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Abstract
Three-dimensional (3D) in vitro tumour spheroid experiments are an important tool
for studying cancer progression and potential cancer drug therapies. Standard exper-
iments involve growing and imaging spheroids to explore how different conditions
lead to different rates of spheroid growth. These kinds of experiments, however, do
not reveal any information about the spatial distribution of the cell cycle within the
expanding spheroid. Since 2008, a new experimental technology called fluorescent
ubiquitination-based cell cycle indicator (FUCCI) has enabled real-time in situ visu-
alisation of the cell cycle progression. Observations of 3D tumour spheroids with
FUCCI labelling reveal significant intratumoural structure, as the cell cycle status
can vary with location. Although many mathematical models of tumour spheroid
growth have been developed, none of the existing mathematical models are designed
to interpret experimental observations with FUCCI labelling. In this work, we adapt
the mathematical framework originally proposed by Ward and King (Math Med Biol
14:39–69, 1997. https://doi.org/10.1093/imammb/14.1.39) to produce a new mathe-
matical model of FUCCI-labelled tumour spheroid growth. The mathematical model
treats the spheroid as being composed of three subpopulations: (i) living cells in G1
phase that fluoresce red; (ii) living cells in S/G2/M phase that fluoresce green; and (iii)
dead cells that are not fluorescent. We assume that the rates at which cells pass through
different phases of the cell cycle, and the rate of cell death, depend upon the local oxy-
gen concentration. Parameterising the new mathematical model using experimental
measurements of cell cycle transition times, we show that the model can qualitatively
capture important experimental observations that cannot be addressed using previous
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mathematical models. Further, we show that the mathematical model can be used
to qualitatively mimic the action of anti-mitotic drugs applied to the spheroid. All
software programs required to solve the nonlinear moving boundary problem associ-
ated with the new mathematical model are available on GitHub. at https://github.com/
wang-jin-mathbio/Jin2021

Keywords Mathematical modelling · Tumour spheroid · Cell cycle · Cancer ·
Moving boundary problem

1 Introduction

In vitro three-dimensional (3D) tumour spheroids have been widely used to study
cancer progression and putative therapies (Kunz-Schughart et al. 1998; Nath and Devi
2016; Santini and Rainaldi 1999; Spoerri et al. 2017). The generation and analysis of
tumour spheroids have been documented in the literature for approximately fifty years
(Sutherland et al. 1971; Greenspan 1972). Traditional spheroid experiments involve
growing populations of cancer cells in 3D culture, and visualising spheroid growth and
invasion by taking phase contrast images (Beaumont et al. 2014). As an illustrative
example, the image in Fig. 1a shows a spheroid generated from C8161 melanoma
cells. In some experiments, the formation of a necrotic core within the spheroid can
be examined using fluorescent live/dead assays (e.g. Calcein-AM/Ethidium bromide
or DRAQ7) and used to assess drug cytotoxicity (Chan et al. 2003; Maeda et al. 2014;
Smalley et al. 2008; Kienzle et al. 2017). This standard experimental protocol provides
very little insight into cell cycle behaviour and spatio-temporal distribution patterns
of proliferating cells, within the growing spheroid.

Spheroidsmimic physiological tumour features, such as cell cycle behaviour, which
is responsible for tumour cell proliferation and thus tumour growth, but also invasion,
cell–cell and cell–matrix interactions, molecule diffusion, oxygen/nutrient gradients
(with a hypoxic zone and a central necrosis) as well as drug sensitivity (Beaumont

(a) (b) (c)

Fig. 1 (Colour Figure Online) Motivating images and cell cycle schematic. a Phase contrast image of a 3D
melanoma spheroid with the C8161 cell line grown on agar after 96 h. The scale bar corresponds to 600µm.
b Schematic of the eukaryotic cell cycle indicating the transition between different phases together with
the red and green fluorescence colours associated with fluorescent ubiquitination-based cell cycle indicator
(FUCCI) labelling. For the purpose of this study, we neglect double positivity (yellow) in early S phase.
c Confocal microscopy image of a 3D melanoma spheroid after 96 h, using FUCCI-transduced C8161
melanoma cells. The scale bar corresponds to 600 µm
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et al. 2014; Smalley et al. 2008; Spoerri et al. 2017). The cell cycle consists of a
sequence of four distinct phases: gap 1 (G1), synthesis (S), gap 2 (G2), and the mitotic
(M) phase, as illustrated in Fig. 1b. The G1, S, and G2 phases are collectively referred
to as interphase, which involves cell growth and preparation for division. After inter-
phase, the cell enters the mitotic phase and divides into two daughter cells. Since
2008 (Sakaue-Sawano et al. 2008), a new experimental technique called fluorescent
ubiquitination-based cell cycle indicator (FUCCI) has enabled real-time in situ visu-
alisation of the cell cycle progression from G1 to S/G2/M in individual cells. The
FUCCI system consists of two fluorescent probes which emit red fluorescence when
the cell is in the G1 phase, or green fluorescence when the cell is in S/G2/M phase
(Sakaue-Sawano et al. 2008), as shown schematically in Fig. 1b. Before the devel-
opment of FUCCI, it was difficult to examine the cell cycle dynamics of individual
cells within a growing population. The spheroids in Fig. 1 are constructed with the
same melanoma cell line: C8161 (Fig. 1a) and C8161 expressing FUCCI (Fig. 1c).
The key difference is that FUCCI reveals more detailed information about the cell
cycle status at different locations within the growing spheroid. In Fig. 1c, we see that
the spheroid periphery has an even distribution of red and green cells, indicating that
they are in active cell cycle, i.e. proliferating. In contrast, cells in the spheroid cen-
tre are predominantly red, indicating G1-arrest (Haass et al. 2014). This information,
revealed by FUCCI, allows us to visualise and measure both the time evolution of the
spheroid size and spatial patterns of cell cycle behaviour within the spheroid (Haass
et al. 2014). Understanding the biology of cell cycle behaviour is important, as cell
cycle phase-specific drug resistance has been described as an escape mechanism of
cancer cells (Beaumont et al. 2016; Haass and Gabrielli 2017).

