) = e− ∫ a
0 δS(σ )dσ

(
β̂0 +

∫ a

0
e
∫ ξ
0 δS(σ )dσ β̂(ξ)dξ

)
, (4)

for a ≥ 0. Without loss of generality, we assume Ŝ(a) = 0 when a < 0. In the
following subsection, we will discuss the local stability of E0.
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3.1 Stability Analysis

To investigate the local stability of E0 = (Ŝ(a), 0), we linearized model (1) at the
equilibrium first. Consider the small perturbations around equilibrium as follows

S(t, a) = Ŝ(a) + ε S̄(a)eλt ,

I (t, a, s) = 0 + ε Ī (a, s)eλt ,

where the perturbation amplitude ε � 1. With the assumption T (a, a′, s) =
T1(a)T2(a′, s), we obtain the following linearized system at E0 = (Ŝ(a), 0):

λS̄(a) + dS̄(a)

da

= −
∫ smax

0

∫ amax

0
Ŝ(a) Ī (a′, s)T (a, a′, s)da′ds + β(a)

−δS(a)S̄(a) +
∫ smax

0
γ (a, s) Ī (a, s)ds,

λ Ī (a, s) + ∂ Ī (a, s)

∂a
+ v(a)

∂ Ī (a, s)

∂s
= −δI (a, s) Ī (a, s) − γ (a, s) Ī (a, s), (5)

and

S̄(0) = 0, Ī (0, s) = 0,

Ī (a, 0) =
∫ ∞

0
Ŝ(a − τ)T1(a − τ)e−λτ αe−ατ e− ∫ a

a−τ δS(μ)dμΛ̄dτ,

where

Λ̄ =
∫ smax

0

∫ amax

0
Ī (a′, s)T2(a′, s)da′ds. (6)

We first calculate the second equation in (5), and rewrite this equation into following
form

∂ Ī (a, s)

∂a
+ v(a)

∂ Ī (a, s)

∂s
= −[

λ + δI (a, s) + γ (a, s)
]
Ī (a, s).

For the partial differential equation above, the characteristic curve passing through
(a0, 0) is

f (a) :=
∫ a

0
v(μ)dμ = s + C,
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where C = f (a0). Since v is a positive function, f is increasing and the curve and the
inverse of f are well defined. By the boundary condition Ī (0, s) = 0 and integrating
along the characteristic curves for C < 0, we obtain

Ī (a, s) = 0, s > f (a) ≥ 0;

if C ≥ 0, that is, f (a) ≥ s > 0, we have

Ī (a, s) = Ī ( f −1( f (a) − s), 0) exp

(
−

∫ a

f −1( f (a)−s)
λ + F (η, a, s)dη

)
,

where

F (η, a, s) = δI (η, f (η) − f (a) + s) + γ (η, f (η) − f (a) + s). (7)

Equation (6) and the expression of Ī (a, s) with the boundary conditions imply that

Λ̄ =
∫ smax

0

∫ amax

0
Ī (a′, s)T2(a′, s)da′ds

=
∫ smax

0

∫ amax

0
Ī ( f −1( f (a′) − s), 0) exp

×
(

−
∫ a′

f −1( f (a′)−s)
λ + F (η, a′, s)dη

)
T2(a

′, s)da′ds

=
∫ smax

0

∫ amax

0

[∫ ∞

0
Ŝ( f −1( f (a′) − s) − τ)T1( f

−1( f (a′) − s) − τ)e−λτ

×αe−ατ Λ̄ exp

(
−

∫ f −1( f (a′)−s)

f −1( f (a′)−s)−τ

δS(μ)dμ

)
dτ

]
exp

×
(

−
∫ a′

f −1( f (a′)−s)
λ + F (η, a′, s)dη

)
T2(a

′, s)da′ds,

which yields the following equation

g(λ) :=
∫ smax

0

∫ amax

0

[∫ ∞

0
Ŝ( f −1( f (a′) − s) − τ)T1( f

−1( f (a′) − s) − τ)

×e−λτ αe−ατT2(a
′, s) exp

(
−

∫ f −1( f (a′)−s)

f −1( f (a′)−s)−τ

δS(μ)dμ

)
dτ

]
exp

×
(

−
∫ a′

f −1( f (a′)−s)
λ + F (η, a′, s)dη

)
da′ds

= 1. (8)
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Equation (8) is the characteristic equation of the system (1) at the infection-free equi-
librium E0. Through investigating the behaviors of g(λ), we can obtain the condition
of local stability for the boundary equilibrium E0 as the following theorem.

