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Abstract
Although great progress has been made in the prevention and mitigation of TB in the
past 20 years, China is still the third largest contributor to the global burden of new
TB cases, accounting for 833,000 new cases in 2019. Improved mitigation strategies,
such as vaccines, diagnostics, and treatment, are needed to meet goals ofWHO. Given
the huge variability in the prevalence of TB across age-groups in China, the vaccina-
tion, diagnostic techniques, and treatment for different age-groups may have different
effects. Moreover, the statistics data of TB cases show significant seasonal fluctua-
tions in China. In view of the above facts, we propose a non-autonomous differential
equation model with age structure and seasonal transmission rate. We derive the basic
reproduction number, R0, and prove that the unique disease-free periodic solution,
P0 is globally asymptotically stable when R0 < 1, while the disease is uniformly
persistent and at least one positive periodic solution exists when R0 > 1. We esti-
mate that the basic reproduction number R0 = 1.3935 (95%CI : (1.3729, 1.4087)),
which means that TB is uniformly persistent. Our results demonstrate that vaccinating
susceptible individuals whose ages are over 65 and between 20 and 24 is much more
effective in reducing the prevalence of TB, and each of the improved vaccination strat-
egy, diagnostic strategy, and treatment strategy leads to substantial reductions in the
prevalence of TB per 100,000 individuals compared with current approaches, and the
combination of the three strategies is more effective. Scenario A (i.e., coverage rate
85%, diagnosis rate 5θk , relapse rate 0.1χk) is the best and can reduce the prevalence
of TB per 100,000 individuals by 98.91% and 99.07% in 2035 and 2050, respectively.
Although the improved strategies will significantly reduce the incidence rate of TB, it
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is challenging to achieve the goal ofWHO in 2050. Our findings can provide guidance
for public health authorities in projecting effective mitigation strategies of TB.

Keywords Seasonal age-structured model · Basic reproduction number · Sensitivity
analysis · Improved strategies

1 Introduction

Tuberculosis (TB) is a chronic infectious disease caused byMycobacterium TB infec-
tion (Wikipedia 2021). Mycobacterium TB may invade various organs of the body,
but mainly invade the lungs, which is called pulmonary TB (Grange et al. 2001;
World Health Organization 2021b). TB is one of the top ten causes of death worldwide
and the leading cause of death from a single infectious agent, ranking aboveHIV/AIDS
as a cause of death (Grange et al. 2001; Ren et al. 2020). In 2019, about 8.9–11 million
individuals developed TB in the world (World Health Organization 2021a). Globally,
an average of 130 per 100,000 individuals developed into TB patients, and the annual
incidence rate is 5 to 500 per 100,000 individuals in 2019 (World Health Organization
2021a). A total of 1.4 million individuals died from TB in 2019, including 208,000
individuals infected by HIV (Grange et al. 2001; World Health Organization 2021b).
Among the people suffering from TB in 2019, 30 countries with a high burden of TB
accounted for 87% of global cases, of which eight countries accounted for two-thirds
of the global total number of TB cases: India (26%), Indonesia (8.5%), China (8.4%),
Philippines (6.0%), Pakistan (5.7%), Nigeria (4.4%), Bangladesh (3.6%), and South
Africa (3.6%) (World Health Organization 2021a; Ren et al. 2020).

Although great progress has been made in the prevention and mitigation of TB
in the past 20 years (Wang et al. 2014), China is still the third largest contributor to
the global burden of new TB cases, accounting for 833,000 new cases in 2019 and
the incidence rate of 58 per 100,000 individuals (World Health Organization 2021a).
Globally, the incidence rate of TB is declining, but the speed is not fast enough to
achieve the goals of WHO, which is to reduce the incidence rate of TB by 50%, 80%,
and 90% in 2025, 2030, and 2035, respectively, compared with 2015, and less than one
case per million individuals per year in 2050 compared with 2015 in China (Dye and
Williams 2008; Harris et al. 2019, 2020; Houben et al. 2016; Huynh et al. 2015; Lin
et al. 2015; Xu et al. 2017). From the results of the current research and the prediction
of mathematical models (Abu-Raddad et al. 2009; Guo et al. 2021; Harris et al. 2019,
2020), it is impossible to control TB further from the existing nursing and preventive
measures. Therefore, improved vaccination, diagnostics, and treatment drugs will be
the key of achieving the goals of WHO (Harris et al. 2019, 2020; Huynh et al. 2015;
Lin et al. 2015). In the past few years, the development of new TB vaccines is rapid,
with 14 candidates entering clinical trials, including four in phase 2B/3 (Harris et al.
2019, 2020). The improved vaccination can effectively prevent infection in susceptible
individuals and reinfection in latent individuals and recovered individuals to replace
neonatal BCG (Skeiky and Sadoff 2006). The improved diagnostics can shorten the
duration of infection and increase the probability of case detection before death from
TB disease (Abu-Raddad et al. 2009; Keeler et al. 2006). The improved treatment
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drugs can shorten the time of treatment and reduce the relapse rate of the recovered
individuals (Abu-Raddad et al. 2009).

Manymathematicalmodels have studied the dynamics ofTB (Bhunu et al. 2008;Cai
et al. 2021; Feng et al. 2002; Guo et al. 2021; Harris et al. 2019, 2020; Liu et al. 2010;
Renardy and Kirschner 2020; Song et al. 2002; Zhang et al. 2015, 2019; Zhao et al.
2017; Zhou et al. 2008), and explored strategies for improved vaccination, diagnostics,
and treatment drugs (Abu-Raddad et al. 2009; Harris et al. 2019, 2020; Liu et al. 2017;
Renardy and Kirschner 2019). There is evidence showing that the number of TB cases
is highly age-dependent (Abu-Raddad et al. 2009;Ainseba et al. 2017; Castillo-Chavez
and Feng 1998; Harris et al. 2019, 2020). Thus, age-structured models are often used
to study the transmission dynamics of TB. Abu-Raddad et al. (2009) used an age-
structuredmathematicalmodel of TB; they focused on theWHOSoutheastAsia region
and explore the potential benefits with a set of new interventions under development.
Harris et al. (2016) introduced the results of studies comparing infant vaccination
with adolescents or people of all ages. Harris et al. (2019) used an age-structured
mathematical model to compare the impact of new vaccination targeting the older
adults (60–64 years) and adolescents (15–19 years) in China. Their conclusions proved
that providing effective vaccinations to the older adults (60–64 years) is more effective
than the adolescents (15–19 years). However, the seasonal age-structured model has
not been applied to explore the potential impact of vaccination strategy, diagnostic
strategy, and treatment strategy on TB in China. In order to evaluate the current status
of TB epidemic and the impact of the improved strategies on the incidence rate of
TB in China, we propose a non-autonomous differential equation model with age
structure. The real reason for the seasonal pattern of TB is still unknown, but the higher
infection rate in winter may be relevant to the increased periods spent in overcrowded
and poorly ventilated housing conditions; these phenomena are much more easily
seen than in the other three seasons (Liu et al. 2010; Rios et al. 2000; Zhang et al.
2016). Next, highly infectious viruses such as influenza and lack of vitamin D lead to
immune deficiency, causing Mycobacterium TB to be reactivated in winter and spring
(Rios et al. 2000; Zhang et al. 2016). In addition, the diagnosis delay also has certain
seasonal characteristics (Zhang et al. 2016). In the model, we introduce the periodic
transmission rate to characterize the seasonality of TB. Our goals are to calibrate
the Mycobacterium TB transmission model based on age-stratified demographic and
epidemiological data, as well as to evaluate the possibility of achieving the goals of
WHO under improved strategies in China.

The rest of the work is organized as follows. In Sect. 2, we propose the TB model
with age structure and seasonal transmission rate. We derive the basic reproduction
number R0 and study the boundedness, existence, uniqueness, and stability of the
equilibrium solutions. In Sect. 3, we use Markov chain Monte Carlo (MCMC) to
estimate the unknown parameters and initial values of themodel and estimate the basic
reproduction numberR0. In Sect. 4, we evaluate the possibility of vaccination strategy,
diagnostic strategy, and treatment strategy, and combination strategies to achieve the
goals of WHO in China. In Sect. 5, we summarize and discuss our findings.

123



61 Page 4 of 50 L. Xue et al.

2 The Seasonal TBModel with Age Structure and Vaccination

We divide the total population into n age-groups. Each age-group is further divided
into seven classes, namely susceptible individuals (Sk), vaccinated individuals (Vk),
latent individuals (Ek), infected individuals (Ik), treated individuals (Tk), recovered
individuals (Rk), and deceased individuals (Dk). The population size of the kth age-
group is denoted by Nk(t) = Sk(t)+Vk(t)+Ek(t)+ Ik(t)+Tk(t)+Rk(t), and the total
population size is N (t) = ∑n

k=1 Nk(t). For demographic dynamics in the absence of
disease and vaccination, we adopt the framework of Hethcote (2000) to derive an
ordinary differential equation model of a discrete age structure with aging population
from a partial differential equation system with continuous age. In this framework, we
divide the population age into n intervals and define an ordinary differential equation
model on each interval of age [x̄k−1, x̄k], where 0 = x̄0 < x̄1 < x̄2 < · · · <
x̄n−1 < x̄n = ∞. For x̄ ∈ [x̄k−1, x̄k], we assume that the birth and death rates of the
population are constants, denoted by bk and dk , respectively. Let αk denote the rate at
which individuals of age-group k transfer into age-group k + 1. We assume that the
population has reached an equilibrium age distribution with exponential growth in the
form Nk(t) = eut Pk , where u represents constant growth rate and Pk represents the
initial size of the kth age-group; Pk are constants satisfying

Pk = αk−1Pk−1

αk + dk + u
, k = 2, 3, · · · , n.

The birth function can be expressed as

n∑

k=1

bk Pk = (α1 + d1 + u)P1.

Hence, the birth population per unit time is

n∑

k=1

bk Nk = eut
n∑

k=1

bk Pk = (α1 + d1 + u)eut P1 = (α1 + d1 + u)N1,

where P1 = N1(0).
The forces of infection among individuals (susceptible, vaccinated, latent, and

recovered individuals) in age-group k are defined as

Λk(t) = βk(t)
n∑

j=1

ck j
I j + ω j Tj

N j
, 1 ≤ k ≤ n,
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where ck j is the average number of contacts between individuals in age-group k
and individuals in age-group j , βk(t) is the probability of infection upon contact-
ing an infectious person, and I j/N j is the probability that a randomly encountered
an infectious member of age-group j , ω j represents the coefficient that reduces the
transmission rate due to treatment in age-group j . We assume that the newborn is
vaccinated, and the proportion of vaccination is p1. For the kth age-group, suscepti-
ble individuals infected with Mycobacterium TB transfer to latent class and infected
class at the rates (1 − qk)Λk and qkΛk , respectively, where qk represents the pro-
portion of new infections that develop into active TB. Latent individuals can become
infected class and recovered class at the ratesμkσk and (1−μk)σk , respectively, where
1 − μk is the proportion of latent class receiving treatment and σk represents risk of
reactivation in latently infected class. Latent individuals can transfer to infected class
through ‘fast progression’ upon reinfection (qkΛk	k), where 	k ∈ (0, 1) represents
that primary infection confers some degree of immunity (Bhunu et al. 2008; Feng
et al. 2000; Harris et al. 2019, 2020). Infected individuals transfer to treated class
and recovered class at the rates (1− ξk)θk and ξkθk , respectively, where ξk represents
the proportion of infected class entering the treated class due to treatment, 1 − ξk
represents the proportion of infected class who recover naturally, and 1/θk represents
time delays in diagnosis of TB. Treated individuals transfer to recovered class and
deceased class at the rates ρkγk and (1 − ρk)γk , respectively, where ρk and 1 − ρk
represent the proportion of recovered class and deceased class, respectively, γk repre-
sents the recovery rate of treated class. Recovered individuals are not totally immune
to Mycobacterium TB infection and transfer to latent class and infected class at the
rates (1−qk)Λkδk and qkΛkδk , respectively, where δk ∈ (0, 1) represents the level of
immunity of recovered individuals (Bhunu et al. 2008; Harris et al. 2019, 2020). Vac-
cinated individuals transfer to latent class and infected class at the rates (1− qk)Λkηk
and qkΛkηk , respectively, where ηk ∈ (0, 1) represents that the immunity generated
by the vaccine has a protective effect on individuals. χk represents the relapse rate of
recovered class. νk (2 ≤ k ≤ n) represents the vaccination rate for susceptible class,
τk represents the duration of vaccine-induced immunity in age-group k. The popula-
tion flow among those compartments is shown in Fig. 1. The model is described by
the following system of ordinary differential equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS1
dt

= (1 − p1)(α1 + d1 + u)eut P1 + τ1V1 − (Λ1(t)+ d1 + α1)S1,

dSk
dt

= αk−1Sk−1 + τkVk − (Λk(t)+ νk + dk + αk)Sk , 2 ≤ k ≤ n,

dV1
dt

= p1(α1 + d1 + u)eut P1 − (η1Λ1(t)+ τ1 + d1 + α1)V1,

dVk
dt

= αk−1Vk−1 + νk Sk − (ηkΛk(t)+ τk + dk + αk)Vk , 2 ≤ k ≤ n,

dE1

dt
= (1 − q1)Λ1(t)(S1 + η1V1 + δ1R1)− (q1Λ1(t)	1 + σ1 + d1 + α1)E1,

dEk

dt
= αk−1Ek−1 + (1 − qk)Λk(t)(Sk + ηkVk + δk Rk)

− (qkΛk(t)	k + σk + dk + αk)Ek , 2 ≤ k ≤ n,

dI1
dt

= q1Λ1(t)(S1 + η1V1 + δ1R1 + 	1E1)+ μ1σ1E1 + χ1R1

− (θ1 + d1 + α1)I1,

dIk
dt

= αk−1 Ik−1 + qkΛk(t)(Sk + ηkVk + δk Rk + 	k Ek)+ μkσk Ek + χk Rk

− (θk + dk + αk)Ik , 2 ≤ k ≤ n,

dT1
dt

= ξ1θ1 I1 − (γ1 + d1 + α1)T1,

dTk
dt

= αk−1Tk−1 + ξkθk Ik − (γk + dk + αk)Tk , 2 ≤ k ≤ n,

dR1

dt
= ρ1γ1T1 + (1 − μ1)σ1E1 + (1 − ξ1)θ1 I1 − (χ1 + δ1Λ1(t)+ d1 + α1)R1,

dRk

dt
= αk−1Rk−1 + ρkγkTk + (1 − μk)σk Ek + (1 − ξk)θk Ik

− (χk + δkΛk(t)+ dk + αk)Rk , 2 ≤ k ≤ n,

dD1

dt
= (1 − ρ1)γ1T1,

dDk

dt
= (1 − ρk)γkTk , 2 ≤ k ≤ n.