Severalmathematicalmodels have been developed to describe experimental tumour
spheroids. The development of these mathematical models began in the 1970s
(Greenspan 1972; McElwain and Morris 1978; McElwain et al. 1979; Norton et al.
1976). The seminal mathematical model by Greenspan (1972) idealises a tumour
spheroid as a compound sphere: the inner-most region is a necrotic core contain-
ing dead cells; the intermediate spherical shell contains living, non-proliferative, or
quiescent cells; and the outer-most spherical shell contains live, freely proliferating
cells. A key assumption in Greenspan’s model is that cell proliferation is limited by
the availability of a nutrient, such as oxygen. Greenspan (1972) assumes that oxygen
diffuses into the spheroid from the free, growing surface. Living cells are assumed
to consume oxygen, and those cells die when there is insufficient oxygen available
locally. A further assumption is that dead cells produce a chemical inhibitor, such as
metabolites, that diffuse from the necrotic core towards the growing surface of the
spheroid. Assembling these assumptions together in terms of a spherically symmetric
conservation statement, Greenspan’s model can be written as a system of coupled
partial differential equations (PDE). The solution of these PDEs describes the time
evolution of the spheroid in terms of: (i) the radius of the necrotic core; (ii) the thick-
ness of the spherical shell containing quiescent cells; and, (iii) the outer radius of the
spheroid (Greenspan 1972).

Since Greenspan’s model was first proposed, a number of partially refined models
have been introduced (e.g. Deakin 1975; Pettet et al. 2001; Ward and King 1997;
Flegg and Nataraj 2019; Sarapata and de Pillis 2014). An important contribution is
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the work of Ward and King (1997) who proposed a mathematical model describing
a spherically symmetric population of cells that is composed of a subpopulation of
live cells and a subpopulation of dead cells. This model also considers the spatial and
temporal distribution of some nutrient, which is again taken to be oxygen. Ward and
King (1997) assume that living cells proliferate with a rate that depends on the local
oxygen concentration, and that the act of proliferation consumes oxygen. Further,
living cells are assumed to die, and death rate is also a function of local oxygen
concentration. All cells in the spheroid move with a local velocity field that is created
by net volume gain as a result of cell proliferation and cell death, since they make the
reasonable assumption that the volume of a dead cell is less than the volume of a living
cell. Together, these assumptions lead to a novel moving boundary PDE model. The
solution of this moving boundary problem can, for certain choices of parameters, lead
to the formation of a necrotic core in the growing spheroid (Ward and King 1997). A
key difference between the models of Greenspan (1972) and Ward and King (1997) is
that the former defines the interfaces between the necrotic core and the quiescent zone,
and between the quiescent zone and the freely proliferating zone to be perfectly sharp
well-defined interfaces, while the latter is continuous, and the internal boundaries
are less well defined. Other approaches to modelling tumour spheroids, including
multiphase models, have also been developed (Breward et al. 2002; Byrne et al. 2003;
Chaplain et al. 2006; Collis et al. 2016; Enderling and Chaplain 2014; Landman and
Please 2001; Lewin et al. 2020; Spill et al. 2016), but these models do not explicitly
include cell cycle labelling. The primary aim of this work is to reformulate the model
by Ward and King (1997) so that their framework can be used to describe spheroid
experiments with FUCCI labelling. While, in principal, any of the more recent tumour
spheroid models could also be reformulated to incorporate FUCCI labelling, here we
focus on the work of Ward and King (1997) because their model is widely adopted.

In this study, we present a mathematical model of in vitro tumour spheroids that is
an extension of Ward and King’s modelling framework. The key feature of our model
is that we explicitly incorporate the transition between different phases of the cell
cycle so that the model can be applied to tumour spheroids with FUCCI labelling. Our
model considers the spheroid to be composed of three subpopulations: (i) living cells
in G1 phase that fluoresce red; (ii) living cells in S/G2/M phase that fluoresce green;
and (iii) non-florescent dead cells. We assume that the rates at which cells progress
through the cell cycle depend upon the local oxygen concentration, and that the rate of
cell death also depends on the local oxygen concentration in the spheroid.We partially
parameterise the new mathematical model using existing experimental measurements
of cell cycle transition times, and then, using additional carefully chosen parameter
values, we show that the model captures important experimental observations that
cannot be observed in standard experiments without FUCCI labelling. We conclude
by qualitatively exploring how the model can be used to simulate the application of
anti-mitotic drugs.
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(a) (b) (c)

Fig. 2 (Colour Figure Online) In vitro tumour spheroid generated with FUCCI-C8161 melanoma cells. a–c
The University of Queensland Diamantina Institute, Translational Research Institute Still images from a
time lapse movie over 24 h, with the times as indicated. a The red and green fluorescing cells relatively
evenly distributed throughout the spheroid. b A mixture of red and green fluorescing cells at the surface of
the spheroid, whereas in the centre of the spheroid we see predominantly red fluorescing cells. c The inner-
most region is largely free of fluorescing cells; the intermediate region contains mostly red fluorescing cells;
and the outermost region contains a mixture of red and green fluorescing cells. Blue and yellow concentric
circles are superimposed on b, c to show the approximate boundaries between these zones. The scale bars
correspond to 500 µm

2 Experimental Motivation

Our modelling work is motivated by experimental observations of tumour spheroids
with FUCCI labelling, such as the image in Fig. 1c. In Fig. 2, we present snapshots
from a time-lapse movie of FUCCI-labelled spheroid growth, again with FUCCI-
C8161 melanoma cells. At early time, t̃ = 0 h, we see that the spheroid is relatively
homogeneous and composed of well-mixed red and green fluorescing cells with no
obvious spatial patterns. At intermediate time, t̃ = 12 h, the spheroid has expanded
in radius, and the central region of the spheroid is composed mostly of cells in G1
phase (red), whereas the outer shell of the spheroid contains well-mixed red and
green fluorescing cells. At later time, t̃ = 24 h, we see the spheroid continues to
expand in size. In this case, the outer spherical shell contains well-mixed red and green
fluorescing cells, an intermediate spherical shell is composed of predominantly red
fluorescing cells,whereas the absence of fluorescence in the central region indicates the
formation of a necrotic core. These images show the importance of FUCCI labelling as
this information indicates that we have a strong correlation between the spatial position
and the cell cycle status. In a spheroid without FUCCI labelling, such as in the image
in Fig. 1a, it is not possible to see this level of detail. Further, this tight coupling
between location and cell cycle status illustrates the biological importance of working
in a 3D geometry, as it is largely absent in two-dimensional (2D) experiments where
all cells in the population have access to oxygen since these experiments involve a thin
monolayer of cells (Haass et al. 2014; Vittadello et al. 2018, 2019, 2020; Simpson
et al. 2018, 2020).

