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Abstract
We consider the problem of distance estimation under the TKF91 model of sequence
evolution by insertions, deletions and substitutions on a phylogeny. In an asymptotic
regime where the expected sequence lengths tend to infinity, we show that no con-
sistent distance estimation is possible from sequence lengths alone. More formally,
we establish that the distributions of pairs of sequence lengths at different distances
cannot be distinguished with probability going to one.

1 Introduction

Phylogeny estimation consists in the inference of an evolutionary tree from extant
species data, commonly molecular sequences (e.g. DNA, amino acid). A large body
of theoretical work exists on the statistical properties of standard reconstruction
methods (Steel 2016; Warnow 2017). Typically in such analyses, one assumes that
sequences have evolved on a fixed rooted tree, from a common ancestor sequence
to the leaf sequences, according to some Markovian stochastic process. Often these
processes model site substitutions exclusively, with the underlying assumption being
that the data have been properly aligned in a pre-processing step. In contrast, rela-
tively little theoretical work has focused on models of insertions and deletions (indels)
together with substitutions, in spite of the fact that such models have been around for
some time (Thorne et al. 1991, 1992). See e.g. (Thatte 2006; Daskalakis and Roch
2013; Allman et al. 2015; Fan and Roch 2020).

One extra piece of information available under indel models is the length of the
sequence, which itself evolves according to a Markov process on the tree. The notable
work of Thatte (2006) shows that leaf sequence lengths alone are in fact enough to
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reconstruct phylogenies, through a distance-based approach. More specifically, it is
shown in (Thatte 2006, (27)) that under the TKF91 model (Thorne et al. 1991) the
expectation of the sequence length Nv at a leaf v conditioned on the sequence length
Nu at another leaf u separated from v by an amount of time tuv is

Nv(t) = L̄ + (
Nu − L̄

)
e−μtuv(1−λ/μ) (1)

where L̄ = λ/μ
1−λ/μ

is the expected length at stationarity, where λ < μ are the rates of
insertion and deletion, respectively (full details on the TKF91 model are provided in
Sect. 2). Hence, we see from (1) that the full distribution of sequence lengths suffices
to recover λ/μ and all μtuv’s.

The tree topology can then be recovered using standard results about the met-
ric properties of phylogenies (Steel 2016). That is, the tree is identifiable from the
sequence lengths under the TKF91 model in the sense that two distinct tree topologies
T1 �= T2 necessarily produce distinct joint distributions of sequence lengths at the
leaves.

It is also suggested inThatte (2006)—without a full rigorous proof—that the scheme
above could be used to reconstruct phylogenies from a single sample of sequence
lengths at the leaves in the limit where λ ↗ μ. The latter asymptotics ensure that
the expected sequence length at stationarity L̄ diverges and serves as a proxy for the
amount of data growing to infinity. However, we show that no consistent distance
estimator exists in this limit. Formally we establish that the distributions of pairs of
sequence lengths at different distances cannot be distinguished with probability going
to 1 as λ ↗ μ. Hence, while the tree is identifiable from the distribution of the
sequence lengths at the leaves, one sample of the sequence lengths alone cannot be
used in a distance-based approach of the type described above to reconstruct the tree
consistently asλ ↗ μ. On the technical side our proof follows by noting that, under the
TKF91model, the sequence length is (morally) a sumof independent randomvariables
with finite variances, to which we apply a central limit theorem. One complication
is to obtain a limit theorem that is uniform in the parameter λ/μ. We expect that
our techniques will be useful to analyze other bioinformatics methods under indel
processes, for instance methods based on k-mer statistics [see e.g. (Yang and Zhang
2008; Haubold 2013)]. Further intuition on our results is provided in Sect. 3.

Organization The rest of the paper is organized as follows. The TKF91 model is
reviewed in Sect. 2. Our main result, together with a proof sketch, is stated in Sect. 3.
Details of the proof are provided in Sect. 4.

2 Basic Definitions

In this section, we recall the TKF91 sequence evolution model (Thorne et al. 1991).
To simplify the presentation, we restrict ourselves to a two-state version of the model,
as we will only require the underlying sequence-length process.