(1)

Here, we assume that αn = 0 for simplicity. Consider the fractions sk(t) = Sk (t)
eut Pk ,

vk(t) = Vk (t)
eut Pk , ek(t) = Ek (t)

eut Pk , ik(t) = Ik (t)
eut Pk , fk(t) = Tk (t)

eut Pk , rk(t) = Rk (t)
eut Pk , and let

akj = Pk
Pj

denote the ratio of the age-group k and j . Then, System (1) becomes
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Fig. 1 Schematic diagram of the mathematical model (Color figure online)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds1
dt

= (1 − p1)(α1 + d1 + u)+ τ1v1 − (λ1(t)+ u + d1 + α1)s1,

dsk
dt

= a(k−1)kαk−1sk−1 + τkvk − (λk(t)+ νk + u + dk + αk)sk , 2 ≤ k ≤ n,

dv1
dt

= p1(α1 + d1 + u)− (η1λ1(t)+ τ1 + u + d1 + α1)v1,

dvk
dt

= a(k−1)kαk−1vk−1 + νksk − (ηkλk(t)+ τk + u + dk + αk)vk , 2 ≤ k ≤ n,

de1
dt

= (1 − q1)λ1(t)(s1 + η1v1 + δ1r1)− (q1λ1(t)	1 + σ1 + u + d1 + α1)e1,

dek
dt

= a(k−1)kαk−1ek−1 + (1 − qk)λk(t)(sk + ηkvk + δkrk)

− (qkλk(t)	k + σk + u + dk + αk)ek , 2 ≤ k ≤ n,

di1
dt

= q1λ1(t)(s1 + η1v1 + δ1r1 + 	1e1)+ μ1σ1e1 + χ1r1 − (θ1 + u + d1 + α1)i1,

dik
dt

= a(k−1)kαk−1ik−1 + qkλk(t)(sk + ηkvk + δkrk + 	kek)+ μkσkek + χkrk

− (θk + u + dk + αk)ik , 2 ≤ k ≤ n,

d f1
dt

= ξ1θ1i1 − (γ1 + u + d1 + α1) f1,

d fk
dt

= a(k−1)kαk−1 fk−1 + ξkθk ik − (γk + u + dk + αk) fk , 2 ≤ k ≤ n,

dr1
dt

= ρ1γ1 f1 + (1 − μ1)σ1e1 + (1 − ξ1)θ1i1 − (χ1 + δ1λ1(t)+ u + d1 + α1)r1,

drk
dt

= a(k−1)kαk−1Rk−1 + ρkγk fk + (1 − μk)σkek + (1 − ξk)θk ik

− (χk + δkλk(t)+ u + dk + αk)rk , 2 ≤ k ≤ n.

(2)
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where λk(t) = βk(t)
∑n

j=1 ck j (i j + ω j f j ). The fraction of the kth age-group nk(t)
for System (2) satisfies the following equation:

⎧
⎪⎨

⎪⎩

dn1
dt

= (α1 + d1 + u)− (u + d1 + α1)n1 − (1 − ρ1)γ1 f1,

dnk
dt

= a(k−1)kαk−1nk−1 − (u + dk + αk)nk − (1 − ρk)γk fk, 2 ≤ k ≤ n.

Thus, the following inequality holds:

⎧
⎪⎨

⎪⎩

dn1
dt

≤ (α1 + d1 + u)− (u + d1 + α1)n1,

dnk
dt

≤ a(k−1)kαk−1nk−1 − (u + dk + αk)nk, 2 ≤ k ≤ n.

Solving the above equations, we have

lim sup
t→∞

n1(t) ≤ α1 + d1 + u

u + d1 + α1
= 1,

lim sup
t→∞

nk(t) ≤ a(k−1)kαk−1

u + dk + αk
= 1, 2 ≤ k ≤ n.

Hence, the trajectories of System (2) are ultimately bounded.
For simplicity, we define

S = (s1, · · · , sk, · · · , sn), V = (v1, · · · , vk, · · · , vn),
E = (e1, · · · , ek, · · · , en), I = (i1, · · · , ik, · · · , in),
F = ( f1, · · · , fk, · · · , fn), R = (r1, · · · , rk, · · · , rn),
N = (n1, · · · , nk, · · · , nn).

Thus, we can obtain the following results:

Theorem 1 The solution of System (2) is ultimately bounded with the initial value

(
S(0),V(0),E(0), I(0),F(0),R(0)

) ∈ R
6n+ .

Further, the set

Ω =
{
(S,V,E, I,F,R) ∈ R

6n+ : 0 ≤ sk, vk, ek, ik, fk, rk, nk ≤ 1, 1 ≤ k ≤ n
}

is a positively invariant set.

2.1 Basic Reproduction Number

Taking into account the seasonality of TB (Liu et al. 2010; Rios et al. 2000), we
introduce the basic reproduction number R0 for System (2) according to the general
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procedure presented in Wang and Zhao (2008). System (2) has a disease-free periodic
solution

P0 = (
S0,V0,E0, I0,F0,R0),

where

s01 = (1 − p1)(u + d1 + α1)+ τ1v
0
1

u + d1 + α1
,

s0k = (τk + u + dk + αk)a(k−1)kαk−1s0k−1 + τka(k−1)kαk−1v
0
k−1

(u + dk + αk)(τk + u + dk + αk + νk)
, 2 ≤ k ≤ n,

v01 = p1(u + d1 + α1)

τ1 + u + d1 + α1
,

v0k = (u + dk + αk + νk)a(k−1)kαk−1v
0
k−1 + νka(k−1)kαk−1s0k−1

(u + dk + αk)(τk + u + dk + αk + νk)
, 2 ≤ k ≤ n,

e0k = i0k = f 0k = r0k = 0, 1 ≤ k ≤ n.

The linearized system of System (2) at P0 is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1
dt

= (1 − q1)β1(t)
n∑

j=1

c1 j (i j + ω j f j )(s
0
1 + η1v

0
1)− (σ1 + u + d1 + α1)e1,

dek
dt

= a(k−1)kαk−1ek−1 + (1 − qk)βk(t)
n∑

j=1

ck j (i j + ω j f j )(s
0
k + ηkv

0
k )

− (σk + u + dk + αk)ek , 2 ≤ k ≤ n,

di1
dt

= q1β1(t)
n∑

j=1

c1 j (i j + ω j f j )(s
0
1 + η1v

0
1)+ μ1σ1e1 + χ1r1

− (θ1 + u + d1 + α1)i1,

dik
dt

= a(k−1)kαk−1ik−1 + qkβk(t)
n∑

j=1

ck j (i j + ω j f j )(s
0
k + ηkv

0
k )+ μkσkek

+ χkrk − (θk + u + dk + αk)ik , 2 ≤ k ≤ n,

d f1
dt

= ξ1θ1i1 − (γ1 + u + d1 + α1) f1,

d fk
dt

= a(k−1)kαk−1 fk−1 + ξkθk ik − (γk + u + dk + αk) fk , 2 ≤ k ≤ n,

dr1
dt

= ρ1γ1 f1 + (1 − μ1)σ1e1 + (1 − ξ1)θ1i1 − (χ1 + u + d1 + α1)r1,

drk
dt

= a(k−1)kαk−1rk−1 + ρkγk fk + (1 − μk)σkek + (1 − ξk)θk ik

− (χk + u + dk + αk)rk , 2 ≤ k ≤ n.

(3)
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61 Page 10 of 50 L. Xue et al.

Let x = (E, I,F,R)T, System (3) can be rewritten as

dx

dt
= (F(t)− V(t))x,

where

F(t) =

⎡

⎢
⎢
⎣

0 f12 f13 0
0 f22 f23 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , and V(t) =

⎡

⎢
⎢
⎣

v11 0 0 0
v21 v22 0 v24
0 v32 v33 0
v41 v42 v43 v44

⎤

⎥
⎥
⎦ .

The expressions of fi j and vi j are in Appendix A.
It is very clear that F(t) is nonnegative and −V(t) is cooperative in the sense that

the off-diagonal elements of −V(t) are nonnegative.
Let Y (t, s), t ≥ s, be the evolution operator of the linear T -periodic system

dy

dt
= −V(t)y.

Hence, for each s ∈ R, the 4n × 4n matrix Y (t, s) satisfies

dY (t, s)

dt
= −V(t)Y (t, s), ∀t ≥ s, Y (s, s) = I ,

where I is a 4n × 4n identity matrix. Let Φ−V (t) be the monodromy matrix of the

linear T -periodic system dy
dt = −V(t)y.

Following the method established byWang and Zhao (2008), we assume that φ(s),
T -periodic in s, is the initial distribution of infectious individuals. Then, F(s)φ(s) is
the distribution of new infections produced by infected individuals who were intro-
duced at time s. Given t ≥ s, then Y (t, s)F(s)φ(s) gives the distribution of those
infected individuals who were newly infected at time s and remain in infected com-
partments at time t . We define that

ψ(t) :=
∫ t

−∞
Y (t, s)F(s)φ(s)ds =

∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a)da,

where ψ(t) represents the distribution of accumulated newly infectious individuals at
time t produced by all infectious individuals φ(s) introduced at previous time to t .

LetCT be the ordered Banach space of all T -periodic functions fromR toR4n with
the maximum norm ‖ · ‖ and the positive cone C+

T := {φ ∈ CT : φ(t) ≥ 0, ∀t ∈
R}. According to the method in Wang and Zhao (2008), we define a linear operator
L : CT → CT as follows

(Lφ)(t) =
∫ ∞

0
Y (t, t − a)F(t − a)φ(t − a)da, ∀t ∈ R, φ ∈ CT .
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L is called the next-generation infection operator and the spectral radius of L is defined
as the basic reproduction number,R0. Therefore,R0 of System (2) can be expressed
as follows:

R0 := ρ(L).

In order to calculate the basic reproduction numberR0 of System (2), according to
Theorem 2.1 in Wang and Zhao (2008), we introduce the linear T -periodic system as
follows:

dω

dt
=
[

− V(t)+ F(t)
λ

]
ω, t ∈ R, (4)

where parameter λ ∈ (0,∞). Let the evolution operator of System (4) on R
4n be

W (t, s, λ), t ≥ s, s ∈ R. It is clear that ΦF−V (t) = W (t, 0, 1), t ≥ 0 can be
obtained. Hence, we derive

ΦF
λ

−V (t) = W (t, 0, λ), t ≥ 0,

where

−V(t)+ F(t)
λ

=

⎡

⎢
⎢
⎢
⎢
⎣

v11
f12
λ

f13
λ

0

−v21 −v22 + f22
λ

f23
λ

−v24
0 −v32 −v33 0

−v41 −v42 −v43 −v44

⎤

⎥
⎥
⎥
⎥
⎦
.

It is easy to verify that System (2) satisfies the assumptions A(1)-A(7) in Wang and
Zhao (2008). Therefore, we have the following two lemmas.

Lemma 1 (see Theorem 2.1 in Wang and Zhao (2008)). The following statements are
valid:

(1) If ρ(W (T , 0, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L.
Therefore, R0 > 0.

(2) IfR0 > 0, then λ = R0 is the unique solution of ρ(W (T , 0, λ)) = 1.
(3) R0 = 0 if and only if ρ(W (T , 0, λ)) < 1 for all λ > 0.

Lemma 2 (see Theorem 2.2 in Wang and Zhao (2008)). The following statements are
valid:

(1) R0 = 1 if and only if ρ(ΦF−V (T )) = 1.

(2) R0 > 1 if and only if ρ(ΦF−V (T )) > 1.

(3) R0 < 1 if and only if ρ(ΦF−V (T )) < 1.
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61 Page 12 of 50 L. Xue et al.

2.2 Extinction of the Disease

In order to prove the globally asymptotic stability of the disease-free periodic solution
of System (2), we assume that 	k = 0, δk = 0, 1 ≤ k ≤ n, and we introduce the
following theorem.

Theorem 2 The disease-free periodic solutionP0 of System (2) is globally asymptotic
stable ifR0 < 1 and is unstable ifR0 > 1.

Proof By Lemma 2, we obtain that the disease-free periodic solution P0 is locally
asymptotic stable when R0 < 1 and the disease-free periodic solution P0 is unstable
whenR0 > 1. Thus, we only need to prove that the disease-free periodic solution P0
is globally attractive when R0 < 1. Clearly,

lim sup
t→∞

sk(t) ≤ s0k , lim sup
t→∞

vk(t) ≤ v0k , 1 ≤ k ≤ n.