We hypothesise that the simplest explanation of the spatial patterns in cell cycle
status in Fig. 2 is caused by differences in local nutrient availability. As in the case
of Greenspan (1972) and Ward and King (1997), we make the assumption that the
key nutrient of interest is oxygen. Furthermore, if we assume that oxygen diffuses
into the spheroid from the free surface, we expect that cells near the spheroid surface
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(a) (b) (c)

Fig. 3 (Colour Figure Online) Schematic of oxygen-dependent transitions in the cell cycle with FUCCI
labelling. aWhen oxygen is abundant, cells in G1 phase (red) transition to S/G2/M phase (green), and cells
in S/G2/M phase (green) divide into two daughter cells in G1 phase (red). b When oxygen availability is
reduced, cells in S/G2/M phase (green) continue through the cell cycle and divide into two daughter cells
in G1 phase (red); however, those cells in G1 phase (red) do not have access to sufficient oxygen to proceed
through the cell cycle. c When oxygen availability is sufficiently reduced, both G1-arrest (i.e. interruption
of the transition from red to green) and G2-arrest (i.e. interruption of the transition from green to red) are
induced

will have access to sufficient oxygen to proliferate freely. Since cells consume oxygen
to survive and proliferate, we anticipate that the oxygen concentration will decrease
with depth from the spheroid surface. Accordingly, at some depth, we expect that there
could be sufficient oxygen to enable cell survival, but insufficient to allow cells to enter
the cell cycle. This would explain the formation of a living, quiescent, G1-arrested
population of cells at intermediate depths within the sphere. At locations deeper within
the spheroid still, where oxygen concentration would be smallest, the local oxygen
concentration would be insufficient to support living cells, giving rise to a necrotic
region.

To translate these biological observations and assumptions into a mathematical
model, we first present a schematic of the cell cycle, coupled with FUCCI labelling, in
Fig. 3. The schematic in Fig. 3a, for plentiful oxygen availability, indicates that the cell
cycle proceeds freely, and cells in G1 phase (red) enter the cell cycle at a particular rate
and proceed through the S/G2/M phase (green) before dividing, at another particular
rate, into two daughter cells inG1phase (red). In this schematic,we also allow all living
cells to undergo some intrinsic death process. The schematic inFig. 3b, for intermediate
oxygen availability, indicates that the cell cycle is interrupted by the reduced oxygen
availability. Under these intermediate oxygen conditions, cells in G1 phase (red) are
not able to enter the cell cycle because of the reduced oxygen availability. Those cells
already in S/G2/M phase (green) are able to continue through the cell cycle before
dividing, to produce two daughter cells in G1 phase (red). The schematic in Fig. 3c,
for further reduced oxygen availability, indicates that both G1-arrest (i.e. interruption
of the transition from red to green) and G2-arrest (i.e. interruption of the transition
from green to red) could be induced through the reduced oxygen availability. In this
case, we expect that the dominant mechanism affecting the population dynamics is
localised cell death.
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Based on the experimental observations in Fig. 2 (Haass et al. 2014), and the
schematic in Fig. 3, we now construct a mathematical model that can be used to
interpret experimental data describing 3D tumour spheroids with FUCCI by extending
the framework originally proposed by Ward and King (1997).

3 Model Formulation

In the initial presentation of the model, we consider all quantities to be dimensional
and denote using a tilde. Later, we will simplify the model by nondimensionalising
all dependent and independent variables. All nondimensional quantities are denoted
using regular variables, without the tilde. We take r̃ to be the volume fraction of red
fluorescing cells (G1 phase) and g̃ to be the volume green fluorescing cells (S/G2/M
phase), so that ñ = r̃ + g̃ is the volume fraction of living cells, and we suppose that m̃
is the volume fraction of dead cells. Mass conservation of the r̃ and g̃ subpopulations
is governed by the transitions between different phases of the cell cycle, cell death,
and transport by a local velocity field, ṽ, giving

∂ r̃

∂ t̃
+

advective transport
︷ ︸︸ ︷

∇ · (ṽr̃) =
FUCCI-labelled cell cycle
︷ ︸︸ ︷

2K̃g(c̃)g̃ − K̃r (c̃)r̃ −
cell death
︷ ︸︸ ︷

K̃d(c̃)r̃ , (1)

∂ g̃

∂ t̃
+ ∇ · (ṽg̃)

︸ ︷︷ ︸

advective transport

= K̃r (c̃)r̃ − K̃g(c̃)g̃
︸ ︷︷ ︸

FUCCI-labelled cell cycle

− K̃d(c̃)g̃
︸ ︷︷ ︸

cell death

, (2)

where K̃r (c̃) > 0 is the rate of transition from G1 to S/G2/M phase, K̃g(c̃) > 0 is
the rate of transition from S/G2/M to G1 phase, and K̃d(c̃) > 0 is the rate of cell
death. The key feature of our model is that each of these rates depends upon the local
oxygen concentration, c̃ > 0. The source terms in (1)–(2) have a relatively simple
interpretation. The negative source terms in Eq. (1) represent the local loss of cells in
G1 phase owing to cell death and the progression through the cell cycle. The positive
source term in Eq. (2) represents the increase in cells in G2 phase as a result of cells
in G1 phase progressing through the cell cycle. The negative source terms in Eq. (2)
represent the local decrease cells in G2 phase owing to cell death and the progression
through the cell cycle. The positive source term in Eq. (1) represents the local increase
in cells in G1 phase due to the cell cycle, and the factor of two represents the fact
that each cell passing from S/G2/M phase to G1 phase produces two daughter cells
in G1 phase (Vittadello et al. 2018; Simpson et al. 2020). A notable feature of this
nutrient-dependent cell proliferation and cell death framework is that it avoids the
need for specifying a carrying capacity density as a model parameter, such as in the
ubiquitous logistic growth model (Maini et al. 2004a, b; Jin et al. 2016, 2017, 2019).
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The spatial and temporal distribution of the fraction of dead cells can also be
described in terms of a PDE,

