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Abstract
Time delays play important roles in genetic regulatory networks. In this paper, a gene
regulatory network model with time delays and mutual inhibition is considered, where
time delays are regarded as bifurcation parameters. In the first part of this paper, we
analyze the associated characteristic equations and obtain the conditions for the stabil-
ity of the system and the existence of Hopf bifurcations in five special cases. Explicit
formulas are given to determine the direction and stability of the Hopf bifurcation by
using the normal form method and the center manifold theorem. Numerical simula-
tions are then performed to illustrate the results we obtained. In the second part of
the paper, using time-delayed stochastic numerical simulations, we study the impact
of biological fluctuations on the system and observe that, in modest noise regimes,
unexpectedly, noise acts to stabilize the otherwise destabilized oscillatory system.

Keywords Time delays · Hopf bifurcation · Oscillation · Stability · Genetic
regulatory network model · Noise

1 Introduction

Genetic regulatory networks (GRNs) describe interactions between DNA, RNA, pro-
teins and small molecules in living cells and play fundamental roles in many life
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processes (Parmar et al. 2015; Ling et al. 2017). Because the processes of gene tran-
scription andmessenger RNA translation are not co-located in space and consequently
not completed instantaneously, time delays are inevitable in GRNs. The effect of time
delay on the dynamic behavior of a GRN model has attracted extensive attention of
many scholars, and some research results have been obtained (Parmar et al. 2015;
Ling et al. 2017; Wu and Eshete 2011; Bodnar and Bartłomiejczyk 2012; Lewis 2003;
Wu 2011; Wang et al. 2010; Wu 2011; Zhang et al. 2017; Lai 2018; Monk 2003;
Verdugo and Rand 2008; Sun et al. 2018; Yue et al. 2017; Huang et al. 2016). In Wu
and Eshete (2011), the authors considered a model of gene express with two delays
and showed effect of time delays on the model. In Bodnar and Bartłomiejczyk (2012),
the Hes 1 genetic oscillator system was presented, and the authors showed that the
stability of the steady state depends on the sum of time delays. The conditions for
the occurrence of Hopf bifurcation and the stability of equilibrium point were proved.
Zhang et al. (2017) investigated oscillatory expression in Escherichia coli. The result
of their research indicates that the effects of transcriptional and translational delays
are two important factors for designing or controlling GRNs and that the effect of
diffusion must be taken into account. In Lai (2018), the stability and bifurcation of
delayed bidirectional GRNs with negative feedback loops were invested.

In recent years, the cyclic GRNs (CGRNs) have attracted the attention of schol-
ars, and many research results have been achieved (Lewis 2003; Wu 2011; Qiu 2010;
Bar-Or et al. 2000; Ling et al. 2015). CGRNs are a kind of GRNs. All the nodes
of CGRNs are arranged in a ring structure. In Lewis (2003), Lewis showed, using
mathematical simulation, that the direct auto-repression of a gene by its own product
could generate oscillations. The period of oscillation was found to be determined by
the transcriptional and translational delay. In Wu (2011), Wu first presented condi-
tions for delay-independent local stability of CGRNs and then proceeded to study
the bifurcation of ring-structured GRNs with time delays. In Ling et al. (2015), the
stability and bifurcation of CGRNs with mixed time delays were studied. Due to the
presence of time delays, even if the GRNmodel is simple, a positive equilibrium point
of the system will lose its stability. Sustainable periodic oscillation will occur through
a Hopf bifurcation (Parmar et al. 2015; Suzuki et al. 2016). Delay is not considered in
the CGRN models in Xi and Turcotte (2015). We consider the effect of time delay on
the canonical two-gene binary switch model (see Fig. 1), which is described by the
following delay differential equations.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M ′
1 (t) = −r1M1 (t) + a · a1 Pn

1 (t−τ2)

sn+Pn
1 (t−τ2)

+ b · b21 sn

sn+Pn
2 (t−τ2)

M ′
2 (t) = −r2M2 (t) + a

Pn
2 (t−τ2)

sn+Pn
2 (t−τ2)

+ b sn

sn+Pn
1 (t−τ2)

P ′
1 (t) = −c1P1 (t) + d1M1 (t − τ1)

P ′
2 (t) = −c2P2 (t) + d2M2 (t − τ1)

(1)

Let τ = max {τ1, τ2} and then the initial conditions of the model are given by:

M1 (s) = φ1 (s) , M2 (s) = φ2 (s) , P1 (s) = φ3 (s) , P2 (s) = φ4 (s) ,
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Fig. 1 Two-gene mutually repressive, self-promoting model (Xi and Turcotte 2015). The nodes are genes
X1 and X2. Parameter asymmetry provider bcommon = b21

where s ∈ [−τ, 0] , φi (s) ∈ C ([−τ, 0] , R) (i = 1, 2, 3, 4, φi (s) ≥ 0). Here
C ([−τ, 0] , R) is the Banach space. Mi (t) (i = 1, 2) and Pi (t) (i = 1, 2) describe
the concentration of mRNA and protein of genes X1 and X2, respectively. ri (i = 1, 2)
and ci (i = 1, 2) are degradation rates ofmRNAand protein, respectively. di (i = 1, 2)
are translation rates. Parameters a and b are transcription rates, n is the Hill coefficient.
a1 and bcommon are parameter asymmetry providers. All the parameters of the model
are positive real numbers.

The organization of the paper is as follows: In Sect. 2, we study the stability and
existence of Hopf bifurcation of system (1) in five cases. The explicit formula is
given to determine the direction and stability of bifurcating periodic solutions by
using the normal form method and the center manifold theorem in Sect. 3. In Sect. 4,
numerical simulations are presented that support the analytical results we obtained. In
Sect. 5, using time-delayed stochastic simulations, we study the impact of biological
fluctuations (noise) on the dynamics of the system. In Sect. 6, characterization of the
orbit is discussed. Finally, in Sect. 7, we discuss the significance of our results and
present our conclusions.

2 The Stability and Existence of Hopf Bifurcation

Let E∗ = E(M∗
1 , M∗

2 , P∗
1 , P∗

2 ) be the positive equilibrium of system (1), then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−r1M∗
1 + a · a1 (P∗

1 )
n

sn+(P∗
1 )

n + b · b21 sn

sn+(P∗
2 )

n = 0,

−r2M∗
2 + a (P∗

2 )
n

sn+(P∗
2 )

n + b sn

sn+(P∗
1 )

n = 0,

−c1P∗
1 + d1M∗

1 = 0,

−c2P∗
2 + d2M∗

2 = 0.

Thus, we can get E∗, where P∗
1 , M∗

1 , P∗
2 , M∗

2 are defined in Appendix.
By the linear transform,

u1 (t) = M1 (t) − M∗
1 , u2 (t) = M2 (t) − M∗

2 , u3 (t) = P1 (t) − P∗
1 ,

u4 (t) = P2 (t) − P∗
2
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We have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇1 (t) = a11u1 (t) + a13u3 (t − τ2) + a14u4 (t − τ2) + F1,

u̇2 (t) = a22u2 (t) + a23u3 (t − τ2) + a24u4 (t − τ2) + F2,

u̇3 (t) = a31u1 (t − τ1) + a33u3 (t) + F3,

u̇4 (t) = a42u2 (t − τ1) + a44u4 (t) + F4,

(2)

where

f (1) = −r1M1 + a · a1 Pn
1 (t − τ2)

sn + Pn
1 (t − τ2)

+ b · b21 sn

sn + Pn
2 (t − τ2)

,

f (2) = −r2M2 + a
Pn
2 (t − τ2)

sn + Pn
2 (t − τ2)

+ b
sn

sn + Pn
1 (t − τ2)

,

f (3) = −c1P1 (t) + d1M1 (t − τ1) ,

f (4) = −c2P2 (t) + d2M2 (t − τ1) ,

f (1)
i jk = ∂ i+ j+k f (1)

∂Mi
1 (t) ∂P j

1 (t − τ2)∂Pk
2 (t − τ2)

