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Abstract
The question of whether biological populations survive or are eventually driven to
extinction has long been examined using mathematical models. In this work, we study
population survival or extinction using a stochastic, discrete lattice-based random
walk model where individuals undergo movement, birth and death events. The dis-
crete model is defined on a two-dimensional hexagonal lattice with periodic boundary
conditions. A key feature of the discrete model is that crowding effects are introduced
by specifying two different crowding functions that govern how local agent density
influences movement events and birth/death events. The continuum limit description
of the discrete model is a nonlinear reaction-diffusion equation, and we focus on
crowding functions that lead to linear diffusion and a bistable source term that is often
associated with the strong Allee effect. Using both the discrete and continuum mod-
elling tools, we explore the complicated relationship between the long-term survival
or extinction of the population and the initial spatial arrangement of the population. In
particular, we study different spatial arrangements of initial distributions: (i) a well-
mixed initial distribution where the initial density is independent of position in the
domain; (ii) a vertical strip initial distribution where the initial density is independent
of vertical position in the domain; and, (iii) several forms of two-dimensional initial
distributionswhere the initial population is distributed in regionswith different shapes.
Our results indicate that the shape of the initial spatial distribution of the population
affects extinction of bistable populations. All software required to solve the discrete
and continuum models used in this work are available on GitHub.
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1 Introduction

The classical logistic growth model is widely adopted in mathematical biology and
mathematical ecology (Kot 2001; Murray 2002; Edelstein-Keshet 2005). In the logis-
tic model, small initial population densities increase over time to approach amaximum
carrying-capacity density (Maini et al. 2004a, b). An implicit assumption in using the
logistic growth model is that any population, no matter how small, will always grow
and survive. This limitation also applies to models based on the weak Allee effect,
which incorporates a reduced per-capita growth rate relative to the logistic model
when the density is small (Taylor and Hastings 2005). To address this limitation, more
complicated models have been developed, including models based on the strong Allee
effect (Allee and Bowen 1932; Lewis and Kareiva 1993; Stephens et al. 1999; Cour-
champ et al. 1999; Taylor andHastings 2005; Courchamp et al. 2008; Arroyo-Esquivel
and Hastings 2020). In the strong Allee effect model, initial densities greater than a
threshold, called the Allee threshold, grow to eventually reach the carrying capacity,
whereas initial densities less than the Allee threshold eventually go extinct (Allee and
Bowen 1932; Courchamp et al. 1999; Taylor and Hastings 2005; Courchamp et al.
2008; Fadai and Simpson 2020). This kind of population dynamics, also referred to as
bistable population dynamics (Kot 2001), is often adopted to model situations where
the potential for population extinction is thought to be important (Saltz and Ruben-
stein 1995; Courchamp et al. 1999; Drake 2004; Böttger et al. 2015; Vortkamp et al.
2020). Bistable population dynamics are often studied usingmathematical models that
take the form of an ordinary differential equation (ODE). In this case, the eventual
extinction or survival of the population is dictated solely by whether the initial density
is greater than, or less than, the Allee threshold density. Such ODE models assume
that the population is well-mixed, and hence neglect spatial effects. Spatial effects,
such as moving invasion fronts, can be incorporated by considering partial differen-
tial equation (PDE) models where the density of individuals depends explicitly upon
position and time (Lewis and Kareiva 1993; Holmes et al. 1994; Hastings et al. 2005).
A common PDE framework is to consider a reaction-diffusion equation (RDE) with
a cubic bistable source term (Neufeld et al. 2017; Johnston et al. 2017).

When spatial effects are taken into consideration, even the logistic model with
linear diffusion may not always lead to the survival of populations. For example, for
a population on a finite domain with homogeneous Dirichlet boundary conditions,
the population will go extinct when reproduction cannot balance the loss through
boundaries (Skellam 1951; Grindrod 1996). The size of the domain must exceed a
critical value, called the critical patch size, so that a population persists (Holmes et al.
1994; Lutscher 2019). Similar results also hold for diffusing bistable populations,
where loss through the boundaries is not the only mechanism of interest since the
source term can become negative (Bradford and Philip 1970a, b). For a population
governed by the strong Allee effect, enough individuals must aggregate together so
that the population can reproduce and balance the loss due to the death of individuals.
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Thismotivates the concept of the critical initial area (also knownas critical aggregation
or critical initial radius) which indicates that the initial population can only survive
if the initial occupied area and the initial density are sufficiently large (Lewis and
Kareiva 1993; Soboleva et al. 2003; Lewis et al. 2016). See Table 1 for a brief review
of relevant models and known results.

Current RDE models of bistable populations on two-dimensional domains often
consider an infinite domain and a radially symmetric initial distribution (Lewis and
Kareiva 1993; Petrovskii and Shigesada 2001). In particular, Lewis andKareiva (1993)
use formal asymptotics to derive expressions for the critical initial area for a radially
distributed bistable population with linear diffusion, and their results are valid in the
limit that the time scale of reproduction is much faster than the time scale of migra-
tion. In contrast, here we develop a mathematical modelling framework for studying
bistable population dynamics on two-dimensional domains with periodic boundary
conditions. Using this framework, we extend the previous results by showing that
bistable populations with the same initial area can either lead to survival or extinction
depending upon the initial shape of the population distribution.

Ourmodelling framework is based on a two-dimensional stochastic discrete random
walk model on a hexagonal lattice (Jin et al. 2016; Fadai et al. 2020). The discrete
model is an exclusion process, so that each lattice site can be occupied by nomore than
one agent. Individuals in the model undergo a birth-death process that is modulated by
localised crowding effects (Jin et al. 2016; Johnston et al. 2017). The continuum limit
of the discrete model leads to a two-dimensional RDE with a bistable source term.
This framework allows us to explore discrete simulations together with solutions of the
RDE. This approach is convenient because the discrete model is more realistic in the
sense that it incorporates fluctuations, but this benefit incurs additional computational
overhead (West et al. 2016; Macfarlane et al. 2018; Chaplain et al. 2020). Moreover,
the discrete framework provides additional information such as the age structure and
individual trajectories which cannot be easily obtained using a continuum approach. In
contrast, the continuumRDEmodel can be solved numerically very efficiently, but the
continuum approach is only accurate if the time scale of migration is small compared
to the time scale of proliferation (Simpson et al. 2010). Moreover, the continuum RDE
model does not provide any information about the role of stochasticity (West et al.
2016; Macfarlane et al. 2018; Chaplain et al. 2020). So, to take advantages of both
approaches, we use both a stochastic model and the continuum limit description.

