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Abstract
Maximum likelihood estimators are a popular method for scoring phylogenetic trees
to best explain the evolutionary histories of biomolecular sequences. In 1994, Steel
showed that, given an incompatible set of binary characters and a fixed tree topology,
there exist multiple sets of branch lengths that are optima of the maximum average
likelihood estimator. Since parsimony techniques—another popular method of scor-
ing evolutionary trees—tend to exhibit favorable behavior on data compatible with
the tree, Steel asked if the same is true for likelihood estimators, or if multiple optima
can occur for compatible sequences. We show that, despite exhibiting behavior sim-
ilar to parsimony, multiple local optima can occur for compatible characters for the
most parsimonious likelihood estimator. We caution that thorough understanding of
likelihood criteria is necessary before they are used to analyze biological data.

Keywords Models of evolution · Phylogenetic trees · Maximum likelihood
estimators · Maximum parsimony criteria

1 Introduction

A canonical question in biology is to find the optimal evolutionary tree, or phylogeny,
that explains the traits, or characters, of a set of species that are observed in the
present moment. These phylogenies provide the basis for future study, ranging from
understanding the spread of disease (Janies et al. 2011) to modeling co-evolution of
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species (Charleston and Perkins 2003), as well as being studied for their own right
as evolutionary histories (Bininda-Emonds et al. 2002). The specific order and path
that species take to develop their diverse characteristics are not easy to establish by
observing these organisms in the present day (Hillis et al. 1996).

There are several popular criteria for determining optimality of a phylogenetic tree
(whichwewill refer to as tree) with respect to a sequence of characters. These optimal-
ity criteria give an objective way to evaluate possible evolutionary histories, providing
a crucial tool in computational searches for the best tree. Parsimony approaches tend
to focus on the combinatorial properties of the problem, such as the shape (or graph-
theoretic ‘topology’) of the tree. More specifically, given a set of characters S and a
tree T , the maximum parsimony criterion seeks the tree shape that has the minimum
number of character state changes across its edges. In contrast, maximum likelihood
methods view the amount of change across each branch, as well as the tree shape,
as parameters to be optimized. For every sequence of observed characters S and a
tree T with continuous branch lengths y, the maximum likelihood criterion assigns a
score to every tree T , representing the likelihood (i.e., P(S|(T , y))) that the sequence
of observed characters S is generated by T under a model of evolution. While the
parsimony approach seems simpler, both problems are computationally hard (Foulds
and Graham 1982; Roch 2006).

At first glance, these differences in the optimality criteriamay look like interchange-
able technical details; however, the choice of the optimality criterion (and associated
parameters) can greatly affect which tree is chosen as best. Furthermore, these scores
are computed repeatedly during searches for the best tree topology, so improving these
computations will greatly speed up the search for the optimal tree. The situation is
further complicated by the use of estimation or heuristics, due to the computational
complexity of computing the exact answer. Thus, better understanding of these criteria
can improve computationally expensive searches for the best tree.

There are several variants of maximum likelihood that are defined differently and
thus yield different results. In particular, the states assigned to the internal nodes of
the tree are supplementary (“nuisance”) parameters that can be handled in different
ways. One approach is to take the average of all possible assignments to the internal
nodes as the maximum likelihood estimator. Following Barry and Hartigan (1987)
and Steel and Penny (2000), we call this implementation of the criterion maximum
average likelihood, MavL . Another variant, most parsimonious likelihood, denoted
MPL , instead takes the maximum score across all internal state assignments (see
Sect. 2 for definitions).

Under the maximum parsimony criterion, there is a unique score for each tree
shape, since only the shape of the tree, and not the branch lengths, are considered.
Furthermore, for the traditional maximum parsimony criterion, restricting to compat-
ible characters reduces the complexity of the problem of finding the optimal tree from
computationally hard to linear time (Gusfield 1991). It was suggested that the same is
true formaximum likelihood: that each tree shape has a single local optimumof branch
lengths for each character sequence (Fukami and Tateno 1989). Steel (1994) showed
that, for a fixed tree, there exist character sequences that yield multiple local optima
for MavL for that tree. That is, given a tree topology, there are multiple ways to assign
branch lengths that give a locally optimal MavL value. His elegant construction used
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sequences that were not compatible with the fixed tree. Chor et al. (2000) showed that,
for the tree on four leaves, there are character sequences which have one-dimensional
ridges of optima. More specifically, the branch lengths could be written as a function
parameterized by a single variable such that any choice of this variable gives rise to the
maximum MavL value. The sequences demonstrated there were not compatible with
the tree topology used in Chor et al. (2000), leading to the still-open question: given
compatible sequences for a fixed tree, is there a single local optimum for MavL (Steel
2011)?

This deceptively simple question has significant implications in the computational
search for the optimal tree under a maximum likelihood criterion. If there are multiple
local optima for data that are compatible with a given tree, then there exist sets of
sequences with enough local optima to distort the results of the common heuristic
search techniques. On the other hand, if we can show that there is a single set of
optimal branch lengths for the simplest situation in which the characters agree with
the tree topology, then simple search techniques guaranteed to find the optimum can be
used as building blocks for more complex situations. For example, it may be possible
to evaluate phylogenetic data in subgroups of compatible sequences and compose the
results into a final answer.

