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Abstract

Inevolutionary biology, the speciation history of living organisms is represented graph-
ically by a phylogeny, that is, a rooted tree whose leaves correspond to current species
and whose branchings indicate past speciation events. Phylogenetic analyses often
rely on molecular sequences, such as DNA sequences, collected from the species of
interest, and it is common in this context to employ statistical approaches based on
stochastic models of sequence evolution on a tree. For tractability, such models neces-
sarily make simplifying assumptions about the evolutionary mechanisms involved. In
particular, commonly omitted are insertions and deletions of nucleotides—also known
as indels. Properly accounting for indels in statistical phylogenetic analyses remains a
major challenge in computational evolutionary biology. Here, we consider the problem
of reconstructing ancestral sequences on a known phylogeny in a model of sequence
evolution incorporating nucleotide substitutions, insertions and deletions, specifically
the classical TKF91 process. We focus on the case of dense phylogenies of bounded
height, which we refer to as the taxon-rich setting, where statistical consistency is
achievable. We give the first explicit reconstruction algorithm with provable guaran-
tees under constant rates of mutation. Our algorithm succeeds when the phylogeny
satisfies the “big bang” condition, a necessary and sufficient condition for statistical
consistency in this setting.
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1 Introduction

Background In evolutionary biology, the speciation history of living organisms is
represented graphically by a phylogeny, that is, a rooted tree whose leaves correspond
to current species and branchings indicate past speciation events. Phylogenies are
commonly estimated from molecular sequences, such as DNA sequences, collected
from the species of interest. At a high level, the idea behind this inference is simple: The
further apart in the tree of life are two species, the greater is the number of mutations
to have accumulated in their genomes since their most recent common ancestor. In
order to obtain accurate estimates in phylogenetic analyses, it is a standard practice
to employ statistical approaches based on stochastic models of sequence evolution
on a tree. For tractability, such models necessarily make simplifying assumptions
about the evolutionary mechanisms involved. In particular, commonly omitted are
insertions and deletions of nucleotides—also known as indels. Properly accounting for
indels in statistical phylogenetic analyses remains a major challenge in computational
evolutionary biology.

Here, we consider the related problem of reconstructing ancestral sequences on a
known phylogeny in a model of sequence evolution incorporating nucleotide substitu-
tions as well as indels. The model we consider, often referred to as the TKF91 process,
was introduced in the seminal work of Thorne et al. (1991) on the multiple sequence
alignment problem. (See also Thorne et al. 1992.) Much is known about ancestral
sequence reconstruction (ASR) in substitution-only models. See, e.g., Evans et al.
(2000), Mossel (2001), Sly (2009) and references therein, as well as Liberles (2007)
for applications in biology. In the presence of indels, however, the only previous ASR
result was obtained in Andoni et al. (2012) for vanishingly small indel rates in a sim-
plified version of the TKF91 process. The results in Andoni et al. (2012) concern what
is known as “solvability”’; roughly, a sequence is inferred that exhibits a correlation
with the true root sequence bounded away from O uniformly in the depth of the tree.
The ASR problem in the presence of indels is also related to the trace reconstruction
problem. See, e.g., the survey Mitzenmacher (2009) and references therein.

A desirable property of a reconstruction method is statistical consistency, which
roughly says that the reconstruction is correct with probability tending to one as the
amount of data increases. It is known (Evans et al. 2000) that this is typically not
information-theoretically achievable in the standard setting of the ASR problem. Here,
however, we consider the taxon-rich setting, in which we have a sequence of trees with
uniformly bounded heights and growing number of leaves. Building on the work of
Gascuel and Steel (2010), a necessary and sufficient condition for consistent ancestral
reconstruction was derived in Fan and Roch (2018, Theorem 1) in this context.

Our results In the current paper, our interest is in statistically consistent estimators
for the ASR problem under the TKF91 process in the taxon-rich setting, which dif-
fers from the “solvability” results in Andoni et al. (2012). In fact, an ASR statistical
consistency result in this context is already implied by the general results of Fan and
Roch (2018). However, the estimator in Fan and Roch (2018) has drawbacks from
a computational point of view. Indeed, it relies on the computation of total variation
distances between leaf distributions for different root states—and we are not aware
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of a tractable way to do these computations in TKF models. The main contribution
here is the design of an estimator which is not only consistent but also constructive
and computationally tractable. We obtain this estimator by first estimating the length
of the ancestral sequence and then estimating the sequence itself conditioned on the
sequence length. The latter is achieved by deriving explicit formulas to invert the map-
ping from the root sequence to the distribution of the leaf sequences. (In statistical
terms, we establish an identifiability result.)

Further related results For tree reconstruction problems in the presence of indels,
Daskalakis and Roch (2013) devised the first polynomial-time phylogenetic tree
reconstruction algorithm. In subsequent work, Ganesh and Zhang (2019) obtained a
significantly improved sequence-length requirement in a certain regime of parameters.
There is also a large computational biology literature on methods for the co-estimation
of phylogenetic trees and multiple sequence alignment, typically without much the-
oretical guarantees. See, e.g., Warnow (2013) and references therein. Note that our
approach to ASR does not require multiple sequence alignment.

Outline In Sect. 2, we first recall the definition of the TKF91 process and our key
assumptions on the sequence of trees. We then describe our new estimator and state the
main results. In Sect. 3, we give some intuition behind the definition of our estimator
by giving a constructive proof of root-state identifiability for the TKF91 model. The
proofs of the main results are given in Sect. 4. A summary discussion is given in
Sect. 5. Some basic properties of the TKF91 process are derived in Sect. A. A table of
notations that are frequently used in this paper is provided in Sect. B for convenience
of the reader.

2 Definitions and main results

Before stating our main results, we begin by describing the TKF91 model of Thorne
etal. (1991), which incorporates both substitutions and insertions/deletions (or indels
for short) in the evolution of a DNA sequence on a phylogeny. For simplicity, we
follow Thorne et al. and use the F81 model (Felsenstein 1981) for the substitution
component of the model, although our results can be extended beyond this simple
model. For ease of reference, a number of useful properties of the TKF91 model are
derived in Sect. A.

2.1 TKF91 process

We first describe the Markovian dynamics on a single edge of the phylogeny. Con-
forming with the original definition of the model (Thorne et al. 1991), we use an
“immortal link” as a stand-in for the empty sequence.

Definition 1 (TKF91 sequence evolution model on an edge) The TKF91 edge process
is a Markov process Z = (Z;),>0 on the space S of DNA sequences together with an
immortal link “e”, that is,
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S:="e"® | J{A.T.C.G}", (1
M=0

where the notation above indicates that all sequences begin with the immortal
link (and can otherwise be empty). We also refer to the positions of a sequence
(including nucleotides and the immortal link) as sites. Let (v, A, u) € (0, 00)3 and
(a4, 7, e, ) € [0, 00)* with mg + 77 + ¢ + 716 = 1 be given parameters. The
continuous-time Markovian dynamic is described as follows: If the current state is the
sequence X, then the following events occur independently:

e (Substitution) Each nucleotide (but not the immortal link) is substituted indepen-
dently at rate v > 0. When a substitution occurs, the corresponding nucleotide is
replaced by A, T, C and G with probabilities w4, 77, m¢ and 7, respectively.

e (Deletion) Each nucleotide (but not the immortal link) is removed independently
atrate u > 0.

e (Insertion) Each site gives birth to a new nucleotide independently at rate 1 > O.
When abirth occurs, a nucleotide is added immediately to the right of its parent site.
The newborn site has nucleotides A, 7, C and G with probabilities w4, 77, T¢
and 7, respectively.