In all cases, we study population dynamics on a square domain of side length L , with
periodic boundary conditions along all boundaries. We explore the role of the initial
population distribution by considering different initial spatial arrangements of agents.
We first distribute agents uniformly across the entire domain as shown in Fig. 1a,
which leads to a well-mixed population. For the vertical strip initial distribution, we
distribute agents uniformly within a column of width w1 as shown in Fig. 1b, which
may represent a population of individuals along a one-dimensional river environment
(Lutscher et al. 2010). For the initial distributions restricted in both spatial dimensions,
we first consider a simple shape and distribute agents uniformly within a square region
of area w1 × w1 as shown in Fig. 1c, which may represent a population of cells in
a scratch assay (Treloar et al. 2014). We further consider several other initial spatial
arrangements of agents, see Figs. 6–8.
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Fig. 1 Initial spatial distributions of the population with different shapes on an L × L square domain. In
(a), individuals are distributed uniformly across the entire L × L domain. In (b), individuals are distributed
uniformly in a vertical strip of width w1 and height L . In (c), individuals are distributed uniformly in the
central square region of length and width w1

This work is organised as follows. In Sect. 2, we describe the discrete individual-
based model, paying particular attention to incorporating realistic movement and
growth mechanisms. For simplicity, we use the generic term growth to refer to the
birth/death process in the discrete model. The reason why we make a distinction
between birth and death will become clear when we describe the modelling frame-
work. In Sect. 3, we explain how to analyse the discrete model using a mean-field
assumption to arrive at an approximate continuum limit description in terms of a
classical RDE. Our discrete-continuous framework incorporates crowding functions
into both movement and birth/death mechanisms, which extends the previous work
that only considers a crowding function in birth/death mechanisms (Jin et al. 2016).
Moreover, our model is very flexible since it describes a wide range of movement
and birth/death mechanisms influenced by crowding effects. Results in Sect. 4 show
how both the discrete and continuum models compare. In Sect. 5, we systematically
explore how population survival or extinction depends upon the shape of the initial
distribution. All software required to solve the discrete and continuum models used
in this work are available on GitHub.

2 Discrete Model

We consider a lattice-based discrete model describing movement, birth and death
events in a population of individuals on a hexagonal lattice, with lattice spacing� > 0.
Each lattice site is indexed by (i, j) and has a unique Cartesian coordinate,

(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
i�, j

�
√
3

2

)
, if j is even,

((
i + 1

2

)
�, j

�
√
3

2

)
, if j is odd.

(1)
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(a)

(c)

(b)

(d)

Fig. 2 Movement and birth/death mechanisms. In each lattice fragment site s is occupied and shaded in
grey, and occupied neighbouring sites are shaded in blue, while vacant neighbouring sites are unshaded
(white). In (a), the agent at site s moves with probability M̂ and moves to the target site, highlighted with
a green circle, with probability M̂/6. In (b), the agent at site s undergoes a birth event with probability P̂
and places a new agent on the target site with probability P̂/6 if the growth crowding function F > 0. In
contrast, it dies with probability P̂ if F < 0. In (c), the agent moves with probability M̂ and moves to the
target site with probability M̂/4. In (d), the agent undergoes a birth event with probability P̂ and places a
new agent on the target site with probability P̂/4 if F > 0. In contrast, it dies with probability P̂ if F < 0
(Color figure online)

In any single realisation of the stochastic model, a lattice site s is either occupied,
Cs = 1, or vacant, Cs = 0. If there are Q(t) agents on the lattice at time t , we
advance the stochastic simulation from time t to time t + τ by randomly selecting
Q(t) agents, one at a time, with replacement, so that any particular agent may be
selected more than once, and allowing those agents to attempt to move. Once the Q(t)
potential movement events have been assessed, we then select Q(t) agents at random,
one at a time, with replacement, to attempt to undergo a growth event, which could be
either a birth or death event depending upon the local crowding conditions. Although
altering the order of these events leads to different outcomes in particular discrete
simulations, these differences are not important when we consider averaged data from
many identically prepared realisations of the model (Simpson et al. 2009a, b).

We now explain some features of the discrete model in terms of the schematic in
Fig. 2. In this initial description of the discrete model, we consider nearest-neighbour
movement and growth events only, and we will relax this assumption later. Fig. 2a
shows a potential movement event for an agent at site s, where all nearest-neighbour
sites are vacant. In this case, the probability of attempting to move during the next time
step of duration τ is M ∈ [0, 1], and the attempted motility event will be successful
with probability M̂ ≤ M . Here, we note that the two probabilities, M and M̂ are, in
general, different. This difference is a result of the local crowding effects. The special
case in Fig. 2a where the agent at site s is uncrowdedwe have M̂ = M . If the attempted
motility event is successful, the agent at site s moves to a randomly chosen vacant
site chosen among the set of vacant nearest-neighbour sites. In this case, as all six
neighbour sites are vacant, the probability of moving to the target site, highlighted
with a green circle, is M̂/6.
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In Fig. 2b, we show a potential growth event for an agent at site s, where again
all nearest-neighbour sites are vacant. Here, the probability of attempting to grow in
the next time step of duration τ is P ∈ [0, 1], and the attempted growth event is
successful with probability P̂ ≤ P . Again, the difference between P and P̂ is caused
by local crowding effects, and since this agent is uncrowded, we have P̂ = P . If
the attempted growth event is successful, there are two possible outcomes. First, the
growth event is a birth event. In this case, a daughter agent is placed at a randomly
chosen vacant site within the set of nearest-neighbour sites with probability P̂ . As
there are six vacant neighbour sites, the probability of placing a daughter agent at the
target site, highlighted in green, is P̂/6. Second, the growth event is a death event,
and the agent is removed from the lattice, with probability P̂ . The distinction between
the birth and death events is governed by the sign of the growth crowding function, F ,
which will be explained later.