Definition 1 (TKF91 model: two-state version) Consider the following Markov pro-
cess I = {It }t≥0 on the space S of binary digit sequences together with an immortal
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link “•”, that is,

S := “ •′′ ⊗
⋃

M≥1

{0, 1}M ,

where the notation above indicates that all sequences begin with the immortal link.
Positions of a sequence, except for that of the immortal link, are called sites or mortal
links. Let (ν, λ, μ) ∈ (0,∞)3 and (π0, π1) ∈ [0, 1]2 with π0 + π1 = 1 be given
parameters. The continuous-time dynamics are as follows: If the current state is the
sequence 	x ∈ S, then the following events occur independently:

• Substitution Each site is substituted independently at rate ν > 0. When a substi-
tution occurs, the corresponding digit is replaced by 0 and 1 with probabilities π0
and π1, respectively.

• Deletion Each site is removed independently at rate μ.
• Insertion Each site, as well as the immortal link, gives birth to a new digit inde-
pendently at rate λ. When a birth occurs, the new site is added immediately to the
right of its parent site. The newborn site has digit 0 and 1 with probabilities π0
and π1, respectively.

This indel process is time-reversible with respect to the measure � given by

�(	x) =
(
1 − λ

μ

) (
λ

μ

)M M∏

i=1

πxi

for each 	x = (x1, x2, · · · , xM ) ∈ {0, 1}M where M ≥ 1, and �(“•′′) =
(
1 − λ

μ

)
.

We assume further that λ < μ. In that case, � is the stationary distribution of I.
We will be concerned with the underlying sequence-length process.

Definition 2 (Sequence length) The length of a sequence 	x ∈ S is defined as the
number of sites and is denoted by |	x |. Therefore, if 	x = (•, x1, . . . , xM ), then |	x | = M .

Under�, the sequence-length process |I| is stationary and is geometrically distributed.
Specifically the stationary distribution of the length process |I| is

γ
(λ)
M :=

(
1 − λ

μ

) (
λ

μ

)M

, M ∈ Z+. (2)

We are interested in this process on a rooted tree T . Denote the index set by �T .
The root vertex ρ is assigned a state Iρ ∈ S, drawn from stationary distribution on S.
This state is then evolved down the tree according to the following recursive process.
Moving away from the root, along each edge e = (u, v) ∈ E , conditionally on the
state Iu , we run the indel process for a time 	(u,v). Denote by It the resulting state at
t ∈ e. Then the full process is denoted by {It }t∈�T . In particular, the set of leaf states
is I∂T = {Iv : v ∈ ∂T }.

Setting Throughout this paper, we let P	x be the probability measure when the root
state is 	x . If the root state is chosen according to a distribution ν, then we denote the
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probability measure by Pν . We also denote by PM the conditional probability measure
for the event that the root state has length M .

For our purposes, it will suffice to focus on the space T2 of star trees with two leaves
that have the same finite distance h ∈ (0,∞) from the root and are labeled as {1, 2}.
This distance h is the height of the tree. The indel process on a tree T ∈ T2 reduces
to a pair of indel processes (I1

t , I2
t )t≥0 that are independent upon conditioning on the

root state Iρ = I1
0 = I2

0 . We always assume the root state is chosen according to the
equilibrium distribution �. So the distribution of (I1

0 , I2
0 ) ∈ S × S is

ν̂0(	x, 	y) =
{

�(	x) if 	x = 	y,
0 otherwise.

3 Main Result

Our main theorem is an impossibility result: the distributions of pairs of sequence
lengths at different distances cannot be distinguished with probability going to 1 as
λ ↗ μ. Following (Thatte 2006), we consider the asymptotic regime where λ ↗ μ,
which implies that the expected sequence length at stationarity tends to +∞. Recall
that the total variation distance between two probability measures τ1 and τ2 on a
countable measure space E is

‖τ1 − τ2‖T V = sup
A⊆E

|τ1(A) − τ2(A)| . (3)

Theorem 1 (Impossibility of distance estimation from sequence lengths) Let T 1 and
T 2 be two trees in T2 with heights h1 > h2 > 0, respectively. For i ∈ {1, 2}, we
consider a TKF91 process on tree T i and let 	N (i) = (N (i)

1 , N (i)
2 ) ∈ Z

2+ be the pair of
sequence lengths at the leaves ∂T i . Let

Li = P�( 	N (i) ∈ ·)

be the distribution of 	N (i) under P�. Then for any fixed deletion rate μ ∈ (0,∞),

lim sup
λ↗μ

‖L1 − L2‖T V < 1. (4)

From (3), we see that (4) implies that there is no test that can distinguish between
L1 and L2 with probability going to 1 as λ ↗ μ.