∂m̃

∂ t̃
+

advective transport
︷ ︸︸ ︷

∇ · (ṽm̃) =
cell death

︷ ︸︸ ︷

K̃d(c̃)r̃ + K̃d(c̃)g̃ . (3)

Following Ward and King (1997), we assume the local velocity is associated with
net volume gain associated with cell proliferation and cell death,

∇ · ṽ =
increase in volume

︷ ︸︸ ︷

K̃g(c̃)g̃ṼL −
decrease in volume

︷ ︸︸ ︷

K̃d(c̃) (r̃ + g̃)
(

ṼL − ṼD
)

, (4)

where ṼL > 0 and ṼD > 0 are the volumes of single living and dead cells, respectively.
The first term on the right of Eq. (4) represents the increase in volume by mitosis,
whereas the second term on the right of Eq. (4) is the net decrease in volume by cell
death. Here we assume that the volume of all living cells is the same, regardless of
whether they are in G1 or S/G2/M phase.

Again following Ward and King (1997), we assume oxygen is transported through
the continuum of live and dead cell mixture with the local velocity, ṽ. We incorporate
some oxygen diffusion, with diffusivity D̃ > 0, and that oxygen is consumed by living
cells, giving rise to

∂ c̃

∂ t̃
+

advective tranport
︷ ︸︸ ︷

∇ · (ṽc̃) =
diffusion

︷ ︸︸ ︷

∇ ·
(

D̃∇ c̃
)

− β̃ K̃g(c̃)g̃
︸ ︷︷ ︸

mitosis

− γ̃ (c̃) (r̃ + g̃)
︸ ︷︷ ︸

metabolism

, (5)

here γ̃ (c̃) > 0 is the rate at which living cells consume oxygen through regular
metabolic activity and β̃(c̃) > 0 is the rate at which oxygen is consumed during
mitosis.

In this model, the kinetic rate functions K̃g(c̃) > 0, K̃r (c̃) > 0, and K̃d(c̃) > 0
encode critical information about how the rate of transitions between subpopulation r̃ ,
g̃, and m̃ depends upon local oxygen concentration. Extending the approach of Ward
and King (1997), we suppose these rate functions can be expressed in terms of Hill
functions

K̃g(c̃) = Ãc̃m1

c̃m1
g + c̃m1

, (6)

K̃r (c̃) = B̃c̃m2

c̃m2
r + c̃m2

, (7)

K̃d(c̃) = C̃

(

1 − σ c̃m3

c̃m3
d + c̃m3

)

, (8)
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where Ã > 0 is the maximum rate at which cells transition from S/G2/M (green)
phase to G1(red) phase; B̃ > 0 is the maximum rate at which cell transition from
G1 (red) phase to S/G2/M (green) phase; C̃ > 0 is the maximum rate at which cells
die; m1 > 0, m2 > 0, and m3 > 0 are exponents in the Hill functions that govern
the steepness about the critical oxygen concentrations c̃g > 0, c̃r > 0, and c̃d > 0,
respectively. To ensure K̃d > 0, we require 0 ≤ σ ≤ 1. Our choice of working with
Hill functions in Eqs. (6)–(8) is not unique, and other functional forms could be used.
Here we choose to work with Hill functions because this is consistent with the original
model of Ward and King (1997).

Some further assumptions are required to completely specify the mathematical
model. First, assuming there are no voids in the spheroids leads to

ṼLñ + ṼDm̃ = 1. (9)

Second, we make the usual assumption that the spheroid is spherically symmetric so
that the two independent variables are the radial position, x̃ , and time, t̃ . This gives
0 ≤ x̃ ≤ l̃(t̃), where l̃(t̃) is the radius of the spheroid at time t̃ . To close the model,
we specify initial conditions and boundary conditions. Initially, we assume that the
spheroid is a mixture of living cells only, leading to

r̃(x̃, 0) = Nr
(

Nr + Ng
)

ṼL
, g̃(x̃, 0) = Ng

(

Nr + Ng
)

ṼL
, (10)

where Nr > 0 and Ng > 0 are the number of red and green cells at t̃ = 0. Therefore,
the initial radius is

l̃3(0) = 3
(

Nr + Ng
)

ṼL

4π
. (11)

For oxygen, we assume the initial spheroid is sufficiently small that we have

c̃(x̃, 0) = c̃0, (12)

where c̃0 > 0 is the external oxygen concentration.
We impose the following boundary conditions by assuming that the time rate of

change of the spheroid radius, dl̃(t̃)/dt̃ , is given by the local velocity at the spheroid
surface, and that the oxygen concentration at the spheroid surface is given by the
external oxygen concentration,

dl̃

dt̃
= ṽ(l̃(t̃), t̃), c̃(l̃(t̃), t̃) = c̃0. (13)

Lastly, we have a symmetry condition at the centre of the spheroid, x̃ = 0,

∂ c̃(0, t̃)

∂ x̃
= 0, ṽ(0, t̃) = 0. (14)
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To solve the dimensional model we must specify values of fifteen free parameters,
(ṼL , ṼD, D̃, β̃, γ̃ , Ã, B̃, C̃,m1,m2,m3, σ, c̃g, c̃r , c̃d), and four quantities relating to
initial data, (Nr , Ng, l̃(0), c̃0). Given the large parameter space, we choose to imple-
ment the model in a nondimensional framework.

3.1 Nondimensionalisation

We introduce x = x̃/l̃(0), t = t̃ Ã, l(t) = l̃(t)/l̃(0), r = r̃ ṼL, g = g̃ṼL, and c = c̃/c̃0
to arrive at a simplified nondimensional model,

∂r

∂t
+ v

∂r

∂x
= 2Kg(c)g − [b(c)g − d(c)r + Kr (c) + Kd(c)] r , (15)

∂g

∂t
+ v

∂g

∂x
= Kr (c)r − [

b(c)g − d(c)r + Kg(c) + Kd(c)
]

g, (16)

1

x2
∂

∂x

(

x2v
)

= b(c)g − d(c)r , (17)

1

x2
∂

∂x

(

x2
∂c

∂x

)

= k(c)g + γ (c)r , (18)

on 0 < x < l(t) and t > 0, where b(c) = Kr (c) − d(c), d(c) = (1 − δ)Kd(c),
k(c) = β Kg(c) + γ (c), δ = VD/VL, β = l̃2(0) Ãβ̃/ (D c0 VL), and
γ (c) = l̃2(0)γ̃ (c̃)/ (D c0 VL). To arrive at Eq. (18) from Eq. (5), we make the
usual quasi-steady-state assumption for oxygen (Greenspan 1972; Ward and King
1997).

