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Abstract
Phylogenetic networks are generalizations of phylogenetic trees that allow the rep-
resentation of reticulation events such as horizontal gene transfer or hybridization,
and can also represent uncertainty in inference. A subclass of these, tree-based phy-
logenetic networks, have been introduced to capture the extent to which reticulate
evolution nevertheless broadly follows tree-like patterns. Several important opera-
tions that change a general phylogenetic network have been developed in recent years
and are important for allowing algorithms to move around spaces of networks; a vital
ingredient in finding an optimal network given some biological data. A key such oper-
ation is the nearest neighbour interchange, or NNI. While it is already known that the
space of unrooted phylogenetic networks is connected under NNI, it has been unclear
whether this also holds for the subspace of tree-based networks. In this paper, we show
that the space of unrooted tree-based phylogenetic networks is indeed connected under
the NNI operation. We do so by explicitly showing how to get from one such network
to another one without losing tree-basedness along the way. Moreover, we introduce
some new concepts, for instance “shoat networks”, and derive some interesting aspects
concerning tree-basedness. Last, we use our results to derive an upper bound on the
size of the space of tree-based networks.

1 Introduction

Phylogenetic networks have become widely studied structures in the mathematics
of evolution, because they capture a realistic range of evolutionary events beyond
speciation, which itself is encapsulated elegantly via phylogenetic trees. In partic-
ular, phylogenetic networks are able to represent explicit events such as horizontal
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gene transfer and hybridization, as well as the presence of uncertainty. Phylogenetic
networks, like trees, have also been widely studied using geometric approaches that
consider the set of networks as a space in which one may move between the objects by
operations that change a feature of the graph. Such operations, prominent examples of
which use the nearest neighbour interchange (NNI), subtree prune and regraft (SPR),
and tree bisection and reconnection (TBR), generalized from trees, are valuable in
computational applications because it is often necessary to search the space of net-
works to find one that is optimal with respect to some specific criterion (Robinson
1971; Allen and Steel 2001; Huber et al. 2016). Furthermore, such operations may
be used to define proximity measures to tree-based networks, extending the notion of
tree-basedness to the full class of phylogenetic networks (Fischer and Francis 2020).

At the same time,motivated by various biological andmathematical considerations,
various classes of phylogenetic network have been intensively studied. The focus of
this paper is the class of tree-based networks, that are essentially “trees with additional
edges” that pass between the tree edges (Francis and Steel 2015; Francis et al. 2018;
Jetten and van Iersel 2016; Hendriksen 2018). While the space of phylogenetic net-
works of a given “tier” (defined below) is connected under NNI (Huber et al. 2016), we
show in this paper that the space of tree-based unrooted phylogenetic networks is also
connected under NNI moves. That is, it forms a connected subspace of the space of
phylogenetic networks. Likewise, the diameter of the space of unrooted phylogenetic
networks has been bounded in Francis et al. (2018); here, we show that for a given tier,
the diameter of the space of unrooted tree-based phylogenetic networks is of order
O(n2), where n is the number of leaves.

We begin by setting out the necessary definitions, including a new class of (tree-
based) phylogenetic networks that we call shoat networks. In Sect. 3, we describe
circumstances in which an NNI move on a tree-based network will produce another
tree-based network (not all do) and show that it is possible to move between various
classes of tree-based network using NNI moves, while staying tree-based. Our main
result, the connectedness of the space of tree-based networks, is proved in Sect. 4; we
finish with a discussion and further questions in Sect. 5.

While this manuscript was in preparation, a paper containing a statement simi-
lar to one of our main results appeared on the arXiv (Janssen and Klawitter 2019,
Theorem 4.10). The result in that paper relates to unrooted networks that differ from
ours in that they permit parallel edges, i.e. they aremultigraphs.However, in the context
of phylogenetic networks, it is more common (and arguably biologically more natural)
to consider simple graphs (Pons et al. 2018; Fischer et al. 2018; Francis et al. 2018;
Steel 2016; Gambette et al. 2012). In contrast, our work takes a different approach to
the question, and it is not clear whether the approach in Janssen and Klawitter (2019)
can be adapted to deal with networks as we define them here, i.e. without parallel
edges.

2 Definitions and Background

Abinary unrooted phylogenetic network on a set X (typically a set of species or taxa) is
a connected simple graphwhose vertices are degree 1 or 3, andwhose degree 1 vertices
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(leaves) are bijectively labelled by the elements of X . Some of our results extend to the
non-binary case, inwhich non-leaf verticesmay have degree greater than 3, andwewill
remark on that where it arises. Note that, as is common in the phylogenetics literature,
non-binary networks are networks that are not necessarily binary, but may be; that
is, the class of non-binary networks also (somewhat counter-intuitively) contains the
binary networks. In the following, whenever there is no ambiguity, we use the term
network to refer to an unrooted phylogenetic network. Note that the special case of an
acyclic phylogenetic network is called a phylogenetic tree.

Throughout this manuscript, we will assume that |X | ≥ 2, and that N is “proper”.
A proper network is one for which all components obtained by removing a cut edge
or cut vertex contain at least one element of X .