Proof idea We first give a heuristic argument that underlies our formal proof.
Without loss of generality, assume that the deletion rate is μ = 1. The stationary
length M at the root is geometric with mean and standard deviation both of order
1/(1 − λ). So we can think of the root length as roughly M ≈ C/(1 − λ) with
significant probability. Ignoring the small effect of the immortal link and conditioning
on M , the lengths at the leaves are sums of independent random variables, specifically
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the progenies of the M mortal links of the root. Here the progeny of a site is its
descendants including itself.

The mean and variance of these variables can be computed explicitly from
continuous-time Markov chain theory (see (11) below; see also (Thatte 2006, (27),
(31)). As λ ↗ 1, the difference in expectation between heights h1 and h2 turns out to
be

Me−(1−λ)h1 − Me−(1−λ)h2 ≈ C

1 − λ
[−(1 − λ)h1 + (1 − λ)h2] ≈ C(h2 − h1),

(5)

while the variance is of order

M
e−(1−λ)hi (1 − e−(1−λ)hi )

1 − λ
≈ C

1 − λ

(1 − λ)hi
1 − λ

≈ Chi
1 − λ

. (6)

The key observation is that the variance (6) is 
 than the square of the expectation
difference (5). Hence, by the central limit theorem, one can expect significant overlap
between the length distributions under h1 and h2, making them hard to distinguish
even as λ ↗ 1. We formalize this argument next.

We observe that (4) is equivalent to

lim inf
λ↗1

∑

	y∈Z2+

P�( 	N (1) = 	y) ∧ P�( 	N (2) = 	y) > 0. (7)

Indeed the total variation distance between two probability measures τ1 and τ2 on a
countable space E can also be written as

‖τ1 − τ2‖T V = 1 −
∑

σ∈E
τ1(σ ) ∧ τ2(σ ).

The rest of the proof is to establish (7). It involves a series of steps:

1. We first reduce the problem to a sum of independent random variables by condi-
tioning on the root sequence length and ignoring the immortal link. In particular,
we use the fact that there is a fairly uniform probability that M is in an interval
of size 1/(1 − λ) around 1. And we remove the effect of the immortal link by
conditioning on its having no descendant, an event of positive probability.

2. The central limit theorem (CLT) implies that there is a significant overlap between
the two sums. More precisely, we need a local CLT [see e.g. (Durrett 2010)] to
derive the sort of pointwise lower bound needed in (7). However, the bound we
requiremust be uniform in λ andwe did not find in the literature a result of quite this
form. Instead, we use an argument based on the Berry-Esséen theorem [again see
e.g. (Durrett 2010)]. We first establish overlap over
(

√
M) constant size intervals

for the sum of the first M − 1 mortal links, and then we use the final mortal link to
match the probabilities on common point values under heights h1 and h2.

3. Finally we bound the sum in (7).
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4 Proof

In this section, we give the details of the proof of Theorem 1. We follow the steps
described in the previous section.

Step 1. Reducing the problem to a sum of independent random variablesWe first
show that P� in (7) can be replaced by PM where M is of the order of the expected
sequence length 1/(1−λ) under�. That is, we condition on the length of the ancestral
sequence. After that, we further ignore the progenies of the immortal link so that each
leave sequence consists of i.i.d. progenies of the M sites in the ancestral sequence.
These two simplifications are achieved in (8) and (9), respectively.