To illustrate how crowding effects are incorporated into the movement component
of the model, we now consider the schematic in Fig. 2c, where the agent at site s
is surrounded by two agents, highlighted in purple. The probability of attempting to
move is M ∈ [0, 1], and the attempted movement event is successful with probability
M̂ = MG(K (m)

s ). Here, K (m)
s is ameasure of the local density of site s, andG(K (m)

s ) ∈
[0, 1] is themovement crowding function that specifies how the local density influences
the probability of this agent to undergo a movement event. If this attempt is successful,
as there are four vacant neighbour sites, the probability of moving to the target site,
highlighted in green, is M̂/4.

Figure 2d illustrates how crowding effects are incorporated into the growth compo-
nent of themodel, where the agent at site s is surrounded by two agents. The probability
of attempting to grow is P ∈ [0, 1], and the attempted growth is successful with prob-
ability P̂ = P|F(K (g)

s )|. Here, K (g)
s is again a measure of the local density of site s

and the function F(K (g)
s ) ∈ [−1, 1] is called the growth crowding function that spec-

ifies how the local density influences the probability of this agent to undergo a growth
event. If this attempt is successful, there are two possible outcomes reflected by the
sign of F . If F > 0, the growth event is a birth event, and a daughter agent is placed at
a randomly chosen vacant site with probability P̂ . As there are four vacant neighbour
sites, the probability of placing a daughter agent at the vacant target site, highlighted
in green, is P̂/4. Second, if F < 0, the growth event is a death event, and the agent is
removed from the lattice with probability P̂ . The special case where F = 0 leads to
neither a birth or death event.

A key feature of our model is in the way that the local density about each site affects
movement and growth events through the movement and growth crowding functions.
To describe this, we take Nr {s} to denote the set of neighbouring sites around site s,
where r ≥ 1 is the integer number of concentric rings of sites surrounding site s, so
that |Nr | = 3r(r + 1) (Jin et al. 2016; Fadai et al. 2020). The probability that any
potential movement or growth event is successful depends upon the crowdedness of
the local region surrounding site s. We count neighbouring agents inNr and consider

Ks(r) = 1

|Nr |
∑

s′∈Nr {s}
Cs′ ∈ [0, 1], (2)
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as a simple measure of the crowdedness of the local region surrounding site s. While
in Fig. 2, we explain the model with r = 1 and |N1| = 6, it is possible to use
different-sized templates, depending on the choice of r . Sometimes it is useful to use
different-sized templates for the movement and growth mechanisms. For example,
Simpson et al. (2010) argues that cell movement can be modelled using a nearest-
neighbour random walk with r = 1, whereas cell proliferation often involves non-
nearest-neighbour interactions since daughter cells are often deposited several cell
diameters away from the location of the mother cell. This argument is supported
by experimental images of cell proliferation where careful examination of timelapse
movies shows that daughter cells are often generated some distance from the mother
cell (Druckenbrod and Epstein 2005). To simulate such dynamics, Simpson et al.
(2010) introduce proliferation mechanisms where daughter agents are placed up to
four lattice sites away from the mother agent to faithfully capture this biological detail
into their model. This would be similar to setting r = 1 for movement and r = 4
for growth in our model. It is thus convenient for us to make a notational distinction
between the size of the templates for motility and growth. Therefore, we denote the
motility template as K (m)

s = Ks(r ′) and the growth template as K (g)
s = Ks(r ′′) where

r ′ ≥ 1 and r ′′ ≥ 1 are two, potentially different, positive integers.
We now describe the details of how crowding effects and different-sized spatial

templates are incorporated into the growth component of the model with reference to
the schematic illustration in Fig. 3. Note that this figure only indicates the potential
growth events without the indication of any movement events. In Fig. 3a–c, crowding
of the agent at site s is measured using a nearest-neighbour template with r = 1 and
the growth crowding function F(K (g)

s ) = 1−K (g)
s , as given in Fig. 3d. The probability

of undergoing a birth event is P̂ = P|F(K (g)
s )|. In Fig. 3a where K (g)

s = 0, we have
F(0) = 1 and P̂ = P . As there are six vacant sites in N1, the probability of placing
a daughter agent at the target site, highlighted in green, is P̂/6. In Fig. 3b, where the
agent at site s is surrounded by two neighbour agents, the probability of undergoing
a birth event is P̂ = 2P/3, since K (g)

s = 1/3 and F(1/3) = 2/3. As there are four
vacant sites inN1, the probability of placing a daughter agent at the target site is P̂/4.
Similarly, in Fig. 3c, we have P̂ = P/3 as K (g)

s = 2/3 and F(2/3) = 1/3. As there
are two vacant sites inN1, the probability of placing a daughter agent at the target site
is P̂/2.

In Figures 3e–g, we introduce a non-nearest-neighbour growth mechanism bymea-
suring the crowdedness of the agent at site s using a larger spatial template with r = 2.
Therefore, if the agent at s undergoes a successful birth event, the daughter agent is
able to be placed at any vacant site within N2. The probability of undergoing a birth
event is P̂ = P|F(K (g)

s )|, where F(K (g)
s ) = 1− K (g)

s . For the agent in Fig. 3e where
K (g)
s = 0 and F(0) = 1, we have P̂ = P . In this configuration, there are 18 vacant

sites inN2 and the probability of placing a daughter agent at the target site, highlighted
in green, is P̂/18. In Fig. 3f, where the agent at site s is surrounded by six neighbour
agents, the probability of undergoing a birth event is P̂ = 2P/3, as K (g)

s = 1/3 and
F(1/3) = 2/3. Since there are 12 vacant sites in N2, the probability of placing a
daughter agent at the target site is P̂/12. Similarly, in Fig. 3g, we have P̂ = P/3,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 3 Growth mechanisms with different-sized spatial templates and growth crowding functions. In each
lattice fragment, site s is shaded grey, occupied sites within the template are shaded blue, and vacant sites
within the template are unshaded (white). Each subfigure shows a potential outcome for an agent at site s.
The crowdedness of N1 is shown in a–c and i–k. The crowdedness of N2 is shown in e–g and m–o. The
agent at site s can undergo a birth event when F > 0 as in (a)–(c), (e)–(g), (k) and (o). In contrast, the agent
at site s can undergo a death event when F < 0 as in i, j, m and n. The solid green circles represent the
target site for the placement of a daughter agent during a successful proliferation event, and the dashed red
circles indicate the location of agents that can undergo a death event (Color figure online)

as K (g)
s = 2/3 and F(2/3) = 1/3. The probability of placing a daughter agent at

the target site is P̂/6. All results in Fig. 3a–h consider the simplest linear crowding
function F(K (g)

s ) = 1 − K (g)
s , which means that agents do not die in this case, since

F(K (g)
s ) ≥ 0.