Theorem 1 Define

R0 =
∫ smax

0

∫ amax

0

[∫ ∞

0
Ŝ(x(a′, s) − τ)T1(x(a

′, s) − τ)αe−ατ

× exp

(
−

∫ x(a′,s)

x(a′,s)−τ

δS(μ)dμ

)
dτ

]

× exp

(
−

∫ a′

x(a′,s)
F (η, a′, s)dη

)
T2(a

′, s)da′ds (9)

where x(a′, s) = f −1( f (a′) − s) which satisfies x = f −1( f (a′) − s) < a′ as f is
an increasing function; F (η, a′, s) is defined as (7). The infection-free equilibrium
E0 = (Ŝ(a), 0) for system (1) is locally asymptotically stable ifR0 < 1 and unstable
ifR0 > 1.

Proof From (8), it is easy to show that g(λ) is a continuous functionwhich ismonotone
decreasing. In addition,

lim
λ→−∞ g(λ) → +∞, lim

λ→+∞ g(λ) → 0,

and

g(0) = R0.

If R0 = g(0) < 1, the characteristic equation g(λ) = 1 exists at least one negative
solution. Furthermore, let λ̂ be a negative solution of g(λ) = 1, and for any complex
solution λ = z1 + i z2 (z1, z2 ∈ R) of g(λ) = 1, we can check that

g(λ̂) = 1 = g(λ) = |g(z1 + i z2)| ≤ g(z1),

which leads to 0 > λ̂ ≥ z1 as g is a decreasing function. Therefore, we proved that
the infection-free equilibrium E0 is locally asymptotically stable if R0 < 1. On the
contrary, if R0 = g(0) > 1, there exists a positive real solution for equation (8), and
it implies that the infection-free equilibrium E0 is unstable. 	


3.2 Biological Meaning ofR0

We can rewrite equation (9) into the following expression

R0 =
∫ ∞

0

[∫ smax

0

∫ amax

0
Ŝ(x − τ)T1(x − τ)e− ∫ x

x−τ δS (μ)dμe− ∫ a′
x F (η,a′,s)dηT2(a

′, s)da′ds
]

αe−ατ dτ.
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In the above equation, the term exp
(
− ∫ a′

x F (η, a′, s)dη
)
represents the probability

that one individual who is infectious at age x and still stays in infectious state at age
a′. Hence,

exp

(
−

∫ a′

x
F (η, a′, s)dη

)
T2(a

′, s)

is the number of contacts for an infectious individual who survives from age x to age
a′ and stays in stage s. Meanwhile, Ŝ(x − τ) is the total susceptible individual with
age x − τ , and exp

(− ∫ x
x−τ

δS(μ)dμ
)
stands for the probability that one susceptible

individual survives at age x − τ and is still survived at age x . Therefore,

Ŝ(x − τ)T1(x − τ) exp

(
−

∫ x

x−τ

δS(μ)dμ

)

represents the number of susceptible individuals contacting one infectious individual
with age x − τ and surviving to age x . Here, T1(x − τ) is the infectiousness rate for
susceptible at age x − τ . On the basis of the above discussion, the term

∫ smax

0

∫ amax

0
Ŝ(x − τ)T1(x − τ)e− ∫ x

x−τ δS(μ)dμe− ∫ a′
x F (η,a′,s)dηT2(a

′, s)da′ds

is the total number of new contact individuals between susceptible with age x − τ

and infectious with age a′ and stage s. These individuals will become infectious after
time period τ ∈ (0,∞), and αe−ατ is the influence for every point τ to current time t .
Overall, we showed thatR0 represents the basic reproduction number for system (1).