The length of a sequence X = (e, x1,x2,...,x)) is defined as the number of
nucleotides in X and is denoted by |X| = M (with the immortal link alone corre-
sponding to M = 0). When M > 1, we omit the immortal link for simplicity and
write X = (X1, X2, ..., Xp).

The TKF91 edge process is reversible (Thorne et al. 1991). Suppose furthermore that
0<A<pu,

an assumption we make throughout. Then, it has an stationary distribution I1, given

by
. A (MY
e (l u) (M) .lj[ﬂx'
for each ¥ = (x1,x2,...,xy) € {A,T,C,G where M > 1, and [1(“ e ) =
( - &). In words, under IT, the sequence length is geometrically distributed and,
conditioned on the sequence length, all sites are independent with distribution
(To)oe{A,T,C.G)-

The TKF91 edge process is a building block in the definition of the sequence
evolution model on a tree. Let T = (V, E, p, £) be a phylogeny (or, simply, tree),
that is, a finite, edge-weighted, rooted tree, where V is the set of vertices, E is the
set of edges oriented away from the root p, and ¢ : E — (0,4 00) is a positive
edge-weighting function. We denote by 97 the leaf set of 7. No assumption is made
on the degree of the vertices. We think of 7" as a continuous object, where each edge
e is a line segment of length £, and whose elements y € e we refer to as points. We
let "7 be the set of points of T. We consider the following stochastic process indexed
by the points of T'.
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Definition 2 (TKF91 sequence evolution model on a tree) The root is assigned a state
X, € &, which is drawn from the stationary distribution IT of the TKF91 edge process.
The state is then evolved down the tree according to the following recursive process.
Moving away from the root, along each edge e = (u, v) € E, conditionally on the
state X, we run an independent TKF91 edge process as described in Definition 1
started at X, for an amount of time £, ,). We denote by X y the resulting state at
y € e. We call the process (f(},)yerr a TKF91 process on tree 7.

Our main interest is in the following statistical problem.

2.2 Root reconstruction and the big bang condition

In the root reconstruction problem, we seek to estimate the root state X o based
on the leaf states )}aT = {)}U : v € 9T} of a TKF91 process on a known tree 7.
More formally, we look here for a consistent estimator, as defined next. Fix mutation
parameters (v, A, u) € (O 00)? with A < w and (7a, 77, 7, ng) € [0, 00)*
and let {Tk = (VK Ek, pk, Ek)}k>1 be a sequence of trees with [d7%| — + co. Let
Xk = (X )yer . be a TKF91 process on T* defined on a probability space with
probab1l1ty measure P.

Definition 3 (Consistent root estimator) A sequence of root estimators
k
F: ST = 8,
is said to be consistent for the TKF91 process on (T*) if

—yk | =
liminf P | Fi (Xf) = Xb | = 1.

The mutation parameters and the sequence of trees are assumed to be known; that is,
the estimators F; may depend on them. On the other hand, the leaf sequences X

are the only components of the process X that are actually observed.

As shown in Fan and Roch (2018), in general a sequence of consistent estimators
may fail to exist. Building on the work of Gascuel and Steel (2010), necessary and
sufficient conditions for consistent root reconstruction are derived in Fan and Roch
(2018, Theorem 1) in the context of bounded-height nested tree sequences with a
growing number of leaves, which we refer to as the taxon-rich setting. These con-
ditions have a combinatorial component (the big bang condition) and a stochastic
component (initial-state identifiability, to which we come back in Sect. 3). To state the
combinatorial condition formally, we need a few more definitions:

o (Restriction) Let T = (V, E, p, £) be a tree. For a subset of leaves L C 9T, the
restriction of T to L is the tree obtained from 7" by keeping only those points on
a path between the root p and a leaf u € L.

o (Nested trees) We say that {T*}x is a nested sequence if forallk > 1, T¥"isa
restriction of 7%, Without loss of generality, we assume that [97%| = k, so that
T¥ is obtained by adding a leaf edge to T*~!. (More general sequences can be
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U3
(%

x*

Fig.1 On the left side, Tk (s) is shown for the tree T* on the right, where the subtree Tk is highlighted

AA&A\ ......

Fig.2 A sequence of trees {TX e (from left to right) satisfying the big bang condition. The distance from
v to the root is 2™

obtained as subsequences.) In a slight abuse of notation, we denote by ¢ the edge-
weight function for all k. For y € I'7, we denote by £, the length of the unique
path from the root p to y. We refer to £,, as the distance from y to the root.

e (Bounded height) We further say that {T%}; has uniformly bounded height if

h* = suph* < + o0, (2)
k

where /¥ := max{¢, : x € 9T*} is the height of Tk,
e (Big bang) Foratree T = (V, E, p,{), let

T(s)={yelr:t, <s}

denote the tree obtained by truncating 7" at distance s from the root. We refer to
T (s) as atruncation of T . (See the left side of Fig. 1 for an illustration.) We say that
a sequence of trees {7} satisfies the big bang condition if, for all s € (0, 4 00),
we have |8Tk(s)| — 400 as k — + oo. (See Fig. 2 for an illustration.)

In words, the big bang condition ensures the existence of a large number of leaves
that are “almost conditionally independent” given the root state, which is shown
in Fan and Roch (2018) to be necessary for consistency.

Finally, we are ready to state our main combinatorial assumption.

Assumption 1 (Taxon-rich setting: big bang condition) We assume that {T};
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1. Is a nested sequence of trees with common root p;
2. Has uniformly bounded height; and
3. Satisfies the big bang condition.

We record the following consequence of Fan and Roch (2018, Theorem 1) (see Sect. 3):

Under Assumption 1, there exists a sequence of root estimators that is consistent
for the TKF91 process on {Tk}k.

However, this result is essentially existential and that sequence of estimators is in
general not directly computable [see Section 5.2 in Fan and Roch (2018, Theorem 1)
for the details of the estimator]. The main contribution here is the design of a sequence
of estimators which are not only consistent but also explicit and computationally
tractable. This is a first step toward designing practical estimators with consistency
guarantees.

Important simplification Without loss of generality, we can assume that all leaves
are at height #*. This can be achieved artificially by simulating the TKF91 process
from the original leaf sequences up to time 4* and using the output as the new leaf
sequences. We make this assumption throughout the rest of the paper, that is, from
now on

0, = h*, YvedTk, Vk.

Alternatively, one could make use of the conditional law of the sequences at height 4 *
given the sequences at the leaves of TX; however, this would unnecessarily complicate
the presentation of our estimator.

2.3 Main results

In our main result, we devise and analyze a sequence of explicit, consistent root estima-
tors for the TKF91 model under Assumption 1. We first describe the root reconstruction
algorithm.