We now choose a nonlinear growth crowding function F(K (g)
s ) = 2(1 −

K (g)
s )(K (g)

s − 1/2) that can take on both positive and negative values, as shown in
Fig. 3l. In this case, we make a distinction between a birth event when F(K (g)

s ) > 0,
a death event when F(K (g)

s ) < 0, and no event when F(K (g)
s ) = 0. We first consider

a nearest-neighbour template with r = 1 in Fig. 3i–k. In Fig. 3i, the agent at site s
dies with probability P̂ = P|F(K (g)

s )|. Here, K (g)
s = 0 and F(0) = −1, thus P̂ = P .

In Fig. 3j, the agent at site s dies with probability P̂ = 2P/9 as K (g)
s = 1/3 and

F(1/3) = −2/9. In Fig. 3(k), the agent at site s undergoes a birth event with proba-
bility P̂ = P/9 as K (g)

s = 2/3 and F(2/3) = 1/9. As there are two vacant sites in
N1, the probability of placing a daughter agent at the target site is P̂/2.

Finally, we consider a larger template withN2 in Fig. 3m–o. In Fig. 3m, the agent
at site s dies with probability P̂ = P|F(K (g)

s )|, where F(K (g)
s ) = 2(1−K (g)

s )(K (g)
s −

1/2). Here, K (g)
s = 0 and F(0) = −1, thus P̂ = P . In Fig. 3n, the agent at site s
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dies with probability P̂ = 2P/9 as K (g)
s = 1/3 and F(1/3) = −2/9. In Fig. 3o,

the agent at site s undergoes a birth event with probability P̂ = P/9 as K (g)
s = 2/3

and F(2/3) = 1/9. As there are six vacant sites in N2, the probability of placing a
daughter agent at the target site is P̂/6.

The movement crowding function, G(K (m)
s ), is incorporated into the model in a

similar way as the growth crowding function except that it is always non-negative,
G(K (m)

s ) ∈ [0, 1]. In this section, we have sought to describe the discrete mechanism
as clearly as possible with the use of Figs. 2 and 3. For the remainder of this work,
we focus on results where we set r = 1 for movement and r = 4 for growth. Other
choices of r can be implemented using the software available on GitHub.

3 Continuum Limit

In this section, we derive the mean-field continuum limit of the discrete model. The
averaged occupancy of site s, constructed from V identically prepared realisations of
the discrete model, can be written as

C̄s = 1

V

V∑
v=1

C (v)
s (t), (3)

where C (v)
s (t) ∈ {0, 1} is the binary occupancy of site s at time t in the vth identically

prepared realisation of the discrete model. We note that C̄s ∈ [0, 1] and is a function
of time, t , but we suppress this dependence for notational convenience. Similarly,
the averaged occupancy of Nr {s}, again constructed from V identically prepared
realisations, is given by

K̄s(r) = 1

|Nr |
∑

s′∈Nr {s}
C̄s′ . (4)

As we use a nearest-neighbour template, r = 1, for movement, and a larger template,
r = 4, for growth, we denote the averaged occupancy of sites for potential movement
events as K̄ (m)

s , and the averaged occupancy of sites for potential growth events as
K̄ (g)
s .
To arrive at an approximate continuum limit description, we start by writing down

an expression for the expected change in occupancy of site s during the time interval
from t to t + τ ,
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δ(C̄s) =

movement events into s︷ ︸︸ ︷
M

|N1| (1 − C̄s)
∑

s′∈N1{s}
C̄s′

G(K̄ (m)

s′ )

1 − K̄ (m)

s′
−

movement events out of s︷ ︸︸ ︷
MC̄sG(K̄ (m)

s )

+ P

|N4| (1 − C̄s)
∑

s′∈N4{s}
H(F(K̄ (g)

s′ ))C̄s′
F(K̄ (g)

s′ )

1 − K̄ (g)
s′︸ ︷︷ ︸

birth events: place new agents onto s

− (1 − H(F(K̄ (g)
s ))PC̄sF(K̄ (g)

s )︸ ︷︷ ︸
death events: remove agent from s

,

(5)

where H is the Heaviside step function. Each term in Eq. (5) has a relatively simple
physical interpretation. The first term on the right hand side of Eq. (5) represents the
change in occupancy of site s owing to the expected movement of agents in N1{s}
into site s. The factor 1/(1 − K̄ (m)

s ) accounts for the choice of the target site in N1
being randomly selected from the available vacant sites. The second term on the right
hand side of Eq. (5) represents the change in occupancy of site s owing to the expected
movement of agents out of site s. The third term on the right hand side of Eq. (5)
represents the change in occupancy owing to the expected birth events of agents in
N4{s} that would place daughter agents onto site s, where F(K̄ (g)

s ) > 0. Again, the
factor 1/(1 − K̄ (g)

s ) accounts for the choice of the target site in N4 being randomly
selected from the available vacant sites. The last term on the right hand side of Eq. (5)
represents the expected change in occupancy owing to agent death at site s, when
F(K̄ (g)

s ) < 0. Note that this approximate conservation statement (5) makes use of the
mean-field assumption, whereby the occupancy status of lattice sites is taken to be
independent (Baker and Simpson 2010).