In the following, we denote by V 1(N ) the set of degree 1 vertices in N , i.e. the
set of leaves V 1(N ) = X , and V̊ = V \ V 1 denotes the set of inner vertices of N . If
k is minimal such that the deletion of k edges of N would turn N into a tree (i.e. a
connected acyclic graph), we say that N has tier k. Note that the tier does not depend
on N being a phylogenetic network—in fact, the tier of a connected graph can be
defined analogously (in which case it is often referred to as cyclomatic number or
cycle rank in graph theory), and for technical reasons, we need this later on in this
manuscript. We denote the set of tier-k phylogenetic networks on n leaves by N (n, k).

The triangle operation, introduced in Huber et al. (2016), allows the replacement
of a vertex with a triangle (a cycle of length three) to go up a tier and the reverse to go
down a tier.

More formally, the “blow-up” triangle operation�+ (that raises the tier of a network
by 1) replaces an internal, degree 3 vertex v, and its incident edges {v,w1}, {v,w2},
{v,w3}, by three vertices v1, v2, v3 and six new edges: {v1, w1}, {v2, w2}, {v3, w3},
{v1, v2}, {v2, v3}, {v3, v1}. Inversely, the “collapse” triangle operation �− (lowering
the tier by 1) replaces a triangle (a 3-cycle) and the edges outside the cycle but incident
to its vertices by a single vertex and three incident edges. That is, given a 3-cycle
of vertices {v1, v2, v3} and edges {v1, v2}, {v2, v3}, {v3, v1}, and three incident edges
{v1, w1}, {v2, w2}, {v3, w3}, replace these by a single vertex v and three edges {v,w1},
{v,w2}, {v,w3}. We denote these operations �+(N , v) and �−(N , {v1, v2, v3}), for
v an internal vertex and {v1, v2, v3} a 3-cycle in the network N .

Ablobof a network (or,more generally, of a graph) is amaximal connected subgraph
that has no cut edge (if such a blob consists of only one vertex, it is called trivial). Note
that in a binary phylogenetic network, blobs cannot contain any cut vertices (as all cut
vertices in a binary network are incident to a cut edge (Fischer et al. 2018, Lemma 8).
A phylogenetic network is called simple if it contains at most one non-trivial blob.

A support tree T of a network N is a spanning tree of N satisfying V 1(T ) =
V 1(N ) = X , that is, whose leaf set coincides with the leaf set X of N . If N contains
such a support tree T , it is called tree-based. Note that a support tree T of N is
not necessarily a phylogenetic tree as it may contain degree-2 vertices. The space of
tree-based networks in tier k on n leaves is denoted TBN (n, k).

Another concept that we need in the following, recently introduced in Fischer et al.
(2020), is the leaf cut graph LCUT (N ) of a proper network N ∈ N (n, k), with
|V (N )| ≥ 3, which is the graph G obtained from N by deleting all leaves and their
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incident edges. Note that this may result in some vertices of degree 2 and—e.g. if N
is a tree—even new leaves not labelled by X , which we do not remove.

Our main results require the notions of lineal tree-based networks and shoat net-
works.

A tree-based network is called lineal if it has a support tree consisting of a single
path p between two leaves, with paths from p to other leaves of length one. For
instance, a tree-based network that is pseudo-Hamiltonian (in the sense of Francis
et al. (2018): a network whose LCUT (N ) graph (Fischer and Francis 2020) has a
Hamiltonian cycle, cf. also Fischer et al. (2020)) will be lineal if there are two vertices
that are connected to leaves and that are adjacent on the Hamiltonian cycle.

The second new family of graphs that we define are called shoat networks.1 These
are a subclass of the pseudo-Hamiltonian, tree-based phylogenetic networks, defined
below.

Definition 2.1 A binary tier k ≥ 1 phylogenetic network N ∈ TBN (n, k) is a shoat
network if it has a Hamiltonian LCUT (N ) graph with the properties that:

(1) there are two leaves x, y ∈ X whose adjacent interior vertices a and b are adjacent
to each other, and such that there is a path p from x to y that visits all interior
vertices of N ;

(2) the interior vertices of N are partitioned into sets VL , VM , VR and {a, b}, with
properties:

• the path p consists (in order) of x, a, elements of VL , elements of VM , elements
of VR, b, y;

• |VL |, |VR | = k − 1, |VM | = n − 2;
• each vertex in VL is adjacent to its neighbouring vertices on p and one vertex
in VR ;

• each vertex in VR is adjacent to its neighbouring vertices on p and one vertex
in VL ;

• each vertex in VM is adjacent its neighbouring vertices on p, and a leaf in
X \ {x, y}.

Note, shoat networks can be defined in the non-binary setting by allowing |VL |, |VR | ≤
k − 1 and |VM | ≤ n − 2, and allowing vertices in VL and VR to also be adjacent to
one or more leaves. Note also that it is possible for the sets VL , VR or VM to be empty.