Thus, for ∀ε̄ > 0, there exists t̄ > 0, such that sk(t) ≤ s0k + ε̄
2 , and ηkvk(t) ≤ ηkv

0
k + ε̄

2
for t > t̄ . We set up the following comparison system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dē1
dt

= (1 − q1)λ̄1(t)(s
0
1 + η1v

0
1 + ε̄)− (σ1 + u + d1 + α1)ē1,

dēk
dt

= a(k−1)kαk−1ēk−1 + (1 − qk)λ̄k(t)(s
0
k + ηkv

0
k + ε̄)

− (σk + u + dk + αk)ēk , 2 ≤ k ≤ n,

dī1
dt

= q1λ̄1(t)(s
0
1 + η1v

0
1 + ε̄)+ μ1σ1ē1 + χ1r̄1 − (θ1 + u + d1 + α1)ī1,

dīk
dt

= a(k−1)kαk−1 īk−1 + qk λ̄k(t)(s
0
k + ηkv

0
k + ε̄)+ μkσkek

+ χk r̄k − (θk + u + dk + αk)īk , 2 ≤ k ≤ n,

d f̄1
dt

= ξ1θ1 ī1 − (γ1 + u + d1 + α1) f̄1,

d f̄k
dt

= a(k−1)kαk−1 f̄k−1 + ξkθk īk − (γk + u + dk + αk) f̄k , 2 ≤ k ≤ n,

dr̄1
dt

= ρ1γ1 f̄1 + (1 − μ1)σ1ē1 + (1 − ξ1)θ1 ī1 − (χ1 + u + d1 + α1)r̄1,

dr̄k
dt

= a(k−1)kαk−1r̄k−1 + ρkγk f̄k + (1 − μk)σk ēk + (1 − ξk)θk īk

− (χk + u + dk + αk)r̄k , 2 ≤ k ≤ n,

(5)

where λ̄k(t) = βk(t)
∑n

j=1 ck j (ī j + ω j f̄ j ). Let h̄ = (Ē, Ī, F̄, R̄)T, System (5) is
equivalent to the following equation:

dh̄

dt
= (

F(t)− V(t)+ ε̄�(t)
)
h̄,
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where

�(t) =

⎡

⎢
⎢
⎣

0 �12 �13 0
0 �22 �23 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , (6)

�12,�13, �22, and �23 are expressed as follows:

�12 =

⎡

⎢
⎢
⎢
⎢
⎣

(1 − q1)β1(t)c11 (1 − q1)β1(t)c12 · · · (1 − q1)β1(t)c1n
(1 − q2)β2(t)c21 (1 − q2)β2(t)c22 · · · (1 − q2)β2(t)c2n

...
...

. . .
...

(1 − qn)βn(t)cn1 (1 − qn)βn(t)cn2 · · · (1 − qn)βn(t)cnn

⎤

⎥
⎥
⎥
⎥
⎦
,

�13 =

⎡

⎢
⎢
⎢
⎢
⎣

(1 − q1)β1(t)c11ω1 (1 − q1)β1(t)c12ω2 · · · (1 − q1)β1(t)c1nωn

(1 − q2)β2(t)c21ω1 (1 − q2)β2(t)c22ω2 · · · (1 − q2)β2(t)c2nωn

...
...

. . .
...

(1 − qn)βn(t)cn1ω1 (1 − qn)βn(t)cn2ω2 · · · (1 − qn)βn(t)cnnωn

⎤

⎥
⎥
⎥
⎥
⎦
,

�22 =

⎡

⎢
⎢
⎢
⎢
⎣

q1β1(t)c11 q1β1(t)c12 · · · q1β1(t)c1n
q2β2(t)c21 q2β2(t)c22 · · · q2β2(t)c2n

...
...

. . .
...

qnβn(t)cn1 qnβn(t)cn2 · · · qnβn(t)cnn

⎤

⎥
⎥
⎥
⎥
⎦
,

�23 =

⎡

⎢
⎢
⎢
⎢
⎣

q1β1(t)c11ω1 q1β1(t)c12ω2 · · · q1β1(t)c1nωn

q2β2(t)c21ω1 q2β2(t)c22ω2 · · · q2β2(t)c2nωn

...
...

. . .
...

qnβn(t)cn1ω1 qnβn(t)cn2ω2 · · · qnβn(t)cnnωn

⎤

⎥
⎥
⎥
⎥
⎦
.

According to Lemma 2.1 in Zhang and Zhao (2007), there exists a positive T -
periodic function h(t), such that h̄(t) = eb̄t h(t) is a solution of System (5), where
b̄ = 1

T ln ρ(ΦF−V+ε̄� (T )). We know that ρ(ΦF−V+ε̄� (T )) < 1 when R0 < 1.
Therefore, we have h̄(t) → 0 as t → ∞, which implies that the zero solution of Sys-
tem (5) is globally asymptotically stable. Applying the comparison principle (Smith
and Waltman 1995), we know that for System (2),

lim
t→∞ek(t) = 0, lim

t→∞ik(t) = 0, lim
t→∞ fk(t) = 0, lim

t→∞rk(t) = 0, (1 ≤ k ≤ n).

By the theory of asymptotic autonomous systems (Thieme 1992), we also know that

lim
t→∞sk(t) = s0k , lim

t→∞vk(t) = v0k , (1 ≤ k ≤ n).
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61 Page 14 of 50 L. Xue et al.

Hence, the disease-free periodic solution P0 is globally asymptotically stable when
R0 < 1. This completes the proof. 	

Remark 1 Since exogenous reinfection and reinfectionof recovered individuals, that is,
	k �= 0, δk �= 0, 1 ≤ k ≤ n, we know that R0 is not a threshold parameter between
the persistence and extinction of the disease (Bhunu et al. 2008). This implies that
even if R0 < 1, the epidemic may take off. We verify the above conclusions through
numerical simulations (see Fig. 8).

2.3 Uniform Persistence of the Disease

In this section, we demonstrate the uniform persistence of System (2) by using uniform
persistence theory of the periodic epidemic model in Zhao (2003). First, we assume
that 	k = 0, δk = 0, 1 ≤ k ≤ n, and we define the following symbols.

X :=
{
(S,V,E, I,F,R) ∈ Ω : sk > 0, vk > 0, ek ≥ 0, ik ≥ 0, fk ≥ 0, rk ≥ 0,

1 ≤ k ≤ n
}
,

X0 :=
{
(S,V,E, I,F,R) ∈ Ω : ek > 0, ik > 0, fk > 0, rk > 0, 1 ≤ k ≤ n

}
,

∂X0 := X\X0 =
{
(S,V,E, I,F,R) ∈ Ω : ek = 0, ik = 0, fk = 0, rk = 0,

1 ≤ k ≤ n
}
.

Let ϕ(t, x0) be the unique solution of System (2) with an initial value of x0 :=
(S0,V0,E0, I0,F0,R0). Let F : X → X be the Poincaré map associated with System
(2), that is,

F(x0) = ϕ(T , x0), ∀x0 ∈ X ,

where T represents the period, and ϕ(T , x0) is the only solution of System (2) that
satisfies ϕ(0, x0) = x0. It is very clear that

Fm(S0,V0,E0, I0,F0,R0) = ϕ(mT , (S0,V0,E0, I0,F0,R0)), ∀m ≥ 0.

According to Theorem 1, we obtain that the solution of System (2) is uniformly
bounded, which means that F is the point dissipative on X .

Lemma 3 (see Theorem 1.3.1 in Zhao (2003)) Assume that

(C1) F(X0) ⊂ X0 and F has a global attractor A;
(C2) The maximal compact invariant setA∂ = A∩ M∂ of F in ∂X0, possibly empty,

admits a Morse decomposition {M1, ...,Mk} with the following properties:

(a) Mi is isolated in X.
(b) Ws(Mi ) ∩ X0 = ∅ for each 1 ≤ i ≤ k.
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Then, there exists δ > 0 such that for any compact internally chain transitive
set L with L �⊂ Mi , for all 1 ≤ i ≤ k, we have infx∈L d(x, ∂X0) > δ, that is to
say F : X → X is uniformly persistent with respect to (X0, ∂X0).

Lemma 4 (see Theorem 1.3.6 in Zhao (2003)) Let F : X → X be a continuous map
with F(X0) ⊂ X0. Assume that

(1) F : X → X is point dissipative;
(2) F is compact; or alternatively, F is a-condensing and γ+(U ) is strongly bounded

in X0 if U is strongly bounded in X0;
(3) F is uniformly persistent with respect to (X0, ∂X0).

Then, there exists a global attractor A0 for F in X0 that attracts strongly bounded
sets in X0, and F has a coexistence state x0 ∈ A0.

Theorem 3 If the basic reproduction numberR0 > 1, then there is a positive constant
ε > 0 such that when

∥
∥(S0,V0,E0, I0,F0,R0)− P0

∥
∥ ≤ ε

for any (S0,V0,E0, I0,F0,R0) ∈ X0, we have

lim sup
m→∞

d
(
Fm(S0,V0,E0, I0,F0,R0),P0

) ≥ ε,

where d(x, y) represents the distance between x and y.

Proof Since R0 > 1, ρ(ΦF−V (T )) > 1 can be inferred from Lemma 2. Thus, we
can choose ε̂ small enough such that ρ(ΦF−V−ε̂� (T )) > 1, where� and Eq.(6) are
equal. Next, we proceed by contradiction to prove that

lim sup
m→∞

d
(
Fm(S0,V0,E0, I0,F0,R0),P0

) ≥ ε.

Using the counter-evidence method, we assume that the following formula holds:

lim sup
m→∞

d
(
Fm(S0,V0,E0, I0,F0,R0),P0

)
< ε

for some (S0,V0,E0, I0,F0,R0) ∈ X0. Without loss of generality, there exists a
natural number M > 0 such that for all m ≥ M , we have

d
(
Fm(S0,V0,E0, I0,F0,R0),P0

)
< ε.

123



61 Page 16 of 50 L. Xue et al.

By the continuous dependence of solutions with respect to initial values, we know
that

∥
∥ϕ(t, Fm(S0,V0,E0, I0,F0,R0)), ϕ(t,P0)

∥
∥ < ε̂, ∀t ∈ [0, T ].

For any t ≥ 0, let t = mT + t ′, where t ′ ∈ [0, T ), and m is the largest integer less
than or equal to t

T . Therefore, we have

∥
∥ϕ(t, (S0,V0,E0, I0,F0,R0)), ϕ(t,P0)

∥
∥

= ∥
∥ϕ(t ′, Fm(S0,V0,E0, I0,F0,R0)), ϕ(t

′,P0)
∥
∥ < ε̂, ∀t ≥ 0,

which implies that when t ≥ 0, we have s0k − ε̂ ≤ sk(t) ≤ s0k + ε̂, v0k − ε̂ ≤ vk(t) ≤
v0k + ε̂, 0 ≤ ek(t) ≤ ε̂, 0 ≤ ik(t) ≤ ε̂, 0 ≤ fk(t) ≤ ε̂, and 0 ≤ rk(t) ≤ ε̂. Since
0 ≤ ηk ≤ 1, we obtain that ηkv0k −ε̂ ≤ ηk(v

0
k −ε̂) ≤ ηkvk(t) ≤ ηk(v

0
k +ε̂) ≤ ηkv

0
k +ε̂.

Let ε̂ = 2ε̂, we can obtain the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

de1
dt

≥ (1 − q1)λ1(t)(s
0
1 + η1v

0
1 − ε̂)− (σ1 + u + d1 + α1)e1,

dek
dt

≥ a(k−1)kαk−1ek−1 + (1 − qk)λk(t)(s
0
k + ηkv

0
k − ε̂)

− (σk + u + dk + αk)ek , 2 ≤ k ≤ n,

di1
dt

≥ q1λ1(t)(s
0
1 + η1v

0
1 − ε̂)+ μ1σ1e1 + χ1r1 − (θ1 + u + d1 + α1)i1,

dik
dt

≥ a(k−1)kαk−1ik−1 + qkλk(t)(s
0
k + ηkv

0
k − ε̂)+ μkσkek + χkrk

− (θk + u + dk + αk)ik , 2 ≤ k ≤ n,

d f1
dt

= ξ1θ1i1 − (γ1 + u + d1 + α1) f1,

d fk
dt

= a(k−1)kαk−1 fk−1 + ξkθk ik − (γk + u + dk + αk) fk , 2 ≤ k ≤ n,

dr1
dt

= ρ1γ1 f1 + (1 − μ1)σ1e1 + (1 − ξ1)θ1i1 − (χ1 + u + d1 + α1)r1,

drk
dt

= a(k−1)kαk−1rk−1 + ρkγk fk + (1 − μk)σkek + (1 − ξk)θk ik

− (χk + u + dk + αk)rk , 2 ≤ k ≤ n,

where λk(t) = βk(t)
∑n

j=1 ck j (i j + ω j f j ). Next, we consider the following
system:

123



Evaluating strategies for tuberculosis to achieve the goals of WHO... Page 17 of 50 61

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dê1
dt

= (1 − q1)λ̂1(t)(s
0
1 + η1v

0
1 − ε̂)− (σ1 + u + d1 + α1)ê1,

dêk
dt

= a(k−1)kαk−1êk−1 + (1 − qk)λ̂k(t)(s
0
k + ηkv

0
k − ε̂)

− (σk + u + dk + αk)êk , 2 ≤ k ≤ n,

dî1
dt

= q1λ̂1(t)(s
0
1 + η1v

0
1 − ε̂)+ μ1σ1ê1 + χ1r̂1 − (θ1 + u + d1 + α1)î1,

dîk
dt

= a(k−1)kαk−1 îk−1 + qk λ̂k(t)(s
0
k + ηkv

0
k − ε̂)+ μkσk êk + χk r̂k

− (θk + u + dk + αk)îk , 2 ≤ k ≤ n,

d f̂1
dt

= ξ1θ1 î1 − (γ1 + u + d1 + α1) f̂1,

d f̂k
dt

= a(k−1)kαk−1 f̂k−1 + ξkθk îk − (γk + u + dk + αk) f̂k , 2 ≤ k ≤ n,

dr̂1
dt

= ρ1γ1 f̂1 + (1 − μ1)σ1ê1 + (1 − ξ1)θ1 î1 − (χ1 + u + d1 + α1)r̂1,

dr̂k
dt

= a(k−1)kαk−1r̂k−1 + ρkγk f̂k + (1 − μk)σk êk + (1 − ξk)θk îk

− (χk + u + dk + αk)r̂k , 2 ≤ k ≤ n,

(7)

where λ̂k(t) = βk(t)
∑n

j=1 ck j (î j +ω j f̂ j ). By Lemma 2.1 in Zhang and Zhao (2007),

we know that there is a positive T -periodic function g(t), such that ĝ(t) = eb̂t g(t)
is a solution of System (7), where b̂ = 1

T ln ρ(ΦF−V−ε̂� (T )). We know that
ρ(ΦF−V−ε̂� (T )) > 1 when R0 > 1. Therefore, we have ĝ(t) → ∞ as t → ∞
when ĝ(0) > 0. Applying the comparison principle (Smith andWaltman 1995), when
ek(0) > 0, ik(0) > 0, fk(0) > 0, and rk(0) > 0, we know that

lim
t→∞ek(t) = ∞, lim

t→∞ik(t) = ∞, lim
t→∞ fk(t) = ∞, lim

t→∞rk(t) = ∞, (1 ≤ k ≤ n),

which is a contradictionwithTheorem3. Thus, lim sup
m→∞

d(Fm(S0,V0,E0, I0,F0,R0),

P0) ≥ ε. This completes the proof. 	