∣
∣
∣
∣
∣
(M∗

1 ,M∗
2 ,P∗

1 ,P∗
2 )

, i, j, k ≥ 0,

f (2)
i jk = ∂ i+ j+k f (2)

∂Mi
2 (t) ∂P j

1 (t − τ2)∂Pk
2 (t − τ2)

∣
∣
∣
∣
∣
(M∗

1 ,M∗
2 ,P∗

1 ,P∗
2 )

, i, j, k ≥ 0,

f (3)
i j = ∂ i+ j f (3)

∂Mi
1 (t − τ1) ∂P j

1 (t)

∣
∣
∣
∣
∣
(M∗

1 ,M∗
2 ,P∗

1 ,P∗
2 )

, i, j ≥ 0,

f (4)
i j = ∂ i+ j f (4)

∂Mi
2 (t − τ1) ∂P j

2 (t)

∣
∣
∣
∣
∣
(M∗

1 ,M∗
2 ,P∗

1 ,P∗
2 )

, i, j ≥ 0,

F1 =
∑

i+ j+k≥2

1

i ! j !k! f
(1)
i jk u

i
1 (t) u j

3 (t − τ2) u
k
4 (t − τ2) ,

F2 =
∑

i+ j+k≥2

1

i ! j !k! f
(2)
i jk u

i
2 (t) u j

3 (t − τ2) u
k
4 (t − τ2) ,

F3 =
∑

i+ j≥2

1

i ! j ! f
(3)
i j ui1 (t − τ1) u

j
3 (t) ,

F4 =
∑

i+ j≥2

1

i ! j ! f
(4)
i j ui2 (t − τ1) u

j
4 (t) ,

a11 = −r1, a12 = 0, a13 = aa11n
(
P∗
1

)n−1
sn

(
sn + (

P∗
1

)n)2
, a14 = −bb21n

(
P∗
2

)n−1
sn

(
sn + (

P∗
2

)n)2
,

a21 = 0, a22 = −r2, a23 = − bn
(
P∗
1

)n−1
sn

(
sn + (

P∗
1

)n)2
, a24 = an

(
P∗
2

)n−1
sn

(
sn + (

P∗
2

)n)2
,
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a31 = d1, a32 = 0, a33 = −c1, a34 = 0,

a41 = 0, a42 = d2, a43 = 0, a44 = −c2.

Then the linear part of system (2) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇1 (t) = a11u1 (t) + a13u3 (t − τ2) + a14u4 (t − τ2) ,

u̇2 (t) = a22u2 (t) + a23u3 (t − τ2) + a24u4 (t − τ2) ,

u̇3 (t) = a31u1 (t − τ1) + a33u3 (t) ,

u̇4 (t) = a42u2 (t − τ1) + a44u4 (t) .

(3)

Thus, the characteristic equation of system (3) is obtained:

det

⎡

⎢
⎢
⎢
⎢
⎣

λ − a11 0 −a13e−λτ2 −a14e−λτ2

0 λ − a22 −a23e−λτ2 −a24e−λτ2

−a31e−λτ1 0 λ − a33 0

0 −a42e−λτ1 0 λ − a44

⎤

⎥
⎥
⎥
⎥
⎦

= 0

which is equivalent to

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 + (B2λ
2 + B1λ + B0)e

−λ(τ1+τ2)

+ C0e
−2λ(τ1+τ2) = 0 (4)

where

A0 = a11a22a33a44,

A1 = − (a11a33a44 + a22a33a44 + a11a22a44 + a11a22a33) ,

A2 = a44 (a11 + a22 + a33) + a22 (a11 + a33) + a11a33,

A3 = − (a11 + a22 + a33 + a44) ,

B0 = − (a31a13a22a44 + a11a42a24a33) ,

B1 = a42a24a33 + a31a13 (a44 + a22) + a11a42a24,

B2 = − (a42a24 + a31a13) ,

C0 = a31a42a13a24 − a31a42a14a23.

From the form of Eq. (4), it is explicitly clear that the system’s stability depends on
the sum of the delays. For Eq. (4), we consider the following five cases.

Case 1 τ = τ1 + τ2 = 0 (i.e., τ1 = τ2 = 0).
Equation (4) reduces to

λ4 + A3λ
3 + (A2 + B2) λ2 + (A1 + B1) λ + A0 + B0 + C0 = 0 (5)
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By the Routh–Hurwitz criteria, all the roots of Eq. (5) have negative real parts if and
only if

V1 = A3 > 0, (6)

V2 =
∣
∣
∣
∣
∣

A3 1

A1 + B1 A2 + B2

∣
∣
∣
∣
∣
= A3 (A2 + B2) − A1 − B1 > 0, (7)

V3 =
∣
∣
∣
∣
∣
∣

A3 1 0
A1 + B1 A2 + B2 A3

0 A0 + B0 + C0 A1 + B1

∣
∣
∣
∣
∣
∣
> 0, (8)

V4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A3 1 0 0

A1 + B1 A2 + B2 A3 1

0 A0 + B0 + C0 A1 + B1 A2 + B2

0 0 0 A0 + B0 + C0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0. (9)

Then system (1) is stable at E∗. If A0+B0+C0 �= 0, Eq. (5) has no zero roots. Hence,
the fold bifurcation does not occur.

Case 2 τ = τ1 + τ2 > 0.
Equation (4) becomes

λ4 + A3λ
3 + A2λ

2 + A1λ + A0

+ (B2λ
2 + B1λ + B0)e

−λτ + C0e
−2λτ = 0. (10)

We take the time delay τ = τ1+τ2 as bifurcation parameters and investigate dynamics
of system (1).

iω (ω > 0) is the root of Eq. (10) if and only if iω satisfies

{(
ω4 − A2ω

2 + A0 + C0
)
cos (ωτ) + (

A3ω
3 − A1ω

)
sin (ωτ) = B2ω

2 − B0
(
A1ω − A3ω

3
)
cos (ωτ) + (

ω4 − A2ω
2 + A0 − C0

)
sin (ωτ) = −B1ω

(11)

By Eq. (11), we get

cos (ωτ) = e5ω6 + e6ω4 + e7ω2 + e8
ω8 + e1ω6 + e2ω4 + e3ω2 + e4

,

sin (ωτ) = ω
(
e9ω4 + e10ω2 + e11

)

ω8 + e1ω6 + e2ω4 + e3ω2 + e4
,

where

e1 = A2
3 − 2A2,

e2 = A2
2 − 2A1A3 + 2A0,

e3 = A2
1 − 2A0A2,
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e4 = A0
2 − C0

2,

e5 = B2,

e6 = B1A3 − A2B2 − B0,

e7 = A2B0 + A0B2 − A1B1 − C0B2,

e8 = C0B0 − A0B0,

e9 = A3B2 − B1,

e10 = A2B1 − A3B0 − A1B2,

e11 = A1B0 − C0B1 − A0B1.

Since cos2 (ωτ) + sin2 (ωτ) = 1, we obtain

ω16 + k7ω
14 + k6ω

12 + k5ω
10 + k4ω

8 + k3ω
6 + k2ω

4 + k1ω
2 + k0 = 0 (12)

where

k0 = e4
2 − e8

2,

k1 = 2e3e4 − 2e7e8 − e11
2,

k2 = e3
2 − 2e10e11 + 2e2e4 − 2e6e8 − e7

2,

k3 = 2e2e3 − 2e9e11 − 2e6e7 − e10
2 − 2e5e8 + 2e1e4,

k4 = e2
2 + 2e1e3 − 2e5e7 − 2e9e10 + 2e4 − e6

2,

k5 = 2e3 + 2e1e2 − 2e5e6 − e9
2,

k6 = e1
2 + 2e2 − e5

2,

k7 = 2e1.