To derive the continuum limit, we replace C̄s with a continuous function,C(x, y, t),
and expand each term in Eq. (5) in a Taylor series about site s, and truncate terms
of O(�3). Subsequently, we divide both sides of the resulting expression by τ and
evaluate the resulting expressions in the limit� → 0 and τ → 0 jointly, with the ratio
of �2/τ held constant (Hughes 1995). This leads to the following nonlinear RDE,

∂C(x, y, t)

∂t
= D0∇ · (D(C)∇C(x, y, t)) + λC(x, y, t)F(C), (6)

where

D(C) = C
dG(C)

dC
+ 1 + C

1 − C
G(C), (7)

and

D0 = M

4
lim

�,τ→0

�2

τ
, λ = lim

τ→0

P

τ
. (8)
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Here, D0 is the free-agent diffusivity, D(C) is a nonlinear diffusivity function that
relates to the movement crowding function G(C), and λ is the rate coefficient asso-
ciated with the source term that is related to the growth crowding function F(C). To
obtain a well-defined continuum limit, we require that P = O(τ ) (Simpson et al.
2010). The algebraic details required to arrive at the continuum limit are outlined in
the Supplementary Material.

For all simulations in this work, we use � = τ = 1, giving D0 = M/4 and λ = P .
This is equivalent to working in a non-dimensional framework (Simpson et al. 2010).
If the model is to be applied to a particular dimensional problem, then � and τ can be
re-scaled using appropriate length and time scales. In this non-dimensional framework
with τ = 1, we satisfy the requirement that P = O(τ ) by ensuring P/M � 1. The
main focus of this work is on the role of the growth mechanism, and the question
of whether the population survives or goes extinct. We therefore set G(C) = 1 − C
leading to D(C) = 1. Thismeans that the nonlinear diffusion term in Eq. (6) simplifies
to a linear diffusion term, giving

∂C(x, y, t)

∂t
= D0∇2C(x, y, t) + λC(x, y, t)F(C). (9)

We note that Eq. (9) has been studied extensively in applications involving the spatial
spread of invasive species, such as the works of Fisher (1937); Skellam (1951); Fife
(1979); Lewis and Kareiva (1993) and Hastings et al. (2005). Some previous models
consider a logistic-type source term (Fisher 1937), while others consider Allee-type
bistable source term (Sewalt et al. 2016). Under these conditions, many results have
been established. For example, if we consider Eq. (9) on a one-dimensional infinite
domain, it is well known that this model supports travelling wave solutions for both
logistic (Fisher 1937) and bistable (Fife 1979) source terms. In this work, however, we
take a different perspective by studying Eq. (9) on a finite domain and so the question
of analysing travelling wave solutions is not our focus. Moreover, although Lewis
and Kareiva (1993) give a critical radius of a radially symmetric distribution so that
the initial distribution converges to an expanding wave in an infinite domain, their
analysis is valid under the assumption that the time scale of growth is much faster
than the time scale of migration, which corresponds to P/M � 1 in our framework.
Our discrete model does not have any such restriction and can be implemented for any
M ∈ [0, 1] and any P ∈ [0, 1]. In contrast, our continuum model requires P/M � 1
to correspond to the discrete model, and we will explore the consequences of these
differences in our results.

In the rest of this work, we choose

F(C) = a(1 − C)(C − A), with a = 5

2
, A = 2

5
, (10)

since this leads to the canonical cubic source term λCF(C) associated with Allee
kinetics. In particular, we set A = 2/5 so that this choice of F(C) can be used to
represent birth events where C > 2/5 and death events where C < 2/5, see Fig. 4d.
We further set a = 5/2 leading to F(0) = −1, so that attempted death events for an
isolated agent, where C = 0, are always successful.
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(a)

(c)

(b)

(d)

Fig. 4 Specific crowding functions used in thiswork. a–bSettingG(C) = 1−C for themovement crowding
function leads to linear diffusion, D(C) = 1. c–d Setting F(C) = 5(1 − C)(C − 2/5)/2 for the growth
crowding function with λ = P = 1 leads to λCF(C) = 5C(1−C)(C − 2/5)/2. The dashed lines in (c–d)
relate to the Allee threshold, A = 2/5

In summary, our discrete model requires the specification of two crowding func-
tions:G(C) and F(C). These crowding functions are related tomacroscopic quantities
in the associated RDE model. In particular, G(C) is related to a nonlinear diffusivity
function, D(C), and F(C) is related to a nonlinear source term λCF(C). Figure 4
shows the relationship between these functions for our choice of G(C) and F(C).

4 Initial Distributions and Simulation Data

In this section, we consider the three initial distributions shown in Fig. 1with L = 100,
and we introduce the corresponding continuous descriptions. In general, each of the
initial distribution shown in Fig. 1 can be written as

C(x, y, 0) =
{
B, (x, y) ∈ H,

0, elsewhere,
(11)

where H is the region in which individuals are distributed at density B ∈ (0, 1]. For
the discrete model, we randomly distribute a fixed number of agents on H so that
the averaged density across H is B. For example, all agents in the discrete model are
closely packed together if B = 1. In contrast, for the continuum model, the density is
B at each position in H.
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For the three initial distributions in Fig. 1, we will report data from the stochastic
model in the followingway.Wedenote the averaged occupancy of site s inV identically
prepared simulations as

〈C(x, y, t)〉 = 1

V

V∑
v=1

C (v)(i, j, n), (12)

where we note that the average denoted by the angular parenthesis is taken in the
same way as the average in Eq. (3). Here, site s, indexed by i and j , are related to
position, (x, y) via Eq. (1). The averaged occupancy 〈C(x, y, t)〉 is a measure of the
local density at location (x, y), and time t = nτ after the nth time step in the stochastic
discrete model. Although (12) describes the averaged occupancy of any distribution,
there are more concise forms for the vertical strip distributions in Fig. 1b. As the initial
occupancy is independent of the vertical position, we denote the averaged occupancy
of any site as

〈C(x, t)〉 = 1

V J

V∑
v=1

J∑
j=1

C (v)(i, j, n), (13)

which is a measure of the density at location x and at time t = nτ . Note that, as
we will show through simulation, the density of agents remains independent of the
vertical position for all t > 0 because we use periodic boundary conditions. Similarly,
for simulations relating to the well-mixed initial distribution as in Fig. 1a, where the
initial density is independent of position, we denote the averaged occupancy of any
site as

〈C(t)〉 = 1

V I J

V∑
v=1

J∑
j=1

I∑
i=1

C (v)(i, j, n), (14)

which is a measure of the total population density at time t = nτ . As we will show
through simulation, in this case the density of agents remains independent of position
for all t > 0. The total population density 〈C(t)〉 is also useful to describe simulations
starting from the square and vertical strip initial distributions. In summary, data from
the discrete models can be summarised by calculating 〈C(x, y, t)〉, 〈C(x, t)〉, and
〈C(t)〉.