The nondimensional kinetic rate functions are

Kg(c) = cm1

cm1
g + cm1

, (19)

Kr (c) = Bcm2

cm2
r + cm2

, (20)

Kd(c) = C

(

1 − σcm3

cm3
d + cm3

)

, (21)

where cg = c̃g/c0, cr = c̃r/c0, cd = c̃d/c0, B = B̃/ Ã, and C = C̃/ Ã. The initial
and boundary conditions are given by

l(0) = 1, c(x, 0) = 1, r(x, 0) = Nr

Nr + Ng
, g(x, 0) = Ng

Nr + Ng
, (22)

dl

dt
= v(l(t), t), c(l(t), t) = 1,

∂c(0, t)

∂x
= 0, v(0, t) = 0. (23)

Together, Eqs. (15)–(18) form a nonlinear moving boundary problem on 0 < x <

l(t).We solve themodel numerically by first transforming to a fixed domain. The terms
associated with the advective transport are approximated using an upstream difference
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(a) (b) (c)

Fig. 4 (Colour Figure Online) Experimental measurements of cell cycle transition times for FUCCI-C8161
cells without oxygen limitation. aDurations of time spent in G1 (red) and S/G2/M (green) phases for twenty
FUCCI-C8161 melanoma cells. b Estimates of Ã, the rate at which cells in S/G2/M (green) go through
mitosis and transit into G1 (red), and estimates of B̃, the rate at which cells in G1 (red) enter the cell cycle
and transit into S/G2/M (green) phase. c Estimates of B = B̃/ Ã. Experimental data fromHaass et al. (2014)

approximation, whereas terms associated with diffusive transport are approximated
using a central difference approximation. The resulting system of nonlinear evolution
equations are integrated through time using an implicit Euler approximation, leading
to a system of nonlinear algebraic equations that are solved using Newton–Raphson
iteration (Simpson et al. 2005). Full details of the numerical method are outlined in
the Supplementary Material document; software programs written in MATLAB are
available on GitHub.

In our experiments, such those illustrated in Figs. 1c and 3a, the initial spheroid
radius l̃(0) ≈ 250 μm. The characteristic timescale is related to the rate parameter Ã,
whichwe can estimate by considering experimental data reported byHaass et al. (2014)
who make careful measurements of the duration that C8161 melanoma cells fluoresce
red and green in 2D culture where oxygen is plentiful. Data in Fig. 4a show estimates
of the duration of time C8161 cells spend in G1 (red) and S/G2/M (green) phase for 20
individual cells. Taking the reciprocal of each recorded duration, we obtain estimates
of Ã and B̃. Data in Fig. 4b suggest that 0.08 < Ã < 0.25 /h and 0.08 < B̃ < 0.12 /h.
For simplicity, we take a representative estimate of Ã ≈ 0.1 /h, which means that
each unit duration of time in the nondimensional model corresponds to 10 h in the
experiment. Given our estimates of Ã and B̃, we also estimate B = B̃/ Ã, as shown in
Fig. 4c, for whichwe can take a representative estimate of B = 1.5. Cell cycle duration
estimates differ from cell line to cell line (Haass et al. 2014). Therefore, given this kind
of duration data, we could follow a similar procedure to arrive at different estimates
of Ã and B̃ for different cell lines as appropriate.

4 Results and Discussion

This section explores the capability of the mathematical model to describe important
features of tumour spheroids with FUCCI labelling. This investigation is performed
through numerical investigation of various solutions of Eqs. (15)–(18). The aim of
this investigation is not to undertake a detailed parameter estimation exercise, but
rather to explore whether the mathematical model, Eqs. (15)–(18), can replicate key
biological features of FUCCI-labelled spheroids. Sections 4.1–4.2 explore a series of
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control experiments by using themathematicalmodel to replicate various experimental
observations, across two different cell lines, in the absence of cell cycle inhibitors
(Haass et al. 2014; Spoerri et al. 2020). Section 4.3 explores how tomodel intervention
experiments by using the mathematical model to replicate spheroid growth in the
presence of a cell cycle inhibiting drug (Beaumont et al. 2016; Haass et al. 2014;
Haass and Gabrielli 2017; Vittadello et al. 2020).

4.1 Capturing Intratumoural Heterogeneity in a Single Cell Line

Experimental images in Fig. 2a–c illustrate that the spheroid radius increases by a
factor of approximately 1.3 over 24 h. Over this timescale, the intratumoural structure
evolves from a relatively homogeneous mixture of G1 (red) and S/G2/M (green) cells
at the beginning of the experiment to eventually form a complex structure comprising:
(i) a necrotic core at the centre of the spheroid; (ii) an intermediate spherical shell
containing live quiescent cells arrested in the G1 (red) phase; and (iii) an outer-most
region composed of a mixture of freely proliferating G1 (red) and S/G2/M (green)
cells. In our numerical explorations, we seek to replicate these spatial and temporal
patterns. For simplicity, we always set m1 = m2 = m3, and γ (c) = 0, and assume
that the initial spheroid is composed of an equal proportion of G2 (red) and S/G2/M
(green) cells by setting r(x, 0) = g(x, 0) = 0.5. A MATLAB implementation of
the numerical code is available on GitHub so that readers can explore the impact of
choosing different parameter values.