4 Numerical Simulations

The disease progression rate is critical for altering the transmission dynamics of tuber-
culosis in populations since the patients with severe symptoms may easily transmit
disease to others. In this section, we will use numerical simulations to verify this
observation. First, we will estimate the parameters for the simulations. Then, we will
apply two types of functions to model disease progression rate, constant and age-
specific linear functions. The latter one can capture the aging effect for tuberculosis
transmission. The detailed numerical scheme can be found in Appendix.

4.1 Parameter Estimation

The natural mortality rate in system (1) is referred from Væth et al. (2018) and we
utilize the following form

δS(a) = 9.317 × 10−6e0.11a .
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Table 2 Expression of δI1(a)

Parameters Coefficients 95% CI

δI1(a) = k1ek2a k1 = 1.012 × 10−3 (5.021 × 10−4, 1.522 × 10−3)

k2 = 0.05635 (0.05012, 0.06259)

Moreover, for the tuberculosis induced death rate in system (1), we can fit it based on
the information and data from the Census and Statistics Department of Hong Kong
and Department of Health of Hong Kong (Department of Health of the Government
of the Hong Kong 2018) and obtained the age-specific function for δI1(a) listed in
Table 2.

Here, we further suppose that the mortality rate δI (a, s) = δI1(a) × δI2(s), where
δI1(a) is represented in Table 2. We assume that the mortality rate may increase when
the disease stage s is increasing, so δI2(s) is assumed to be an increasing function,
defined as

δI2(s) =
⎧⎨
⎩

0.01, 0 < s < s1,
0.01 + 0.99(s − s1)/(s2 − s1), s1 ≤ s ≤ s2,

1, s2 < s ≤ smax,

where the maximum stage smax is 1. To match the results we observed in the data, we
take s1 = 0.1, and s2 = 0.7.

According to Census and Statistics Department of Hong Kong (Census and Statis-
tics Department 2001, 2018) from 2001 to 2016, we have the data of immigration and
birth. We use these data to estimate the birth rate and immigration rate and rescale
them to make the steady state (4) to be around 100. The stage factor s in the infection
rate matrix T (a, a′, s) is assumed with the following function:

T (a, a′, s) = T1(a)T1(a
′)Ts(s).

The function T1(a)will be estimated based on the contact rates in Arregui et al. (2018)
for the numerical simulations later. We assume that the function Ts(s) is an increasing
function as

Ts(s) =
⎧⎨
⎩

0.01, 0 < s < s1,
0.01 + 0.99(s − s1)/(s2 − s1), s1 ≤ s ≤ s2,

1, s2 < s ≤ smax.

We assume that the age- and stage-specific recovery rate γ (a, s) = γa(a)γs(s). The
function γa(a) will be estimated based on the data from the Department of Health of
Hong Kong Department of Health of the Government of the Hong Kong (2018), and
the function γs(s) will be defined as
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γs(s) =
{ s

s1
, 0 < s < s1,

1 − s−s1
smax−s1

, s1 ≤ s ≤ smax,

which is increasing when 0 < s < s1 and decreasing when s1 < s < s2.
The progression rate v(a) in system (1) plays an important role on the dynamics of

infected population. The rate of disease progression is a key component for studying
the disease transmission in the system because the patients with serious symptoms
may easily transmit disease than the patients with light symptoms. In the next section,
we will apply different kinds of functions to model the effect of progression rate v(a).

For the weak delay kernel function K (s) = αe−αs , we have the average delay as
follows

τ̄ =
∫ ∞

0
sK (s)ds = 1

α
,

which implies that α determines the average delay time from infected to infectious
individuals. When the value of α is small, the average delay time 1

α
will be large,

which reflects a long period from infected individuals to infectious because of latent
phenomenon (WorldHealthOrganization 2018; Parrish et al. 1998; Blower et al. 1995)
or self-immune system (Makinodan and Kay 1980). If the value of α is large, then the
average delay time will be small, which means that the susceptible individuals will
immediately become infectious after contacting infectious individuals through direct
progression (Okuonghae and Omosigho 2011; Blower et al. 1995). Consequently, the
larger value of α has a positive effect on tuberculosis transmission because of the short
average delay period. World health organization (World Health Organization 2006)
stated that the average delay period from one and half months to four months. Storla
et al. (2008) also pointed out that the average delay time within the range from 60
to 90 days and the longest delay time is larger than 120 days (126 in high endemic
countries). Therefore, the average delay time here is assumed as around 120 days. In
the following numerical simulations, we set α ≈ 365/120 per year.