Precisely, for any λ∗ ∈ (0, 1) and 0 < c1 < 1 < c2 < +∞, using (2)

lim inf
λ↗1

∑

	y∈Z2+

P�( 	N (1) = 	y) ∧ P�( 	N (2) = 	y)

≥ inf
λ∈(λ∗,1)

∑

	y∈Z2+

P�( 	N (1) = 	y) ∧ P�( 	N (2) = 	y)

= inf
λ∈(λ∗,1)

∑

	y∈Z2+

⎡

⎣
∑

M∈Z+
γ

(λ)
M PM ( 	N (1) = 	y)

⎤

⎦ ∧
⎡

⎣
∑

M∈Z+
γ

(λ)
M PM ( 	N (2) = 	y)

⎤

⎦

= inf
λ∈(λ∗,1)

∑

	y∈Z2+

∑

M∈Z+
(1 − λ)λM

[
PM ( 	N (1) = 	y) ∧ PM ( 	N (2) = 	y)

]

≥ inf
λ∈(λ∗,1)

∑

M∈
[

c1
1−λ

,
c2
1−λ

]
(1 − λ)λM

∑

	y∈Z2+

PM ( 	N (1) = 	y) ∧ PM ( 	N (2) = 	y)

≥ c3 inf
λ∈(λ∗,1)

inf
M∈

[
c1
1−λ

,
c2
1−λ

]

∑

	y∈Z2+

PM ( 	N (1) = 	y) ∧ PM ( 	N (2) = 	y), (8)

where c3 := infλ∈(λ∗,1)(1− λ)
∑

M∈
[

c1
1−λ

,
c2
1−λ

] λM . Note that c3 ∈ (0,∞) because the

expression (1 − λ)
∑

M∈
[

c1
1−λ

,
c2
1−λ

] λM is continuous in λ and tends to e−c1 − e−c2 as

λ → 1.
Let Z0 be the event that the immortal link of the root sequence produces no mortal

link in either leaf sequences. Let PM,• be the probability conditioned on that event,
and c4 be a lower bound on the probability of Z0 uniform in λ ∈ (λ∗, 1). Under PM,•,
the two components of 	N (1) are conditionally independent and each is a sum of M
i.i.d. random variables corresponding to the progenies of mortal links. Hence, (8) is
at least
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c4c3 inf
λ∈(λ∗,1)

inf
M∈

[
c1
1−λ

,
c2
1−λ

]

∑

	y∈Z2+

PM,•( 	N (1) = 	y) ∧ PM,•( 	N (2) = 	y)

=c4c3 inf
λ∈(λ∗,1)

inf
M∈

[
c1
1−λ

,
c2
1−λ

]

∑

	y∈Z2+

[
p(λ)
M,y1

(h1) p
(λ)
M,y2

(h1)
]

∧
[
p(λ)
M,y1

(h2) p
(λ)
M,y2

(h2)
]
,

(9)

where we let p(λ)
i, j (t) = Pi,•(|It | = j) for i, j ∈ Z+ be the transition probabilities of

the length process without the immortal link.
The sum in (9) leads us to study the overlap between the probability distributions

p(λ)
M, ·(t) := {p(λ)

M, j (t)} j∈Z+ for t = h1, h2 and M ∈
[

c1
1−λ

, c2
1−λ

]
. The central limit

theorem is what we need. However, because of our need for a bound that is uniform
in λ, we shall apply the Berry-Esséen theorem. Specifically, we apply the latter bound
to the progenies of the first M − 1 mortal links of the root sequence. The idea is to
show that 
(

√
M) summands in (9) have value 
(1/

√
M), for each of h1 and h2

separately, and then use the last mortal link to “match” all these values between h1
and h2.
Step 2a. Establishing a uniform bound for p(λ)

M−1,·(t) Note that p
(λ)
M,·(t) is the dis-

tribution of SM (t) := ∑M
i=1 L

i
t , where {Li

t }i≥1 are i.i.d. random variables having the
distribution of the progeny length of a single mortal link at time t > 0.

Let the mean and the variance of Li
t be

β := β(λ, t) := E[Li
t ] and σ 2 := σ 2(λ, t) := E|Li

t − β|2. (10)

As is expected, the distribution p(λ)
M, ·(t) is approximately Gaussian with mean βM

and variance σ 2M . We quantify this statement in the bound (12) below, after proving
some moment bounds.