Root reconstruction algorithm The input data are the mutation parameters
(v, A, n) € (0, oo) and (wa, 7, e, ) € [0, oo)4 with TA+ 77 +7c + 76 = 1
and, for k > 1, the tree T* together with the leaf states {X :v € aTk}. Our root
reconstruction algorithm has three main steps: To control correlations among leaves,
we follow (Fan and Roch 2018) and extract a “well-spread” restriction of Tk (step 1);
then, using only the leaf states on this restriction, we estimate the root sequence length
(step 2) and finally the root sequence itself (step 3). The intuition behind the construc-
tion of the estimator is discussed in Sect. 3.
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We fix ¢t; = j for all j (although we coulduseany 0 < #; <1, <--- < +00).!
The following functions will help simplify some expressions:

1 — oG-
n(t) = m,
(I—yn@) e ™A —e™)+ (1 —e ™ —n@)]

’

¢(t) = T

Y(t) = (1—yn@)e W,

where y = A/u. Note that the function 7 (¢) is in fact the probability that a nucleotide
dies and has no descendant at time ¢. (See Thorne et al. 1991.) For simplicity, we write

nj=nh*+1)), ¢j=¢kh*+1;) and ¥; =Y h* +1;), ©)

where recall that 4* was defined in (2). We use the notation [[x]] for the unique integer
such that [[x]] — 1/2 < x < [[x]] + 1/2. Finally, we let T{!, be the subtree of T*
rooted at z.

Root estimator
Our estimator F  will depend on a fixed chosen s € (0, #*) and on the index k of
the tree.

e Step 1: restriction

— Fix s € (0, h*) and denote dT*(s) = {z1, ..., zm}, Where m = |dT*(s)|.
— For each z;, pick an arbitrary leaf x; € BTIIL].

— Set T*5 to be the restriction of T to {x1,...,xm}. See Fig. 1 where m = 3.
e Step 2: length estimator

— Compute the root sequence-length estimator
o 31Xyl — (e )
m = v n— A ’
veaThs

e Step 3: sequence estimator

— Compute the conditional frequency estimator

‘ 1
ftap=— 37 p% @) ®)

vedThs

! The choice of ¢ ;s affects the constants in our quantitative bounds, but we have not tried to optimize them
in the current work.
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forlsjg[l//}k ando € {A, T, C, G}, where

] ) |
PE) =10 p@[1 = (O)] + v > =) (1)) ™ + 70y 0(0),

i=1

(6)
when X = (xi)l.)i .
— Set U to be the M ¥ x 4 matrix with entries
Ujor = £250) — 0 ¢ [1 = 1] = 70 v 1y %
set W to be the M* x M* diagonal matrix whose diagonal entries are {1} j”; kl;

.....

M*—1
1 n1 n% nlAk
M*—1
Lom om oy
Vf|,m,tﬁk = . 5
. 2 Mk—1
L ng« Mipe -+ Mgk

where recall that n;, ¢; and ¥; were defined in (3).

— Define Fk’s(iaTk) to be an element in {A, T, C, G}Mk such that the ith site
satisfies

Fis (Xope )| €argmax { (V' lU),, 0 € (A, T.C.G}|. (8)
[Frs (%or )], { |

If there is more than one choice, pick one uniformly at random.

Statement of results Finally, our main claim is Theorem 1, which asserts that the
root estimator we just described provides a consistent root estimator in the sense of
Definition 3. Recall the sequence space S defined in (1).

Theorem 1 Suppose {T*}y satisfies Assumption 1. Let (sy)x be any sequence such that
sk > 0and sg | 0ask — 400, and let F, := Fy 5, be as defined in (8). Then, { Fy}x
is a sequence of consistent root estimators for {T*}y.

In the more general context of continuous-time countable-space Markov chains on
bounded-height nested trees (Fan and Roch 2018), consistent root estimators were
shown to exist under the big bang condition of Assumption 1 when, in addition, the
edge process satisfies initial-state identifiability, i.e., the state of the process at time 0
is uniquely determined by the distribution of the state at any time ¢t > 0. (In fact, these
conditions are essentially necessary; see Fan and Roch 2018 for details.) Moreover,
reversibility of the TKF91 process together with an observation of Fan and Roch
(2018) implies that the TKF91 process does indeed satisfy initial-state identifiability.
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In that sense, Theorem 1 is not new. However, the root estimators implicit in Fan
and Roch (2018) have a major drawback from an algorithmic point of view. They
rely on the computation of the total variation distance between the leaf distributions
conditioned on different root states—and we are not aware of a tractable way to do
these computations in the TKF91 model. In our main contribution, we give explicit
root estimators that are statistically consistent under Assumption 1. Specifically, our
main novel contribution lies in step 3 above, which is based on the derivation of explicit
formulas to invert the mapping from the root sequence to the distribution of the leaf
sequences. Moreover, our estimator is computationally efficient in that the number
of arithmetic operations needed scales like a polynomial of the total input sequence
length. See Sect. 3 for an overview.

In a second novel contribution, we also derive a quantitative error bound. Through-
out this paper, we let P* be the probability measure when the root state is x. If the root
state is chosen according to a distribution IT, then we denote the probability measure
by P!, Finally, we denote by PPy, the conditional probability measure for the event
that the root state has length M.

Theorem 2 (Error bound) Suppose {T*}; satisfies Assumption 1 and {Fy s}, are the
root estimators described in (8).
Then, for any € € (0, 00), there exist positive constants {C i}?: | such that

P [Fis (R # X < e+ Crexp (0T 6))) + Cas )

foralls € (0, h*/2] and k > 1.

More concretely, if we seek an error probability of at most, say, 3¢ where € > 0, then
we pick

. e h*
s <min{—, —
C; 2

and construct root estimator F s as described in (8). Theorem 2 guarantees that
PN [Fk,s(x’ng) ” Xj;] <3¢

whenever k is large enough such that

1 Cy
AT (s)| > —In | — ).
| (S)l_c2 11(6)

3 Key ideas in the construction of the root estimator
In our main contribution, we give explicit, computationally efficient root estimators

that are consistent under Assumption 1. The estimators were defined in Sect. 2.3. In this
section, we motivate these estimators by giving an alternative, constructive proof of
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initial-state identifiability in the TKF91 process. At a high level, Theorems 1 and 2 are
then established along the following lines: The big bang condition ensures the existence
of a large number of leaves whose states are “almost independent” conditioned on the
root state, and concentration arguments imply that the sample version of the inversion
formula derived in Lemma 2 is close to the root state. See Sect. 4 for details.

The key ideas are encapsulated in the following lemmas about the edge process—
that is, there is no tree yet at this point of the exposition. Let [Ey;[|Z;|] be the expected
length of a sequence Z after running the TKF91 edge process for time ¢, starting from a
sequence of length M. Recall the definition of pg (t) in (6). We will show in Lemma 1
that p? () is equal to the probability of observing the nucleotide o € {A, T, C, G} as
the first nucleotide of a sequence at time ¢, under the TKF91 edge process with initial
state X. Formally, let Z; (1) denote the first nucleotide of the sequence Z at time ¢ and
let {Z;(1) = o} be the event that this first nucleotide is o.

Lemma 1 (Distribution of the first nucleotide) The probability that o is the first
nucleotide at time t is

PY(T(1) = o) = pd (1), (10)

forallo € {A, T, C, G}, sequence X € S andtimet € (0, 00), where p% (1) is defined
in (6).