Denote z = ω2, then Eq. (12) becomes

z8 + k7z
7 + k6z

6 + k5z
5 + k4z

4 + k3z
3 + k2z

2 + k1z + k0 = 0 (13)

Let h(z) = z8 + k7z7 + k6z6 + k5z5 + k4z4 + k3z3 + k2z2 + k1z + k0, it is obvious
Eq. (13) has no positive root if ki > 0, i = 0 . . . 7. It means that system (1) is stable
for all τ ≥ 0. On the other hand, since lim

z→∞h (z) = +∞, we know that Eq. (13) has at

least one positive root if k0 < 0.Without loss of generality, we assume that it has eight
positive real roots, defined by zk, k = 1, . . . 8, respectively. From Eq. (11), we have

cos (ωkτk) = e5ω6
k + e6ω4

k + e7ω2
k + e8

ω8
k + e1ω6

k + e2ω4
k + e3ω2

k + e4
.

It follows that

τ
j
k = 1

ωk
arccos

(
e5ω6

k + e6ω4
k + e7ω2

k + e8

ω8
k + e1ω6

k + e2ω4
k + e3ω2

k + e4

)

+ 2 jπ

ωk
,
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where k = 1, . . . 8; j = 0, 1 . . ..
Define

τ0 = τk0 = min
k∈{1,...,8}

{
τ 0k

}
, ω0 = ωk0 .

For convenience, let

8⋃

k=1

{
τ
j
k

}+∞
j=0

= {τi }+∞
i=0 (14)

such that

τ0 < τ1 < τ2 < · · · < τ j < · · · (15)

Multiplying eλτ on both sides of Eq. (10) and taking the derivative of λ (τ)with respect
to τ , we get

sgn

[

Re

(
dλ (τ)

dτ

)

τ=τ0

]

= sgn

{[

Re

(
dλ (τ)

dτ

)−1
]

τ=τ0

}

= sgn

(

Re

( (
4λ3 + 3A3λ

2 + 2A2λ + A1
)
eλτ + 2B2λ + B1

C0λe−λτ − (
λ4 + A3λ3 + A2λ2 + A1λ + A0

)
λeλτ

− τ

λ

)

τ=τ0

)

= sgn

(
P1P3 + P2P4
P12 + P22

)

,

where

P1 = 2C0 sin (ω0τ0) − B1ω
2
0,

P2 = B0ω0 − B2ω
3
0 + 2C0ω0 cos (ω0τ0) ,

P3 =
(
A1 − 3A3ω

2
0

)
cos (ω0τ0) +

(
4ω3

0 − 2A2ω0

)
sin (ω0τ0) + B1,

P4 =
(
2A2ω0 − 4ω3

0

)
cos (ω0τ0) +

(
A1 − 3A3ω

2
0

)
sin (ω0τ0) + 2B2ω0.

If condition (H3) P1P3 + P2P4 �= 0 holds, then Re
(
dλ(τ)
dτ

)−1

τ=τ0
�= 0.

In order to obtain our main results, it is necessary to give the following conditions.

(H1) Formulas (6)–(9) hold;
(H2) Equation (13) has at least one positive real root;
(H3) P1P3 + P2P4 �= 0.

In summary, we have the following results.
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Theorem 1 For system (1), the following results hold.

(i) If ki > 0, i = 0 . . . 7, A0 + B0 + C0 �= 0 and (H1) hold, then the positive
equilibrium E∗ is asymptotically stable for all τ ≥ 0. In other words, Hopf
bifurcation does not occur for all τ ≥ 0.

(ii) If conditions (H1), (H2) and (H3) hold, then the positive equilibrium E∗ of
System (1) is asymptotically stable when 0 ≤ τ < τ0 and unstable when τ > τ0.
Furthermore, System (1) undergoes a Hopf bifurcation at E∗ when τ = τ j , j =
0, 1, 2, . . ..

Proof (i) When τ = 0, characteristic Eq. (10) becomes

λ4 + A3λ
3 + (A2 + B2) λ2 + (A1 + B1) λ + A0 + B0 + C0 = 0.

According to Routh–Hurwitz criterion, all the roots of above equation have neg-
ative real parts if and only if (H1) holds. Hence, all the roots of Eq. (10) have
negative real parts when τ = 0.
On the other hand, from ki > 0, i = 0 . . . 7, we obtain h (0) = k0 > 0 and
h′ (z) = 8z7 + 7k7z6 + 6k6z5 + 5k5z4 + 4k4z3 + 3k3z2 + 2k2z + k1. Thus, we
have Eq. (13) has no real root, and hence Eq. (10) has no purely imaginary root.
Since A0 + B0 + C0 �= 0, λ = 0 is not a root of Eq. (10). To sum up, we can
obtain that Eq. (10) has no root with zero real part for all τ > 0. Therefore, all the
roots of Eq. (10) have negative real parts for all τ ≥ 0. This completes the proof
of (i).

(ii) The definition of τ0 implies that all the roots of Eq. (10) have negative real parts
when 0 ≤ τ < τ0. Hence, the positive equilibrium E∗ is asymptotically stable
for 0 ≤ τ < τ0. If the condition (H2) holds, Eq. (13) has at least one real root,
which indicates that the positive equilibrium E∗ is unstable for τ > τ0. Moreover,
P1P3 + P2P4 �= 0 implies that the transversality condition for Hopf bifurcations
is satisfied under the given assumption (H3). Therefore, System (1) undergoes a
Hopf bifurcation at E∗ when τ = τ j , j = 0, 1, 2, . . ..

Case 3 τ2> 0,τ1 = 0. Equation (4) becomes

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 + (B2λ
2 + B1λ + B0)e

−λτ2 + C0e
−2λτ2 = 0

It is same as the characteristic equation in case 2, and similar results can be obtained.
The difference is that case 2 takes the sum of time delays as the bifurcation parameter.
Here, only the time delay τ2 is used as the bifurcation parameter. For the case τ1 >

0, τ2 = 0, with τ1 as the bifurcation parameter, the characteristic equation remains
unchanged, and similar results will be obtained.

Case 4 τ1 = τ2 = τ �= 0. Equation (4) becomes

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 + (B2λ
2 + B1λ + B0)e

−2λτ + C0e
−4λτ = 0 (16)

123



46 Page 10 of 30 G. Wang et al.

iω (ω > 0) is the root of Eq. (16) if and only if iω satisfies

{(
ω4 − A2ω

2 + A0 + C0
)
cos (2ωτ) + (

A3ω
3 − A1ω

)
sin (2ωτ) = B2ω

2 − B0
(
A1ω − A3ω

3
)
cos (2ωτ) + (

ω4 − A2ω
2 + A0 − C0

)
sin (2ωτ) = −B1ω

(17)

By Eq. (17), we get

cos (2ωτ) = e5ω6 + e6ω4 + e7ω2 + e8
ω8 + e1ω6 + e2ω4 + e3ω2 + e4

,

sin (2ωτ) = ω
(
e9ω4 + e10ω2 + e11

)

ω8 + e1ω6 + e2ω4 + e3ω2 + e4
. (18)

Since cos2 (2ωτ) + sin2 (2ωτ) = 1, we get

ω16 + k7ω
14 + k6ω

12 + k5ω
10 + k4ω

8 + k3ω
6 + k2ω

4 + k1ω
2 + k0 = 0 (19)

Denote z = ω2, then Eq. (19) becomes

z8 + k7z
7 + k6z

6 + k5z
5 + k4z

4 + k3z
3 + k2z

2 + k1z + k0 = 0 (20)

This equation is the same as the case two.
Similar to case 2, we know that Eq. (20) has at least one positive root if k0 < 0.

Without loss of generality, we assume that it has eight positive real roots, defined by
zk, k = 1, 2, . . . , 8, respectively. From (18), we have

τ
j
k = 1

2ωk
arccos

(
e5ω6

k + e6ω4
k + e7ω2

k + e8

ω8
k + e1ω6

k + e2ω4
k + e3ω2

k + e4

)

+ jπ

ωk
(21)

where k = 1, . . . 8; j = 0, 1 . . ..
Define

τ0 = τk0 = min
k∈{1,...,8}

{
τ 0k

}
, ω0 = ωk0 .