Lemma 1 Let β(λ, t) and σ(λ, t) be themean and the standard deviation of Li
t defined

in (10) and consider the absolute third moment ρ(λ, t) := E |Li
t − β|3. For any

t ∈ (0,∞),

β(λ, t) = e−(1−λ)t and σ 2(λ, t) = 1 + λ

1 − λ
e−(1−λ)t (1 − e−(1−λ)t ). (11)

Furthermore,

0 < inf
λ∈[λ∗,1)

σ (λ, t) < sup
λ∈[λ∗,1)

σ (λ, t) < ∞ and sup
λ∈[λ∗,1)

ρ(λ, t) < ∞.

Proof For (11), see e.g. (Daskalakis and Roch 2013, (3), (4)).
Moreover, from (Thorne et al. 1991, (8)–(10)) or (Thatte 2006, (7)–(8)), the

probability that a normal link has n descendants including itself is

P(Li
t = n) =

{
(1 − η(λ, t))(1 − λη(λ, t))[λη(λ, t)]n−1 for n ≥ 1

η(λ, t) for n = 0
,
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where η(λ, t) = 1−e−(1−λ)t

1−λe−(1−λ)t . It can be seen from L’Hospital’s rule that η(λ, t) is

continuous as a function of λ around 1 and that η(λ, t) = t
1+t +O(|1−λ|) as λ → 1.

From this explicit formula for the probability mass function of Li
t , which we note

is a geometric sequence, it follows that all moments of Li
t are bounded from above

uniformly in λ ∈ [λ∗, 1).
To show that the variance is bounded from below uniformly in λ ∈ [λ∗, 1), we

note (again using L’Hospital’s rule) that σ 2(λ, t) is continuous in λ around 1, strictly
positive and tends to 2t as λ → 1. Hence, the variance is bounded from below,
uniformly in λ ∈ [λ∗, 1) ��

Let F (λ)
M (t) be the cumulative distribution function (CDF) of the probability distri-

bution p(λ)
M,·(t). That is,

F (λ)
M (t)(x) =

∑

j : j≤x

p(λ)
M, j (t) = P(SM (t) ≤ x).

Lemma 2 [Uniform bound for p(λ)
M−1,·(t)] For each t > 0, there exists a constant

C > 0 such that

sup
λ∈[λ∗,1)

sup
x∈R

∣∣∣F (λ)
M (t)

(
Mβ(λ, t) + x σ(λ, t)

√
M

)
− N (x)

∣∣∣ ≤ C√
M

, (12)

for all M ∈ Z+, where N is the CDF of the standard normal distribution.

Proof Since β(λ, t), σ 2(λ, t), ρ(λ, t) ∈ (0,∞), the Berry-Esséen theorem [as stated
e.g. in Durrett (2010)] applies and asserts that

sup
x∈R

∣∣∣∣P
(
SM−1 − (M − 1)β(λ, t)

σ (λ, t)
√
M − 1

≤ x

)
− N (x)

∣∣∣∣ ≤ 3ρ(λ, t)

σ 3(λ, t)
√
M − 1

(13)

for all λ ∈ [0, 1). By Lemma 1, for each t > 0, the right-hand side is bounded from
above uniformly for λ ∈ [λ∗, 1). ��
Step 2b.Controlling the overlap of p(λ)

M−1,·(h1) and p(λ)
M−1,·(h2) in (9) To quantify the

overlap between p(λ)
M−1,·(h1) and p(λ)

M−1,·(h2), we first compare their expectations. For
simplicity, we write βi := β(λ, hi ), σi := σ(λ, hi ) and ρi := ρ(λ, hi ) for i = 1, 2,
where these functions are defined in Lemma 1. From the formula of β in (11), we
have

|β1 − β2| ≤ (1 − λ)(h1 − h2)

and so, for M ∈
[

c1
1−λ

, c2
1−λ

]
, the means of SM−1 for h1 and h2 are close in the sense

that

|β1(M − 1) − β2(M − 1)| ≤ c6 (14)
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Z+

Z+

M − 1

Fig. 1 The solid straight line j = β1M has slope β1 and the dotted line j = β2M has slope β2 where
βi = β(λ, hi ) for i = 1, 2. The vertical line has length 2σ1