Proof We use some notation of Thorne et al. (1991), where a nucleotide is also referred
to as a “normal link” and a generic such nucleotide is denoted “x”. We define

pr = pi(t) := P, (normal link “x” survives and has k descendants including itself),

[T

p,il) = pl(cl)(z) := P, (normal link “x” dies and has k descendants),

p,({z) = pl(cz) (1) := P (immortal link “ e ” has k descendants including itself).
These probabilities are explicitly found in Thorne et al. (1991, Eqgs. (8)—(10)) by
solving the differential equations governing the underlying birth and death processes:

pa(t) =e (1 —yn)lyn®)]*!
p @) = (1 — e — @)1 — yn)lyn®"~" forn > 1,
(1) = (1 — yna)lyn@1~!

po(t) =0
p (1) = n@)
pe (1) =0.

Let K, be the event that the first nucleotide Z; (1) is the descendant of the immortal
link “ e, and let K; be the event that the first nucleotide is the descendant of v; for
1 <i < |v|. By the law of total probability,

- - |ﬁ‘ -
P (Z(1) =0) =P (L) =0, K)+ Y P'(T() =0, k). (1)

i=1
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We now compute each term on the RHS. In the rest of the proof of Lemma 1, to
simplify the notation we set n := 71 (z).

We have that P (Z;(1) = 0 | Ks) = 74, because any descendant of the immortal
link corresponds to an insertion and any inserted nucleotide is independent of the other
variables with distribution (w4, 77, ¢, 7G). We note that Pﬁ(lC.) =1- piz) =y,
because Ko occurs if and only if “ e ” has at least two descendants including itself.

Hence,
PY(Z;(1) = 0, Ka) = 75 ¥, (12)

For 1 <i < |v], K; is the event that the normal link v; either survives or dies but
has at least 1 descendant, while the offspring of all previous links die. Further, let S;
be the event that v; survives, which has probability e /. Then,

v 2 Dyi—1_— i—1 —
PY(Ki N S) = pi (pg ) e = (1 =y e,

since p%z) is the probability that the immortal link has exactly 1 offspring which is itself,

( (Dyi—1
Po )

is independent of the previous events. Moreover, we have PV(Z,(1) = o | K; N S;) =

fvio» Where

is the probability that all {v; };._:11 were deleted and left no descendant and S;

fij = fij@®) =m;(1 — e V) + e—vtl{i:”
is the transition probability that a nucleotide is of type j after time ¢, given that it is of

type i initially. (Recall from Definition 1 that v > 0 is the substitution rate.) Letting
Sf be the complement of S;, then

P NS ==y Y p | = —ymn ™t —e =,
k>1

and IP’U(I,(l) =0 |K; NS) = 7. Therefore,

PY(Z (1) =0, K;)
=P(Z,(1) =0 | Ki N SHP (K N S;) + PP (T, (1) = o | K; N SE)PY(K; N SF)
= —ymn'" (fooe ™ + 11— —p). (13)
Putting (12) and (13) into (11),
15|
P (Z(1) = 0) = mayn+ Y [ =ymn ™ (fuae™ + 75 (1 =™ = )]

i=1
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9]
= —yme™™ 13 0" fuo
i=1
1 — plvl
+ (= ym (1= — e ——

+ 77(1)/77,

which is exactly (10) upon further rewriting

9 9]

Iv\
_ —n _
Y 0 fuo =1 (1—e ”’) ”’} L=y~

i=1
The proof of Lemma 1 is complete. O

Building on Lemma 1, our second lemma regarding the edge process gives a con-
structive proof of initial-state identifiability. Recall that we set; = j.

Lemma 2 (Constructive proof of initial-state identifiability) For any h* > 0, the fol-
lowing mappings are one-to-one and have explicit expressions for their inverses:

(1) The mapping CD;ll*) : Zy — Ry defined by
(1)
). (M) = Ep[1Zp+]].

(i) The mappings dDh* H{A, T, C, G — [0, 11*"™ defined by

+t1,... . h iy

2) 2y — .
Pty iy ) = (pg (" + tl))ae{A,T,C,G}, l<j<M’ (14)
for any X with |X| = M > 1.

Proof (i) The sequence length of the TKF91 edge process is a well-studied stochastic
process known as a continuous-time linear birth—-death—immigration process (|Z;|)>0.
(We give more details on this process in Sect. A.) The expected sequence length, in
particular, is known to satisfy the following differential equation:

d
E]EM“IIH =—(u—VEm[IZ:]]+ A

with initial condition Ey;[|Zg|] = M, whose solution is given by

1-—
Il = &V (M) := MB, + y(l — ﬂ’), (15)

where B, = e"#»" and y = ﬁ Solving (15) for M, we see that <I>fl) is injective
with inverse

(16)

@My () = 1 <Z vy - ﬁz)) .
B

I—y
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(ii) For ®@, we make the following claim regarding the probability of observing
o as the first nucleotide of a sequence at time ¢ under the TKF91 edge process starting
at X with |x| > 1.

Recalling the functions ¢; and v; defined in (3), we have, by Lemma 1,

M
pIh* 1) =75 i [1=n}] + ¥ Y M=oy 0 + moym, (A7)
i=1

forallo € {A,T,C,G}and 1 < j < M, where M = |x|. We then solve (17) for
X=(x)ef{A T, C,GM. System (17) is equivalent to the matrix equation

H=WVY?, (18)

where W and V are the M x M matrices defined in Sect. 2.3, and

1. Y¥ is the M x 4 matrix whose entries are Iy xj=0}s and
2. H is the M x 4 matrix with entries

Hjo = pih* +1)) =7, ¢ [1 —=n}'] — wov nj.

It is well known that the Vandermonde matrix V is invertible [see, e.g., Gautschi
(1962, Theorem 1)], so we can solve the system (18) to obtain

y*=v'eu'lpg. (19)

Sequence X € {A, T, C, G}M is uniquely determined by Y*. Hence, from (19), we
get an explicit inverse for the mappings @;l* 1y sy defined in (14).
The proof of Lemma 2 is complete. O

Heuristically, steps 2 and 3 in the root estimator defined in Sect. 2.3 are the sample
versions of the inverses of <I>§ll*) and @222 411"+, - Thatis, we replace the expectation

3 e o 1% ‘ . .
Ez/[|Zn+1] and probabilities (p} (h* + t]))ge{A’T’C’G}’ I<j<M with their correspond-
ing empirical averages—conditioned on the observations at the leaves. The reason
we consider several “future times” hA* 4 t, ..., h* 4 tp is to ensure that we have
sufficiently many equations to “invert the system” and obtain the full root sequence,
as described in Lemma 2 (ii) and step 3 of the root estimator.

4 Proofs

To prove Theorem 2 (and Theorem 1 from which it follows), that is, to obtain the
desired upper bound (9), on

P [ Fis (X0 # X5 = Y [ A (X0 # 3] M@, (20)
xeS
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we first observe that from the construction of F  in Sect. 2.3, if the estimator is wrong,
then either the estimated length is wrong or the length is correct but the sequence is
wrong. Let F (M ) denote the estimator in (8) when M M* = M. We have

PP [ Frs (REp0) # 3] = P [(Fs (Rbp0 # 31 0 (5 5 131
+ P [(Frs(Rep) # Ry 0 (115 = 17])]
=P[5 7]+ P[RR £5]. e
for all x € S\ {“ e ™}, where recall that P* denotes the probability law when the
root state is X and Py, denotes the probability law when the root state has length M.
The proof is therefore reduced to bounding the first and second terms on the RHS

of (21), which are formulated as Propositions 1 and 2, respectively, in the next two
subsections. To simplify the notation, throughout this section we let X = X*.