We first explore numerical solutions of Eqs. (15)–(18) with parameter values sum-
marised in Table 1 that give rise to the three kinetic rate functions shown in Fig. 5a.
In this case, Kg(c) and Kr (c) rapidly increase to their maximum rates, unity and B,
respectively, as c increases beyond the critical oxygen thresholds, cr and cg , respec-
tively. Similarly, Kd(c) rapidly decreases to C(1 − σ) as c increases beyond the
critical oxygen level cd . The visual depiction of the kinetic rate functions show that
Kr (c) > Kg(c) for all c, so that the rate of G1 to S/G2/M transition is greater than
the rate of S/G2/M to G1 transition. When oxygen is sufficiently reduced we have
Kd(c) > Kr (c) > Kg(c), which means that cell death is the dominant kinetic mech-
anism under these conditions. With these parameter choices, we plot the evolution
of r(x, t), g(x, t), c(x, t), v(x, t), and l(t) in Fig. 6a–c, where density and velocity
profiles are plotted at t = 1.2, 1.8, and 2.4. These nondimensional times correspond
to 12, 18, and 24 h, respectively, in the real experiment. Profiles in Fig. 6a show that
the spheroid grows with time and that both g(x, t) and r(x, t) are increasing functions
of position, with the maximum volume fraction of living cells at the spheroid surface,
x = l(t), and a minimum at the centre of the spheroid, x = 0. Profiles of c(x, t) also
show that the oxygen concentration is an increasing function of x , which is consistent
with oxygen diffusing into the spheroid from the free boundary at x = l(t), while
simultaneously consumed by living cells. Comparing the profiles of r(x, t), g(x, t),
and c(x, t), we see that by t = 2.4we have almost a complete absence of living cells in
the central region, indicating the eventual formation of a necrotic core, where x < 0.8.

An interesting feature of the solution in Fig. 6a is that the spatial distribution of
living cells involves two subpopulations where r(x, t) ≈ g(x, t) at all locations, at all
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(a) (b)

Fig. 5 (Color Figure Online) Kinetic rate functions Kr (c), Kg(c), and Kd (c). a cr = cg = 0.1. b cr = 0.7,
cg = 0.1, such that both Kr (c) and Kd (c) functions in a and b are identical. In both sets of profiles we
have B = 1.5,C = 1.8, cd = 0.5, m1 = m2 = m3 = 10

(a) (b) (c)

(d) (e) (f)

Fig. 6 (Color Figure Online) Numerical solutions of Eqs. (15)–(18) t = 1.2, 1.8, and 2.4. a, d Solutions
r(x, t), g(x, t), and c(x, t), with the direction of increasing t indicated by the arrow. b, e Solutions n(x, t) =
r(x, t) + g(x, t) and r(x, t)/n(x, t) as indicated. c, f Time evolution of spheroid radius, l(t), with the inset
showing the velocity profile, v(x, t). Solutions in a–c correspond to the kinetic rate parameters in Fig. 5a,
while solutions in d–f correspond to the kinetic rate parameters in Fig. 5b

times considered. Therefore, for this choice of parameters,whilewe do see the eventual
formation of a necrotic core, we do not see the formation of an intermediate zone of
G1-arrested cells like in Fig. 2c. This observation is clear when we plot the proportion
of G1 cells, r(x, t)/n(x, t) in Fig. 6b, where we have r(x, t)/n(x, t) = 0.5 for all x ,
at all times considered. We visualise the cell velocity, v(x, t), in Fig. 6c showing that
we have v(x, t) > 0 for all x during the experiment, indicating that the total volume
gain through proliferation exceeds the volume loss through cell death. This gain in
volume leads to l(2.4) ≈ 1.3, which is consistent with the rate of expansion of the
experimental spheroid in Fig. 2a–c over the same time interval.

To emphasise the key features of this solution of Eqs. (15)–(18) we now summarise
the solution from Fig. 6a in a different format in Fig. 7a, by plotting r(x, t), g(x, t),
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(a) (b)

Fig. 7 (Color Figure Online) Visualisation of the predicted intratumoural structure. a, b show profiles
of r(x, t), g(x, t), n(x, t), and c(x, t) at t = 2.4, on −l(t) < x < l(t), with different intratumoural
substructures highlighted by different colours. In particular we highlight the regions corresponding to the
necrotic core, the intermediate G1-arrested quiescent zone and the freely-proliferating outer-rim. Results
in a, b correspond to the parameter choice in Fig. 6a–c and d–f, respectively

n(x, t), and c(x, t) at the end of the experiment, t = 2.4, on−l(t) < x < l(t). Plotting
the solution in this format helps to emphasise that the mathematical model can predict
the formation of different intratumoural heterogeneity within the spheroid, as revealed
by FUCCI labelling. We note that similar to Ward and King’s model, solutions of our
model are continuous so that the internal boundaries between the three regions are
not well defined. In Fig. 7a, we see that the distribution of n(x, t) and g(x, t) is
such that an extensive central necrotic core develops, where |x | < 0.8, with very
low density of living cells in the central region of the spheroid. In contrast, the outer
region of the spheroid, where |x | > 0.8, is composed of freely proliferating cells with
g(x, t) ≈ r(x, t). Within this outer-most regions there are no obvious spatial patterns
of cell cycle status.

Our initial numerical results in Fig. 6a–c are qualitatively consistent with the evo-
lution of the spheroid size, l(t), measured in Fig. 2. The intratumoural structure is very
different since the numerical solution in Fig. 6a–c does not involve any intermediate
G1-arrested region as is clear in Fig. 2b, c. To incorporate this phenomenon, we resolve
themodelwith cr = 0.7 and cg = 0.1, and all other parameters unchanged. The kinetic
rate functions are shown in Fig. 5b in which we see that: (i) Kd(c) > Kg(c) > Kr (c)
for sufficiently small oxygen concentrations; (ii) Kg(c) > Kd(c) > Kr (c) at inter-
mediate oxygen concentrations; and (iii) Kr (c) > Kg(c) > Kd(c) at sufficiently
large oxygen concentrations. The associated numerical solutions of Eqs. (15)–(18)
are shown in Fig. 6d–f. Comparing profiles in Fig. 6a, d indicates that we now have
a very different intratumoural structure. Similar to before, we see that g(x, t) and
c(x, t) are increasing functions of x , whereas r(x, t) is more complicated since there
is a local maximum in r(x, t)within the spheroid. Interestingly, comparing the profiles
of n(x, t) in Fig. 6b, e we see that the spatial distribution of the total live cell density
is very similar for these two choices of parameters, yet the internal structure of the
spheroids, as revealed by FUCCI-labelling in our theoretical model, is very different.
The velocity profiles and the time evolution of the outer radius of the spheroid is shown
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in Fig. 6f, where again we see that the velocity field and the evolution of the outer
spheroid radius is very similar for these two choices of model parameters.