Theorem 4 If the basic reproduction number R0 > 1, then there exists a ς > 0 such
that the solution (S(t),V(t),E(t), I(t),F(t),R(t)) of System (2) with initial value
condition (S0,V0,E0, I0,F0,R0) ∈ X0 satisfies

lim inf
t→∞ ek(t) ≥ ς, lim inf

t→∞ ik(t) ≥ ς, lim inf
t→∞ fk(t) ≥ ς,

lim inf
t→∞ rk(t) ≥ ς, (1 ≤ k ≤ n),

and System (2) admits at least one positive periodic solution.

Proof First, we prove that F is uniformly persistent with respect to (X0, ∂X0). For any
initial value condition (S0,V0,E0, I0,F0,R0) ∈ X0, solving the equations of System
(2), we obtain that
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s1(t) = e− ∫ t
0 As1 (ϑ)dϑ

×
(

s10 +
∫ t

0

[
(1 − p1)(α1 + d1 + u)+ τ1v1(ϑ̄)

]
e
∫ ϑ̄
0 As1 (ϑ)dϑdϑ̄

)

> e− ∫ t
0 As1 (ϑ)dϑ

∫ t

0

[
(1 − p1)(α1 + d1 + u)+ τ1v1(ϑ̄)

]
e
∫ ϑ̄
0 As1 (ϑ)dϑdϑ̄

> 0, ∀t ≥ 0, (8)

where As1(ϑ) = λ1(ϑ)+ u + d1 + γ1.

sk(t) = e− ∫ t
0 Ask (ϑ)dϑ

(

sk0 +
∫ t

0

[
a(k−1)kαk−1sk−1(ϑ̄)+ τkvk(ϑ̄)

]
e
∫ ϑ̄
0 Ask (ϑ)dϑdϑ̄

)

> e− ∫ t
0 Ask (ϑ)dϑ

∫ t

0

[
a(k−1)kαk−1sk−1(ϑ̄)+ τkvk(ϑ̄)

]
e
∫ ϑ̄
0 Ask (ϑ)dϑdϑ̄

> 0, 2 ≤ k ≤ n, ∀t ≥ 0, (9)

where Ask (ϑ) = λk(ϑ)+ νk + u + dk + αk .

v1(t) = e− ∫ t
0 Av1 (ϑ)dϑ

(

v10 +
∫ t

0
p1(α1 + d1 + u)e

∫ ϑ̄
0 Av1 (ϑ)dϑdϑ̄

)

> p1(α1 + d1 + u)e− ∫ t
0 Av1 (ϑ)dϑ

∫ t

0
e
∫ ϑ̄
0 Av1 (ϑ)dϑdϑ̄

> 0, ∀t ≥ 0, (10)

where Av1(ϑ) = η1λ1(ϑ)+ τ1 + u + d1 + α1.

vk(t) = e− ∫ t
0 Avk (ϑ)dϑ

(

vk0 +
∫ t

0

[
a(k−1)kαk−1vk−1(ϑ̄)+ νksk(ϑ̄)

]
e
∫ ϑ̄
0 Avk (ϑ)dϑdϑ̄

)

> e− ∫ t
0 Avk (ϑ)dϑ

∫ t

0

[
a(k−1)kαk−1vk−1(ϑ̄)+ νksk(ϑ̄)

]
e
∫ ϑ̄
0 Avk (ϑ)dϑdϑ̄

> 0, 2 ≤ k ≤ n, ∀t ≥ 0, (11)

where Avk (ϑ) = ηkλk(ϑ)+ τk + u + dk + αk .

e1(t) = e−Ae1 t
(

e10 +
∫ t

0

[
(1 − q1)λ1(ϑ̄)(s1(ϑ̄)+ η1v1(ϑ̄)+ δ1r1(ϑ̄))

]
eAe1 ϑ̄dϑ̄

)

> e−Ae1 t
∫ t

0

[
(1 − q1)λ1(ϑ̄)(s1(ϑ̄)+ η1v1(ϑ̄)+ δ1r1(ϑ̄))

]
eAe1 ϑ̄dϑ̄

≥ 0, ∀t ≥ 0, (12)
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where Ae1 = σ1 + u + d1 + α1.

ek(t) = e−Aek t
(

e1k +
∫ t

0

[
a(k−1)kαk−1ek−1(ϑ̄)+ Bek (ϑ̄)

]
eAek ϑ̄dϑ̄

)

> e−Aek t
∫ t

0

[
a(k−1)kαk−1ek−1(ϑ̄)+ Bek (ϑ̄)

]
eAek ϑ̄dϑ̄

> 0, 2 ≤ k ≤ n, ∀t ≥ 0, (13)

where Aek = σk +u+dk +αk , Bek (ϑ̄) = (1−qk)λk(ϑ̄)(sk(ϑ̄)+ηkvk(ϑ̄)+δkrk(ϑ̄)).

i1(t) = e−(θ1+u+d1+α1)t
(

i10 +
∫ t

0
Bi1(ϑ̄)e

(θ1+u+d1+α1)ϑ̄dϑ̄
)

> e−(θ1+u+d1+α1)t
∫ t

0
Bi1(ϑ̄)e

(θ1+u+d1+α1)ϑ̄dϑ̄

≥ 0, ∀t ≥ 0, (14)

where Bi1(ϑ̄) = q1λ1(ϑ̄)(s1(ϑ̄)+ η1v1(ϑ̄))+ μ1σ1e1(ϑ̄)+ χ1r1(ϑ̄).

ik(t) = e−(θk+u+dk+αk )t

×
(

ik0 +
∫ t

0

[
a(k−1)kαk−1ik−1(ϑ̄)+ Bik (ϑ̄)

]
e(θk+u+dk+αk )ϑ̄dϑ̄

)

> e−(θk+u+dk+αk )t
∫ t

0

[
a(k−1)kαk−1ik−1(ϑ̄)+ Bik (ϑ̄)

]
e(θk+u+dk+αk )ϑ̄dϑ̄

> 0, 2 ≤ k ≤ n, ∀t ≥ 0, (15)

where Bik (ϑ̄) = qkλk(ϑ̄)(sk(ϑ̄)+ ηkvk(ϑ̄))+ μkσkek(ϑ̄)+ χkrk(ϑ̄).

f1(t) = e−(γ1+u+d1+α1)t
(

f10 +
∫ t

0
ξ1θ1i1(ϑ̄)e

(γ1+u+d1+α1)ϑ̄dϑ̄
)

> e−(γ1+u+d1+α1)t
∫ t

0
ξ1θ1i1(ϑ̄)e

(γ1+u+d1+α1)ϑ̄dϑ̄

> 0, ∀t ≥ 0. (16)

fk(t) = e−(γk+u+dk+αk )t

×
(

fk0 +
∫ t

0

[
a(k−1)kαk−1 fk−1(ϑ̄)+ ξkθkik(ϑ̄)

]
e(γk+u+dk+αk )ϑ̄dϑ̄

)

> e−(γk+u+dk+αk )t
∫ t

0

[
a(k−1)kαk−1 fk−1(ϑ̄)+ ξkθkik(ϑ̄)

]
e(γk+u+dk+αk )ϑ̄dϑ̄

> 0, 2 ≤ k ≤ n, ∀t ≥ 0. (17)
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r1(t) = e−Ar1 t

×
(

r10 +
∫ t

0

[
ρ1γ1 f1(ϑ̄)+ (1 − μ1)σ1e1(ϑ̄)+ (1 − ξ1)θ1i1(ϑ̄)

]
eAr1 ϑ̄dϑ̄

)

> e−Ar1 t
∫ t

0

[
ρ1γ1 f1(ϑ̄)+ (1 − μ1)σ1e1(ϑ̄)+ (1 − ξ1)θ1i1(ϑ̄)

]
eAr1 ϑ̄dϑ̄

> 0, ∀t ≥ 0, (18)

where Ar1 = χ1 + u + d1 + α1.

rk(t) = e−Ark t
(

rk0 +
∫ t

0

[
a(k−1)kαk−1rk−1(ϑ̄)+ Brk (ϑ̄)

]
eArk ϑ̄dϑ̄

)

> e−Ark t
∫ t

0

[
a(k−1)kαk−1rk−1(ϑ̄)+ Brk (ϑ̄)

]
eArk ϑ̄dϑ̄

> 0, 2 ≤ k ≤ n, ∀t ≥ 0, (19)

where Ark = χk + u + dk + αk , Brk (ϑ̄) = ρkγk fk(ϑ̄) + (1 − μk)σkek(ϑ̄) + (1 −
ξk)θkik(ϑ̄). Thus, both X and X0 are positively invariant. Clearly, ∂X0 is relatively
closed in X .

We let

M∂ =
{
(S0,V0,E0, I0,F0,R0) ∈ ∂X0 : Fm(S0,V0,E0, I0,F0,R0) ∈ ∂X0,

∀m ≥ 0
}
. (20)

Next, we prove that M∂ = {(S,V, 0, 0, 0, 0) ∈ X : sk ≥ 0, vk ≥ 0, 1 ≤ k ≤ n}
holds, where 0 represents the zero vector of n dimensions. Obviously, we obtain that

{(S,V, 0, 0, 0, 0) ∈ X : sk ≥ 0, vk ≥ 0, 1 ≤ k ≤ n} ⊆ M∂ .

Thus, we only need to prove that

M∂ ⊆ {
(S,V, 0, 0, 0, 0) ∈ X : sk ≥ 0, vk ≥ 0, 1 ≤ k ≤ n

}
.

Otherwise, if M∂\{(S,V, 0, 0, 0, 0) ∈ X : sk ≥ 0, vk ≥ 0, 1 ≤ k ≤ n} �= ∅, then at
least a point (S0,V0,E0, I0,F0,R0) ∈ M∂ satisfies that at least one of ek0 , ik0 , fk0 ,
and rk0 is greater than 0, where 1 ≤ k ≤ n.

If e10 > 0, we obtain that inequality (12) holds. From ek0 > 0, (2 ≤ k ≤ n) and
inequality (13), we have ek(t) > 0, (2 ≤ k ≤ n) for all t > 0. Similarly, we also obtain
that sk(t) > 0, (1 ≤ k ≤ n), vk(t) > 0, (1 ≤ k ≤ n), ik(t) > 0, (1 ≤ k ≤ n), fk(t) >
0, (1 ≤ k ≤ n), and rk(t) > 0, (1 ≤ k ≤ n) for all t > 0, which contradicts that
Fm(S0,V0,E0, I0,F0,R0) ∈ ∂X0,∀m ≥ 0 when (S0,V0,E0, I0,F0,R0) ∈ ∂X0.
Similarly, if i10 > 0, we also obtain that sk(t) > 0, vk(t) > 0, ek(t) > 0, ik(t) > 0,
fk(t) > 0, and rk(t) > 0 for all t > 0,where 1 ≤ k ≤ n,which leads to a contradiction.
Therefore, we have M∂ ⊆ {

(S,V, 0, 0, 0, 0) ∈ X : sk ≥ 0, vk ≥ 0, 1 ≤ k ≤ n
}
,

123



Evaluating strategies for tuberculosis to achieve the goals of WHO... Page 21 of 50 61

which implies that Eq.(20) holds. Moreover, there only exists one fixed point P0 of F
in M∂ .

According to Theorem 3, we know that P0 is an isolated invariant set in X
and Ws(P0) ∩ X0 = ∅, where the set Ws(P0) is the stable set of P0. Note
that every orbit in M∂ approaches P0, and P0 is acyclic in M∂ . According to
Lemma 3, F is uniformly persistent with respect to (X0, ∂X0). Thus, the solu-
tion of System (2) is uniformly persistent, i.e., there exists a ς > 0 such that the
solution (S(t),V(t),E(t), I(t),F(t),R(t)) of System (2) with initial value condition
(S0,V0,E0, I0,F0,R0) ∈ X0 satisfies

lim inf
t→∞ ek(t) ≥ ς, lim inf

t→∞ ik(t) ≥ ς, lim inf
t→∞ fk(t) ≥ ς,

lim inf
t→∞ rk(t) ≥ ς, (1 ≤ k ≤ n).