√
M − 1whereσ1 = σ(λ, h1) and represents the

union of sub-intervals
⋃

r∈�M
K
J M
r (K ). Lemma 3 says that for each M ∈

[
c1
1−λ

,
c2
1−λ

]
, both probability

measures p(λ)
M−1, ·(h1) and p(λ)

M−1, ·(h2) have mass at least c8/
√
M − 1 on J M

r (K ), uniformly for all

r ∈ �M
K and λ ∈ [λ∗, 1)

for some c6 > 0 not depending on λ.
Now consider first the interval with length roughly twice the standard deviation

of p(λ)
M−1,·(h1) and centered at around its means β(λ, h1)(M − 1), then consider an

equi-partition of this interval into roughly 2
√
M−1
K many pieces of constant length σ1K ,

where K > 0 is an arbitrary constant. Precisely, we consider the sub-intervals

J M
r (K ) := (

β1(M − 1) + rσ1K , β1(M − 1) + (r + 1)σ1K
)

(15)

for r ∈ �M
K , where

�M
K :=

{

−
[√

M − 1

K

]

, . . . ,−1, 0, 1, . . . ,

[√
M − 1

K

]

− 1

}

(16)

and [x] denotes the largest integer smaller than or equal to x .
Lemma 3 says that there exist positive constants K = c7 large enough and c8 small

enough, depending on c6 but not on λ ∈ (λ∗, 1), such that each of these intervals
contains mass at least c8√

M−1
under both probability distributions p(λ)

M−1, ·(h1) and

p(λ)
M−1, ·(h2). See Fig. 1. Write p(λ)

M−1, A(t) = ∑
j∈A p(λ)

M−1, j (t) for simplicity.
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Lemma 3 There exist positive constants c7, c8 such that c7 infλ∈[λ∗,1) σ1 > 1 and,
with Jr = J M

r (c7) and �M = �M
c7 ,

p(λ)

M−1,Jr
(h1) ∧ p(λ)

M−1,Jr
(h2) ≥ c8√

M − 1

for all r ∈ �M, M ∈
[

c1
1−λ

, c2
1−λ

]
and λ ∈ [λ∗, 1).

Proof The Berry-Esséen theorem (13) implies that

sup
r∈�M

K

∣∣∣∣p
(λ)

M−1,Jr
(h1) −

∫

J̃r

1√
2π

e− x2
2 dx

∣∣∣∣ ≤ 6ρ1
σ 3
1

√
M − 1

(17)

for all λ ∈ [λ∗, 1), M ≥ 2 and K > 0, where Jr = J M
r (K ) is defined in (15), �M

K is
defined in (16), and

J̃r := Jr − (M − 1)β1

σ1
√
M − 1

=
(

r K√
M − 1

,
(r + 1)K√

M − 1

)
.

Then {J̃r }r∈�M is roughly an equi-partition of the interval (−1, 1) into 2
√
M−1
K

sub-intervals of length K√
M−1

. Furthermore, since J̃r ⊂ [−1, 1] for all r ∈ �M
K ,

∫

J̃r

1√
2π

e− x2
2 dx ≥ K√

M − 1

e−1/2

√
2π

.

From (17), there exists and absolute constant C large enough such that when K =
C supλ∈(λ∗,1)

ρ1
σ 3
1
, we have

inf
r∈�M

K

p(λ)

M−1,Jr
(h1) ≥ c√

M − 1

for some constant c > 0 that depends neither on M ∈
[

c1
1−λ

, c2
1−λ

]
nor λ ∈ [λ∗, 1).

Therefore, we let c7 := C supλ∈(λ∗,1)
ρ1
σ 3
1
and take K = c7.