For convenience, let

8⋃

k=1

{
τ
j
k

}+∞
j=0

= {τi }+∞
i=0 (22)

such that

τ0 < τ1 < τ2 < · · · < τ j < · · · (23)
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Multiplying e2λτ on both sides of Eq. (16) and taking the derivative of λ (τ) with
respect to τ , we have

sgn

[

Re

(
dλ (τ)

dτ

)

τ=τ0

]

= sgn

{[

Re

(
dλ (τ)

dτ

)−1
]

τ=τ0

}

= sgn

(

Re

( (
4λ3+3A3λ

2+2A2λ+A1
)
e2λτ + 2B2λ+B1

2C0λe−2λτ − 2
(
λ4+A3λ3+A2λ2+A1λ+A0

)
λe2λτ

− τ

λ

)

τ=τ0

)

= sgn

(
Q1Q3 + Q2Q4

Q1
2 + Q2

2

)

.

where

x = cos(2ω0τ0),

y = sin (2ω0τ0) ,

Q1 = 2ω0

(
C0y − ω4

0 y − ω3
0A3x − ω2

0A2y + ω0A1x + A0y
)

,

Q2 = 2ω0

(
C0x − ω4

0x − ω3
0A3y + ω2

0A2x + ω0A1y − A0x
)

,

Q3 = 4ω3
0 y − 3A3ω

2
0x − 2A2ω0y + A1x + B1,

Q4 = −4ω3
0x − 3A3ω

2
0 y + 2A2ω0x + A1y + 2B2ω0.

If condition (H4) Q1Q3 + Q2Q4 �= 0 holds, then Re
(
dλ(τ)
dτ

)−1

τ=τ0
�= 0. In order to

obtain the main results, we give the following assumption.

(H4) Q1Q3 + Q2Q4 �= 0;
(H5) Equation (20) has at least one positive real root.

Applying Hopf bifurcation theorem in Hassard et al. (1981), we have the following
result. 
�
Theorem 2 For System (1), suppose that (H1), (H4) and (H5) hold, then the positive
equilibrium E∗ of System (1) is asymptotically stable for 0 ≤ τ < τ0 and unstable
for τ > τ0. Furthermore, System(1) undergoes a Hopf bifurcation at E∗ when τ =
τ j , j = 0, 1, 2, . . ., where τ = τ j as defined in (23).

Case 5 τ2 > 0, τ1 ∈ [0, τ10),and τ1 �= τ2.
We consider Eq. (4) with τ1 in its stable interval; τ2 is regarded as a bifurcation

parameter, where τ10 is the first bifurcation point when τ2 = 0. iω2 (ω2 > 0) is the
root of Eq. (4) if and only if iω2 satisfies

{
E11 cos (ω2τ2) + E12sin (ω2τ2) = E13,

E14 cos (ω2τ2) + E15sin (ω2τ2) = E16,
(24)
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where

E11 = ω2
4 − A2ω2

2 + A0 + C0,

E12 = A3ω2
3 − A1ω2,

E13 =
(
B2ω2

2 − B0

)
cos (ω2τ1) − B1ω2sin (ω2τ1) ,

E14 = A1ω2 − A3ω2
3,

E15 = ω2
4 − A2ω2

2 + A0 − C0,

E16 = −B1ω2 cos (ω2τ1) +
(
B0 − B2ω2

2
)
sin (ω2τ1) .

From Eq. (24), we get

cos (ω2τ2) = − E12E16 − E13E15

E11E15 − E14E12
,

sin (ω2τ2) = E11E16 − E14E13

E11E15 − E14E12
. (25)

From (25), we obtain

ω2
16 + n1ω2

14 + n2ω2
12 + n3ω2

10 + n4ω2
8 + n5ω2

6 + n6ω2
4 + n7ω2

2 + n8

+
(
m0 + m2ω2

2 + m4ω2
4 + m6ω2

6 + m8ω2
8
)
cos2 (ω2τ1)

+
(
m1ω2 + m3ω2

3 + m5ω2
5 + m7ω2

7
)
sin (2ω2τ1) = 0, (26)

where ni (i = 1 . . . 8) ,m j ( j = 0 . . . 8) are defined in Appendix.
In order to get the main result, we give the following assumption.

(H6) Equation (26) has at least finite positive roots, defined by ω
(1)
2 , ω

(2)
2 , . . . ω

(k)
2 .

For every fixedω
(i)
2 , i = 1, 2 . . . k, there exists a sequence τ

j
2i such that Eq. (26)

holds.

From (25), we have

τ
j
2i = 1

ω
(i)
2

arccos

(
E13E15 − E12E16

E11E15 − E14E12

)

+ 2π j

ω
(i)
2

where i = 1, 2 . . . k; j = 0, 1, 2, . . ..
Define

τ20 = min
{
τ 02i |i = 1, 2, ..., k; j = 0, 1, 2, ....

}

Therefore, Eq. (26) has a pair of purely imaginary roots ±iω20 when τ2 = τ20.
Multiplying eλτ2 on both sides of Eq. (4) and taking the derivative of λ with respect
to τ2, we get
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sgn

[

Re

(
dλ

dτ2

)

τ2=τ20

]

= sgn

{[

Re

(
dλ

dτ2

)−1
]

τ2=τ20

}

= sgn

(

Re

(
E21eλτ2 +E24e−λτ1−E22τ1e−λτ1−2C0τ1e−λ(2τ1+τ2)

C0λe−λ(2τ1+τ2)−E23λeλτ2
− τ2

λ

)

τ2=τ20

)

= sgn

(
T1T3 + T2T4
T12 + T22

)

,

where

E21 =4λ3 + 3A3λ
2 + 2A2λ + A1,

E22 =B2λ
2 + B1λ + B0,

E23 =λ4 + A3λ
3 + A2λ

2 + A1λ + A0,

E24 =2B2λ + B1,

T1 = cos (τ1ω20)
(
B1 − B0τ1 + B2τ1ω

2
20

)
+ cos (τ1ω20)

(
A1 − 3A3ω

2
20

)

− 2τ1C0 cos ((2τ1 + τ2) ω20) + ω20sin (τ1ω20) (2B2 − τ1B1)

+ sin (τ20ω20)
(
4ω3

20 − 2A2ω20

)
,

T2 = (2B2ω20 − τ1B1) cos (τ1ω20) +
(
2A2ω20 − 4ω3

20

)
cos (τ20ω20)

+
(
B0τ1 − B1 − τ1B2ω

2
20

)
sin (τ1ω20) +

(
A1 − 3A3ω

2
20

)
sin (τ20ω20)

+ 2τ1C0sin ((2τ1 + τ2) ω20) ,

T3 =
(
A1ω

2
20 − A3ω

4
20

)
cos (τ20ω20) +

(
A0ω20 − A2ω

3
20 + ω5

20

)
sin (τ20ω20)

+ C0ω20sin ((2τ1 + τ2) ω20) ,

T4 =
(
A2ω

3
20 − A0ω20 − ω5

20

)
cos (τ20ω20) + C0ω20 cos ((2τ1 + τ2) ω20)

+
(
A1ω

2
20 − A3ω

4
20

)
sin (τ20ω20) .

If condition (H7) T1T3 + T2T4 �= 0 holds, then Re
(
dλ(τ)
dτ2

)−1

τ2=τ20
�= 0.

By the discussion above, we get the following theorem.

Theorem 3 For system (1), τ2 > 0, τ1 ∈ [0, τ10), and τ1 �= τ2. If conditions (H1),(H6)
and (H7) hold, then the positive equilibrium E∗ of system (1) is locally asymptotically
stable when 0 ≤ τ2 < τ20 and unstable when τ2 > τ20. Furthermore, system (1)
undergoes a Hopf bifurcation at E∗ when τ2 = τ20.