4.1 Reconstructing the sequence length

In this subsection, we bound the first term on the RHS of (21), which is the probability
of incorrect estimation of the root sequence length. Proposition 1 is a quantitative
statement about how this error tends to zero exponentially fast in m := [dT*(s)|, as
k — ocoands — O.

Proposition 1 (Sequence length estimation error) There exist constants C1, C2 €
(0, 00) which depend only on h*, i and A such that

Py (M* # M) < 2exp (— o |8Tk(s)|> FC M+ 1)s

foralls € (0,h*/2], k € Nand M € N.

Outline of proof Fix k > 1,5 > 0,and m := |8Tk(s)|. Recall that
A
B =e WM and y ==,
"w

and that the definition of the length estimator is
Mk = l Z |)_é |e(M*)»)S + e a _e(M*K)S)
m - v w—A ’
vedTk.s

which (up to rounding) is a linear combination of the sequence lengths at the leaves of
the restriction 7%% . To explain this expression, we note first that the expected sequence
length after running the edge process for time 42* is a function of the sequence length

M at the root, specifically d>(1) (M), where we used the notation defined in Lemma 2.
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We can estimate the latter from the sequence lengths at the leaves of the restriction
using the empirical average

1 -
At == % 0 IX

vedTks

whose expectation is <I> (M ). Lemma 2 then allows us to recover M approximately
by inversion and roundlng. Specifically, by linearity of 1) and Eqgs. (15) and (16),

_ _ 1 -

(@)@ = @) = 31X
vedTks

> @7 (1%0)
vedThs

U5, vA =B
> —(|Xv|——
= B I—y
vedTks

-y (|iv|e<ﬂ—k>h* S (et — 1)) :
m nw—A

vedTks

|-

S|~

—

Finally, we see that M Mk [[(<I>,(11*)) L(A%5)]]. We show below that A¥* is concen-

trated around its mean d>;l*) (M), from which we deduce that M * is concentrated around
M. One technical issue is to control the correlation between the sequence lengths at
the leaves of the restriction. See below for the details.

We first state as a lemma the above observations. Throughout this section, we use
a generic sequence-length process (|Z;|);>0 defined on a separate probability space
from X*. Tts purpose is to simplify various expressions involving the law of sequence
lengths.

Lemma 3 (Concentration of A% suffices)

IP’M(M]‘#M)SPM<|AI"S—VM| > ﬁ;) (22)

forall M > 0, where

1 — By«
w i= BullZyel) = My + L0, 3)

Proof All variables |}? o| for v € dTK have the same mean vy, where formula (23)
follows from (15). Formula (15) also tells us that the function M +— CI>(1)(M ) is linear
with slope Bj+. So if |[A¥S — vys| < Bp+/2 then the effect of the rounding is such that

[ @) AR = (@) o) 1= M
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Hence, the error probability satisfies (22). O

We move on to the formal proof, which follows fgom a series of steps. To bound the
RHS of (22), note that even though the variables | X, |, for v € ATk, are correlated,
the construction of T guarantees that this correlation is “small” as the paths to the
root from any two leaves of the restriction overlap only “above level s5.” To control
the correlation, we condition on the leaf states of the truncation X AT (s) = {)} v UVE
aT (s)}. By the Markov property,

i 1
]EM[Ak’S‘XaTk(S)]ZE Y Eg, [1Zw—sll, (24)
uedTk(s)

with @ A b = min{a, b}, where note that the sum here (unlike A% itself) is over
the leaves of the fruncation at s. We first bound the probability that the conditional
expectation (24) is close to its expectation vys. Then, conditioned on this event, we
establish concentration of AX* used on conditional independence. We detail the above
argument in steps A—C as follows. Properties of the length process derived in Sect. A
will be employed.

(A) Decomposition from conditioning on level s We first decompose the RHS of
(22) according to whether the sequence lengths at level s are sufficiently concentrated.
Fore > 0,8 € (0,00) and s € (0, h*), we have

Par (|A% —vm| 2 €) = Par (4% —vur| = €) 1 &) +Pu(s). (25
where
55’5 = ”EM[AI(’S’)?BT]((S)] - VM‘ > 8] (26)

is the event that the conditional expectation (24) away from its expectation vy by 4.
As we shall see, Proposition 1 will be obtained by taking § = €/2 = = /4.

(B) Bounding Py, (&5 ) The second term on the RHS of (25) is treated in Lemma 4.
Because of the correlation above level s, we use Chebyshev’s inequality to control the
deviation of the conditional expectation.

Lemma 4 (Conditional expectation given level s) For all M € Z, § € (0, o0) and
s € (0, h™), we have

Py (Ess) <872C (M + 1),

where C € (0, 00) is a constant which depends only on h*,  and X.

Proof By (24) and Chebyshev’s inequality,

Pyu(Es) =Py || Y Eg [Tl —mvy|>ms
uedTk(s)
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1
< — gV | D0 Eg [Zwll | (27)
uedTk(s)

where Var, is the variance conditioned on the initial sequence having length M. We
will use the following simple identity for square-integrable variables

B B
Var (Z W,,) <B Z Var(Wp) (28)

b=1 b=1

which follows from applying Cauchy—Schwarz to the covariance terms and then the
AM-GM inequality. Then, the variance above is bounded by

Vary |30 Bpg 1 Znesl] | < m? Vary [Em“Ih**s”]’ (29)
uedTk(s)

foranyu € o T*(s), where we used the fact that the |)? «|’s forall such u’s are identically
distributed.
By (15),

y (1 — Bpx—s) .

E|)?LI\[|Ih*—s|] = |5éu| Bh—s + 1y

So, plugging this last expression into the variance formula (53), we obtain

VarM( Xl [ Zn*—s!] )

= VarM <|)}u| ,Bh*—x + M)

-y

= BA_, Vary (X, )

_ g [y B B0+ 3y — 28 ya—ﬁmﬂ—mw>
m“( Iy LG

<Bh_ (1 =B)C(M+1)

<sC(M+1), (30)

where C € (0, 00) is a constant which depends only on 2*, i and A, where we used
that y < 1 and B; is decreasing in 7.
Putting (30) into (29), the desired inequality follows from (27). O

(C) Deviation of A% conditioned on &5 ¢ The remaining step of the analysis is

to control the first term on the RHS of (25) by taking advantage of the conditional
independence of the leaves of the restriction given X aT*(5)- BY the definition of Ak,
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the Markov property and conditional independence, that term is equal to

m

Z L®) — oy

i=1

= ﬁ), 31)

>

ieds,,

> me) ]PM (‘XBT"(S)

where the set G5 s (closely related to &s ) is defined as

Gss = {ii =, ...,up) €LY : ‘ZEMI.HI;,*_SH —va‘ > mS},
i

and {L @) JiL | are, under probability P, independent copies of the birth—death process
|Z;| run for time h* — s starting from {u; }/"_,, respectively. By the triangle inequality,
we have for all s € (0, h™),

> me)

> (L% By [T

i=1

m

Z L(ui) — mvy

i=1

A3l < max ]P’(

uegs

< max P
uegs

> m(e — 8))

m

< max IP’(
uegs

Z <L(“") — Bty — V(ll— ﬁh*_s)>

i=1 v

> m(e — 5)) . (32)

Write t = h* — s for convenience.