Next, we prove the existence of a positive T -period solution of System (2). According
to Lemma 4, we know that F has a fixed point (S∗(0),V∗(0),E∗(0), I∗(0),F∗(0),
R∗(0)) ∈ X0. Then, s∗

k (0) ≥ 0, v∗
k (0) ≥ 0, e∗

k (0) > 0, i∗k (0) > 0, f ∗
k (0) > 0 and

r∗
k (0) > 0, where 1 ≤ k ≤ n. We now prove that s∗

1 (0) > 0. If it is not the case, then
s∗
1 (0) = 0. From the first equation of System (2), we obtain that

s∗
1 (t) = e− ∫ t

0 As1 (ϑ)dϑ

×
(

s∗
1 (0)+

∫ t

0

[
(1 − p1)(α1 + d1 + u)+ τ1v1(ϑ̄)

]
e
∫ ϑ̄
0 As1 (ϑ)dϑdϑ̄

)

= e− ∫ t
0 As1 (ϑ)dϑ

∫ t

0

[
(1 − p1)(α1 + d1 + u)+ τ1v1(ϑ̄)

]
e
∫ ϑ̄
0 As1 (ϑ)dϑdϑ̄

> 0, ∀t ∈ [0, T ],

where As1(t) = λ1(t) + u + d1 + γ1. The periodicity of s∗
1 (t) implies that s∗

1 (0) =
s∗
1 (mT ) = 0, which is a contradiction. Thus, it follows that s∗

1 (0) > 0. Similarly, we
also obtain that s∗

k (0) > 0, (2 ≤ k ≤ n), and v∗
k (0) > 0, (1 ≤ k ≤ n). Following the

processes as in inequalities (8)-(19), we obtain that s∗
k (t) > 0, v∗

k (t) > 0, e∗
k (t) > 0,

i∗k (t) > 0, f ∗
k (t) > 0 and r∗

k (t) > 0 for all t > 0, where 1 ≤ k ≤ n. Thus,
(S∗(t),V∗(t),E∗(t), I∗(t),F∗(t),R∗(t)) is the positive T -period solution of System
(2). This completes the proof. 	


3 Fitting theModel to the TB Data of Mainland China

In this section, we estimate unknown parameters and initial values of System (1) using
monthly number of new TB cases for 14 age-groups from January 2005 to December
2017 in mainland China, and we obtain the mean value and confidence interval of the
basic reproduction number, R0.
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3.1 Data Collection and Analysis

To parameterize the mathematical model for the transmission dynamics of TB in
mainland China, we use observations of reported cases from January 2005 to Decem-
ber 2017, provided by the Data-Center of China Public Health Science (2021). This
database collects all TB data reported since 2004, and the main content of the database
includes the number of cases, morbidity, deaths, and death rates by region and age.
We focus on the number of monthly new cases for each age-group. Figure 2A shows
the prevalence of TB per 100,000 individuals in each age-group from January 2005 to
December 2017, where

Prevalence of the kth age-group = Number of new cases of the kth age-group

The total population of the kth age-group
×100000.

The total population of China from 2005 to 2019 is provided by the China Statistical
Yearbook (National Bureau of Statistics 2021a), as shown in Table 6. The population
pyramids by age and gender are provided by the tabulation on the 2010 Population
Census Office of the State Council of the People’s Republic of China (2021), as shown
in Fig. 2B.

It can be seen from Fig. 2(A) that the prevalence of TB per 100,000 individuals
of all age-groups shows periodic variations with peak in late spring to early summer
each year. The mean monthly TB prevalence per 100,000 individuals is 84.2783 for
all age-groups, 0.2851 for 0–4 years old, 0.3288 for 5–9 years old, 0.7130 for 10–14
years old, 4.8932 for 15–19 years old, 6.5233 for 20–24 years old, 6.5874 for 25–29
years old, 5.7410 for 30–34 years old, 4.9694 for 35–39 years old, 5.2128 for 40–44
years old, 5.9061 for 45–49 years old, 8.4524 for 50–54 years old, 8.1967 for 55–
59 years old, 11.6263 for 60–64 years old, 14.8427 for 65+ years old (see Table 1).
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Fig. 2 A TB prevalence per 100,000 individuals. B The population pyramids by age and gender in China
(Color figure online)
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Table 1 Distribution of monthly TB prevalence per 100,000 individuals in mainland China from January
2005 to December 2017. Q1 represents 25th percentile, Q3 represents 75th percentile

Age-group Mean±SD Min Q1 Median Q3 Max

0–4 0.2851±0.2069 0.0736 0.1437 0.1899 0.3823 1.0040

5–9 0.3288±0.2876 0.0729 0.1292 0.1714 0.4809 1.3029

10–14 0.7130±0.3242 0.3850 0.4845 0.5817 0.8180 1.9499

15–19 4.8932±1.5238 2.6848 3.7416 4.4346 5.8425 9.8901

20–24 6.5233±1.7891 3.1442 4.9817 6.4877 7.9775 10.1162

25–29 6.5874±1.3739 3.2667 5.6593 6.5625 7.3056 10.0414

30–34 5.7410±2.0181 3.0830 4.2417 5.0779 6.8463 11.5837

35–39 4.9694±1.7879 2.4363 3.3583 4.6634 6.2546 9.2314

40–44 5.2128±1.3936 2.6938 4.0760 5.0763 6.1453 8.7398

45–49 5.9061±0.9827 2.2969 5.3437 5.9281 6.5457 7.9757

50–54 8.4524±2.1371 4.6131 7.0249 7.9349 9.5958 14.7280

55–59 8.1967±1.8172 3.7646 6.7916 8.1814 9.5053 12.8277

60–64 11.6263±2.0954 5.2955 10.2514 11.4184 12.9065 17.3916

65+ 14.8427±3.2316 7.9119 12.4234 14.2146 16.5781 24.4819

All age-groups 84.2783±19.2311 43.5115 70.7735 80.7513 95.2204 138.6615

The prevalence of TB per 100,000 individuals is the highest among people over 65
years old, and the prevalence of TB per 100,000 individuals is the lowest among
people under 15 years old. Further, Pearson’s correlation analysis showed that the
prevalence of TB per 100,000 individuals was highly positively correlated with the
age of individuals infected with TB from 2005 to 2017, as shown in Fig. 3. More
specifically, the correlation coefficient between the prevalence of TB per 100,000
individuals and the age of individuals infected with TB was greater than 0.85 (p <
0.01) from 2005 to 2017, which indicates that older people are more likely to be
infected by Mycobacterium TB.

3.2 Parameter Estimation

To simulate the number of newTBcases inmainlandChina, the rationality of themodel
is verified by the actual number of newly infected cases. We divide the population into
14 age-groups: 0–4 years old 5–9 years old, 10–14 years old, 15–19 years old, 20-24
years old, 25–29 years old, 30–34 years old, 35–39 years old, 40–44 years old, 45–49
years old, 50–54 years old, 55–59 years old, 60–64 years old, and over 65 years old.
Next, we estimate all parameters and initial values of System (1).

(I) The birth rate of the population (i.e., bk): According to the statistics of the
China Statistical Yearbook (2014), we assume that the birth rate of people under age
15 and over 50 is 0, that is, b1 = 0, b2 = 0, b3 = 0, b11 = 0, b12 = 0, b13 = 0, and
b14 = 0. The birth rates of other age-groups are b4 = 0.98×10−3, b5 = 6.85×10−3,
b6 = 7.61 × 10−3, b7 = 4.08 × 10−3, b8 = 1.44 × 10−3, b9 = 0.33 × 10−3, and
b10 = 0.09 × 10−3 (Feng et al. 2020; Su et al. 2021).
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Fig. 3 Correlation between the age of the population and the prevalence of TB per 100,000 individuals
from 2005 to 2017. The 14 age-groups represent 0–4 years old 5–9 years old, 10–14 years old, 15–19 years
old, 20–24 years old, 25–29 years old, 30–34 years old, 35–39 years old, 40–44 years old, 45–49 years old,
50–54 years old, 55–59 years old, 60–64 years old, and 65+ years old, respectively (Color figure online)

(II) The natural mortality rate of the population (i.e., dk): According to the China
Statistical Yearbook (National Bureau of Statistics 2021b), we obtain that the average
lifetime of Chinese is 76 years. Thus, we conclude that the monthly natural mortal-
ity rates of Chinese are d1 = 1/(76 × 12), d2 = 1/(71 × 12), d3 = 1/(66 × 12),
d4 = 1/(61 × 12), d5 = 1/(56 × 12), d6 = 1/(51 × 12), d7 = 1/(46 × 12),
d8 = 1/(41 × 12), d9 = 1/(36 × 12), d10 = 1/(31 × 12), d11 = 1/(26 × 12),
d12 = 1/(21 × 12), d13 = 1/(16 × 12), and d14 = 1/(11 × 12).

(III) The rate of aging (i.e., αk): Since the maximum difference of age for each
age-group is 5 years, the monthly aging rate of individuals is 1/(5 × 12). Therefore,
we have

αk =
⎧
⎨

⎩

1

5 × 12
, 1 ≤ k ≤ 13,

0, k = 14.

(IV) The proportion of BCG vaccination (i.e., p1): In 2019, 153 countries reported
providing BCG vaccination as a standard part of childhood immunization programs,
of which 87 reported coverage of ≥ 90%. Since BCG vaccine has a higher coverage
rate in China (Ren et al. 2020), we assume p1 = 0.99 in the simulation.
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(V) The vaccination rate for susceptible individuals (i.e., νk): In addition to BCG
vaccine, there are no effective vaccines against TB for adults. Therefore, in the simu-
lation, we assume νk = 0 (2 ≤ k ≤ 14).

(VI) The proportion of new infections that develop into active TB (i.e., qk): Since
approximately 10% of infected individuals will develop active TB in their lifetime
(World Health Organization 2021a), around 5% of these infected individuals will
develop active TB during the first 2 years of infection (Ziv et al. 2001). Therefore, we
choose qk = 0.05 (1 ≤ k ≤ 14).

(VII)The level of protection for vaccinated individuals due to immunity (i.e., 1−ηk ):
As part of the childhood immunization program, BCG vaccine has a high protection
rate and is effective for about 10 years (Roy et al. 2014; Mangtani et al. 2014). There-
fore, BCG vaccine is only effective for individuals between 0 and 10 years old. We
choose

1 − ηk =
{
0.85, 1 ≤ k ≤ 2,

0, 3 ≤ k ≤ 14.

(VIII) The level of protection for latent individuals due to immunity (i.e., 1 − 	k):
The latent individuals progress to active TB, and the rate of exogenous reinfection is
	kΛk (1 ≤ k ≤ 14). Since primary infection confers some degree of immunity, we
have 0 < 1 − 	k < 1. According to the estimation of Harris et al. (2019), we have

1 − 	k = [0.25, 0.37], 1 ≤ k ≤ 14.

(IX) The level of protection of the recovered individuals due to immunity (i.e.,
1− δk): The recovered individuals are not completely immune to Mycobacterium TB,
and the rate of reinfection is δkΛk (1 ≤ k ≤ 14). Since the recovered individuals have
a certain level of immunity, we have 0 < 1 − δk < 1. According to the estimation of
Harris et al. (2019), we have

1 − δk = [0.25, 0.37], 1 ≤ k ≤ 14.

(X) The risk of reactivation in latently infected individuals (i.e., σk): According
to Harris et al.’s estimation of the risk of reactivation in latently infected individuals
(Harris et al. 2019),we re-quantified themonthly risk of reactivation in latently infected
individuals as follows:

σk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0.0001

12
,
0.0002

12

]
, 1 ≤ k ≤ 3,

[0.00018

12
,
0.00028

12

]
, 4 ≤ k ≤ 11,

[0.00020

12
,
0.00193

12

]
, 12 ≤ k ≤ 13,

[0.00020

12
,
0.00365

12

]
, k = 14.
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(XI) The time delays in diagnosis of TB (i.e., 1/θk): The clinical manifestations
of TB are mostly non-specific symptoms, such as cough and fever, which are easily
confused with other respiratory diseases, and its differential diagnosis is difficult,
which may cause a certain delay in diagnosis. In China, the shortest total delay is 25
days and the longest total delay is 71 days (Sreeramareddy et al. 2009). Therefore, we
choose

θk =
[30

71
,
30

25

]
, 1 ≤ k ≤ 14.

(XII) The recovery rate (i.e., γk): TB patients can be successfully cured after 6
months of drug treatment (World Health Organization 2021a). Thus, we have γk =
1/6 (1 ≤ k ≤ 14).

(XIII) The validity period of the vaccine (i.e., 1/τk): The immune function of BCG
vaccine gradually declines after about 10 years (Lawn and Zumla 2011). Therefore,
the vaccine failure rates for individuals under 5 years old and individuals 5–9 years old
are 1/(10× 12) and 1/(5× 12), respectively. The vaccine failure rate for individuals
over 10 years old is infinite. Therefore, we choose

τk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

10 × 12
, k = 1,

1

5 × 12
, k = 2,

∞, 3 ≤ k ≤ 14.

(XIV) The proportion of recovered individuals (i.e., ρk): According to the TB report
of WHO (Harris et al. 2019; World Health Organization 2021a), we obtain that the
proportion of successful TB treatment is 95%. Thus, for each age-group, we assume
that the proportion of recovered individuals is ρk = 0.95 (1 ≤ k ≤ 14).

(XV) The proportion of infected individuals entering the treated class due to treat-
ment (i.e., ξk): TheWHO reported that the proportion of new active TB cases detected
and started treatment was 89% (Harris et al. 2019; World Health Organization 2021a).
Thus, for each age-group, we choose ξk = 0.89 (1 ≤ k ≤ 14).