For the case τ1 > 0, τ2 ∈ [0, τ20), and τ1 �= τ2, we can obtain similar results as
those in Theorem 3.
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3 Direction and Stability of Hopf Bifurcation

In this section, we consider the direction and stability of Hopf bifurcation with respect
to τ2 and τ1 ∈ [0, τ10) by using the methods in Hassard et al. (1981). Without loss
of generality, we assume system (2) undergoes a Hopf bifurcation at τ2 = τ20, τ1 ∈
[0, τ10). For convenience, letting ūi (t) = ui (τ t), i = 1, 2, 3, τ2 = τ20 + μ,μ ∈ R
and dropping the bars, then system (2) becomes a functional differential equation in
C = C1

([−1, 0], R3
)
:

u̇(t) = Lμut (θ) + f (μ, ut (θ))

where u(t) = (u1(t), u2(t), u3(t), u4(t))T , ut (θ) = u(t + θ)(θ ∈ [−τ, 0] for θ ∈
[−τ, 0], and Lμ : C → R, f : R × C → R are given, respectively, by

Lμ(ϕ) = (τ20 + μ) Âϕ (0) + (τ20 + μ)B̂ϕ

(

− τ1

τ20

)

+ (τ20 + μ)Ĉϕ (−1)

and

f (μ, ut (θ)) = (τ20 + μ)( f1, f2, f3)
T ,

here

Â =

⎡

⎢
⎢
⎢
⎢
⎣

a11 0 0 0

0 a22 0 0

0 0 a33 0

0 0 0 a44

⎤

⎥
⎥
⎥
⎥
⎦

, B̂ =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
a31 0 0 0
0 a42 0 0

⎤

⎥
⎥
⎦ ,

Ĉ =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 a13 a14

0 0 a23 a24

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

ϕ (θ) = (ϕ1 (θ) , ϕ2 (θ) , ϕ3 (θ) , ϕ4 (θ))T ∈ C,

f1 = k11ϕ
2
3 (−1) + k12ϕ

2
4 (−1) + k13ϕ

3
3 (−1) + k14ϕ

3
4 (−1) ,

f2 = k21ϕ
2
3 (−1) + k22ϕ

2
4 (−1) + k23ϕ

3
3 (−1) + k24ϕ

3
4 (−1) ,

f3 = 0,

f4 = 0,

k11 = −
aa11n

((
P∗
1

)2n−2
sn (n + 1) + (

P∗
1

)n−2
s2n (1 − n)

)

(
sn + (

P∗
1

)n)3
,

k12 = −
bb21n

((
P∗
2

)2n−2
sn (n + 1) + (

P∗
2

)n−2
s2n (1 − n)

)

(
sn + (

P∗
2

)n)3
,
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k21 = −
an

((
P∗
2

)2n−2
sn (n + 1) + (

P∗
2

)n−2
s2n (1 − n)

)

(
sn + (

P∗
2

)n)3
,

k22 = −
bn
((

P∗
1

)2n−2
sn (n + 1) + (

P∗
1

)n−2
s2n (1 − n)

)

(
sn + (

P∗
1

)n)3
.

By the Riesz representation theorem, there exists a matrix function η(θ, μ), θ ∈
[−1, 0], such that

Lμ(ϕ) =
∫ 0

−1
dη(θ, μ)ϕ(θ), ϕ ∈ C1

(
[−1, 0], R3

)
.

Here, we choose

η(θ, μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(τ20 + μ)
(
Â + B̂ + Ĉ

)
, θ ∈ 0,

(τ20 + μ)
(
B̂ + Ĉ

)
, θ ∈

[
− τ1

τ20
, 0
)

,

(τ20 + μ)Ĉ, θ ∈
(
−1,− τ1

τ20

)
,

0, θ = −1.

For ϕ ∈ C1
([−1, 0], R3

)
, define

Aμ(ϕ) =
{ dϕ(θ)

dθ
, −1 ≤ θ < 0,

∫ 0
−1 dη(θ, μ)ϕ(θ), θ = 0,

and

Rμ(ϕ) =
{(

0 0 0
)T

, −1 ≤ θ < 0,
f (μ, ϕ) , θ = 0.

For ψ ∈ C1
(
[0, 1], (R3)

∗)
, the adjoint operator A∗ of A is defined by

A∗(μ)ψ =
{− dψ(s)

ds , 0 < s ≤ 1,
∫ 0
−1 dηT (s, μ)ψ(−s), s = 0.

Next, we define a bilinear form:

〈ψ(s), ϕ(θ)〉 = ψ̄(0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ,

where η(θ) = η(θ, 0).
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Through the discussion in Sect. 2, we know ±iτ20ω20 are eigenvalues of A(0).
They are also eigenvalues of A∗. In the following, we compute the eigenvectors of
A(0) and A∗ corresponding to iτ20ω20 and −iτ20ω20, respectively. Assume q(θ) =
(1, α, β, γ )Teiτ20ω20θ , θ ∈ [−1, 0] is eigenvector of A(0). Then, we know

A(0)q(0) = iτ20ω20q(0).

That is,

τ20

⎡

⎢
⎢
⎢
⎣

iω20 − a11 0 −a13e−iτ20ω20 −a14e−iτ20ω20

0 iω20 − a22 −a23e−iτ20ω20 −a24e−iτ20ω20

−a31e−iτ1ω20 0 iω20 − a33 0
0 −a42e−iτ1ω20 0 iω20 − a44

⎤

⎥
⎥
⎥
⎦
q(0)=

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ .

By calculation, we get

q(0) =
(

1,
(iω20 − a44) �1

�2
,
a31e−iτ1ω20

iω20 − a33
,
a42e−iτ1ω20�1

�2

)T

,

where

�1 = a23a31e−iω20(τ20+τ1)

iω20 − a33
,�2 = (iω20 − a44) (iω20 − a22) − a24a42e

−iω20(τ20+τ1).

On the other hand, we assume q∗(s) = D(1, α∗, β∗, γ ∗)eiτ20ω20s, s ∈ [0, 1] is
eigenvector of A∗. Thus, we have:

τ20

⎡

⎢
⎢
⎢
⎢
⎣

−iω20 − a11 0 −a31eiτ1ω20 0

0 −iω20 − a22 0 −a42eiτ1ω20

−a13eiτ20ω20 −a23eiτ20ω20 −iω20−a33 0

−a14eiτ20ω20 −a24eiτ20ω20 0 −iω20 − a44

⎤

⎥
⎥
⎥
⎥
⎦

(
q∗(0)

)T=

⎡

⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎦ .

It is not hard to get

q∗(0) = D(1, α∗, β∗, γ ∗) = D(1,�3,− iω20 + a11
a31eiτ1ω20

,− (iω20 + a22) �3

a42eiτ1ω20
)

where

�3 = a13
a23

− (iω20 + a11) (iω20 + a33)

a23a31eiω20(τ1+τ20)
.

Next, normalizing q and q∗ by the condition 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0. In order to
obtain 〈q∗(s), q(θ)〉 = 1, it is necessary to compute the value of D.

〈
q∗ (s) , q (θ)

〉
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= q̄∗ (0) · q (0) −
∫ 0

θ=−1

∫ θ

ξ=0
q̄∗ (ξ − θ)dη (θ) q (ξ) dξ

= D̄
(
1, ᾱ∗, β̄∗, γ̄ ∗) (1, α, β, γ )T

−
∫ 0

−1

∫ θ

ξ=0
D̄
(
1, ᾱ∗, β̄∗, γ̄ ∗)e−i(ξ−θ)τ20ω20dη (θ) (1, α, β, γ )Teiξτ20ω20dξ

= D̄{1 + αᾱ∗ + ββ̄∗ + γ γ̄ ∗

−
∫ 0

−1

(
1, ᾱ∗, β̄∗, γ̄ ∗)θeiθτ20ω20dη (θ) (1, α, β, γ )T}

= D̄{1 + αᾱ∗ + ββ̄∗ + γ γ̄ ∗ + τ1
(
a31β̄

∗ + αa42γ̄
∗) e−iτ1ω20

+ τ20
(
β
(
a13 + a23ᾱ

∗)+ γ
(
a14 + a24ᾱ

∗)) e−iτ20ω20},

here, we choose

D = 1

m + n

such that 〈q∗ (s) , q (θ)〉 = 1, 〈q∗ (s) , q̄ (θ)〉 = 0, wherem = 1+ᾱα∗+β̄β∗+γ̄ γ ∗+
τ1(a31β∗ + αa42γ ∗)eiτ1ω20 , n = τ20 (β (a13 + a23α∗) + γ (a14 + a24α∗)) eiτ20ω20 .