An illustration of this definition is shown in Fig. 1.
The nearest neighbour interchange (NNI) is a replacement of a path in the network

with an alternative path and was defined for unrooted phylogenetic networks in Huber
et al. (2016):

Definition 2.2 (NNI) Let N be a phylogenetic network in which (a, b, c, d) is a path
for which neither {a, c} nor {b, d} is an edge. The NNI operation on this path replaces
it with the path (a, c, b, d): the edges {a, b} and {c, d} are deleted, and edges {a, c}
and {b, d} are added.
1 Because of their close resemblance to the juvenile boars that frequent the streets of northern Germany.
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Fig. 1 An example of a shoat
network, with k = 4 and n = 7.
Here |VL | = |VR | = 3,
|VM | = 5

a bx y

3 NNI Moves Among Tree-Based Networks

Any NNI move will change the underlying properties of a phylogenetic network,
and in particular, can change whether a network is tree-based or not. Examples of
NNI moves that make a tree-based network not tree-based are plentiful. For instance,
there are exactly two level-5 non-tree-based binary networks (Fischer et al. 2018), and
so there are many NNI moves from each of them that lead to tree-based networks.
Consequently, each of those NNI moves in reverse makes a tree-based network non-
tree-based. However, as the main result of this paper (Theorem 4.1) will show, in order
to get from one tree-based network to another one, there must be at least one NNI path
using only tree-based networks. In other words, tree-based networks are connected
under NNI moves.

In this section, we prove some preliminary results about the effect of NNI moves
on tree-based networks, which will all be needed for the proof of this main theo-
rem, including showing that some different subclasses of tree-based networks are
connected. We begin by proving that certain NNI moves preserve tree-basedness.

Lemma 3.1 If N is a tree-based network with support tree T , then an NNI move on
the path (a, b, c, d) will produce another tree-based network if either:

(1) the edges {a, b}, {b, c}, and {c, d} are all in T ;
(2) {b, c} is in T but {a, b} and {c, d} are not; or
(3) {b, c}, {c, d}, and {c, d ′} are in T for some other vertex d ′, but {a, b} is not.
Proof (1) Suppose T is a support tree for the network N . If all edges in the path

(a, b, c, d) are in T , shown as bold dashed and solid lines in Fig. 2, then the effect
of the NNI produces a new support tree T̃ that has edges {a, c} and {b, d} instead
of {a, b} and {c, d}, as shown in the right side of the figure. It is clear that T̃ is still
a support tree for N because it still covers all vertices in N ; it has no additional
leaves beyond those of T ; and it has not generated any cycles (there are still unique
paths between all vertices a, b, c, d in T̃ , as there were in T ).

(2) If on the other hand neither {a, b} nor {c, d} are in the support tree T , but {b, c}
is, then there must be another edge incident to b that is in T (clearly, b is not a
leaf in N because it is contained in the path (a, b, c, d), i.e. it has degree > 1 in
N and thus also cannot be a leaf in T ). Likewise there is an edge in T incident
to c other than {b, c}, for the same reasons. Without loss of generality suppose
the edges {a′, b} and {c, d ′} are in T , shown in Fig. 2 as solid lines. Then, the
NNI on the path (a, b, c, d) has no effect at all on the spanning tree T , but simply
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b c
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d

Fig. 2 AnNNImove, such as this one on the path (a, b, c, d), can preserve tree-basedness in certain contexts
(Lemma 3.1)

shifts around the attachment edges that pass between vertices of the support tree
T . Thus, T remains a support tree for N .

(3) Finally, if (b, c, d) is a path in T as described, and {c, d ′} another edge in T , then
since b is not a leaf in N , there is another edge in T incident to it other than {a, b}
(because {a, b} is not contained in T by assumption in this case, but b cannot be
a leaf of T as it is not a leaf in N , either): say without loss of generality that it
is {a′, b}. Then, the effect of the NNI move on (a, b, c, d) is to shift the points
that a and d connect to the path (a′, b, c, d ′) in T from b to c and from c to b,
respectively. These shifts do not cause any vertex to become uncovered by the tree,
and cannot create cycles.
Thus, in all cases, the NNI move sending (a, b, c, d) to (a, c, b, d) changes the

tree-based network N to another tree-based network. ��
Note, other scenarios may or may not preserve tree-basedness. For instance, if the

path (a, b, c, d ′) in Fig. 2 was in a support tree for N but the edges {a′, b} and {c, d}
were not, then theNNImove shown in the figure could turn b into a leaf of the spanning
tree, which would then contain edges {a, c}, {c, d ′}, and {b, c}. Whether it did in fact
or not would depend on other features of the network outside the local frame of this
NNI move.

In the remainder of this section, we prove several lemmas that show that a tree-
based network can be transformed to any shoat network by NNImoves that stay within
TBN (n, k). It is important to note that all these NNImoves can of course be reverted—
i.e. the same arguments can be used to go back from said shoat network to the original
tree-based network while staying within TBN (n, k).

Lemma 3.2 Anetwork in TBN (n, k) can be transformed to a lineal tree-based network
using only NNI moves within TBN (n, k).

Proof Let N be a tree-based network. Of all support trees of N , choose a tree T which
has the longest maximal length path p. Let this maximal length path consist of vertices
v1, . . . , vt in T . Suppose there is a vertex vi on the path for which there is a path in
T \ p to a leaf of length greater than 1 (note i �= 1 or t , by maximality of p, as this
implies that both v1 and vt must be leaves and thus have no neighbours outside the
path). As long as N is non-lineal, such a vertex vi must exist. We argue that there is
an NNI move that extends the length of the maximal path and reduces the length of
the path from vi to a leaf, as follows.