We set the initial values for susceptible individuals (S(0, a)) as the steady state
solution (4) and the infectious individuals (I (0, a, s)) is S(0, a)× 10−4 for s = 0 and
zero for s > 0.

4.2 Constant Progression Rate

Here, we simulate tuberculosis dynamicswith the constant progression rate v(a) = v0.
Based on the data in Okuonghae and Omosigho (2011); Blower et al. (1995), we set
v0 = 4.5 × 10−4(amax/2), where amax = 100. From (9), we obtain the value of
reproduction numberR0 ≈ 0.42 < 1 and the solution of system A.10 will tend to the
infection-free equilibrium, which means that disease will be eradicated at the end.

Figure 3 shows the dynamics of susceptible individuals S(t) and infectious indi-
viduals I(t) as time t increases, where

S(t) =
∫ amax

0
S(t, a)da and I(t) =

∫ amax

0

∫ smax

0
I (t, a, s)dsda.
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Fig. 3 Numerical simulations for v(a) = 4.5 × 10−4(amax/2). The time series of I(t) that the number of
infectious individuals declines to zero

In Fig. 3, the susceptible individuals S(t) slightly decreases and the number of infec-
tious individuals I(t) increases at the beginning. But, after certain time, I(t) declines
to zero and S(t) increases back to the steady state. The simulation demonstrates the
extinction of tuberculosis in the population if R0 < 1. In this case, a system with a
relatively low and age-independent progression rate does not have many infectious
individuals with severe symptoms who transmit disease efficiently in the population.
Combined with the effect of immune response to Mycobacterium tuberculosis, the
disease will be eradicated with effective control strategies in this case.

The simulations in Fig. 4 display the population distribution of the infectious
individuals I (t, a, s) at different times. Figure 4(i) is the population distribution of
infectious individuals at the initial time t = 0, and infectious individuals distribute in
around all age groups with s = 0. From the result R0 ≈ 0.42 < 1, we predict that
the number of infectious individuals will decrease [Figs. 3 and 4(i i i)] to zero as time
increases. Simulations in Figs. 3 and 4(i i i , iv) show that tuberculosis in the population
will be controlled at the end, and Fig. 4(iv) is the population distribution of the infec-
tious individuals under successful treatment at the end of the longtime simulation.
The number of infectious individuals in the elderly age groups is much more than the
number of infectious individuals in the other age groups since the elderly individuals
have weaker immune systems compared with the other age groups (Makinodan and
Kay 1980).

Now we consider a larger progression rate v0 = 9 × 10−4(amax/2) and simulate
the corresponding disease dynamics. From (9), we obtain thatR0 ≈ 1.30 > 1, which
implies that an outbreak of tuberculosis happens in the population. The numerical
simulations in Fig. 5 show that the number of infectious individuals I(t) increases
again after a drop. This result is different from the simulation in the former example.
Figure 6 displays the population distribution of infectious individuals I (t, a, s). The
number of infectious individuals with elderly age groups keeps increasing (Figs. 6(i)–
(i i i)), which leads to the persistence of disease in the population. Compared with
Fig. 4(iv), Fig. 6(iv) shows that Infections in the older population are in the region
with large value of s. This observation is consistent with the results in Chan-Yeung
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Fig. 4 Population distribution of infectious individuals I (t, a, s) for v(a) = 4.5 × 10−4(amax/2)

Fig. 5 Numerical simulations for constant progression rate v(a) = 9 × 10−4(amax/2). The time series of
infectious individuals I (t) declines at the beginning and then keeps increasing

et al. (2002); Department of Health of the Government of the Hong Kong (2018) that
the high notification rate of tuberculosis in the elderly age groups contributes to the
persistence of tuberculosis in the population.