Each L®) above can in fact be thought of as a sum of independent variables
Li+3%_y L}; where L} and L; are the sizes of the progenies of the immortal link and
of the jth normal link, respectively, in the edge process started with sequence length
u and run for time ¢. The expectations of L; and L;’j are %ﬁfﬁ) and B;, respectively
[as can be seen from (15)]. Both L} and L, have finite exponential moments (see
Sect. A), and hence, by standard results in large deviations theory (see, e.g., Durrett
1996), we have the bounds

|

m

oo ri=p),

1

i=1 I-y

> m(e — 8)/21| < exp (— C/m) ,

and

m u; m m
PID DL =By ui| = m(e —8)/2 fexp(—C”Zui>,
i=1

i=1 j=1 i=1
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where C’ and C” are strictly positive constants depending only on &, A and 4*. Note
that the condition u € Gj _ is equivalent to

Z y(l —ﬂz) oyl <. 33)

i=1

where we used (15). So Y7L, u; isof the order of mM.Let§ = €/2 = B+ /4. Plugging
the two inequalities above back into (32), we see that there is a strictly positive constant
C"”, again depending only on u, A and h*, such that

(1) < exp (— C"m). (34)

Proof of Proposition 1 Take § = €/2 = B+ /4. Then, apply (34) to the first term on
the RHS of (25) and Lemma 4 to the second term on the RHS of (25). The proof of
Proposition 1 is complete by collecting inequalities (22) and (25). O

4.2 Reconstructing the root sequence given the sequence length

In this subsection, we bound the second term on the RHS of (21), which is the prob-
ability of incorrectly reconstructing the root sequence, given its length. Suppose we
know that the ancestral sequence length is M > 1, that is, the ancestral state is an
element of {A, T, C, G}M. Let Fk(/rl) denote the estimator in (8) when M* = M.
Formally, we prove the following. ’

Proposition 2 (Sequence reconstruction error) Forall M € 7., X € {A, T, C, G}M
with |x| = M and s € (0, h*),

PR (Rore) 23] < smep (2O ) s e

where C := = v-lw- 1||OO_>OO € (0, 00) depends on u, A, h* and {t]} and C €

(0, 00) is a constant which depends only on v, u and A.

j=r

Remark 1 Note that C depends implicitly on M.

Outline of the proof of Proposition 2 Fix k > 1,s € (0, h*), M > land{tj}j!’lzl.By

the construction of Fy, (M)

in (8), our sequence estimator Fk(ﬁ/l) ()?aTk) e{A, T,C,GM
is correct if it is close to the argmax over the columns of the matrix VW ~!U. By
the definitions of U, W, V, our analysis boils down to bounding the deviations of the
empirical frequencies f(f S (¢;) from their expectations p? (h* +1;). This is established

using similar arguments to that of Proposition 1. Here is an outline.

(i) From deviations of frequencies to deviations of matrices Recall that Y % is the
M x 4 matrix whose entries are 1(y;=y} and recall from (8) that

[Fk,s ()?ark)]i € arg max {(V_I\I’_IU)M o0 e{A,T,C, G}} ,

@ Springer



Statistically consistent and computationally efficient... Page210f32 21

a formula which is motivated by the proof of Lemma 2. Hence, F, k(A:I)(f( ark) = X
is implied by [|[V "W 10U — Y¥|lpax < 1/2, where [|Allmax := max; ; |a;;| is the
maximum among the absolute values of all entries of A. Because we assume that M
is known for the purposes of this analysis, the matrices V and W are known, while U
depends on the data (Consult Sect. 2.3 for the full definitions.) To turn the inequality
above into a condition on U, we note that

VU — Yl = IV = @V YY) nax
< IV N gmoo U =WV Y |y, (35)

where ||Allco—s 0o := max; Zj |a;jj| is the maximum absolute row sum of a matrix
A = (a;;). The above two facts give

PR (Rar ) # 7]

IA

PE[IVIO U = ¥ 2 1/2]

IA

PE[HU—Wanmxz L }
2V e

By definitions of U, ¥, V, we have
V)= an;_l,
so that

WVYD; =9 > =o'
i=1

and, by (17),
M .
p;(h* +1) =75 Q) [1 - lew] + ¥ Z lixj=0) nlj_l + oy n;
i=1

= [1—n}'] + (W VY, + oy

Hence, from (7),

U =WV Y linax = max_|f&5 (1)) — p2 (h* +1;)|.

max
oelA.T,C.G} 1<j<M

Therefore, we can bound the error probability in terms of the deviations of the empirical
frequencies f(f ¥ (t;) as follows:

P F (Rap) # 5]
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1

0e{A,T.C,G} j=1

(ii) Estimating deviation of frequencies We then bound each term on the RHS of
(36) using similar arguments to that of Proposition 1. As before, we let m := [dT*(s)|
for convenience. Recall from (5) that for ¢ € [0, c0)

A 1 g
S =— ) P} O

veaTks

All the terms p (t) for v € 9T**, have expectation pg (h* + t) under P*, by the
Markov property Therefore fore € (0, 00) and r € [0, 00), we have

B (50— g 01> ) =B (| Y | > (37)

veaTks

where
Yy = p%u(l‘) —pi(h* +1) forve aTks

are centered but correlated random variables under P*. To bound (37), we use the
same method that we used to bound (22), namely by considering the conditional
expectation of f’”(t) given the states XaTkm = {X : v € dT*(s)}, which by the
Markov property is equal to

E* [f;‘*f(t)‘f(w(s)] = % > pg (0" +1—s). (38)

uedTk(s)

As before, we first bound the probability of the event that this conditional expec-
tation is close to its expectation (which is also pZ (h* + 1)), and then conditioned on

this event we establish a concentration inequality for fé"" (1), based on conditional
independence. Since all y, are bounded between 1 and —1, we apply Hoeffding’s
inequality (Hoeffding 1963) for this purpose.

We detail the above argument in steps A—C as follows.

(A) Decomposition by conditioning on level s Similarly to (25), we have
P (1f52 @) = pfh* +1)] > €)
< P* ({If(f’s(f) — pZ(h* +1)| > e} N (]-'g’s)‘) +IP’2(J-‘(§’S), (39)

where

Fi = { £ [ff’s(t))}?aTk(s)] — P +t)( > a}. (40)

@ Springer



Statistically consistent and computationally efficient... Page230f32 21

As we detail next, we then control the two terms on the RHS of (39). The proof of
Proposition 2 will be completed by taking

1
€ =
21V om0

, 8:=¢/2 and =1 (4D)

in (39) and combining with (36).
(B) Bounding P, (F g’s)The second term on the RHS of (39) is treated in Lemma 5.

Lemma 5 (Conditional expectation given level s) There exists a constant C € (0, 00)
which depends only on X, v and u such that for all X € {A, T, C, G}M, 6 € (0, 00)
and s € (0, h™*), we have

sup PY(F{ ) < 872CMs,

te(0,00)

where event F, 5{ ¢ 1 defined in (40).