Let w1 and w2 be the first two vertices along the path of length greater than
1 from vi in T , with w1 adjacent to vi . Note that this necessarily implies that
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vi vi+1vi−1

w1

w2

NNI

vi vi+1vi−1

w1

w2

Fig. 3 AnNNImove that incorporates an edge from vi into amaximal path (. . . , vi−1, vi , vi+1, . . . )within
the support tree T of a tree-based network. Edges in N that are not in T are not shown

w1 cannot be adjacent to either vi−1 or vi+1 in N , because otherwise, the path
v1, . . . , vt could be extended by replacing (vi−1, vi , vi+1) by (vi−1, w1, vi , vi+1) (or
by (vi−1, vi , w1, vi+1), respectively). This would turn T into a support tree T ′ of N
with a longer maximal path, contradicting the choice of T .

So asw1 is not adjacent to either vi−1 or vi+1 in N , we can perform a legalNNImove
on the path (vi−1, vi , w1, w2), to create the path (vi−1, w1, vi , w2), as shown in Fig. 3.
Then, the modified tree T has a new maximal path (v1, . . . , vi−1, w1, vi , . . . , vt ),
and the length of the other path from vi to a leaf has been reduced in length by 1.
Furthermore, it is still tree-based, by Lemma 3.1(i).

This process can be continued until the support tree T of N takes the form of a
single long path with edges from it connecting directly to leaves of N—that is, until
the resulting tree-based network is lineal. ��
Lemma 3.3 A lineal phylogenetic network in TBN (n, k), for k ≥ 1, canbe transformed
into a shoat network in TBN (n, k) by NNI moves within TBN (n, k).

Proof Let N be a lineal phylogenetic network in TBN (n, k) with k ≥ 1.
Choose a maximal length path p in N . Because N is lineal, this induces also a

support tree T for N . Label the leaves at each end of the path x and y, and the vertices
along p by x = v1, v2, . . . , vm = y. Because N is lineal, the edges connected to the
other vertices along the path are either incident to leaves (if n > 2), or other vertices
along the path.

Let

L = {vi | {vi , v j } ∈ E(N ), i + 1 < j}
R = {v′

j | {v′
i , v

′
j } ∈ E(N ), i + 1 < j},

so that L (resp. R) is the set of vertices at the left (resp. right) end of edges between
internal vertices that are not on the path p (we assume without loss of generality that
“left” refers to vertices closer to x and “right” refers to vertices closer to y). These
sets are disjoint, since each vertex has degree 3, and non-empty, since k ≥ 1. There
may also be vertices in L to the right of some (but not all) vertices in R; let
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v1 = x
v2

v3 v4

v5 v6

v7

v8 v9

v10 v11

v12
y = v13

Fig. 4 A lineal network with L = {v2, v3, v4, v9}, R = {v7, v8, v10, v12}. This network has overlap set
� = {(v9, v7), (v9, v8)} and ||�|| = 2 + 1 = 3

vi−2 vi−1 vi vi+1 vi−2 vi vi−1 vi+1

Fig. 5 An NNI move reducing ||�|| by moving a vertex in L to the left of a vertex in R

� := {(vi , v j ) ∈ L × R | i > j}

be the “overlap set”: the pairs of vertices (vi , v j ) for which vi is an element of L but
is nevertheless to the right of v j ∈ R, as in Fig. 4. Define the extent of the overlap to
be the non-negative integer:

||�|| :=
∑

(vi ,v j )∈�

(i − j).

We will describe NNI moves that change the network to strictly decrease ||�||.
Suppose � �= ∅, and let i be minimal such that (vi , v j ) ∈ �. Because i is minimal,

the vertex vi−1 to the left of vi in p must either be (i) in R or (ii) connected to a leaf.
We now consider these two cases.

(i) Suppose vi−1 ∈ R, and note that this means i > 4 since there must be a vertex
to the left of vi−1 that is connected to it by an edge not in p, v1 = x is a leaf, and N
has no parallel edges. We perform the NNI move

vi−2, vi−1, vi , vi+1 → vi−2, vi , vi−1, vi+1,

shown in Fig. 5. The result is still tree-based by Lemma 3.1(i).
Now consider the effect on � of this NNI move. Before the move, the elements of

� that involve vi−1 or vi are precisely the elements of the disjoint union:

{(vi , vi−1)} ∪̇ {(v j , vi−1) | ∀ j > i, v j ∈ L} ∪̇ {(vi , vk) | ∀k < i − 1, vk ∈ R}.

After the NNI move, the elements of � that involve vi−1 or vi are precisely

{(v j , vi ) | ∀ j > i, v j ∈ L} ∪̇ {(vi−1, vk) | ∀k < i − 1, vk ∈ R}.

Note that elements that do not involve vi−1 or vi are unaffected by the move, and that
the cardinalities of the corresponding sets have not changed, but each corresponding
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vi−2

vi−1

vi vi+1

z

vi−2 vi

vi−1

vi+1

z

Fig. 6 An NNI move reducing ||�|| by moving a vertex in L to the left of a vertex attached to a leaf

term in ||�|| has decreased by 1. Therefore, the value of ||�|| has been decreased by
the move by

1 + |{v j ∈ L | j > i}| + |{vk ∈ R | k < i − 1}|.