(XVI) The proportion of latent individuals receiving treatment (i.e., 1 − μk):
We assume that the proportion of latent individuals who develop active TB with-
out treatment is μk = 1 − ρkξk , then the proportion of latent individuals who are
tested and successfully treated is 1 − μk = ρkξk . Therefore, for each age-group,
μk = 1 − 0.8455 (1 ≤ k ≤ 14).

(XVII) The relapse rate of recovered individuals (i.e., χk): Since the recovered TB
individuals have a high relapse rate, and the relapse rate varies with age (Harris et al.
2019; Knight et al. 2014), we choose
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Fig. 4 A The daily average number of contacts per person in the participant age-group. B The monthly
average number of contacts per person in the participant age-group (Color figure online)

χk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0.005

12
,
0.010

12

]
, 1 ≤ k ≤ 3,

[0.005

12
,
0.007

12

]
, 4 ≤ k ≤ 11,

[0.005

12
,
0.016

12

]
, 12 ≤ k ≤ 13,

[0.005

12
,
0.025

12

]
, k = 14,

(XVIII) The contact matrix (i.e., ck j ): Since contact matrix is split into 16 age-
groups in China (Prem et al. 2017), we aggregate it into the 14 age-groups used in our
models (Meltzer et al. 2015). Next, we demonstrate how to aggregate 16 age-groups
into 14 age-groups. The detailed derivation of the modified contact matrix is in B. The
modified contact matrix is shown in Fig. 4.

(XIX) The coefficient that reduces the transmission rate due to treatment (i.e., ωk):
According to the estimation of Guo et al. (2021), we choose ωk = 0.4387, 1 ≤ k ≤
14.

(XX) The probability of infection upon contacting an infectious person (i.e., βk(t)):
Anderson and May (1992) conclude that the direct measurement of the transmis-
sion coefficient is essentially impossible for most infections. To predict the changes
wrought by public health programs, we need to know the transmission coefficient. Pol-
licott et al. (2012) also state that large-scale transmission experiments (e.g., influenza
transmission in ferrets) are useful in understanding the transmission dynamics, but
are usually impractical (due to economic and ethical reasons). In order to fit the sea-
sonal fluctuation of TB, we use wavelet analysis (Torrence and Compo 1998) to study
the periodicity of monthly new TB cases for 14 age-groups from January 2005 to
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December 2017. Morlet wavelet is chosen as the ‘mother wavelet’ and continuous
wavelet transform is performed (Yang and Jin 2021). The wavelet power spectrum
indicates that the time series of monthly new TB cases in the 14 age-groups show
obvious annual period. The annual period is surrounded by the black line that denotes
the 5% significance level (see Fig. 9). Thus, we choose βk(t) as the periodic function
for each age-group as follows:

βk(t) = β̂k

(

1 + β̄k sin
(2π t

12
+ φk

))

, 1 ≤ k ≤ 14,

where β̂k is called the baseline level of transmission, β̄k is known as the amplitude of
seasonal variation or simply the strength of seasonality (Cintrón-Arias et al. 2009),
and φk indicates the phase of the T -periodic function.

(XXI) The initial values of System (1): According to the relevant data reported by
tabulation on the 2010 Population Census Office of the State Council of the Peo-
ple’s Republic of China (2021), we obtain the total population of the age-group
as Nk , as shown in Table 5. According to recent estimation, approximately 350
million people are infected with Mycobacterium TB in China (Cui et al. 2020);
therefore, we approximate that the initial value of the latent individuals is Ek(0) =
300000000Nk/

∑14
k=1 Nk (1 ≤ k ≤ 14). The initial value Ik(0) (1 ≤ k ≤ 14)

of the infected individuals, the initial value Rk(0) (1 ≤ k ≤ 14) of the recov-
ered individuals, and the initial value Vk(0) (1 ≤ k ≤ 2) of the vaccinated
individuals are obtained by fitting the data. Since there is no improved vaccina-
tion for adults, we assume that the initial value of the vaccinated individuals is
Vk(0) = 0 (3 ≤ k ≤ 14). The WHO reported that the proportion of new active
TB cases detected and started on treatment was 89% (Harris et al. 2019; World Health
Organization 2021a), we assume that the initial value of the treated individuals is
Tk(0) = 0.89Ik(0) (1 ≤ k ≤ 14). The initial value of susceptible individuals is
estimated as Sk(0) = Nk − Vk(0)− Ek(0)− Ik(0)− Tk(0)− Rk(0) (1 ≤ k ≤ 14).

Next, we use the MCMC method (Haario et al. 2006) to fit System (1) for 800000
iterations with a burn-in of 750000 iterations. We estimate the unknown parameters
and initial conditions for System (1), using the monthly number of new TB cases in
mainland China. The unknown parameters and initial values set is

χ̂ = (χ̂1, · · · , χ̂k, · · · , χ̂n),

where

χ̂k =
{ (

β̂k, β̄k, φk, δk, 	k, θk, σk, χk, Ik(0), Rk(0), Vk(0)
)
, 1 ≤ k ≤ 2,

(
β̂k, β̄k, φk, δk, 	k, θk, σk, χk, Ik(0), Rk(0)

)
, 3 ≤ k ≤ 14.

Let Ĉk(t, χ̂), (1 ≤ k ≤ 14) represent the cumulative number of TB cases, then the
cumulative infection cases of the kth age-group can be expressed as follows:

dĈk(t, χ̂)

dt
= ξkθk Ik, (1 ≤ k ≤ n).

123



Evaluating strategies for tuberculosis to achieve the goals of WHO... Page 29 of 50 61

The number of new TB cases of the kth age-group can be expressed as follows:

P̂k(t, χ̂) = ξkθk Ik, (1 ≤ k ≤ n),

where P̂k represents the number of new TB cases of the kth age-group; the time step
is month in the simulations. We obtain Ψ independent observation data from the kth
age-group, representing the number of new TB cases at the i th month. The data from
2005 to 2016 were used for training the model, and the data from 2017 were used
for testing and validation purposes. The new observation data can be expressed as
Y = (Y1(t),Y2(t), · · · ,Yn(t)), where Y is a Ψ × n matrix. The error matrix, ε̂,
is of dimension Ψ × n and follows a matrix-variate normal distribution, i.e., ε̂ ∼
N (0, IΨ ,Σ) (Gamerman et al. 2008). Thus, the observations Y can be expressed as
follows:

Y = P + ε̂, ε̂ ∼ N (0, IΨ ,Σ), (21)

where P is a Ψ × n matrix and P represents the numerical solution of the number
of new TB cases of System (1), that is, P = (P̂1(t, χ̂), P̂2(t, χ̂), · · · , P̂n(t, χ̂)). For
simplicity, we assume that Σ = diag(σ̂1, σ̂2, · · · , σ̂n) throughout the work.

We assume that the unknown parameter χ̂ of System (1) is an independent Gaussian
prior specification. Hence, we obtain

χ̂ j ∼ N (ν̂ j , ϕ̂
2
j ), j = 1, 2, · · · ,M,

where M is the number of unknown parameters. We also assume that the inverse of
the error variance follows a gamma distribution as prior with the form

σ̂−2
i ∼ Γ

(
n0
2
,
n0S20
2

)

, i = 1, 2, · · · , n,

where S20 and n0 are the prior mean and prior accuracy of variance σ̂ 2
i , respectively.

The likelihood function L(Y|χ̂ ,Σ) for Ψ independent and identically distributed
observations from Eq.(21) with a Gaussian error model is

L(Y|χ̂ ,Σ) =
( 1

2π

)Ψ n
2 |Σ |−Ψ

2 exp

[

trace

(−Σ−1SS(χ̂)

2

)]

,

where

SS(χ̂) = (Y − P)T(Y − P).
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The joint posterior distribution of σ̂ 2
i (i = 1, 2, · · · , n) is

L(σ̂ 2
1 , σ̂

2
2 , · · · , σ̂ 2

n |Y, χ̂) ∝ L(Y|σ̂ 2
1 , σ̂

2
2 , · · · , σ̂ 2

n , χ̂)L(σ̂
2
1 , σ̂

2
2 , · · · , σ̂ 2

n )

= L(Y|σ̂ 2
1 , σ̂

2
2 , · · · , σ̂ 2

n , χ̂)

n∏

i=1

L(σ̂ 2
i )

=
( 1

2π

)Ψ n
2 |Σ |−Ψ

2 exp

[

trace

(−Σ−1SS(χ̂)

2

)]

n∏

i=1

(
n0S20
2

) n0
2

Γ ( n02 )
(σ̂ 2

i )
− n0

2 −1 exp

[

− n0S20
2σ̂ 2

i

]

=
( 1

2π

)Ψ n
2 |Σ |−Ψ

2 exp

[

trace

(−Σ−1SS(χ̂)

2

)]

×
(
n0S20
2

) n0n
2

(Γ ( n02 ))
n

|Σ |− n0
2 −1 exp

[

trace

(−Σ−1n0S20
2

)]

∝ |Σ |−Ψ
2 − n0

2 −1 exp

[

trace

(−Σ−1SS(χ̂)

2

)

+ trace

(−Σ−1n0S20
2

)]

.

Since we assume independent Gaussian prior specification for parameters χ̂ , the prior
sum of squares for the given parameters χ̂ can be calculated as follows:

SSpri(χ̂) =
M∑

j=1

[
χ̂ j − ν̂ j

ϕ̂ j

]2
.

Then, for a fixed value of variance σ̂ 2
i (i = 1, 2, · · · , n), the posterior distribution of

parameters χ̂ can be expressed as follows:

L(χ̂ |Y,Σ) ∝ L(Y|χ̂ ,Σ)L(χ̂1)L(χ̂2) · · · L(χ̂M )

= L(Y|χ̂ ,Σ)
M∏

i=1

L(χ̂i )

=
( 1

2π

)Ψ n
2 |Σ |−Ψ

2 exp

[

trace

(−Σ−1SS(χ̂)

2

)] M∏

j=1

1√
2πϕ j

exp

[

− (χ̂ j − ν̂ j )
2

2ϕ̂2j

]

=
( 1

2π

)Ψ n
2 |Σ |−Ψ

2 exp

[

trace

(−Σ−1SS(χ̂)

2

)](
1√
2π

)M

× 1

ϕ1ϕ2 · · ·ϕM exp

[

− 1

2

M∑

j=1

( χ̂ j − ν̂ j

ϕ̂ j

)2
]

∝ exp

[

− 1

2

(
trace

(
Σ−1SS(χ̂)

) + SSpri(χ̂)
)]

.
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and the posterior ratio needed in the Metropolis–Hastings acceptance probability can
be written as follows:

L(χ̂1|Y,Σ)
L(χ̂2|Y,Σ)

= exp

[

− 0.5
(
Σ−1SS(χ̂2)−Σ−1SS(χ̂1)

)

+0.5
(
SSpri(χ̂2)− SSpri(χ̂1)

)]

,

where χ̂1 is the value of the current parameter set and χ̂2 represents the value of

generating a new parameter set. Accordingly, the new unknown parameter value χ̂2

will be accepted with probability

min

(

1,
L(χ̂1|Y,Σ)
L(χ̂2|Y,Σ)

)

.

Prior information of unknown parameters is given by

β̂k ∈ [0, 1], β̄k ∈ [−1, 1], φk ∈ [−12, 12], 1 ≤ k ≤ 14,

δk ∈ [0.63, 0.75], 	k ∈ [0.63, 0.75], θk ∈
[30

71
,
30

25

]
, 1 ≤ k ≤ 14,

Ik(0) ∈ [0, 2 × 105], Rk(0) ∈ [0, 1 × 107], 1 ≤ k ≤ 14,

Vk(0) ∈ [4 × 107, 4.9 × 107], 1 ≤ k ≤ 2,

σk ∈
[0.0001

12
,
0.0002

12

]
, χk ∈

[0.005

12
,
0.010

12

]
, 1 ≤ k ≤ 3,

σk ∈
[0.00018

12
,
0.00028

12

]
, χk ∈

[0.005

12
,
0.007

12

]
, 4 ≤ k ≤ 11,

σk ∈
[0.00020

12
,
0.00193

12

]
, χk ∈

[0.005

12
,
0.016

12

]
, 12 ≤ k ≤ 13,

σk ∈
[0.00020

12
,
0.00365

12

]
, χk ∈

[0.005

12
,
0.025

12

]
, k = 14,

and the proposal density follows a multivariate normal distribution.
We randomly select 10% of the last 50,000 samples as the final distribution of

parameters by fitting System (1) to the time series of the monthly TB prevalence per
100,000 individuals reported in mainland China, as shown in Fig. 5. The fitting result
of the age series is shown in Fig. 11. FromFig. 10, the fitted curve of TB prevalence per
100,000 individuals matches the reported data very well. We use Brooks and Roberts
(1998) diagnostics to examine the convergence of the MCMC chains, and the values
of Geweke are shown in Tables 7 and 8. The traces plots of unknown parameters and
initial values for System (1) are obtained byMCMC sampling (see Fig. 12). The mean
and standard deviation of the parameters andmodel initial values are shown in Tables 7
and 8. The ratio of our sample size to the free parameters of the model is 28.8:1>10:1
(Wikipedia 2022); thus, our training model has good performance.
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Fig. 5 The fitting results ofmonthly TB prevalence per 100,000 individuals from January 2005 toDecember
2017. The solid red line represents the simulated curve of System (1). Black circles represent training data,
and green circles represent testing data. The 95% confidence and prediction intervals are shown in light red
and light blue, respectively (Color figure online)

4 Results

In this section, we calculate the basic reproduction number of System (1), conduct
sensitivity analysis, and evaluate the possibility of achieving the goals of WHO if we
start vaccination strategy, diagnostic strategy, and treatment strategy in 2025.