4.3 Age-specific Progression Rate

In this subsection, we introduce the aging factor to the disease progression rate and
simulate the tuberculosis transmissionwith an age-specificprogression ratev(a) = ca.
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Fig. 6 Population distribution of infectious individuals I (t, a, s) with constant progression rate v(a) =
9 × 10−4(amax/2)

Fig. 7 Numerical simulations of disease with the progression rate v(a) = 4.5× 10−4a. The time series of
I (t) that the number of infectious individuals declines to zero

First, we take c = 4.5 × 10−4. In this case, we obtain that R0 ≈ 0.84 < 1, which
implies that the infection-free equilibrium is stable based on Theorem 1. Figures 7
and 8 are the numerical simulations of disease dynamics for this case.

Figure 7 displays that the number of infectious individuals I(t) decreases to zero
as time t increases, which demonstrates that the disease will die out at the end. The
temporal dynamics of S(t) and I(t) in Fig. 7 are similar with that in Fig. 3 but the
speed of the decrease of I(t) is slower in Fig. 7.
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Fig. 8 Population distribution of infectious individuals I (t, a, s) with the progression rate v(a) = 4.5 ×
10−4a

Figure 8 is the population distribution of the infectious individuals for various time
t . As time t increases, the number of infectious individuals tends to zero with a low
level of 10−6 at the end [Figure 8(iv)]. It reflects the extinction of disease in the
population. Compared with Fig. 4, Fig. 8 shows that the elderly age group is in an area
with larger s due to the aging effect in the disease progression rate (Fig. 9).

Next, we increase the coefficient to c = 9 × 10−4. In this case, the value of
reproduction number will increase toR0 ≈ 1.99 > 1, which means that the infection-
free equilibrium is unstable. Figure 10 shows that the number of infectious individuals
I(t) increases first and declines later. When t > 15, I(t) increases rapidly as shown in
Fig. 10.

Figure 11 is the population distribution of the infectious individuals at various
times. The simulations in Fig. 11 display that the number of infectious individuals in
the elderly age groups does not tend to zero and infectious individuals are mainly with
high levels of a and s. This result is similar to Fig. 6 but the increased speed of I (t)
is faster in Fig. 11.

The disease transmission may be underestimated from our simulations when we
assume that the progression rate is independent of age. Now we compare the simu-
lations of the models with the constant progression rate and age-specific progression
rate. We consider the constant progression rate v(a) = v0 = 6 × 10−4(amax/2) and
the age-specific progression rate v(a) = 6 × 10−4a, which have same average value.
Figure 12 displays the numbers of susceptible individuals and infectious individuals
under two types of progression rates. In Fig. 12, the number of susceptible individuals
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Fig. 9 Comparison of I (50, a, s) for the model with different types of progression rate and values of a.
Red dash-dotted line represents the case with constant progression rate; blue solid line represents the case
with age-specific progression rate (Color figure online)

Fig. 10 Numerical simulations for v(a) = 9×10−4a. The time series of I (t) that the number of infectious
individuals declines at the beginning and then keeps increasing

with the constant progression rate is slightly more than the number of susceptible
individuals with the age-specific progression rate. On the contrary, Fig. 12 shows that
the number of infectious individuals with the constant progression rate is less than that
with the age-specific progression rate after t > 5. We further observe that the number
of patients under the constant progression rate is six times less than the number of
patients with the age-specific progression rate after t > 40. As shown in the former
simulations and Chan-Yeung et al. (2002); Department of Health of the Government
of the Hong Kong (2018), the elderly age groups are the major population that con-
tributes to the permanence of disease in the population. Using the constant progression
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Fig. 11 Population distribution of infectious individuals I (t, a, s) for v(a) = 9 × 10−4a

Fig. 12 Numerical simulations for constant progression rate and age-specific progression rate. Red dashed
line represents the case with constant progression rate; blue solid line represents the case with age-specific
progression rate (Color figure online)

rate may not capture this point, and the age-specific progression rate can accurately
model the aging effect in disease transmission. Consequently, considering the progres-
sion rate with the aging factor will be more feasible for simulating the transmission
dynamics of tuberculosis as it will avoid the underestimation in the number of infected
population.