For the well-mixed initial distribution, as shown in Fig. 1a, Eq. (9) simplifies to

dC(t)

dt
= λC(t)F(C), (15)

where C(t) represents the total density of the population (Simpson et al. 2010). This
separable ODE can be solved to give an implicit solution for our choice of F(C).
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For the vertical strip initial distribution, as shown in Fig. 1b, Eq. (9) simplifies to

∂C(x, t)

∂t
= D0

∂2C(x, t)

∂x2
+ λC(x, t)F(C), (16)

where C(x, t) represents the column-averaged density of agents (Simpson et al.
2010). An extensive discussion and exploration of the implications of simplifying
the two-dimensional nonlinear RDE into this simpler one-dimensional RDE is given
in Simpson (2009). Given a numerical solution of Eq. (16), as outlined in the Supple-
mentary Material, we compute

C(t) = 1

L

∫ L

0
C(x, t) dx, (17)

which is the total density of the population in the whole domain and corresponds to
〈C(t)〉 in the discrete model.

For the square initial distribution, to compare averaged data from the discrete
model with the solution of the continuum model we solve Eq. (9) numerically to give
C(x, y, t). Full details of the numerical methods are presented in the Supplementary
Material. Using the numerical solution for C(x, y, t), we calculate

C(t) = 1

L2

∫ L

0

∫ L

0
C(x, y, t) dx dy, (18)

which, again, is the total density of the population in the whole domain.
We now show the evolution of the total population density in both the discrete

and continuum models with these three initial distributions. Setting all three initial
distributions with C(0) = 0.25 and considering P/M = 1/1000 or P/M = 8/1000,
representing two kinds of populations with different ratios of time scale of migration
and growth, we show C(t) and 〈C(t)〉 in Fig. 5, where we calculate 〈C(t)〉 with 40
identically prepared realisations. In all cases, the continuum model accurately cap-
tures the averaged data from the discrete model. The well-mixed initial distribution
leads to population survival with both P/M = 1/1000 and P = 8/1000, whereas
the vertical strip and square initial distributions lead to population extinction when
P/M = 1/1000, but population survival when P/M = 8/1000, as shown in Fig. 5e–
f and Fig. 5h–i. This is interesting as the global density averaged across the whole
domain is smaller than the Allee threshold. This comparison indicates that the vertical
strip and square initial distributions may sometimes lead to the survival of the popu-
lation, whereas the same initial number of individuals in a well-mixed environment
would lead to extinction. These differences are due to the interplay between the role of
the initial spatial distribution and the ratio of time scale of migration to the time scale
of proliferation and death. Additional results in the Supplementary Material provide
more detailed comparisons of the solutions of the continuum model and appropriately
averaged data from the discrete model. Additional results relating to the robustness of
the averaged data is also explored in the Supplementary Material. Overall, the numer-
ical solution of the continuum model provides a useful way of accurately studying
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 The ratio P/M and the shape of the initial spatial distribution influence the fate of populations. a
Well-mixed initial distribution with B = 0.25 leading to C(0) = 0.25. b 〈C(t)〉 (solid orange) and C(t)
(dashed green) for the well-mixed initial distribution with P/M = 1/1000. c 〈C(t)〉 (solid orange) and
C(t) (dashed green) for the well-mixed initial distribution with P/M = 8/1000. d Vertical strip initial
distribution with width w1 = 25 leading to C(0) = 0.25. e 〈C(t)〉 (solid orange) and C(t) (dashed green)
for the vertical strip initial distribution with P/M = 1/1000. f 〈C(t)〉 (solid orange) and C(t) (dashed
green) for the vertical strip initial distribution with P/M = 8/1000. g Square initial distribution with width
w1 = 50 leading to C(0) = 0.25. h 〈C(t)〉 (solid orange) and C(t) (dashed green) for the square initial
distribution with P/M = 1/1000. i 〈C(t)〉 (solid orange) and C(t) (dashed green) for the square initial
distribution with P/M = 8/1000. The dashed black horizontal lines in (b)–(c), (e)–(f) and (h)–(i) indicate
the Allee threshold, A = 0.4 (Color figure online)

the expected behaviour of the discrete model. Of interest is that the long-term fate of
populations varies with the spatial arrangement of the initial distributions. Our aim
now is to study these differences more carefully.

5 Role of the Shape of the Initial Distribution

In this section, we explore the influence of more complicated two-dimensional shapes
of the initial distribution on the fate of populations. Our results in Sect. 4 indicate that
several factors are at play when we consider the long-term fate of bistable populations.
First, the spatial arrangement of the initial population plays an important role. Second,
the ratio P/M also influences the fate of populations. Since the initial distribution of
the population is given by Eq. (11), the initial distribution varies with both B and the
size of the initially occupied region H except that the well-mixed initial distribution
only varies with B. In the remainder of the main document, we fix B = 1 and alter the
initial population size by adjusting the size ofH for the initial distributions that are not
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well-mixed. Additional results in the Supplementary Material indicate that varying B
does not change our overall observations and conclusions.