The profile in Fig. 7b highlights the intratumoural structure by plotting r(x, t),
g(x, t), n(x, t), and c(x, t) at the end of the experiment, t = 2.4, on−l(t) < x < l(t).
In this case, we see that the internal structure defined by the distribution of various
cell populations includes: (i) the necrotic core for |x | < 0.6; (ii) an intermediate
region composed of G1-arrested (red) living cells for 0.6 < |x | < 1.1; and, (iii) an
outer-most rim of freely proliferating cells for 1.1 < |x | < 1.3. This exercise of
comparing results in Fig. 6a–c and d–f shows that the mathematical model we have
developed can replicate key features of 3D tumour spheroidmodels with intratumoural
heterogeneity revealed by FUCCI labelling. These differences are visually pronounced
when we plot those results in Fig. 7 where we deliberately highlight regions within
the spheroid according to the proliferation status.

4.2 Capturing Intratumoural Heterogeneity Across Multiple Cell Lines

Numerical results in Figs. 6 and 7 show that our model is able to capture both the
time evolution of the spheroid size, as well as the fundamental intratumoural structure
regarding the status of the cell cycle at different positions within the spheroid for a
single cell line, in this case the C8161 melanoma cell line. We now further explore the
capacity of themodel to represent different forms of intratumoural structure as revealed
byFUCCI labelling in different cell lines.Recent experimental data reported bySpoerri
et al. (2020) describe a range of melanoma spheroids constructed using different cell
lines and characterise the proliferative heterogeneity calculating the percentage of G1-
labelled (red) cells as a function of distance from spheroid’s surface. In our model,
we use the standard spherical coordinate system, 0 < x < l(t), so that x is the radial
position measured relative to the centre of the spheroid. Spoerri et al. (2020) measures
the distance from the surface of the spheroid, X = l(t) − x , so that X = 0 is at
the surface, and X = l(t) is at the centre of the spheroid. Data reported by Spoerri
et al. (2020) show the proportion of G1-labelled cells as a function of X gives rise to a
range of cell line-specific profiles. Images in Fig. 8a, b showmelanoma spheroids with
FUCCI labelling, using two different melanoma cell lines: WM164 cells in Fig. 8a
and C8161 cells in Fig. 8b.

We show, schematically, the observed trends in terms of the proportion of G1-
labelled cells as a function of X in Fig. 8c, d. For the WM164 cell line, we see that
the G1-labelled cells make up approximately 75 % of the total living population at the
spheroid surface, and the proportion ofG1-labelled cells increases graduallywith X . In
contrast, for the C8161 cell line, the proportion of G1-labelled cells is approximately
45 % of the total living population at the spheroid surface, and we see a far more
rapid increase in the proportion of G1-labelled cells with X . These measurements are
consistent with our visual interpretation of the spheroids in Fig. 8a, b where we see
that the WM164 spheroid does not contain a visually distinct necrotic core, whereas
the C8161 spheroid develops a very clear necrotic core. Results in 8d show numerical
solutions of Eqs. (15)–(18) that qualitatively model theWM164 and C8161 spheroids,
respectively.We obtain the solution of Eqs. (15)–(18), for the parameter values in Table
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(a) (b)

(c) (d)

Fig. 8 Comparison of experimental data and model predictions. a, b Confocal microscopy images of
tumour spheroids after 96 h derived from two different cell types. The scale bar corresponds to 550 µm. c,
d Schematics showing different profiles of the percentage of red cells within the spheroids superimposed
with numerical results from the model with parameter values in Table 1

1, at t = 9.6, and we plot 100 × r(X , t)/n(X , t) %, which qualitatively matches the
intratumoural heterogeneity reported by Spoerri et al. (2020). This modelling exercise
confirms that the mathematical model is sufficiently flexible that it can be used to
model the experimental data reported by Spoerri et al. (2020).

4.3 Simulating the Action of Anti-mitotic Drugs

In Sects. 4.1–4.2, we focus on using the mathematical model to replicate and visualise
spatial patterns of cell cycle status within a growing spheroid under control conditions.
One of the key reasons that 3D spheroid cultures are of high interest in the experimental
cancer cell research community is the ability to test different potential anti-cancer
drug treatments in a realistic 3D geometry (Friedrich et al. 2009; Loessner et al.
2013). Various anti-mitotic drugs have been developed and applied to 3D spheroid
cultures (e.g. Crivelli et al. 2012; Haass et al. 2008; Loessner et al. 2013; Smalley
et al. 2008; Stehn et al. 2013), and with the development of FUCCI-labelling we
have vastly improved opportunities to visualise how such drug treatments impact the
spatial distribution of cell cycle status within the treated spheroid (Haass et al. 2014;
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(a) (b) (c)

(d) (e) (f)

Fig. 9 (Color Figure Online) Numerical simulation describing the application of an anti-mitotic drug. a–c
Control tumour spheroid growth without treatment. d–f Treated tumour spheroid with the drug applied at
t = 7.2. a, d Simulated time evolution of l(t) in the control and treated simulations, respectively. The insets
show the experimental images of C8161-FUCCI melanoma spheroids at day six. The scale bar corresponds
to 110 µm. b, e Simulated profiles of r(x, t), g(x, t), and c(x, t) at t = 3.6, 7.2, 10.8, and 14.4 with arrows
showing the direction of increasing time. c, f Kinetic rate functions for the control and simulated spheroids,
respectively. The insets show B(t), indicating how the drug is applied to the simulations

Beaumont et al. 2016; Kienzle et al. 2017). The experimental images in Fig. 9a, d show
a control C8161melanoma spheroid, and a U0126-treated C8161melanoma spheroid,
after six days, respectively. In this case, both the control and treatment spheroids are
grown for three days initially, and U0126 is applied at day three to the treatment group.
U0126 is a MEK-inhibitor that leads to G1 arrest (Haass et al. 2014; Smalley et al.
2008). Comparing the images in Fig. 9a, d leads to two obvious conclusions: (i) the
treated spheroid is almost completely composed of G1-arrested (red) cells; and, (ii)
the size of the treated spheroid is smaller than the untreated spheroid.