Figure 13 validates the increase of the basic reproduction number R0 for the age-
specific progression rate, 3c×10−4a, and the constant progression rate, 3c×10−4 amax

2 .
The value of R0 with the age-specific progression rate is greater than the case with
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Fig. 13 The variation ofR0 for
two kinds of progression rates.
Red dashed line represents the
case with constant progression
rate; blue solid line represents
the case with age-specific
progression rate; black dotted
line represents R0=1 (Color
figure online)

constant progression rate as shown in Fig. 13. Consequently, as the value of c increases,
tuberculosis may transmit faster with the age-specific progression rate.

5 Conclusion

In this paper, we have developed a tuberculosis system with demographic structure
and delay effect after infection. The model involved a continuous disease progression
process with an age-specific progression rate. In this work, stability analysis for the
infection-free equilibrium was applied to determine the formula of the basic repro-
duction number, which is essential to study the condition of disease outbreak. During
the transmission process of tuberculosis, the disease progression may be enhanced by
aging. The formula of the basic reproduction number (9) provides a tool to understand
how the age-specific progression affects the disease transmission dynamics through
changing the stability of infection-free equilibrium. In our simulations, we observed
that the age-specific progression rate would accelerate tuberculosis transmission. In
fact, if the progression rate rapidly increases in the elderly population, the number
of infectious individuals with severe symptoms will increase at the same time, which
further contributes to more new patients in the population.

The system with a constant disease progression rate cannot capture the aging effect
on the disease progression. Consequently, considering the disease progression rate
with aging effect will avoid underestimating the number of infected population during
prediction since infectious elderlies may quickly become patients with severe symp-
toms. Individuals with serious symptoms can easily infect susceptible individuals,
which leads to a higher value ofR0 and further leads to more infectious individuals in
the whole population. Therefore, to control tuberculosis, the government should take
some strategies for elderly patients, such as regular checks and immediate treatment
for elderly patients, to further control tuberculosis in the future.

The expression ofR0 obtained here depends on some functions, such as delay and
disease progression rate. Our study can be generalized to study the basic reproduc-
tion number with other types of delay and disease progression functions. In addition,
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random contact in society may influence TB transmission dynamics. Some stochastic
factors can be included to our model for understanding the transmission process of
tuberculosis under random effects.
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Appendix

A. Numerical Scheme
We first define a function Z(t, a) as

Z(t, a) = I (t, a, 0)

=
∫ ∞

0

∫ smax

0

∫ amax

0
S(t − τ, a − τ)I (t − τ, a′, s)

× T (a − τ, a′, s)da′dsαe−ατ e− ∫ a
a−τ δS(μ)dμdτ.

We rewrite system (1) into the following system

∂S(t, a)

∂t
+ ∂S(t, a)

∂a

= −
∫ smax

0

∫ amax

0
S(t, a)I (t, a′, s)T (a, a′, s)da′ds + β(t, a)

−δS(a)S(t, a) +
∫ smax

0
γ (a, s)I (t, a, s)ds,

∂ I (t, a, s)

∂t
+ ∂ I (t, a, s)

∂a
+ v(a)

∂ I (t, a, s)

∂s
= −δI (a, s)I (t, a, s) − γ (a, s)I (t, a, s),

∂Z(t, a)

∂t
+ ∂Z(t, a)

∂a

= α

∫ smax

0

∫ amax

0
S(t, a)I (t, a′, s)T (a, a′, s)da′ds − (α + δS(a))Z(t, a).

(A.10)