Proof Similarly to the proof of Lemma 4, we use Chebyshev’s inequality to control
the deviation of m™" 3", cori () p%u (h* +1—5).
Using (28),

Varg [ D0 pg (01 —s) | smVare [pg F+1-9)]. @)
uedTk (s)

foranyu € o T*(s), where we used the fact that the X « s for all such u’s are identically
distributed. Using the explicit formula (17) together with (28) again, for each u €
aT*(s) we have further

Vari [p;'} (h* 41— s)]
) |Xul _
= Varg | =75 p(h* +1 =) AX 4 (0" +1 -9 1w, 20y AT
i=1
<272 X (h* +1 — s) Varz [A'*u‘]
| X ‘
+ 292 1 —s) Varg | Y 1ix,=o) AT (43)

i=1

where A := n(h™ + t —s5). (Note that A here is distinct from that in Sect. A.)

The term Var;[A‘X“‘] can be bounded as follows. Let E, be the event that the
sequence never left state X along the unique path from the root to u. Then,

]P”?(Eu) =e M5 where gy = Mv+ (M + DA+ Mu,
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and

EF [A"?ul] = AMPY(E,) + E’?[A"?ul; E;].
Since A € [0, 1], we have E* [A'i”; E;] < P}(EZ) = 1 — e 95 and therefore

0= B[ ANl ] — AM emams < g — emams,
Similarly,
0 < B[ A2l] = g2Memaws < | — gm0,
The last two displays give
- - - e I\
Var;[Alxuw] - ]Ex[Azlxuw] _ (Ex[A|Xu\]>
S (AZMe—qMS + 1 _ e—qMS) _ (AM e—qMS)Z

— A2Me—qM S‘(l _ e—qMS) + 1 _ e—qMS

<2(1 —e M%), (44)
For the second variance term in (43), a similar argument gives

1Xu|
EY | D) lix=ap AT
i=1

M Xl
= (Z 1{)c,-:a} Al_l) IP>)C(Eu) + E* Z 1{Xu,,-:tr} Al_l; E; N {|Xu| = 1}
i=1 i=1

and

Xl . i o o
0=E | 3 liyme A5 ESOIR 2 1) | = 30 AP (B = ————

i=1 i=l1

because A € (0, 1) when 7* + ¢t — s > 0. The last two displays immediately give

s i S i 1 —e M5
OS]EX Zl{xu,iIU}Alil - (Z 1{x,-=o’} All>eqMS S ﬁ

i=1 i=1
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Similarly, we have

_ 5 ,
|Xu
0< E* Zl{XMl—G} Al 1 o (Z 1{xi:0}Ai_l> e qms
i=l1
[ (1% z
= E* Zl X=o) ATV ESO (Xl = 1)

IA

(ZAZ 1) Ec)
1 — e 9M5
(1—A4)2"°

From the above two displays, we obtain as in (44) the following estimate

| Xy

Varg | ) 1px,=0 AT | <
i=1

2(1 — e~4ms)

T (45)

From (43)—(45), we have

Var; [p%u (W +1— s)]

— e~ qMS
(1—A)?
YE(h* +1t—)

(1 —n(h* +1 —s))z}
—qms v?

<41 —e M%) [Ilqbllooﬂg + a_ y)z}

<Ci|Ms

<Am;pP(h +1—s)(L—e ) + 4y>(h* +1—5)

=4(1—e" ") [m? PP (h* +1—5) +

for all s € (0, h*) and ¢ € (0, 0c0), where C; € (0, 00) is a constant which depends
only on XA, v and p. In the second to last inequality, we used the following facts
that follow directly from the definitions: (i) n is a strictly increasing function with
1n(0) = 0and lim;_, » n(t) = 1/y, (ii) the supremum norm ||¢ ||~ < 00 and (iii) ¥ (¢)
is a decreasing function bounded above by 1.

The result follows by (42) and Chebyshev’s inequality. O

(C) Deviation of f~ k.3 (1) conditioned on Fj§ , By the Markov property and conditional
independence as in (32), the first term on the RHS of (39) is equal to

P ({10 = pat 401 = €] 0 (71,)
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:pr<

()_}i)tmzl EHS,:

< max P
Oiim €H

m
Zp%@i)(t) —mpZ(h* +1)| > me) P* <X3Tk(s) = (ﬁi);-":l)

i=1

m
3" 0% (1) — mpZ (h* +1)

i=1

> me) , (46)
where

m
Zpgi(h*+t—s)—mp§(h*+t)

i=1

Hy g = {(ii);":l eS":

< ma} 47)

and {Z@i)};"zl are independent copies of the TKF91 process starting from {y;}"" ,
respectively, evaluated at time #* — s. By the triangle inequality applied to the events
in (46) and (47), and then Hoeffding’s inequality (Hoeffding 1963), we have

> m(e — 8))

<2exp (—Zm (e — 8)2). (48)

m

) (p%@-)(f) —pL (" +1— s))

(46) <  max IP(
i=1

Oz €M

Proof of Proposition 2 As pointed out in (41), we will take

1
€= g1
2|1V o oo

, §:=¢€/2 and t=1;.

From (48), we have

—m
46) <2 exp( >
8IVIwZ

Taking ¢ € {t;} in (39), we see that the terms on the RHS of (36) are of the form

- ) . 1
P* [Ifé“(tj)—pf{(h + 1)) = e }

B e

—m -
= eXp<8 IV=1w-12 ) tE [f&]s]’

o0—> 00

—m 1 -2
<9 CMs, (49
= exp(suvwﬂn2 >+ <4||v1 \vlnowo) s @)

o0—> 00

where the last line comes from Lemma 5 and our choice of §. The proof of Proposition 2
is completed upon plugging into (36) and summing over ¢ and j. O
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4.3 Proof of Theorem 2

Applying Propositions 1 and 2 to the first and second terms on the RHS of (21),
respectively, we obtain constants C|, Cp, C3 € (0, co) which depend only on i*, u
and A such that

p¥ [Fk,s()?m) £ i] <2exp (— C |8Tk(s)|) +CMs

—|aT* .
+ 8M exp (%) + C3M*Cs (50)

foralls € (0, h*/2]andk € N,where M = [X|and C := [V ' w12 _ € (0, c0)
is a constant which depends only on u, A, ™ and {tj}ﬁ’lzl.
For any € € (0, 00), there exists M, such that Z{;: RN I1(X) < €/2. Hence,

ph [Fk,s(i(aTk) £ i(p] < {A‘;M }11»’? [Fk,s(f(m) ” i] M) + %

< max P* I:Fk’s()}grk) £ )?] +
{X: [x|<Me}

NI

From (50), there exist constants C4, Cs, C¢ € (0, 00o) which depend only on u, A,
h*, € and {r,}jﬁl such that

max  PF [Fk,s(iaTk) ” }] < Cyexp (— Cs |8Tk(s)|> + Css
{x:|x|<Me}

foralls € (0, h*/2] and k € N. Inequality (9) follows from this. The proof of Theorem
2 is complete.