We now repeat the above argument for h2, using (14). Similarly to (17), inequality
(13) implies that

sup
r∈�M

∣∣∣∣p
(λ)

M−1,Jr
(h2) −

∫

Er
1√
2π

e− x2
2 dx

∣∣∣∣ ≤ 6ρ2
σ 3
2

√
M − 1

for all λ ∈ [λ∗, 1) and M ≥ 2, where Jr = J M
r (c7) is defined in (15) using h1, and

Er := Jr − (M − 1)β2

σ2
√
M − 1

= (β1 − β2)
√
M − 1

σ2
+ σ1

σ2

(
rc7√
M − 1

,
(r + 1)c7√

M − 1

)
.
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and we denote a + bI = {a + bx : x ∈ I } for any interval I and a, b ∈ R.
By (14), Er ⊂ [−A, A] for all r ∈ �M and M ≥ 2, where A := c6 +

supλ∈(λ∗,1)
σ1
σ2

∈ (0,∞). Hence, as before, we have

inf
r∈�M

p(λ)

M−1,Jr
(h2) ≥ c′

√
M − 1

for some constant c′ > 0 that depends neither on M ∈
[

c1
1−λ

, c2
1−λ

]
nor λ ∈ [λ∗, 1),

even though Jr is constructed using h1.
The proof is complete by taking c8 = min{c, c′}. ��

Step 2c. Matching p(λ)
M,·(h1) and p(λ)

M,·(h2) by the last mortal link Lemma 3 estab-

lishes overlap of p(λ)
M−1,·(h1) and p(λ)

M−1,·(h2) over constant size intervals. The next

lemma uses the final mortal link to establish overlap of p(λ)
M,·(h1) and p(λ)

M,·(h2) over
specific values.

Lemma 4 There exists a positive constant c9 such that

inf
j∗r+1∈Jr+1∩Z+

p(λ)

M, j∗r+1
(h1) ∧ p(λ)

M, j∗r+1
(h2) >

c8c9
σ ∗
1 c7

√
M − 1

.

for all r ∈ �M, M ∈
[

c1
1−λ

, c2
1−λ

]
and λ ∈ [λ∗, 1), where σ ∗

1 := supλ∈(λ∗,1) σ1.

Proof By Lemma 3, Jr contains at least one integer, say j (1)r , with mass at least
c8

σ ∗
1 c7

√
M−1

under the probability measure p(λ)
M−1, ·(h1). This is because (i) Jr is non-

empty since c7 infλ∈[λ∗,1) σ1 > 1 by Lemma 3, and (ii) there are at most
[
c7σ ∗

1

]
many

integers in Jr .
Similarly, there exists j (2)r with mass at least c8

σ ∗
1 c7

√
M−1

under under p(λ)
M−1, ·(h2).

Hence,

p(λ)

M−1, j (1)r
(h1) ∧ p(λ)

M−1, j (2)r
(h2) ≥ c8

σ ∗
1 c7

√
M − 1

.

Let j∗r+1 be an arbitrary integer in Jr+1. The progeny of the M-th mortal link has
a probability at each integer in [0, 2σ ∗

1 c7] bounded from below by a positive constant
c̃ uniformly for all such integers and all λ ∈ [0, 1). It follows that

p(λ)

M, j∗r+1
(h1) =

j∗r+1∑

k=0

p(λ)
M−1,k(h1) p

(λ)

1, j∗r+1−k(h1) > p(λ)

M−1, j (1)r
(h1) p

(λ)

1, j∗r+1− j (1)r
(h1)

≥ c8c̃

σ ∗
1 c7

√
M − 1

and similar for h2. The proof is complete. ��
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Step 3. Putting everything together Lemma 4 implies the sum in (9) is at least a

positive constant, uniformly in M ∈
[

c1
1−λ

, c2
1−λ

]
and λ ∈ (λ∗, 1), because that sum is

∑

	y∈Z2+

[
p(λ)
M,y1

(h1) p
(λ)
M,y2

(h1)
]

∧
[
p(λ)
M,y1

(h2) p
(λ)
M,y2

(h2)
]

≥
∑

y1∈∪r∈�MJr+1∩Z+, y2∈∪r∈�MJr+1∩Z+

[
p(λ)
M,y1

(h1) ∧ p(λ)
M,y1

(h2)
]

·
[
p(λ)
M,y2

(h1) ∧ p(λ)
M,y2

(h2)
]

≥
(

c8c9
σ ∗
1 c7

√
M − 1

)2 ∣
∣∣{y1 ∈ ∪r∈�MJr+1 ∩ Z+, y2 ∈ ∪r∈�MJr+1 ∩ Z+}

∣
∣∣

≥
(
c8c9
σ ∗
1 c7

)2

.

The proof of (7) and hence that of Theorem 1 are complete.
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