The initial and boundary conditions are

S(0, a) = S0(a), I (0, a, s) = I0(a, s), Z(0, a) = Z0(a),

S(t, 0) = β(t), I (t, 0, s) = 0, I (t, a, 0) = Z(t, a), Z(t, 0) = 0.
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We first discretize the space of time, age and stage into mesh as followed

ti = iΔt, i = 0, 1, 2, . . . , N ,

a j = jΔa, j = 0, 1, 2, . . . , L1,

sk = kΔs, k = 0, 1, 2, . . . , L2,

where Δt,Δa,Δs are the step sizes of the time, age and stage, respectively. We
suppose that all the age densities distribute in the interval [0, amax] and all the stage
densities distribute in the interval [0, smax] and t ∈ [0, T ], where T is the time span
of the prediction period for the disease transmission. We have the following equalities
for N , L1, L2

N = T

Δt
, L1 = amax

Δa
, L2 = smax

Δs
,

that is, N , L1, L2 are the number of steps from 0 to T , amax and smax separately.
Here, we simulate the dynamics of system in the population with stationary struc-

ture and hence we suppose that the immigration rate and the birth rate are only related
with age in the following simulations, that is, β(t, a) = β(a). Using i, j, k repre-
sent ti , a j , sk for simplification, we have the following identities for the boundary
conditions

Si0 = S(ti , 0) = β0 = S(t, 0),

I i0,k = I (ti , 0, sk) = 0 = I (t, 0, s),

I ij,0 = I (ti , a j , 0) = Z(ti , a j ) = I (t, a, 0),

Zi
0 = Z(ti , 0) = 0 = Z(t, 0), i = 0, 1, 2 . . . , N , j = 0, 1, 2, . . . , L1,

k = 0, 1, 2 . . . , L2,

whereβ0 is a positive constant representing the birth rate of the population.On the basis
of the finite differencemethod for derivative and the trapezoidal rule for approximating
integral, we discretize system (A.10) as follows.

Si+1
j − Sij

Δt
+ Sij − Sij−1

Δa
= −SijG

i
j + β j − δS j S

i
j + Hi

j ,

(A.11)

I i+1
j,k − I ij,k

Δt
+ I ij,k − I ij−1,k

Δa
+ v j

I ij,k − I ij,k−1

Δs
= −δI j,k I

i
j,k − γ j,k I

i
j,k, (A.12)

Zi+1
j − Zi

j

Δt
+ Zi

j − Zi
j−1

Δa
= αSijG

i
j − (α + δS j )Z

i
j . (A.13)

123



73 Page 24 of 26 Y. Mu et al.

Here,

Gi
j = 1

4
ΔaΔs

[
I i0,0T0,0, j + I i0,L2

T0,L2, j + 2
L2−1∑
k=1

I i0,kT0,k, j

]

+ 1

4
ΔaΔs

[
I iL1,0TL1,0, j + I iL1,L2

TL1,L2, j + 2
L2−1∑
k=1

I iL1,kTL1,k, j

]

+ 1

2
ΔaΔs

[ L1−1∑
j1=1

I ij1,0Tj1,0, j +
L1−1∑
j1=1

I ij1,L2
Tj1,L2, j + 2

L2−1∑
k=1

L1−1∑
j1=1

I ij1,kTj1,k, j

]
,

Hi
j = 1

2
Δs

[
γ j,0 I

i
j,0 + γ j,L2 I

i
j,L2

+ 2
L2−1∑
k=1

γ j,k I
i
j,k

]
.

For i = 0, we utilize the initial epidemic data

S0j = S(0, a j ) = S(0, a),

I 0j,k = I (0, a j , sk) = I (0, a, s),

Z0
j = Z(0, a j ) = Z(0, a), j = 0, 1, 2, . . . , L1, k = 0, 1, 2, . . . , L2.

For i = 1, we do the following

1. Calculating I 1j,0 for all j with

I 1j,0 = S0j G
0
j ,

and

Z1
j = I 1j,0.

2. Calculating S1j for all j with formula (A.11) and I 1j,k for all k with formula (A.12).

For 2 ≤ i ≤ N , we do the following

1. Calculating Sij , I
i
j,k with the formula in (A.11) and (A.12) separately.

2. Calculating Zi
j with formula (A.13) and then replacing I ij,0 with Zi

j , that is, I
i
j,0 =

Zi
j for the boundary condition of infectious individuals.

In our numerical simulations, we set Δt = 0.1 and Δa = Δs = 0.01.
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