In particular, ||�|| has strictly decreased as a result of the move.
(ii) If vi−1 is not in R but connects to a leaf z (so that in particular, n ≥ 3), there is

at least one vertex v j further left of vi−1 that is in R. Perform the NNI move shown
in Fig. 6:

vi−2, vi−1, vi , vi+1 → vi−2, vi , vi−1, vi+1.

As before, this still results in a tree-based network by Lemma 3.1(i). After the
operation and relabelling vertices along the path, i is no longer minimal such that
(vi , v j ) ∈ �, because (vi−1, v j ) is now in �.

The effect on � of this move is that an ordered pair (vi , v j ) ∈ L × R with j < i is
replaced in � by the pair (vi−1, v j ). As before, this has the effect of strictly reducing
||�||, as required.

Since suchmoves are always possible while ||�|| > 0, and they each strictly reduce
||�||, it follows that successive application of these moves can reduce ||�|| to zero.
At that point, we must have � = ∅.

Having reduced the size of the overlap set ||�|| to zero, we need to move any leaves
(apart from x and y) to the middle.

Suppose there are leaves attached to vertices v j in p, for j �= 1,m, other than
x = v1 and y = vm . We now want to bring those leaves to the middle of the path,
between the vertices in L and those in R.

Suppose a leaf z �= x is attached to a vertex v j−1 which has a vertex v j ∈ L , to its
right. Perform the NNI move

v j−2, v j−1, v j , v j+1 → v j−2, v j , v j−1, v j+1,

which moves the attachment of the leaf z one position towards the right along the
path p (the same move shown in Fig. 6). The new network is still tree-based, by
Lemma 3.1(i). As long as there is a leaf attached to the left of a vertex from L , this
can be repeated until there are none left. Similarly, the reverse can be performed for
leaves that are attached to a vertex that has a vertex in R to their left, until there are
no such vertices.
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The result is that the leaves (apart from x and y) are attached to vertices in p with
all vertices in L to their left, and all vertices in R to their right.

It is now elementary to make the network shoat. Take the leftmost vertex in L ,
which must be v2. It is connected by an edge {v2, vk} to a vertex vk ∈ R. If k �= m −1
(so that vk is not the rightmost vertex on the path before the leaf y), the vertex vk+1 is
also in R and is connected to an edge {v�, vk+1} for some v� ∈ L . Perform the NNI

v2, vk, vk+1, v� → v2, vk+1, vk, v�,

so that v2 is now connected by an edge to a vertex one further to the right. This is again
tree-based by Lemma 3.1(ii). This can be continued until there is an edge {v2, vm−1},
at which point the network is shoat. ��
Lemma 3.4 Shoat networks are a connected subspace of TBN (n, k). That is, we can
use NNI moves between tree-based networks to move from one shoat network S1 on
leaf set X with tier k to another such shoat network S2.

Proof Note that both S1 and S2 have two distinguished leaves (corresponding to x and
y in Fig. 1), and let x1 and y1 be the distinguished leaves in S1, with x2 and y2 the two
distinguished leaves in S2. We will show how to transform S1 into S2.

If the pairs {x1, y1} and {x2, y2} coincide, we do not have to bring the distinguished
leaves into their positions: they already are. However, if, say, x1 is not a distinguished
leaf in S2, we have to use NNI moves to bring it to its correct position according to
S2 (left of the “left” vertices), and we do this along the maximal length path from x1
to y1 in S1. Note that all these NNI moves are necessarily legal because x1 is moved
left past all the “left” vertices in S1, meaning at no point the main rule for NNI (that
the first and third or second and fourth vertices are adjacent) is violated. They also
preserve tree-basedness because they are operations of the first type in Lemma 3.1.

Once we are done with bringing the first distinguished leaf of S1 which is not a
distinguished leaf of S2 into position, we bring the corresponding distinguished leaf
of S2, that is misplaced in S1, to the former position of x1 by NNI moves. Again, these
NNI moves are necessarily legal and preserve tree-basedness by similar arguments to
the above.

We repeat the same procedure with y1 if applicable.
When both distinguished leaves are in the correct position (as induced by S2), we

use NNI moves to arrange the other n − 2 leaves correctly. Again note that all these
NNI moves are necessarily legal and preserve tree-basedness by Lemma 3.1.

Last, we re-arrange the at most k − 1 “left” vertices between x2 and the non-
distinguished leaves of S2 as well as the at most k − 1 “right” vertices between y2
and the non-distinguished leaves of S2 by NNI moves (it is sufficient to rearrange just
either the left or the right sides). Again note that all these NNI moves are necessarily
legal and preserve tree-basedness by Lemma 3.1. ��
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4 Connectedness of TBN(n, k)

We are now in a position to prove the main result of this manuscript, Theorem 4.1. Its
proof is informed by the idea of the proof of Francis et al. (2018), Theorem 3, which
describes a particular path through the space of all phylogenetic networks. However,
in contrast to Francis et al. (2018), Theorem 3, we are considering only tree-based
networks, and so the results of the previous section laying out how NNI moves can
preserve tree-basedness are essential: our path through the space is essentially laid out
by the lemmas in Sect. 3. In particular, we show that one canmove from any tree-based
network to any other tree-based network of the same tier and on the same taxon set by
NNI moves only between tree-based networks.