Next, we employ a computation process similar to Wang et al. (2019), Deng et al.
(2014), Wang and Yang (2018) to compute the coefficients as follows,

g20 =2τ20 D̄
(
k11β

2 + k12γ
2 + α∗ (k21β2 + k22γ

2
))

e−2τ20ω20i ,

g11 =2τ20 D̄
(
k11|β|2 + k12|γ |2 + α∗ (k21|β|2 + k22|γ |2

))
,

g02 =2τ20 D̄
(
k11β̄

2 + k12γ̄
2 + α∗ (k21β̄2 + k22γ̄

2
))

e2τ20ω20i ,

g21 =τ20 D̄[k11M1 + k12M2 + k13M3 + k14M4

+ α∗ (k21M1 + k22M2 + k23M3 + k24M4) .

where

M1 = 2βW (3)
11 (−1)e−τ20ω20i + β̄W (3)

20 (−1)eτ20ω20i ,

M2 = 2γW (4)
11 (−1)e−τ20ω20i + γ̄W (4)

20 (−1)eτ20ω20i ,

M3 = 3β2β̄e−τ20ω20i ,

M4 = 3γ 2γ̄ e−τ20ω20i .

The coefficients g20, g11 and g02 can be computed when the parameters and delay
are determined in system (1), while the coefficient g21 cannot be obtained since there
areW11(θ) andW20(θ) in g21. Next, we employ a calculation process similar to Wang
et al. (2019), Deng et al. (2014),Wang andYang (2018) to computeW11(θ) andW20(θ)

as follows

123



46 Page 18 of 30 G. Wang et al.

W20(θ) = i g20
τ20ω20

q(0)eiτ20ω20θ + i ḡ02
3τ20ω20

q̄(0)e−iτ20ω20θ + E1e
2iτ20ω20θ ,

W11(θ) = −i g11
τ20ω20

q(0)eiτ20ω20θ + i ḡ11
τ20ω20

q̄(0)e−iτ20ω20θ + E2,

where E1 =
(
E (1)
1 , E (2)

1 , E (3)
1 , E (4)

1

)T
, E2 =

(
E (1)
2 , E (2)

2 , E (3)
2 , E (4)

2

)T
can be

obtained by the following equations, respectively.

⎡

⎢
⎢
⎢
⎢
⎣

2iω20 − a11 0 −a13e
−τ20ω20i −a14e

−τ20ω20i

0 2iω20 − a22 −a23e
−τ20ω20i −a24e

−τ20ω20i

−a31e
−τ1ω20i 0 2iω20 − a33 0

0 −a42e
−τ1ω20i 0 2iω20 − a44

⎤

⎥
⎥
⎥
⎥
⎦
E1 = 2

⎡

⎢
⎢
⎣

R1
R2
0
0

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎢
⎢
⎣

a11 0 a13 a14

0 a22 a23 a24

a31 0 a33 0

0 a42 0 a44

⎤

⎥
⎥
⎥
⎥
⎦
E2 = −2

⎡

⎢
⎢
⎢
⎣

k11|β|2 + k12|γ |2
k21|β|2 + k22|γ |2

0
0

⎤

⎥
⎥
⎥
⎦

.

where R1 = (
k11β2 + k12γ 2

)
e−2τ20ω20i , R2 = (

k21β2 + k22γ 2
)
e−2τ20ω20i .

Thus, we obtain

E (1)
1 = 2

E

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(
k11β2 + k12γ 2

)
e−2τ20ω20i 0 −a13e−τ20ω20i −a14e−τ20ω20i

(
k21β2 + k22γ 2

)
e−2τ20ω20i 2iω20 − a22 −a23e−τ20ω20i −a24e−τ20ω20i

0 0 2iω20 − a33 0

0 −a42e−τ1ω20i 0 2iω20 − a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

E (2)
1 = 2

E

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2iω20 − a11
(
k11β2 + k12γ 2

)
e−2τ20ω20i −a13e−τ20ω20i −a14e−τ20ω20i

0
(
k21β2 + k22γ 2

)
e−2τ20ω20i −a23e−τ20ω20i −a24e−τ20ω20i

−a31e−τ1ω20i 0 2iω20 − a33 0

0 0 0 2iω20 − a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

E (3)
1 = 2

E

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2iω20 − a11 0
(
k11β2 + k12γ 2

)
e−2τ20ω20i −a14e−τ20ω20i

0 2iω20 − a22
(
k21β2 + k22γ 2

)
e−2τ20ω20i −a24e−τ20ω20i

−a31e−τ1ω20i 0 0 0

0 −a42e−τ1ω20i 0 2iω20 − a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

E (4)
1 = 2

E

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2iω20 − a11 0 −a13e−τ20ω20i
(
k11β2 + k12γ 2

)
e−2τ20ω20i

0 2iω20 − a22 −a23e−τ20ω20i
(
k21β2 + k22γ 2

)
e−2τ20ω20i

−a31e−τ1ω20i 0 2iω20 − a33 0

0 −a42e−τ1ω20i 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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where

E =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2iω20 − a11 0 −a13e−τ20ω20i −a14e−τ20ω20i

0 2iω20 − a22 −a23e−τ20ω20i −a24e−τ20ω20i

−a31e−τ1ω20i 0 2iω20 − a33 0

0 −a42e−τ1ω20i 0 2iω20 − a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Similarly, we get

E (1)
2 =−2

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

k11|β|2 + k12|γ |2 0 a13 a14

k21|β|2 + k22|γ |2 a22 a23 a24

0 0 a33 0

0 a42 0 a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

E (2)
2 =−2

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 k11|β|2 + k12|γ |2 a13 a14

0 k21|β|2 + k22|γ |2 a23 a24

a31 0 a33 0

0 0 0 a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

E (3)
2 =−2

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 0 k11|β|2 + k12|γ |2 a14

0 a22 k21|β|2 + k22|γ |2 a24

a31 0 0 0

0 a42 0 a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

E (4)
2 =−2

F

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 0 a13 k11|β|2 + k12|γ |2
0 a22 a23 k21|β|2 + k22|γ |2
a31 0 a33 0

0 a42 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where

F =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 0 a13 a14

0 a22 a23 a24

a31 0 a33 0

0 a42 0 a44

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Hence, we can compute g21. Further, we have the following quantities:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1(0) = i
2τ20ω20

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2 ,

μ2 = − Re {c1(0)}
Re {λ′(τ20)} ,

β2 = 2Re {c1(0)},
T2 = − Im {c1(0)}+μ2 Im {λ′(τ20)}

τ20ω20
.

In summary, we have the following results.

Theorem 4 For system (1), the following results hold.

(i) The sign of μ2 determines the direction of Hopf bifurcation: Hopf bifurcation is
supercritical (subcritical)if μ2 > 0(μ2 < 0);

(ii) The sign of β2 determines the stability of the bifurcating periodic solutions: The
periodic solutions are orbitally stable (unstable) if β2 < 0 (β2 > 0);

(iii) The sign of T2 determines the period of bifurcating periodic solutions: The period
increases (decreases) if T2 > 0 (T2 < 0).

4 Numerical Simulations

In this section, numerical simulations are given to illustrate the analytical results we
obtained. We chose parameter r1 = 1, r2 = 1, c1 = 2, c2 = 2, s = 0.5, a = 0.5, b =
0.5, d1 = 2, d2 = 2, n = 3, a1 = 1, b21 = 1 Xi and Turcotte (2015); then, system (1)
becomes:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M ′
1 (t) = −M1 (t) + 0.5

P3
1 (t−τ2)

0.53+P3
1 (t−τ2)

+ 0.5 0.53

0.53+P3
2 (t−τ2)

,

M ′
2 (t) = −M2 (t) + 0.5

P3
2 (t−τ2)

0.53+P3
2 (t−τ2)

+ 0.5 0.53

0.53+P3
1 (t−τ2)

,

P ′
1 (t) = −2P1 (t) + 2M1 (t − τ1) ,

P ′
2 (t) = −2P2 (t) + 2M2 (t − τ1) .