4.4 Proof of Theorem 1

Theorem 1 follows from Theorem 2 upon taking sequences €, | 0 and s, | 0 and
then a subsequence k;,, — -+ oo such that the error in (9) goes to 0. This is possible
thanks to the big bang condition, which guarantees [dT*(s,,)| — + oo as k — oo.

5 Discussion

In this paper, we considered the ancestral sequence reconstruction (ASR) problem
in the taxon-rich context for the TKF91 process. It has been known from previous
work (Fan and Roch 2018, Theorem 1) that the Big Bang condition is necessary for
the existence of consistent estimators. In this paper, we design the first estimator
which is not only consistent but also explicit and computationally tractable. Our
ancestral reconstruction algorithm involves two steps: We first estimate the length of
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the ancestral sequence and then estimate the nucleotides conditioned on the sequence
length.

The novel observation that leads to the design of our estimator is a new constructive
proof of initial-state identifiability, formulated in Lemma 2, which says that one can
explicitly invert the mapping from the root sequence to the distribution of the leaf
sequences. This is nontrivial for evolutionary models with indels. Our estimator is
computationally efficient in the sense that the number of arithmetic operations required
scales like a polynomial in the size of the input data. Indeed, the length estimator is
linear in the number of input sequences and the matrix manipulations in the sequence
estimator are polynomial in the length of the longest input sequence.

We believe this is a first step toward designing practical estimators with consistency
guarantees, which are lacking under indel models. We leave the nontrivial task of
implementation and validation for future work. On the theoretical side, it would be
of interest to explore whether our techniques can be applied to more general indel
models, for instance those allowing multiple simultaneous insertions and deletions.

Acknowledgements W.-T. Fan’s work was supported by NSF Grant DMS-1149312 to SR and NSF Grant
DMS-1804492. S. Roch’s work was supported by NSF Grants DMS-1149312 (CAREER), DMS-1614242
and CCF-1740707 (TRIPODS).

A Some properties of the TKF91 length process

Recall the TKF91 edge process Z = (Z;);>0 in Definition 1, which has parameters
(v, A, ) € (0, oo)3 with A < pwand (w4, 7y, e, 7g) € [0, 00)* with mp + 77 +
nc + ng = 1. The sequence length of the TKF91 edge process is a continuous-
time linear birth—death-immigration process (|Z;|);>0 with infinitesimal generator
Qiiv1i = A+ik (fori € Zy), Q;i—1 = ipn (fori > 1) and Q; ; = O otherwise.
This is a well-studied process for which explicit forms for the transition density p;; (t)
and probability generating functions G;(z,t) = Z?io Dij (t)z/ are known. See, for
instance, Anderson (1991, Section 3.2) or Karlin and Taylor (1981, Chapter 4) for
more details. This process was also analyzed in Thatte (2006) in the related context
of phylogeny estimation.

We collect here a few properties that will be useful in our analysis. The probability
generating function is given by

1-B—zy —B) T[ 1—y }

Gi(z,t) =
@0 L—ﬁy—ﬂﬂ—ﬁ) [~ By —yz(—p)

fori € Z4 and r > 0, where
A
/3 = ,81‘ = e_(u“_)h)t and y = ;

Fix r > 0 and let ¢; (0) = E;[e’ IZ:1] be the characteristic function of |Z;| starting at i.
Then, for A # p (ie., y # 1),
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_ Bl — i _

=By =y =p) — 71— p)

= -y .
where

A=1-p—c"(y=p) and B=1-py—ye'(1-p).
Differentiating with respect to 6 gives

0lO) = (1 — y)Ai_lee{i(ﬂ - V)BB::-S + 1y (B — DA}

o AepA VUB;/:)Z +e’(y — By (B - 1)

= Bi_;;(Cee + De*), 52
where

C=U-NBU-yPi+y(1 =471 and D=(1-y)y -PyB—1.
Differentiating with respect to € once more gives

i—2,60
Bit3 [
x [ =DBB-y)+ (@ +2Ay —ﬂ)]}.

@!(0) = BA(C +2De%) + (Ce’ + De?)

The expected value and the second moment are given by

_iﬁ+L(ﬁ— 1) and

BBy +DHA - A=)yl +U- 2/3))/]
+
-y (1—y)?

Eil|Z,]] = ¢/(0) = i + rdl _f)

Ei1Z:1*] = ¢/ (0) = i’ +i

From these, we also have the variance

Var; (1Z;]) = Ei[|1Z,*] — (E:[|Z:1)?
287 4 /3(3y+1)(1—ﬂ)+(l—ﬁ)y[1+(12—2/3)y]
l—y 11—y

2
_(iﬁ+y(1—ﬁ))
L=y
ziﬂ(l—ﬁ)(1+3y—2ﬂ) n y(1—pB)(1—By)
l—y (1-p)?

(53)
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Consider the function

RAC)
1(0) = ¢ (0) —
Vi) = g0 = L
oy =p  Ce + De¥
= T T U= y)aB
_(s_ Cre’ ,+y(1—ﬂ)_c2e9+1)e29
- (I-maB)' " 1=y ~ (U-y)AB

_ ﬁ_ﬂ(l—y)ze" ;L YU=B  y( =B+ =By
h AB 1—y AB

=F@0)i+G©®)

where we wrote C = Cyi 4+ Co, with C; = B(1 — )3 and C = (1 — y)y (1 — B)?,
and the last line is a definition. Functions F' and G can be simplified to

— (& = DU =PI = By) =’y (¥ = B)]

F(0) = B (54)
— (e — _ _ ZB8)— (v —
G6) = € —Dyd-pHU -yl —p -y — I 55)
(1-y)AB

Since ¢; (0) = 1, we have ¥ (0) = 0. We consider the case u € (A, 00), that is,
y € (0, 1). Then, both A and B are strictly positive for all ¢ € [0, co), provided that
e’ < j1/x. Moreover, F and G are continuous on [0, /), smooth on (0, /) and
F(0)=G(0) =0.

B Notation

For the reader’s convenience, we list some frequently used notation here (Tables 1, 2
and 3).

Table 1 TKF91 edge process

7 = (Z1),~ in Definition 1 S State space of the TKF91 edge process, defined in (1)
|| Length of the sequence ¥ € S
A Insertion rate
I Deletion rate
v Substitution rate
I1 Stationary distribution
Y A e, 1)
B e—(u—=M1

pg (t)  Defined in (6) which, by (10), is the probability that the first
nucleotide of a sequence at time ¢ is o, under the TKF91
edge process starting at X
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Table2 TKF91 process on trees
Leaf set of tree T

I'r Set of points of tree T

Le Length of edge e

lg Length of the unique path from the root p to a point
gelr

T(s) Truncation of tree T' defined as {g € 't : £g < s}

X P Root state

X aT Leaf states

{Tk } Sequence of trees satisfying Assumption 1

n* Height of tree Tk

h* Uniform bound supy hk defined in 2)

Mk Root sequence-length estimator defined in (4)

Table 3 Probabilities, N
expectations and other notations P¥ Conditional probability measure when the root state

is X

P Conditional probability measure when the root state
has distribution

Py Conditional probability measure when the root state
has length M

EX Expectation with respect to PY

E™ Expectation with respect to P”

Ey Expectation with respect to Py,

[[x11 The unique integer such that
[xI=1/2 =x <[lx]]+1/2

Fi s Our root estimator constructed in (8)

anb min{a, b}
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