4.1 Basic Reproduction Number and Sensitivity Analysis

Through the estimated parameter values, we calculate that the basic reproduction
number, R0, is estimated to be 1.3935 (95%CI : (1.3729, 1.4087)), as shown in
Fig. 6. Since R0 > 1, System (1) is uniformly persistent, which indicates that TB
will not go extinct in the future without additional control measures. System (1) is
uniformly persistent, which indicates that TB will not go extinct in the future with
current control measures. Next, we use the LHS (Latin hypercube sampling) and the
PRCCs (partial rank correlation coefficients) (Marino et al. 2008) to study the global
uncertainty and sensitivity of the parameters of System (1). The goal is to identify
the most important parameters that affect the dynamics of TB infection. The input
parameters are θk (1 ≤ k ≤ 14), σk (1 ≤ k ≤ 3), σk (4 ≤ k ≤ 11), σk (12 ≤ k ≤ 13),
σk (k = 14), χk (1 ≤ k ≤ 3), χk (4 ≤ k ≤ 11), χk (12 ≤ k ≤ 13), χk (k = 14), and
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(A)

(B)

Fig. 6 A The blue dots indicate the value ofR0 within the 95% confidence interval, the red pluses indicate
the value of R0 outside the 95% confidence intervals, and the black lines indicate the upper and lower
confidence limits. B The frequency distribution of R0. The red curve is the probability density function
curve ofR0 (Color figure online)

Table 2 The PRCCs of the parameters with respect to the new cases in 2017

Parameters PRCC p value Parameters PRCC p value

θk (1 ≤ k ≤ 14) −0.6258 p < 0.01 ν3 −0.2328 p < 0.01

σk (1 ≤ k ≤ 3) 0.05428 p = 0.01544 ν4 −0.6337 p < 0.01

σk (4 ≤ k ≤ 11) 0.6828 p < 0.01 ν5 −0.7569 p < 0.01

σk (12 ≤ k ≤ 13) 0.8540 p < 0.01 ν6 −0.6285 p < 0.01

σk (k = 14) 0.5283 p < 0.01 ν7 −0.5623 p < 0.01

χk (1 ≤ k ≤ 3) 0.1118 p < 0.01 ν8 −0.6748 p < 0.01

χk (4 ≤ k ≤ 11) 0.8098 p < 0.01 ν9 −0.6995 p < 0.01

χk (12 ≤ k ≤ 13) 0.8740 p < 0.01 ν10 −0.6317 p < 0.01

χk (k = 14) 0.8205 p < 0.01 ν11 −0.5642 p < 0.01

ν12 −0.5188 p < 0.01

ν13 −0.4984 p < 0.01

ν14 −0.7533 p < 0.01

νk (3 ≤ k ≤ 14); the output variables are yearly new TB cases. All input parameters
are normally distributed, with the mean and standard deviation of θk , σk , and χk given
in Table 7, and the mean and standard deviation of νk are assumed to be 0.1 and 0.01,
respectively. The results of the sensitivity analysis of parameters are shown in Table 2.
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Table 2 shows the sensitivity of the parameters θk , σk , χk , and νk with respect to
the new cases in 2017. Firstly, our results show that the relapse rate of recovered
individuals over 15 years old (i.e., χk (4 ≤ k ≤ 14)) is highly positively correlated
with the total number of new cases; the relapse rate of recovered individuals under 15
years old (i.e., χk (1 ≤ k ≤ 3)) is not correlated with the total number of new cases,
which indicates that it is essential to prevent the relapse of recovered individuals over
15 years old. Next, we find that the risk of reactivation in latently infected individuals
(i.e., σk (4 ≤ k ≤ 14)) over 15 years old is higher than that in latently infected
individuals (i.e., σk (1 ≤ k ≤ 3)) under 15 years old. Moreover, the diagnosis rate of
TB (i.e., θk (1 ≤ k ≤ 14)) is highly negatively correlated with the total number of
new cases, which indicates that the use of diagnostic techniques to shorten the time of
delayed diagnosis can effectively reduce the prevalence of TB. Finally, the vaccination
rate for susceptible individuals (i.e., νk (4 ≤ k ≤ 14)) over 15 years old is highly
negatively correlated with the total number of new cases. In particular, the vaccination
rates of susceptible individuals over 65 and between 20 and 24 years old have the
strongest correlation with the total number of new cases.

4.2 Vaccination Strategy

We simulate the impact of vaccination strategy on the prevalence of TB in susceptible
individuals over 10 years old. We set the level of protection of the vaccine to 85% (i.e.,
1 − ηk = 0.85 (3 ≤ k ≤ 14)) and the validity period of the vaccine to 10 years (i.e.,
1/τk = 10 × 12 (3 ≤ k ≤ 14)), and assume the vaccine coverage rate of susceptible
individuals is

∑14
k=1 Vk/

∑14
k=1(Sk + Vk) by changing the vaccination rate νk (Shen

et al. 2021). Using these estimated parameters, we further predict that increasing
the value of vaccine coverage rate of susceptible individuals to 65% and 85% can
reduce the TB prevalence per 100,000 individuals by 47.44% and 54.98% by 2035,
respectively (see Fig. 7A). Meanwhile, we obtain that increasing the value of vaccine
coverage rate of susceptible individuals to level of 65% and 85% can reduce the TB
prevalence per 100,000 individuals by 51.40% and 58.66% by 2050, respectively (see
Fig. 7A), which indicates that vaccinating susceptible individuals over 10 years old
can effectively reduce the prevalence of TB. However, our simulation results show that
the goals ofWHOwill not be achieved by vaccinating susceptible individuals with the
improved vaccine alone, because the reinfection of latent individuals and recovered
individuals and the relapse of recovered individuals also affect the prevalence of TB.

4.3 Diagnosis Strategy

Delay in diagnosis of TB results in increasing severity, mortality, infection time, and
transmission (Sreeramareddy et al. 2009). In order to shorten the duration of infectious-
ness to increase the prevalence of TB, we simulate the use of diagnostic techniques
to increase the delayed diagnosis time by twice and five times (i.e., 2θk and 5θk) to
reduce the prevalence of TB, respectively. Using these estimated parameters, we pre-
dict that decreasing the delayed diagnosis time of infected individuals to two times
and five times can reduce the TB prevalence per 100,000 individuals by 66.63% and
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Fig. 7 The impact of interventions and strategies begun in 2025 on TB prevalence per 100,000 individuals
by year up to 2050.AVaccination strategy.BDiagnostic strategy.C Treatment strategy.D The combination
of vaccination strategy, diagnostic strategy, and treatment strategy (Color figure online)

88.74% by 2035, respectively (see Fig. 7B). Meanwhile, we obtain that decreasing the
delayed diagnosis time of infected individuals to twice and five times can reduce the
TB prevalence per 100,000 individuals by 66.09% and 88.59% by 2050, respectively
(see Fig. 7B), which indicates that reducing the delayed diagnosis time can shorten
the infection time of infected individuals, thereby reducing the prevalence of TB.

4.4 Treatment Strategy

During the treatment of TB, the relapse rate is high due to the increased drug resis-
tance and short treatment time. Therefore, the treatment drugs are needed to prevent
the relapse of recovered individuals. We simulate two cases where the relapse rate
decreased by 50% and 90% (i.e., 0.5χk and 0.1χk). More specifically, we predict that
decreasing the relapse rate of recovered individuals by 50% and 90% can reduce the
TB prevalence per 100,000 individuals by 46.45% and 85.61% by 2035, respectively
(see Fig. 7C). Meanwhile, we obtain that reducing the relapse rate of recovered indi-
viduals by 50% and 90% can reduce the TB prevalence per 100,000 individuals by
45.55% and 86.33% by 2050, respectively (see Fig. 7C), which shows that the use of
treatment strategies to prevent the relapse of recovered individuals is a very effective
measure.
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Table 3 The combination of vaccination strategy, diagnostic strategy, and treatment strategy

Scenario A B C D E F G H

TBP (2035) 0.67 2.64 1.74 6.81 0.73 2.88 1.96 7.69

Decline rate (2035) 98.91% 95.71% 97.17% 88.92% 98.81% 95.32% 96.81% 87.50%

TBP (2050) 0.55 2.40 1.42 6.13 0.59 2.59 1.56 6.78

Decline rate (2050) 99.07% 95.96% 97.62% 89.70% 99.01% 95.65% 97.38% 88.61%

TBP: TB prevalence per 100,000 individuals

4.5 Combination of multiple intervention strategies

In order to end the TB epidemic, we need to combine vaccination strategy, diagnostic
strategy, and treatment strategy. We simulate the following eight scenarios:

Scenario A: Coverage rate is 85%, diagnosis rate is 5θk , relapse rate is 0.1χk ;
Scenario B: Coverage rate is 85%, diagnosis rate is 5θk , relapse rate is 0.5χk ;
Scenario C: Coverage rate is 85%, diagnosis rate is 2θk , relapse rate is 0.1χk ;
Scenario D: Coverage rate is 85%, diagnosis rate is 2θk , relapse rate is 0.5χk ;
Scenario E: Coverage rate is 65%, diagnosis rate is 5θk , relapse rate is 0.1χk ;
Scenario F: Coverage rate is 65%, diagnosis rate is 5θk , relapse rate is 0.5χk ;
Scenario G: Coverage rate is 65%, diagnosis rate is 2θk , relapse rate is 0.1χk ;
Scenario H: Coverage rate is 65%, diagnosis rate is 2θk , relapse rate is 0.5χk .
Our simulation results show that scenarios A, B, C, D, E, F, G, and H lead to

98.91%, 95.71%, 97.17%, 88.92%, 98.81%, 95.32%, 96.81%, and 87.50% reductions,
respectively, in the TB prevalence per 100,000 individuals by 2035 compared with the
baseline (see Fig. 7D and Table 3). Meanwhile, scenarios A, B, C, D, E, F, G, and H
can reduce the TB prevalence per 100,000 individuals by 99.07%, 95.96%, 97.62%,
89.70%, 99.01%, 95.65%, 97.38%, and 88.61% in 2050 (see Fig. 7D and Table 3). The
above results show that the scenarios A, C, E, and G are the most effective scenarios,
and the decline rate has reached more than 96% in 2035 and 2050. However, all
scenarios cannot achieve the goals of WHO by 2050, because the reinfection of latent
individuals and recovered individuals also affects the prevalence of TB.

5 Discussion

The prevalence of TB varies greatly among different age-groups in China, which leads
to different effects of vaccination strategy, diagnostic strategy, and treatment strategy
for different age-groups. Moreover, the number of TB cases of all age-groups show
seasonal variations with peak in late spring to early summer each year in China. In
this work, in order to study the dynamic impact of vaccination strategy, diagnostic
strategy, and treatment strategy on TB, we propose a non-autonomous differential
equation model with age structure and seasonal transmission rate. Firstly, the basic
reproduction number of the system is derived, the disease-free periodic solution is
globally asymptotically stable, and the disease eventually disappears when R0 < 1,
and there exists at least one positive periodic solution and the disease is uniformly
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persistent when R0 > 1. Secondly, the unknown parameters and initial values of the
TB dynamics model are obtained by fitting the monthly number of new TB cases in
mainland China by Markov chain Monte Carlo (MCMC). The ratio of the number of
data points to the free parameters is greater than ten, which indicates that the training
model is not overfitting. Thirdly, we calculate the basic reproduction number, perform
a global sensitivity analysis of the main parameters, and simulate the possibility of
achieving the goals of WHO.

The study consists of 13029219 TB cases from January 2005 to December 2017 in
mainland China. It has been found that there is a seasonal pattern of the monthly TB
prevalence per 100,000 individuals of all age-groups, and the monthly TB prevalence
per 100,000 individuals peak in late spring to early summer (see Fig. 2A). The mean
monthly TB prevalence per 100,000 individuals is 84.2783 for all age-groups. The TB
prevalence per 100,000 individuals is the highest among people over 65 years of age,
and the TB prevalence per 100,000 individuals is the lowest among people under 15
years old (see Table 1). We find that the TB prevalence per 100,000 individuals was
highly positively correlated with the age of infected individuals from 2005 to 2017
(Pearson correlation coefficients: >0.85, p < 0.01), as shown in Fig. 3.

Our model differs from previous age-structured models in being based on the sea-
sonality of TB (Harris et al. 2019, 2020), which canmore accurately quantify the basic
reproduction number, and our model also incorporates vaccination strategy, diagnostic
strategy, and treatment strategy. We calculate that the basic reproduction number,R0,
is estimated to be 1.3935 (95%CI : (1.3729, 1.4087)), which indicates that the TB is
uniformly persistent, and System (1) has at least one positive periodic solution. Sensi-
tivity analysis shows that the vaccination rate of susceptible individuals over 15 years
old and the diagnosis rate of TB are highly negatively correlated with the total number
of new TB cases (see Table 2). Meanwhile, the relapse of recovered individuals over
15 years old is highly positively correlated with the total number of new TB cases (see
Table 2).