(27)

By computation, it can be concluded that system (27) has three positive equilib-
rium points E1, E2 and E3, where E1 (0.931827, 0.068173, 0.931827, 0.068173)
and E3 (0.068173, 0.931827, 0.068173, 0.931827) are stable equilibrium points, and
E2 (0.5, 0.5, 0.5, 0.5) is a saddle point. System (27)will have bistable behavior.Which
stable point of system (27) tends to depend on the initial values. For τ1 = τ2 = τ �= 0,
we obtain τ0 ≈ 9.5, the positive equilibrium points E3 lose stability and a Hopf
bifurcation occurs when the time delay τ passes through the critical value τ0. By The-
orem 2, we know system (27) is stable when 0 ≤ τ < τ0, and unstable for τ > τ0.
The corresponding time cources diagram and phase portrait are depicted in Fig. 2.

When the initial value is selected near the saddle point E2,there is no periodic
solution. The stability of system (27) is maintained with time delay τ increasing (see
Fig. 3).
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Fig. 2 Time cources diagram of P1 and 3D phase portrait of system (27) with τ= 10. a τ = 0; b τ= 3; c
τ= 10; d the delayed track oscillates between fixed point 1 and 2 that, under no-delay conditions, would
be stable. Initial conditions: M1 (0) = 0.1, M2 (0) = 0.35, P1 (0) = 0.4, P2 (0) = 0.3

By computation, we can also obtain τ1 = τ2 = τ0 ≈ 11.5, and a Hopf bifurcation
occurs at the positive equilibrium point E1 for τ = τ0. By Theorem 2, we know that
the positive equilibrium point E1 of system (27) is stable when 0 ≤ τ < τ0 and
undergoes a Hopf bifurcation at τ = τ0 ≈ 11.5 (see Fig. 4).

Time delay can transform bistable behavior into oscillatory behavior and plays
important roles in this model. Through numerical simulation, we can also draw the
conclusion that the initial value and time delay both affect the dynamic behavior of
system (27). With different initial values, even if the time delay is the same (τ1 =
τ2 = 67), the trajectory of the solution of system (27) is different (see Fig. 5).
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Fig. 3 Time cources diagram of P1 with different time delay τ . a τ = 0; b τ = 10; c τ = 100. Initial
conditions: M1(0) = 0.4, M2(0) = 0.4, P1(0) = 0.4, P2(0) = 0.4

5 The Effect of Biological Noise

Biological systems are not purely deterministic as they comprise significant molecular
noise as an often not just present but, in fact, essential component to establishing
phenotype; see the general review Tsimring and Lev (2014) and Çağatay et al. (2009),
Xi et al. (2013), Xi et al. (2013) for specific examples in bacteria. Here, by molecular
noise, we understand biological randomfluctuations ofmolecular components entirely
due to paucity in numbers of some (or all) key species that affect the overall behavior
of the system. Hence we were curious to see how our theoretical finding of the time
delay-inducedbifurcation to oscillations could be affectedby the presenceofmolecular
noise.

So, to this end, we used the well-traveled route provided by the Gillespie algo-
rithm (Gillespie 1976) to translate the delayed four-dimensional deterministic model
(equation #1) into a set of discrete event reactions. The detailed implementation of the
stochastic algorithm for the instantaneous (no-delay) version of this system is given
in Xi and Turcotte (2015). Briefly, the system was separated in a set of production and
degradation reactions; each reaction corresponds to the individual production terms
(positive terms) and degradation terms (negative terms) in the four differential equation
system. Thus, in all, the stochastic algorithm comprises four production reactions and
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Fig. 4 Time cources diagram of P1 with different time delay τ . a τ = 0; b τ = 5; c τ = 12. Initial
conditions: M1(0) = 0.3, M2(0) = 0.35, P1(0) = 0.4, P2(0) = 0.3
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Fig. 5 Time cources diagram of P1 with different initial conditions. a M1(0) = 1, M2(0) = 1, P1(0) =
1, P1(0) = 1, b M1(0) = 0.1, M2(0) = 1, P1(0) = 1, P2(0) = 1
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four degradation reactions. Throughout the course of a stochastic simulation, reactions
are individually fired according to their time-evolving propensities using the Gillespie
algorithm. Stochastic simulations thus track the varying numbers of all species in the
system as a function of time as discrete event reactions individually fire. Finally, the
time delay is implemented by straightforward lookup into the running history of the
simulation.

Figure 6 shows the result of two extended time-delayed stochastic simulations (pur-
ple and red trajectories) overlapped onto the time-delayed integration of the 4 ODE,
or 4D deterministic system (cyan line). For guidance, we also show the instantaneous
2 D nullclines obtained from setting dmRNA1/dt = dmRNA2/dt = 0 (solid red
and green lines), thus collapsing the four-dimensional system into a two-dimensional
system by setting the messenger RNA sub-manifold at rest. We also show the 4D
nullcline constructions (red and green circles overlapping the 2D nullclines). Actual
methods on how these are computed can be found in Xi and Turcotte (2015) and
would not be repeated here for brevity. The intersections of the two 2D nullclines
define the locus of the 2-dimensional instantaneous system being a rest on the phase
plane (dX1/dt = dX2/dt = 0). These three fixed points are labeled #1, #2 and #3.
From Xi and Turcotte (2015), points #1 and #3 are stable nodes, and point #2, the
middle point, is a saddle node. These fixed points are deterministic delay-free fixed
points of the dynamics that we use to pin and contrast the discussion of the delayed
stochastic system behavior.

First we notice that the deterministic time-delayed four-dimensional system track
projected on the X1 and X2 plane (the cyan line) roughly oscillates between points
#1 and #3. This is consistent with our earlier findings that time delay bifurcates an
otherwise bistable system into an oscillatory one. The direction of rotation is counter-
clockwise.

Turning our attention to stochastic effects, the purple stochastic track was started
at the same location on the phase plane where the deterministic track (cyan trajectory)
originates. We adjusted the level of noise in the system by setting the total number
of molecules per unit of concentration in the system to � = 10,000. � actually has
units of volume and is thus a convenient way to dial-in a desired noise level based on
how big the sample is, while maintaining the concentrations the same. An invariant
concentration is obtained by scaling both the number of molecules Nmolec and the
volume Vsystem of the system by the same factor, so the ratio Nmolec/Vsystem does not
change. While concentrations are invariant under any �, the random fluctuations on
these concentrations are expected to vary approximately as 1/sqrt(Nmolec). For more
details the reader is referred to Tsimring and Lev (2014) and to the supplement of
Çağatay et al. (2009). So, for � increasing, the size of the fluctuations will decrease.
Because the number of molecules per unit concentration in the system is high, but not
overly high, the observed fluctuations are significant, but they not overwhelming the
dynamics; see Fig. 6.