To incorporate the effect U0126 in ourmodel, wemake the straightforward assump-
tion that the drug affects the maximum rate at which cells transition from G1 phase
(red) to S/G2/M phase (green) by modifying the appropriate kinetic function,

Kr (c) = B(t)cm2

cm2
r + cm2

, (24)

with

B(t) =
{

B if t < td
Be−λ(t−td) if t ≥ td.

(25)

Here, td is the time that the drug is applied, and λ > 0 is an intrinsic drug-sensitivity
parameter (Enderling and Chaplain 2014; Lewin et al. 2018). Our choice of the func-
tional form of B(t) is not unique and could vary depending on the particular cell line
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and the particular drug treatment (Collis et al. 2017; Crivelli et al. 2012; de Pillis et al.
2006).

We simulate these experiments by setting td = 7.2 and λ = 10 and summarise our
numerical results in Fig. 9. Comparing profiles in Fig. 9a, d we see that the control
and treatment experiments are indistinguishable for t < td, as expected. For t > td
we see a clear reduction in the time rate of change of radius, l(t), in the treated
spheroid. The treated tumour has almost stopped growing at the end of the simulation,
whereas the untreated spheroid is continues to grow at an almost constant rate of
radial expansion. The density profiles in Fig. 9b show that the control spheroid rapidly
develops a necrotic core, and that the populations of live cells continues to expand
over time. In comparison, the density profiles in Fig. 9e show that after the application
of the drug we observe a rapid decline in g(x, t) throughout the spheroid, and the total
population becomes dominated by cells in G1 phase, r(x, t). Note that the density
profiles in Fig. 9b, e are plotted on different spatial scales so that the differences in
intratumoural structure is clear, emphasising that the solutions of the mathematical
model qualitatively capture the key experimental observations. The associated kinetic
rate functions for these simulations are summarised inFig. 9c, f,with the drug treatment
summarised by the function B(t), shown as an inset in both subfigures.

5 Conclusion and Outlook

In this work, we develop a mathematical model of 3D tumour spheroid growth that
is compatible with FUCCI-labelling, which highlights the spatial location of cells in
terms of their cell cycle status. In these experiments, cells in G1 phase fluoresce red,
while cells in S/G2/M phase fluoresce green. Traditional tumour spheroid experiments
do not provide spatio-temporal information about the cell cycle status, and it is not
obvious whether all living cells are freely cycling or not. Our experiments show that
FUCCI provides detailed insight into the development of intratumoural heterogeneity
as the spheroid grows. In particular, at late time points we see: (i) a necrotic region
in the centre of the spheroid that does not contain living fluorescent cells; (ii) an
intermediate spherical shell composed of living G1-arrested (red) cells; and (iii) an
outer spherical shell composed of a mixture of freely cycling G1 (red) and S/G2/M
(green) cells. We demonstrate how to incorporate this information into a model of
3D tumour spheroids by adapting the well-known model of Ward and King (1997)
to include three subpopulations of cells: (i) cells in G1 phase, r(x, t); (ii) cells in
G2/S/M phase, g(x, t), and (iii) dead cellsm(x, t). In this framework, cells move with
the local velocity field, v(x, t), and the transitions between the G1 and G2/S/M phases
are consistent with FUCCI-labelling. Rates of cell death and time points of transition
through the cell cycle are taken as functions of the local oxygen concentration. Further,
we consider oxygen to diffuse into the spheroid from the free surface, while being
simultaneously consumed by the living cells. We show how to partially parameterise
the mathematical model using experimental observations, and we explore numerical
solutions of the nonlinear moving boundary problem and show that this model can
capture key features of intratumoural heterogeneity in a single cell line, differences in
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intratumoural heterogeneity across multiple cell lines, as well as being able to mimic
spheroid growth in the presence of anti-mitotic drugs.

There are many opportunities for further generalisation of this work, both experi-
mentally and theoretically. From a modelling perspective, one of the key assumptions
we make in modelling FUCCI is that we consider the total live population to be com-
posed of cells in G1 phase (red) and cells in S/G2/M phase (green). In reality, it is also
possible to identify further groupings based on FUCCI labelling. For example, cells in
which both the red and green fluorescence are active appear yellow, and these cells are
often considered to be in early S phase (Haass et al. 2014). Under these conditions, we
would consider the living population to be composed of three groups of cells: G1 phase
(red), eS phase (yellow), and S/G2/M phase (green). Extending our model to deal with
this additional phase would involve reformulating the mathematical model to describe
three densities of living cells and one density of dead cells. This extended model
would be able to capture additional biological features, but this benefit comes with
the cost of incorporating a greater number of model parameters need to be estimated.
Further modelling refinements could include introducing additional necrotic depletion
mechanisms Ward and King (1999), as well as allowing different groups of cells to
experience different transport velocities. While the mathematical extensions required
to incorporate these extensions are conceptually and computationally straightforward,
our ability to parameterise such extended models is less clear without gathering addi-
tional experimental data and so we leave these extensions for future consideration
(Simpson et al. 2020). Another opportunity for further investigation is the analysis
of travelling wave solutions of Eqs. (15)–(18). In their original work, Ward and King
(1997) were able to make progress in interpreting their model in terms of travelling
wave analysis in the limit that the exponents in the Hill function become infinitely
large and the kinetic rate functions simplify to Heaviside functions. We anticipate that
a similar analysis could be considered for our more complicated model, and we leave
this analysis for future consideration. From an experimental perspective, we note that
all experimental images and data discussed in this work relate to tumour spheroids
composed of melanoma cells. We anticipate that our model and modelling framework
will also be relevant to spheroids made from other types of cancer cell lines transduced
with FUCCI system. As already noted, our experimental motivation involves the tra-
ditional FUCCI system with two fluorescent colours, which motivates us to consider
the living cells as being composed of two subpopulations. More recent experimental
technology, FUCCI4 (Bajar et al. 2016), uses four florescent colours to label the cell
cycle. We expect that our approach here could be developed further by considering
the live cell population to be given by the sum of four densities that correspond to the
colours associated with FUCCI4 labelling.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-021-00878-4.
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