Theorem 4.1 The space of tree-based unrooted phylogenetic networks on leaf set X
of tier k is connected under NNI moves.

Proof The case k = 0, in which networks are trees, has been established in Robinson
(1971), so we may assume k ≥ 1 (in fact, since all such networks are tree-based for
k ≤ 4 (Francis et al. 2018), the result is also immediate for k ≤ 4 because the space
of networks is connected (Huber et al. 2016)).

Lemma 3.2 shows that a tree-based network can be transformed into a lineal net-
work while remaining inside TBN (n, k). Lemma 3.3 shows that a lineal tree-based
network can be transformed into a shoat network, and Lemma 3.4 shows that any two
shoat networks are connected by NNI moves within TBN (n, k) (both these results are
restricted to k ≥ 1 because shoat networks are only defined for k ≥ 1). Noting that
all NNI moves can always be reversed, this proves the theorem (because you can go
from any tree-based network N to any other tree-based network N ′ by first modifying
N into a shoat network, possibly modifying this shoat network to give another shoat
network, and then continuing from this second shoat network to N ′—all the time only
using NNI moves through tree-based networks). ��

In the following, we use the fact that the number of vertices in an unrooted phylo-
genetic network of tier k is exactly2 2(n + k − 1).

Corollary 4.2 The diameter of the space of tree-based networks with n leaves and tier
k under NNI is at most

f (n, k) =
(
k − 1

2

)
+

(
n − 2

2

)
+ 4nk + 4k2 + 4n − 4k − 17.

That is, the diameter is in O((n + k)2), and for fixed tier k, it is in O(n2).

Proof Transforming one tree-based network to another takes the steps described in
Theorem 4.1:

(1) make the networks lineal;

2 Note that a binary phylogenetic tree with n leaves has precisely 2n− 2 vertices (Semple and Steel 2003).
Any of the extra k edges added to such a tree will induce two new vertices. In total, this is 2n − 2 + 2k =
2(n + k − 1) vertices.
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(2) make the lineal networks shoat graphs; and
(3) transform between shoat graphs.

Note that as the NNI moves are reversible, the total pathlength between two networks
will be at most twice the sum of the maxima of the first two steps, plus the maximum
of the third.

The algorithm for making a network lineal, given in Lemma 3.2, takes a support
tree with a maximal path, and incorporates other edges of the tree into that path while
remaining tree-based. Each edge is incorporated in a single NNI move, so the number
of moves required to make the network lineal is at most the number of edges in a
spanning tree minus the number of leaves (because leaf edges are not incorporated
into the path), minus the length of the initial maximal path.

We need to bound two numbers: the number of edges in a support tree, and the
length of a maximal path. The number of edges in a support tree is the number of
vertices minus one, and for a binary network the number of vertices2 is 2(n + k − 1).
Therefore, the number of edges in the support tree is at most 2(n + k − 1) − 1. The
number of edges in a maximal path in a support tree would be 2 if the network was a
star tree, so we can use this as a very weak lower bound on this.

That is, there are at most (2(n + k − 1) − 1)−n−2 = n+2k−5 moves required.

network → lineal: n + 2k − 5.

To transform a lineal network into a shoat graph using the procedure described in
Lemma 3.3, we need to shift the “left” vertices to the left, and the vertices attached
to leaves, to the middle. Beginning with the “left”, each must pass by at most n − 2
vertices attached to leaves, and 2k − 2 other vertices attached to edges (since there
must be at least one “right” vertex to its right, and one other, since it cannot be adjacent
to its partner. This gives a total of at most k(n − 2+ 2k − 2) = k(n + 2k − 4) moves.
To move the n − 2 leaf-adjacent vertices to the middle, they each have to pass at
most k left or k right vertices, for a total of k(n − 2) moves. Thus, there is a total of
k(2n + 2k − 6) moves to make the network shoat.

lineal → shoat: k(2n + 2k − 6).

Finally, a shoat network N1 with distinguished leaves x1 and y1 can be arranged
into another (along the lines of Theorem 4.1), in

(k−1
2

) + (n−2
2

) + 2n + 4k − 7 NNI
moves:

• If one or both distinguished leaves are distinguished in both shoat networks, then
the symmetry of the graph allows us to flip N1 in the vertical axis so that these
are aligned. Thus, either one or both distinguished leaves will need to be moved
into position from the set of leaves in the middle (between the vertices in L and
R). This will take (n − 1) + (k − 1) for the first (moving past possibly n − 1
leaves and k − 1 vertices in say L), and (n − 2) + (k − 1) for the second, since
there is one fewer leaf available to move past. The leaves that were previously
distinguished then move back to the middle in k − 1 moves each, for a total of
(n − 1) + (k − 1) + (n − 2) + (k − 1) + 2(k − 1) = 2n + 4k − 7 moves;
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• at most
(n−2

2

)
moves to arrange the leaves in the leaf zone correctly (the diam-

eter of the symmetric group on n − 2 objects, under the operation of adjacent
transpositions); and

• at most
(k−1

2

)
moves to arrange the k − 1 endpoints on the right or left to agree

with N2.

shoat → shoat:

(
k − 1

2

)
+

(
n − 2

2

)
+ 2n + 4k − 7.