To systematically study the transition between population extinction to population
survival, we take the (C(0), P/M) phase space and discretise it uniformly into a
rectangular mesh, with 51 × 40 nodes in Fig. 6n. We vary C(0) by changing B in
the well-mixed initial distribution, whereas we vary C(0) by changing the size of
H in the vertical strip and square initial distributions as shown in Figures 6a–c and
Fig. 6d–f, respectively. We also vary the ratio P/M by holding M = 1 and choosing
P ∈ [1/1000, 4/100] in the discrete model. As P/M = λ/(4D0), we hold D0 =
1/4 and vary λ in the continuum model. With each pair of parameters, we run the
numerical simulation of the continuum model after a sufficiently long period of time
so that the population either leads to survival or extinction. In Fig. 6n, we draw the
survival/extinction thresholds from the continuummodel with the well-mixed, vertical
strip and square initial distributions. In the vertical strip and square cases, we see
that the long-term survival is strongly dependent upon P/M whereas in the well-
mixed initial distribution this dependence is less pronounced. Additional results in
the Supplementary Material show the good agreement in the prediction of survival or
extinction between the continuum and discrete models and further show the role of
stochasticity in discrete simulations.

A key feature of the initial shape is the dimension of the shape. The well-mixed,
vertical strip and square initial distributions can be thought of as zero-, one- and
two-dimensional shapes, respectively. To highlight the influence of the dimensional-
ity on the fate of the population, we consider a rectangular distribution of varying
initial heights, see Fig. 6g–i. The initially occupied region H is a rectangle with
width w1 = 40 and height w2 ∈ [25, 100], which leads to C(0) ∈ [0.1, 0.4]. When
C(0) = 0.16withw2 = 40, the rectangular initial distribution is the same as the square
initial distribution, as shown in Fig. 6e and (h). When C(0) = 0.4 with w2 = 100, the
rectangular initial distribution is the same as the vertical strip initial distribution, as
shown in Fig. 6c and i. Note that we use C(0) as the horizontal axis in the phase dia-
gram so that we can compare the results with different shapes of initial distributions.
We show the evolution of the total population density in the continuum model with
M = 1 and P = 0.0028, leading to D0 = 1/4 and λ = 0.0028, and different C(0) in
Fig. 6j–m. When C(0) = 0.2 and C(0) = 0.3, the rectangular initial distribution leads
to extinction, which is the same as the results obtained from the square initial distri-
bution. While the vertical strip initial distribution leads to survival with C(0) = 0.3.
In contrast, when C(0) = 0.33 and C(0) = 0.36, the rectangular initial distribution
leads to survival, which is the same as the results obtained from the vertical strip initial
distribution. While the square initial distribution leads to extinction with C(0) = 0.33.
This indicates a switch of the influence of the rectangular initial distribution on the fate
of populations from amanner similar to the square initial distribution to a manner sim-
ilar to the vertical strip initial distribution. In Fig. 6n, we draw the survival/extinction
boundary from the continuum model with the rectangular initial distribution in the
(C(0), P/M) phase space for C(0) ∈ [0.1, 0.4] and P/M = [1/10000, 21/1000]
and compare them to the results obtained from the vertical strip initial distribution
and from the square initial distribution. Although the results are from the continuum
model, we still use P/M as the vertical axis to reflect the connection between the
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(d) (e) (f)

(a) (b) (c)

(g)

(j) (k) (l) (m)

(n)

(h) (i)

Fig. 6 Influence of dimensionality in rectangular initial distributions. a–c Vertical strip (one-dimensional)
initial distributions varied with the width w1 ∈ [10, 40]. d–f Square (two-dimensional) initial distributions
varied with the width w1 ∈ [32, 64]. g–i The rectangular initial distributions varied with the height w2 ∈
[25, 100] with a fixed width w1 = 40. j–m The evolution of the total population density C(T ) where
T = 103t with P/M = 0.0028, C(0) = 0.2 in (j), 0.3 in (k), 0.33 in (l) and 0.36 in (m), and with
the vertical strip (black), square (green) and rectangular (orange) initial distributions. n Phase diagram
showing the survival/extinction boundaries constructed from a 151×120 array of C(0) ∈ [1/10, 1/40] and
P/M ∈ [1/10000, 21/1000]. Three curves indicate the survival/extinction thresholds from the continuum
model of the vertical strip (black), square (green) and rectangular (orange) initial distributions. Three dashed
lines represent C(0) = 0.1, 0.16 and 0.4, where C(0) = 0.4 (cyan) is also the survival/extinction threshold
of the well-mixed initial distributions. Note that we use a logarithmic scale for the P/M axis (Color figure
online)
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discrete and continuum models in our framework. We observe that there is a clear
transition of the survival/extinction boundary for the rectangular initial distribution.
The survival/extinction boundary of the rectangular initial distribution is close to the
survival/extinction boundary obtained from the square initial distribution when C(0) is
small and is close to the survival/extinction boundary obtained from the vertical strip
initial distribution when C(0) is large. This transition indicates that the dimensionality
of the initial shape of a population plays a role in determining the ultimate fate of the
population.

Many more spatial arrangements of the population can be considered. We first
consider a circle with radius r as the initially occupied regionH, as shown in Fig. 7a.
We draw the phase diagram on the (S, P/M) space, where S denotes the area of the
initially occupied region H, from the continuum model with L = 100 by varying
P/M ∈ [1/1000, 21/1000] where M = 1 and S = πr2 ∈ [1000, 5000] with r ∈
[17.8, 39.9] in Fig. 7b. We then consider the critical initial radius

rcrit =
√
2D0

λa

1

1 − 2A
, (19)

derived by Lewis and Kareiva (1993), which leads to the critical initial area Scrit =
πr2crit. As λ and D0 depend on P and M in our framework, we derive the sur-
vival/extinction threshold of the initial area

Scrit = πM

2aP

1

(1 − 2A)2
, (20)

and draw the extinction/survival boundary in the (S, P/M) phase space based on
(20) in Fig. 7b. Although the critical initial radius is formally derived in the limit
P/M � 1, this result also appears to work well here where P/M is not that large. We
now consider a larger domain with L = 200 in Fig. 7c, in this case the match between
the survival/extinction boundary of the circular initial distribution and the critical initial
area is better because the role of boundaries becomes less important. Furthermore, we
compare the survival/extinction boundary to the result obtained from the square initial
distribution with L = 100 and L = 200 in Figs. 7b and c, respectively. Note that in the
square initial distribution the area of H is given by S = w2

1. The survival/extinction
boundaries obtained with the circular and square initial distributions are very close,
which indicates that these two initial distributions give rise to similar outcomes. This
could be attributed to the fact that they are both compact initial distributions with a
small perimeter to area ratio.