The main points conveyed in Fig. 6 are twofold. Firstly, the stochastic simulation,
particularly in the early phase of the purple track where the number of molecules
is high, closely follows the deterministic track, even in regions of the phase space
where the shape of the deterministic parent trajectory is complex. But much more
importantly, secondly, in the neighborhood of point #1, we observe the purple track

123



Dynamic Analysis of the Time-Delayed Genetic Regulatory… Page 25 of 30 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[X 1] (−)

[X
2] (

−)
1

2

3

Fig. 6 Stochastic behavior. Green and red solid lines are nullclines of the instantaneous (no-delay) deter-
ministic system, as explained in the text. Points #1, #2 and #3 are fixed points of the instantaneous system:
stable, saddle and stable, respectively. The cyan line depicts the time-delayed four-dimensional system
integration. The direction of rotation is counterclockwise. The purple trajectory is a delayed stochastic sim-
ulation initiated at the same starting location as the deterministic simulation (cyan line). The red trajectory
is another delayed stochastic simulation, and this one initiated within the basin of attraction of point #3.
Initially the red trajectory moves in the direction from 3 to 1 (as seen on the upper branch of the coun-
terclockwise loop) but it soon hops to the lower branch, and progresses in the direction from 1 to 3. Both
stochastic trajectories become trapped in the vicinity of their respective destinations (point #1 and point #3)
despite the deterministic delayed systems being oscillatory (cyan line). Stochastic simulations are run with
� = 10,000 imparting modest noise to the system (Color figure online)

dwelling indefinitely by essentially hopping back and forth from an inward going
direction to an outward going direction to point #1. We can understand how this
behavior is happening because, in this region of phase space near point #1, the inward
and outward flow directions are very close to each other (Fig. 6); in the pinching part
of the looping track. Effectively, in vicinity of point 1, the stochastic system hops back
and forth in direction inward and outward to point #1. In short, the noisy system is
dynamically and stochastically trapped to the neighborhood of point 1.

The second stochastic simulation, the red track, was started closer to and in the basin
of attraction of and above point #3. We see that initially this trajectory actually moves
away from point #3, settling onto the outbound flow of the oscillating trajectory (upper
branch of the loop). But, eventually and randomly, the stochastic system jumps back
over onto the deterministic flow (lower branch of the loop) that propel deterministic
tracks to move the system toward point #3. As the stochastic simulation progresses
further, the inward and outward flows become closer and closer to each other on the
phase plane, similar to the case of the neighborhood of point #1, described above.
Hence, again, the system essentially dwells in the neighborhood of the fixed point,
as it hops back and forth in direction inward and outward of point #3. Hence, the
noisy system is again dynamically and stochastically trapped, but this time, to the
neighborhood of point 3.
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Figure 6 thus demonstrates a key and unexpected behavior imparted by molecular
noise: Whereas the delayed deterministic system oscillates beyond the Hopf as shown
described earlier, the equivalent stochastic delayed system will nevertheless remain
bistable because noise effectively imparts a stabilizing effect through the mechanism
explained above. In short, interestingly, molecular noise actually stabilizes an other-
wise oscillating system. To our knowledge, the description of this behavior is original.

We have also numerically studied two limits: � = large(100,000) and � =
small(100). In the small � limit, the system is quickly overwhelmed by noise (the
number of particles in the system is small) and much of the interesting dynamics is
blurred away. In the large� system,wehaveverified that the stochastic system’s behav-
ior, as it approaches the so-called thermodynamic limit (Gillespie 2007), as expected
more and more approximates that of the deterministic system. Large � simulations
require many thousands of hours to perform. Data are omitted for brevity.

6 Characterization of the Orbit

In this section, we briefly consider the effect of nonlinear terms in the normal form of
the orbit equation. Following the lead of Molnár et al. (2016), we see that the stability
and amplitude of a limit cycle born at the Hopf bifurcation depend on the cubic term in
the expansion, but further away from the bifurcation, the possibility that higher-order
terms (quintic,. . .) would modify the amplitude and/or would even contribute new
dynamical behavior such as a fold cannot be excluded; it depends on the details of the
problem (Molnár et al. 2016, Molnár 2020). Casting the problem into normal form is
beyond the scope of this paper. So in order to study this nonlinear dynamical aspect,
and in order to determine its potential impact on our analysis, we generated multiple
time curves of the oscillations for τ just past the Hopf bifurcation and further away
from it, both for short and essentially extremely large time intervals. In all cases, the
attained amplitude of oscillations and frequency is the same. The data are not included
here, for the sake of saving space, but it is available for perusal if needed. We therefore
conclude that, for the problem we studied, such possible buildup of nonlinear effects
has no impact.

7 Discussion and Conclusions

In the first part of this paper, we study the effect of two time delays on a mutu-
ally inhibitory core gene regulation circuit. In the case of instantaneous regulation
(no-delay), we expect the dynamics to be bistable. Since delays are inherent to the
spatial and mechanistic regulation of cells, we focus on the influence of time delays
in five special cases and thus obtain the conditions for the stability and the bifurcation
of system (1) to oscillations. We derive a formula to determine the direction of the
Hopf bifurcation and the stability of the periodic solutions by applying the normal
form method and the center manifold theorem. In the absence of time delays, bistable
behavior occurs in system (1), so the selection of initial values is very important. A
separatrix passing through the middle saddle point divides the respective basins of
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attraction of the two stable fixed points on either side. By adding time delay to the
dynamics of the regulation, the bistable behavior can be transformed into oscillatory
behavior. Delay and initial values combine to affect the dynamic behavior of the sys-
tem. Thus, complex dynamic behavior appears. Numerical simulations are performed
to illustrate and confirm the analytical results.

In the second part of the paper, we turned out attention to the effect of biological
noise on the system. In many cases, noise could be naively expected to destabilize
an otherwise stable system. But our main point in the deterministic analysis was that
delays induce oscillations via Hopf bifurcation in an otherwise bistable system. The
delayed system is already “unstable” through oscillations. So, what then could the
effect of unavoidable biological noise on the now oscillatory system be? Somewhat
un-intuitively, our numerical simulations, based on the robust Gillespie algorithm
augmented to account for delays, showed that the fluctuations actually stabilize the
otherwise oscillatory system. By carefully studying the developing stochastic histo-
ries, we established themechanism for this. In fact, near destabilized fixed points of the
dynamics, noise allows the delayed stochastic system to essentially hop from inward
going flow to outward flow and back. Thus, noise actually re-stabilizes a de-stabilized
point. Hence, while the delayed deterministic dynamics bifurcates to the present oscil-
latory behavior, the stochastic dynamics acts to recover bistability, in effect, negating
the effects of delays.

Delays are inherent to transport and other mechanisms in the cell and are thus not
only un-avoidable, but because they are part of how biological systems work, they
cannot reasonably be ignored. The same is also true about fluctuations in the con-
centrations of molecular regulators of living systems. In this work we chose perhaps
the simplest and best example there can be of a meaningful core biological con-
trol circuit—the “bistable switch”—to first demonstrate its inherent fragility to time
delays under a deterministic analysis. Bistability is a dynamic feature that enables
commitment to one of two possible states. But here, we explicitly show that time
delays impact the behavior of the system by breaking this commitment and permitting
switching back and forth between otherwise stable states. Further, and perhaps even
more importantly, we show that unavoidable biological noise somewhat unintuitively
restores the bistable behavior of the system.

In further work, we plan to study in more details the efficiency of the noise stabi-
lization process for it cannot be excluded that noise may allow, with some probability,
occasional exit from the re-stabilized point. And clearly the size of the noise will have
an impact. We also plan to explore the impact of the number of bifurcations and of
another unavoidable feature of realistic biological circuits, timescale separation, in
this and particularly in other progressively more complex systems. And of course,
propelled by the results we obtained in this analysis, we plan to continue the study of
how biological noise impacts dynamical behavior. We expect this work to continue
helping shedding light on how and particularly why Evolution selects certain gene
regulation circuit topologies over others.
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0

)
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2
2
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0

)

+2B2
1 A0C0

+4B2A0B0C0 + A2
0

(
2B0B2 − B2

1

)
− C2

0

(
B2
1 − 4A0A2

)
− 4A2A

3
0

+2B2
0 A0A2,

n8 = −2B2
0 A0C0 − A2

0

(
2C2

0 + B2
0

)
− B2

0C
2
0 + A4

0 + C4
0 ,

M∗
1 = c1P

∗
1 /d1,

P∗
2 =

(
−bb21d1

(
s2n + sn

(
p∗
1

)n
) /

(
−r1c1P

∗
1 s

n − r1c1
(
P∗
1

)n+1 + aa1
(
P∗
1

)n
d1
)

− sn
)(1/n)

,

M∗
2 = c2P

∗
2 /d2.
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