Therefore, the total maximal distance between any two networks is at most

(
k − 1

2

)
+

(
n − 2

2

)
+ (2n + 4k − 7) + 2 ((n + 2k − 5) + k(2n + 2k − 6))

=
(
k − 1

2

)
+

(
n − 2

2

)
+ 4nk + 4k2 + 4n − 4k − 17,

as required. This completes the proof. ��
We are now able to show the connectivity of the entire space of tree-based networks

on a fixed set of leaves X , using the triangle operations�+ (replacing an inner degree-
3 vertex by a triangle) and �− (collapsing a triangle to a single vertex) as defined in
Sect. 2.

First, it is straightforward to show that either triangle operation on a tree-based
network is still tree-based, as follows:

Lemma 4.3 If N is a tree-based network in TBN (n, k), then

(1) for v ∈ V (N ) \ X, �+(N , v) ∈ TBN (n, k + 1); and
(2) for {v1, v2, v3} a 3-cycle in N, �−(N , {v1, v2, v3}) ∈ TBN (n, k − 1).

Proof If N is tree-based and v ∈ V (N ) has degree 3, then any support tree for N
includes v and at least two of the three edges incident to it, {v,w1}, {v,w2}, {v,w3},
because the support tree is a spanning tree of N whose only leaves are elements of X ,
and hence not v.

We first show (1).Without loss of generality, suppose there is a support tree T for N
containing {v,w1} and {v,w2}. Then, replacing the edges {v,w1} and {v,w2} in T by
the edges {w1, v1}, {v1, v3}, {v3, v2}, {v2, w2} creates a tree (no cycles are generated)
that is a support tree for�+(N , v) (it is connected and has no additional leaves), which
is also now in tier k + 1, so in summary, we have �+(N , v) ∈ TBN (n, k + 1).

Likewise, for (2), if N is tree-based and has a 3-cycle {v1, v2, v3}, with addi-
tional edges {v1, w1}, {v2, w2}, {v3, w3}, then it has a support tree that includes all of
{v1, v2, v3}, and at least two of the edges {v1, w1}, {v2, w2}, {v3, w3}. Replacing these
by a single vertex in both the network and the support tree does not disconnect the
tree, create cycles, or make any vertex uncovered by the collapsed tree. ��
Theorem 4.4 The space of binary tree-based networks on X is connected under NNI
moves and triangle moves.
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Proof This is immediate from Theorem 4.1 and Lemma 4.3 as long as we can show
that it is always possible to move to a tree-based network with a 3-cycle in it, in order
to move down a tier.

If the network does not have a triangle already, we can produce one using a series
of NNI moves that stays within TBN (n, k) as follows.

Let T be a support tree for N , and find a cycle in N that is made up of edges in
T except for one. Such a cycle always exists, just by considering an edge {v1, v2}
in N \ T and a path within T between its endpoints. Denote the vertices of this path
(v3, . . . , vi ), with i > 3, so that the cycle in N is (v1, v2, . . . , vi , v1). Since all vertices
in the cycle have degree three in N , there is an edge {v3, v′

3} that is not in the cycle.
Perform an NNI on the path (v1, v2, v3, v

′
3), which is legal because the edges

{v1, v3} and {v2, v′
3} are not in N (if they were N would have a triangle). The result

is still a tree-based network because if {v3, v′
3} is not in T , then Lemma 3.1(ii)

applies, whereas if {v3, v′
3} ∈ T , then Lemma 3.1(iii) applies. This network has a

cycle (v1, v3, v4, . . . , vi , v1), which is of strictly shorter length than the original cycle
(because it does not contain v2 anymore).

In this way, we can use NNI to shorten any cycle in N of length greater than 3,
and so eventually obtain a triangle. Deleting that triangle via a triangle move remains
tree-based, which completes the proof. ��

We end by noting that while the diameter of the full space of tree-based networks on
n leaves is infinite, since the tier is unbounded, the distance between a pair of networks
in different tiers is also O(n2).

Corollary 4.5 Thedistancebetweennetworks N1 ∈ TBN (n, k1)and N2 ∈ TBN (n, k2),
for fixed k1 and k2 such that k1 ≤ k2, is in O(n2).

Proof Given N1 ∈ TBN (n, k1), it can be transformed into a network in TBN (n, k2)
by successively inserting triangles at vertices k2 − k1 times. Once in tier k2, it is at
most f (n, k2) moves from N2, and so the distance between N1 and N2 is at most
f (n, k2) + (k2 − k1). Since f (n, k2) is in O(n2) for fixed k2, the result follows. ��

5 Discussion

In this paper, we have shown that the space of unrooted binary tree-based networks
within a given tier is connected under NNI moves, and that if the triangle moves
are included the whole space of unrooted binary tree-based networks is connected
(Theorems 4.1 and 4.4). This connectivity gives rise to several possible applications
and interesting additional questions.