A natural question is whether populations with other two-dimensional initial dis-
tributions have the similar critical initial area determined by (19). To explore this, we
now consider a square annulus in the middle of the domain as the initially occupied
region, as shown in Fig. 8a. The area of the region is determined by a fixed outer width
w1 = 64 and a variable inner width w2. We also consider a circle as the initially occu-
pied region, as shown in Fig. 8b. The area of the region varies with radius r . We show
the evolution of the total population density in the continuum model with these two
initial shapes at P/M = 0.01, where M = 1 and P = 0.01 leading to D0 = 1/4 and
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(a) (b) (c)

Fig. 7 Phase diagram for survival/extinction with the circular initial distributions. a A circular initial
distribution with radius r . b, c Phase diagrams on a rectangular mesh with 81× 41 nodes for S ∈ [0.1, 0.5]
and P/M ∈ [1/1000, 21/1000] where M = 1. We consider L = 100 in (b) and L = 200 in (c).
Pink curves indicate the survival/extinction thresholds in the continuum model with the circular initial
distributions. Green curves indicate the survival/extinction thresholds in the continuum model with the
square initial distributions. Black dotted curves indicate the survival/extinction thresholds obtained from
(20) (Color figure online)

(a)

(b)

(c)

Fig. 8 Population dynamics with more complicated initial spatial distributions. a Square annular initial
distributions with a fixed outer width w1 = 64 and different values of inner width w2. b Circular initial
distributions with different values of radius r . c The evolution of the total population density C(T ) which
considers T = λt , P/M = 0.01 with P = 0.01 and M = 1 leading to λ = 0.01 and D0 = 1/4, and
C(0) = 0.1, 0.15, 0.2, 0.3 with different initial distributions. Black curves are generated by the vertical strip
initial distributions. Green curves are generated by the square initial distributions. Cyan curves are generated
by the square annular initial distributions. Pink curves are generated by the circular initial distributions (Color
figure online)

λ = 0.01, and different C(0). We further show the results obtained from the vertical
strip initial distributions and the square initial distributions in Fig. 8c. All four initial
distributions lead to population extinction when C(0) = 0.1. When C(0) = 0.15, only
the vertical strip initial distribution leads to population survival. When C(0) = 0.2, the
square and circular initial distributions also lead to population survival. In contrast,
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the square annular initial distribution still leads to population extinction. Note that
P/M = 0.01 leads to Acrit ≈ 1570 and C(0)crit = 0.157 < 0.2. This suggests that,
although the area of the square annulus exceeds the critical initial area given in Lewis
and Kareiva (1993), it still leads to population extinction. When C(0) = 0.3, all four
initial distributions lead to population survival. These results indicate that, although
some initial distributions have the same area of the initially occupied region, they may
lead to different fates of the population. It is the shape of the initially occupied region
that dictates whether a bistable population survives or goes extinct. This suggests the
importance of considering the influence of the spatial arrangements of individuals on
the long-term survival of populations.

6 Conclusions and Outlook

In this work, we design, analyse and implement a new two-dimensional stochastic
discrete model incorporating movement, birth and death events with crowding effects
to study population extinction. The continuum limit of the discretemodel is a nonlinear
RDE which can be used to study a wide range of macroscopic phenomena including
linear diffusion, nonlinear diffusion, as well as logistic and bistable growth kinetics.
Since the aim of this work is to focus on long-term survival or extinction, we choose the
movement crowding function to be G(C) = 1−C which corresponds to macroscopic
linear diffusion. In addition, we choose the growth crowding function to be F(C) =
a(1 − C)(C − A) which leads to a classical cubic bistable source term with Allee
threshold A.

The focus of our work is to use the discrete and continuum models to explore the
factors that influence the long-term fate of the bistable population. In particular, we
explore different spatial arrangements of the population on a finite L× L domain with
periodic boundary conditions. The well-mixed initial distribution involves distribut-
ing agents evenly across the entire L × L domain, the vertical strip initial distribution
involves distributing agents along avertical stripwithin the L×L domain so that the ini-
tial density is independent of vertical position in the domain, and the two-dimensional
initial distributions involve distributing agents in a square, circular, rectangular or
square annular region within the L × L domain. Our results show that the shape of
initial distributions plays an important role in determining the fate of populations.
This suggests the importance of considering the influence of spatial arrangements of
individuals in studies of population dynamics.

There are many avenues for extending the work presented in this study. The
stochastic model provides very detailed information including the age structure of the
population and individual trajectories, see the results in the Supplementary Material.
Furthermore, other shapes of initial distributions than those investigated here can be
considered and similar numerical explorations of the long-term survival or extinction
of the populations can be conducted using the software provided on GitHub for both
the continuum and discretemodels. Another feature of this work that could be explored
is the choice of crowding functions. As we pointed out, all simulations here focus on
G(C) = 1 − C , which gives rise to linear diffusion, and F(C) = a(1 − C)(C − A)

which gives rise to the classical cubic bistable term. Other choices of G(C) and F(C)
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can be incorporated into the discrete model to explore how the results presented here
depend upon the precise details of these choices of crowding functions. We note
that other choices of G(C) lead to different motility mechanisms that are associated
with nonlinear diffusion mechanisms, and that these can be important for applications
where adhesion (Deroulers et al. 2009) and inertial effects (Zhang et al. 2019) are
relevant. While we have not explicitly explored these effects in this work, our frame-
work is sufficiently general that these mechanisms can be incorporated and explored,
if required. Moreover, other boundary conditions could be incorporated in our model.
In the Supplementary Material, we show that no-flux boundary conditions lead to the
same result as when we consider periodic boundary conditions with symmetric rect-
angular initial distributions, while homogeneous Dirichlet boundary conditions only
lead to the same result when the initial area is small. Furthermore, if we consider
an asymmetric initial distribution, these three boundary conditions lead to different
outcomes. Another interesting extension would be to consider Allee-type dynamics
with populations of interacting species (Simpson et al. 2009a). Under these condi-
tions, interactions can also contribute to the eventual survival or extinction of any of
the subpopulations (Taylor et al. 2020; Krause and Van Gorder 2020).
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