Our results demonstrate that the vaccination rates of susceptible individuals over
65 and between 20 and 24 have the strongest correlation with the total number of
new cases. Further, vaccination strategy, diagnostic strategy, and treatment strategy
currently under development each offer substantial reductions in TB prevalence per
100,000 individuals compared with current approaches, and the combination of the
three strategies is more effective. When scenario A (i.e., coverage rate 85%, diagnosis
rate 5θk , relapse rate 0.1χk) is selected, the TB prevalence per 100,000 individuals
can be reduced by 98.91% and 99.07% by 2035 and 2050, respectively. Scenario
C (i.e., coverage rate 85%, diagnosis rate 2θk , relapse rate 0.1χk) can reduce the
TB prevalence per 100,000 individuals by 97.17% and 97.62% by 2035 and 2050,
respectively. Scenario E (i.e., coverage rate 65%, diagnosis rate 5θk , relapse rate 0.1χk)
can reduce the TB prevalence per 100,000 individuals by 98.81% and 99.01% by 2035
and 2050, respectively. Scenario G (i.e., coverage rate 65%, diagnosis rate 2θk , relapse
rate 0.1χk) can reduce the TB prevalence per 100,000 individuals by 96.81% and
97.38%by2035 and2050, respectively. The goals ofWHOin2050 cannot be achieved,
according to our simulation results. The elimination of TB requires new strategies,
such as large-scale vaccination of latent individuals and recovered individuals. In
addition, vaccinating latent and recovered individuals may help achieve the goals of
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WHO in 2050. Further, we did not consider the emergence and spread of drug-resistant
and multi-drug-resistant TB, which will be studied in future work when relevant data
become publicly available.
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Appendix A The Expressions of fij , vij and the Existence of Periodic
Solutions
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We divide the population into two age-groups and provide some numerical sim-
ulations to support Remark 1. The parameters of System (2) are fixed as β1(t) =
β̂1(1 + 0.99 sin(π6 t)), β̂1 ∈ [0.03, 0.08], β2(t) = β̂2(1 + 0.99 sin(π6 t)), β̂2 ∈
[0.03, 0.08], c11 = 42, c12 = 18, c21 = 19, c22 = 186, d1 = 1/(100 × 12),
d2 = 1/(50 × 12), α1 = 1/(50 × 12), α2 = 0, p1 = 0.99, ν2 = 0.4, q1 = 0.05,
q2 = 0.05, σ1 = 1.5 × 10−4, σ2 = 2.3 × 10−4, θ1 = 30/25, θ2 = 30/25,
γ1 = 1/6, γ2 = 1/6, ρ1 = 0.95, ρ2 = 0.95, μ1 = 0.1545, μ2 = 0.1545,
ξ1 = 0.89, ξ2 = 0.89, ω1 = 0.4387, ω2 = 0.4387, η1 = 0.15, η2 = 0.15,
τ1 = 1/(10 × 12), τ2 = 1/(5 × 12), δ1 = 0.8, δ2 = 0.8, 	1 = 0.8, 	2 = 0.8,
χ1 = 0.0075/12, χ2 = 0.006/12, a12 = 1, u = 0. The initial values of System (2) are
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Fig. 8 The existence of periodic solutions (Color figure online)

(s1(0), s2(0), v1(0), v2(0), e1(0), e2(0), i1(0), i2(0), f1(0), f2(0), r1(0), r2(0)) =
(0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1). According to numerical sim-
ulation results, when R0 < 1, System (2) has at least one stable positive periodic
solution and one stable disease-free periodic solution. WhenR0 > 1, System (2) has
at least one stable positive periodic solution and one unstable disease-free periodic
solution, as shown in Fig. 8.

Appendix B Contact Matrix

Let A represent the known contact matrix, as shown in Table 4, and āig, i, g =
1, 2, · · · ,m represents the elements in the contact matrix, where i, g refers to rows
and columns, respectively, and m is the number of age-groups in the contact matrix.
We use C = (ck j ), k, j = 1, 2, · · · , n to denote the modified contact matrix, then we
let age-group ū contain narrower age-groups i = l(k) to g(k), where n is the number
of age-groups in the modified contact matrix.

The contact rate between an individual in age-group i and another individual in
age-group g can be expressed as

d̄i j =
ū( j)∑

g=l( j)

āig.

Let Ni denote the population in age-group i , as shown in Table 5, we can calcu-
late the population weighted average of each element, d̄ , and derive the contact rate
between age-group k and age-group j . For elements off-diagonal, we need to calculate
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Table 5 Number of individuals in each age-group (Population Census Office of the State Council of the
People’s Republic of China 2021)

Age-group 0–5 5-10 10–15 15–20 20–25 25–30 30–35 35–40

Population 75532610 70881549 74908462 99889114 127412518 101013852 97138203 118025959

Age-group 40–45 45–50 50–55 55–60 60–65 65–70 70–75 75–80

Population 124753964 105594553 78753171 81312474 58667282 41113282 32972397 23852133

the number of contacts between different age-groups. Therefore, the total number of
contacts from k to j and j to k can be expressed as

Ȳk j =
ū(k)∑

i=l(k)

Ni d̄i j , Ȳ jk =
ū( j)∑

i=l( j)

Ni d̄ik .

In order to ensure that Ȳk j and Ȳ jk are equal, we averaged Ȳk j and Ȳ jk , namely

Zkj = Z jk = Ȳk j + Ȳ jk

2
.

In summary, the modified contact matrix element can be expressed as

ck j = Zkj
∑ū(k)

i=l(k) Ni

, c jk = Z jk
∑ū( j)

i=l( j) Ni

,

where ck j is the rate at which an individual in age-group k makes contacts with
anyone in age-group j per day. The total contact rate on the diagonal is

ckk =
∑ū(k)

i=l(k) Ni d̄ik
∑ū(k)

i=l(k) Ni

.

Appendix C Data Collection andWavelet Analysis

Table 6 Population data from 2005 to 2019 (National Bureau of Statistics 2021a)

Time Total population Time Total population Time Total population

2005 1307560000 2010 1340910000 2015 1374620000

2006 1314480000 2011 1347350000 2016 1382710000

2007 1321290000 2012 1354040000 2017 1390080000

2008 1328020000 2013 1360720000 2018 1395380000

2009 1334740000 2014 1367820000 2019 1400050000
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Appendix D Parameter Estimation
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Fig. 9 Temporal periodicity analysis of monthly new TB cases for 14 age-groups from January 2005 to
December 2017 in mainland China using the wavelet method. (A) The wavelet spectrum analysis corre-
sponding to time series of monthly new TB cases. High power values are colored in red; orange and yellow
denote intermediate power; cyan and blue denote low one. Note the black line is the 95% confidence level.
(B) The average wavelet spectrum (blue line) and the corresponding 95% confidence contour (red line)
(Color figure online)
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Fig. 10 3D graph of the fitting results of monthly TB prevalence per 100,000 individuals from January
2005 to December 2017. The 14 age-groups represent 0–4 years old 5–9 years old, 10–14 years old, 15–19
years old, 20–24 years old, 25–29 years old, 30–34 years old, 35–39 years old, 40–44 years old, 45–49
years old, 50–54 years old, 55–59 years old, 60–64 years old, and 65+ years old, respectively. The black
circles represent the actual data (Color figure online)
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Fig. 11 The fitting results of TB prevalence per 100,000 individuals vary with age-groups. The solid red
line represents the simulated curve of System (1). The black circles represent training data, and the green
circles represent testing data. The 95% confidence and prediction intervals are shown as light red and light
blue, respectively. The 14 age-groups represent 0–4 years old, 5–9 years old, 10–14 years old, 15–19 years
old, 20–24 years old, 25–29 years old, 30–34 years old, 35–39 years old, 40–44 years old, 45–49 years old,
50–54 years old, 55–59 years old, 60–64 years old, and 65+ years old, respectively (Color figure online)
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Fig. 12 Trace plots of unknown parameters and initial values for System (1), estimated by Markov chain
MonteCarlo (MCMC)methods. The blue lines represent the 95%confidence interval. The red line represents
the mean value (Color figure online)
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Table 7 The unknown parameters of System (1)

Parameters Mean value Std 95% CI Geweke

β̂1 3.9939 × 10−4 5.1226 × 10−5 [3.0206 × 10−4, 4.9682 × 10−4] 0.9426

β̂2 1.0341 × 10−5 8.3719 × 10−6 [2.7276 × 10−7, 3.0271 × 10−5] 0.6320

β̂3 1.7090 × 10−4 7.2267 × 10−5 [2.2534 × 10−5, 2.9514 × 10−4] 0.3260

β̂4 0.005269 7.7338 × 10−5 [0.005085, 0.005394] 0.9898

β̂5 0.01036 7.9936 × 10−5 [0.01021, 0.01052] 0.9997

β̂6 0.007568 1.4091 × 10−4 [0.007296, 0.007816] 0.9756

β̂7 0.006589 1.8809 × 10−4 [0.006220, 0.006989] 0.9472

β̂8 0.007645 2.4666 × 10−4 [0.007089, 0.008085] 0.9660

β̂9 0.008469 1.3692 × 10−4 [0.008196, 0.008726] 0.9706

β̂10 0.007607 2.0158 × 10−4 [0.007226, 0.008028] 0.9536

β̂11 0.009319 2.7460 × 10−4 [0.008726, 0.009789] 0.9587

β̂12 0.01061 5.4518 × 10−4 [0.009574, 0.01172] 0.9725

β̂13 0.01946 0.001039 [0.01750, 0.02149] 0.9794

β̂14 0.02710 0.001261 [0.02463, 0.02922] 0.9320

β̄1 0.9831 0.01148 [0.9579, 0.9990] 0.9998

β̄2 0.9821 0.01553 [0.9417, 0.9994] 0.9960

β̄3 0.3285 0.06288 [0.2188, 0.4400] 0.7352

β̄4 0.6026 0.03253 [0.5522, 0.6703] 0.9395

β̄5 0.2826 0.01455 [0.2539, 0.3096] 0.9936

β̄6 0.5109 0.03569 [0.4431, 0.5771] 0.8527

β̄7 0.3437 0.02970 [0.2848, 0.3982] 0.8482

β̄8 0.2481 0.02969 [0.1910, 0.2997] 0.8362

β̄9 0.5728 0.03511 [0.5129, 0.6448] 0.9045

β̄10 0.3033 0.02821 [0.2431, 0.3591] 0.8527

β̄11 0.3458 0.04576 [0.2577, 0.4335] 0.8486

β̄12 0.4500 0.04046 [0.3767, 0.5264] 0.9054

β̄13 0.3126 0.01518 [0.2854, 0.3435] 0.9383

β̄14 0.5576 0.01788 [0.5281, 0.5949] 0.9711

φk (1 ≤ k ≤ 14) 0.3989 0.03164 [0.3421, 0.4626] 0.8543

δk (1 ≤ k ≤ 14) 0.7383 0.009960 [0.7112, 0.7495] 0.9966

	k (1 ≤ k ≤ 14) 0.6346 0.004209 [0.6301, 0.6456] 0.9984

θk (1 ≤ k ≤ 14) 0.4249 0.001692 [0.4226, 0.4286] 0.9989

σk (1 ≤ k ≤ 3) 1.0204 × 10−5 1.4795 × 10−6 [8.4086 × 10−6, 1.4067 × 10−5] 0.6206

σk (4 ≤ k ≤ 11) 1.7443 × 10−5 2.2290 × 10−6 [1.5080 × 10−5, 2.2807 × 10−5] 0.8059

σk (12 ≤ k ≤ 13) 9.6473 × 10−5 3.4105 × 10−5 [2.9594 × 10−5, 1.5594 × 10−4] 0.5060

σk (k = 14) 3.5621 × 10−5 1.8672 × 10−5 [1.7091 × 10−5, 8.4016 × 10−5] 0.9142

χk (1 ≤ k ≤ 3) 6.8351 × 10−4 2.8388 × 10−5 [6.2458 × 10−4, 7.3598 × 10−4] 0.9237

χk (4 ≤ k ≤ 11) 5.7557 × 10−4 8.2331 × 10−6 [5.5123 × 10−4, 5.8306 × 10−4] 0.9901
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Table 7 continued

Parameters Mean value Std 95% CI Geweke

χk (12 ≤ k ≤ 13) 8.1090 × 10−4 5.2627 × 10−5 [7.0537 × 10−4, 9.0829 × 10−4] 0.9755

χk (k = 14) 0.001188 4.7812 × 10−5 [0.001102, 0.001281] 0.9598

Table 8 The initial values of System (1)

Initial values Mean value Std 95% CI Geweke

I1(0) 1185 123 [923, 1383] 0.7485

I2(0) 2449 181 [2111, 2818] 0.9295

I3(0) 3929 179 [3610, 4313] 0.9726

I4(0) 19435 678 [18021, 20569] 0.9853

I5(0) 30421 1071 [28547, 32566] 0.9912

I6(0) 17703 757 [16240, 19145] 0.9505

I7(0) 23245 921 [21434, 25146] 0.9212

I8(0) 55114 2542 [51083, 60281] 0.9039

I9(0) 18966 862 [17264, 20468] 0.9939

I10(0) 22031 945 [20246, 24003] 0.8994

I11(0) 17483 1906 [14229, 21073] 0.9793

I12(0) 14086 1021 [12033, 16345] 0.9530

I13(0) 36981 1350 [34316, 39525] 0.9707

I14(0) 76880 4918 [67758, 86059] 0.9580

R1(0) 744989 49660 [655947, 841730] 0.8522

R2(0) 682695 28904 [633201, 739160] 0.9469

R3(0) 1295033 70787 [1165313, 1434213] 0.9201

R4(0) 3246985 120007 [3033475, 3512095] 0.9469

R5(0) 676511 73667 [514109, 785559] 0.6746

R6(0) 3161578 110970 [2940812, 3406767] 0.9401

R7(0) 5606103 348504 [5125584, 6366955] 0.9097

R8(0) 330789 18005 [295017, 363300] 0.9242

R9(0) 629063 164665 [332449, 971039] 0.9375

R10(0) 2022595 178736 [1692991, 2386875] 0.8705

R11(0) 9055345 423968 [8447356, 9865468] 0.9490

R12(0) 4237239 466520 [3223948, 5004770] 0.9737

R13(0) 6150306 317773 [5557992, 6702289] 0.9981

R14(0) 9912488 82969 [9689607, 9997430] 0.9976

V1(0) 41542628 951933 [40063332, 43598571] 0.9610

V2(0) 47379424 574340 [45855031, 47982872] 0.9931
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