The connectivity of the space means that the class of tree-based networks can be
searched by use of NNI moves. This has potential benefits for the sampling of the
space using MCMC approaches, as it already does for phylogenetic trees (Lakner
et al. 2008; Höhna and Drummond 2011; Whidden andMatsen IV 2015) and in future
most likely also will for general phylogenetic networks (Huson et al. 2010). To further
develop this application, it would be interesting to obtain estimates of the size of the
tree-based neighbourhood of a given network in TBN (n, k).
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x y

(i)

x y

(ii)

Fig. 7 The only two binary, non-tree-based phylogenetic networks of tier 5 (Fischer et al. 2018, Fig. 7).
These are both rank −1, that is, for both of them it takes only one NNI move to make them tree-based.
However, no single NNI move can convert one of these networks into the other one

The alert reader may note that the upper bound on the diameter of the space of all
tier-k unrooted phylogenetic networks N (n, k) obtained in Francis et al. (2018) is of
a similar order to the upper bound on the diameter for the space of tier-k tree-based
networks TBN (n, k) obtained here. While the density of TBN (n, k) in N (n, k) is 1
for n ≤ 3, because the sets are equal (Fischer et al. 2018), it is likely that the density
decreases markedly as n grows. That said, this is unknown and would be interesting
to establish. The similarity in the diameters of the spaces could be due to the fact
that two tree-based networks might be close in N (n, k), but distant in TBN (n, k),
because the distance in the latter requires a path through networks that remain tree-
based. Or it could be due to the subspace of tree-based networks making up the
majority of the space of networks, which seems unlikely but has not been ruled out.
Finally, it could be simply that there are tree-based networks at the “extremities” of
the space of all networks, and it just happens that they are dispersed widely within the
space.

Another relevant question for future research might be to establish a lower bound
on the diameter of the space of all tier-k tree-based networks TBN (n, k). However,
the methods used to establish a lower bound on the diameter of N (n, k) obtained in
Francis et al. (2018) do not apply in the tree-based case in any obvious way, which
is why this is a particularly interesting open problem that presumably requires a new
approach.

Moreover, there are questions relating to the proximity measures introduced in
Fischer and Francis (2020) (generalizing those for rooted networks in Francis et al.
(2018)). In that paper, networks are given ranks according to their distance from
the boundary of the space of tree-based networks. The boundary of TBN (n, k) is the
subset of tree-based networks that can bemade non-tree-basedwith a singleNNImove.
Networks in the boundary are said to have tree-based rank 0. Tree-based networks that
are at most i NNI moves from the boundary are rank i , and non-tree-based networks
that are at most i NNI moves from the boundary are rank −i . For instance, the two
non-tree-based tier-5 networks in Fig. 7 (taken from Fischer et al. 2018, Fig. 7) are
rank −1.
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These two are not connected by a single NNI move,3 so the set of networks of tree-
based rank −1 is not connected. Is this also the case for other negative ranks? And
especially, what about networks of positive tree-based rank, in the “core”, as it were,
of the space of tree-based networks? While it is certainly of interest to use the results
of (Fischer and Francis 2020) to analyse the structure of the space of binary tree-based
networks more in-depth, note that in (Fischer and Francis 2020), the authors discuss
general tree-based networks, that is, non-binary ones. On the other hand, the results
of the present manuscript are limited to the binary case. This is not merely due to the
fact that binary networks play a fundamental role in mathematical phylogenetics. On
the contrary: It can be easily seen that the space of non-binary tree-based networks is
not connected under NNI. To see this, note that NNI does not change the total degree
of the underlying graph, which is why an NNI move cannot connect networks whose
total degrees differ.

A direct conclusion from the present manuscript is the fact that Theorem 4.1 shows
that TBN (n, k) is also connected under the related SPR and TBR moves, which have
recently been defined for phylogenetic networks, because all NNI moves are also SPR
and TBR moves (Francis et al. 2018), Lemma 7. But we have left open the question
of the diameter of the space under these moves, except to note that clearly it is also
within O(n2), and so may be smaller.

However, there are two more open questions arising from this manuscript: First,
our approach of using NNI to go from a binary unrooted network to a lineal network,
then to a shoat network and then modify the shoat network, go back to a lineal network
and finally arrive at the target network does probably not lead to a shortest path. The
approach is constructive as it shows how to construct a valid tree-based path from any
binary tree-based network N to any other one N2, but there may be shorter paths from
N1 to N2. In particular, it might be possible to avoid shoat networks altogether and
directly move from one lineal network to another one. If this was possible, it would
reduce the complexity of our construction.

Second, it should be noted that NNI moves on phylogenetic networks have been
introduced in the rooted setting (Gambette et al. 2017), and of course this is also
the original setting for the introduction of tree-based phylogenetic networks (Francis
and Steel 2015). While there are concrete connections between rooted and unrooted
tree-based networks (e.g. Fischer and Francis 2020, Sect. 6), it is not clear whether
the results in the present paper will lift to the rooted context.

3 We used the computer algebra system Mathematica (Wolfram 2017) to verify that the shortest path from
network (i) in Fig. 7 to a network isomorphic to (ii) requires 5 NNI moves. While this is tricky to see, it
is combinatorially rather easy to see that network (i) has 24 1-step NNI neighbours, which can be divided
into two classes (i.e. the NNI neighbourhood of network (i) contains only two non-isomorphic networks):
those isomorphic to (i), and those isomorphic to a specific different network, which is in fact tree-based.
So network (ii) cannot be in the 1-step neighbourhood of (i).
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