We show that, even for sequences compatible with a tree, there may exist multiple
local optima for the branch lengths of that tree for MPL . This surprising result for
MPL suggests that similar behavior might be possible for the MavL on compatible
sequence data, despite being much “smoother” when viewed as a function. We show
our results by characterizing the interplay of the individual character functions under
different choices of internal node state assignments, in that each assignment yields a
smooth function with a single optimum in the interior of the space.We further examine
constant characters (those which assign the same value to all the leaves of a tree)
and their effect on local optima for most parsimonious likelihood. As the number of
constant characters increases, the number of optima decreases and their locations shift
toward 1. This complements the results of Tuffley and Steel (1997) that the addition
of constant characters changes the optimum for maximum average likelihood.

2 Background

This section includes the definitions and notations that are used for the variants of
likelihood examined here [we follow those from Semple and Steel (2003) and Steel
and Penny (2000) whenever possible]. An X-tree T is an ordered pair (T , φ) where
T is a tree with a vertex set V and φ : X → V is a map with the property that for
each v ∈ V of degree at most two, v ∈ φ(X). A phylogenetic (X-) tree T is an X -tree
(T , φ) with the property that φ is a bijection from X into the leaves of T . We write
V (T ) to denote the vertex set of T and E(T ) to denote the set of edges or branches
of T . The vertex set V (T ) is partitioned into leaves and internal nodes, which we
denote L(T ) and I(T ), respectively. Given a leaf v of T , we will write xv to mean
the unique taxon in X that labels v. A two-state or binary character χ for X is a
function χ : X → {0, 1}. For a single character χ , a χ -labeling of T is a function
� : I(T ) → {0, 1} that assigns binary states to the internal labels of T . We say that a
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χ0 χ1 χ2 χ3 χ4 χuv

1 0 1 0 0 0 0
2 0 0 1 0 0 0
3 0 0 0 1 0 1
4 0 0 0 0 1 1

(a) The compatible characters (up to equiva-
lence) on the 4-leaf tree.

1

011

2

000

u v

3

000

4

000

(b) The 4-leaf unrooted tree
with leaves labeled by the char-
acter sequence S = χ0χ1χ1.

1

011

2

000

u

011

v

000
3

000

4

000

(c) One of the 8 possible state
assignments that extend the
characters in (b) to the inter-
nal nodes u and v.

Fig. 1 An example of a character sequence on the unrooted tree with four leaves

state assignment I = {�1, . . . , �k} extends a set of characters S = {χ1, . . . , χk} if �i
is assigns internal states to χi . We use χ� to denote the character χ extended by the
internal state assignment �.

We will focus on the 4-leaf unrooted tree, with the leaves L(T ) = {1, 2, 3, 4} and
internal nodes I(T ) = {u, v} shown in Fig. 1. Since there are only two internal nodes,
we will denote an extended character function χ� with � = (bu, bv) ∈ {0, 1}2 to
indicate the extension of character χ to assign u �→ bu, v �→ bv . In general, there are
2|I(T )| possible ways to extend the two-state character to the internal nodes of T . If
a character sequence S contains k characters, then there are 2k|I(T )| possible internal
state assignments for the sequence.

A split on a set of leaves L(T ) is a bipartition of the leaf set into two non-empty
sets A and B denoted A|B where A ⊆ L(T ) and B = L(T )\A. Given a tree T and an
edge e, the removal of e from T results in two connected components. This bipartition
of the leaves is a split. Two splits A|B and A′|B ′ are compatible if at least one of the
following intersections is empty: A∩B, A∩B ′, A′∩B, or A′∩B ′. Each binary character
induces a split on the leaves of the tree. For binary characters, this is a bipartition of
the leaves—those that have one state of the character versus the other. We will say that
the character is compatible with a tree if its induced split is compatible with all splits
induced by the tree. This technical definition can be interpreted informally as follows:
“a collection of characters is compatible if they could all have evolved on some tree
without any reverse or convergent transitions” (Semple and Steel 2003). Although a
split is defined to be a non-trivial bipartition, we allow inputs containing the constant
character, which assigns 0 to all v ∈ L(T ), inducing the trivial split on the leaves of
T .

There are many different models of evolution that can be used to evaluate the
likelihood of a tree that explains the data (Semple and Steel 2003). We focus on one
of the simplest: the 2-state symmetric Markov model of evolution. In this model, for
each branch i , we define ti to be the length of the branch, scaled by a fixed rate of
evolution. That is, ti is proportional to the expected number of state transitions along
edge i . Its value is a function of the branch length and the rate of evolution along i ,
and the range of ti is [0,∞). For the branch length ti , we define the probability P(ti )
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L(χ00
0 ,y) =

(1
2

)5
(1 + y1)(1 + y2)(1 + y3)(1 + y4)(1 + yuv)

L(χ00
1 ,y) =

(1
2

)5
(1 − y1)(1 + y2)(1 + y3)(1 + y4)(1 + yuv)

L(χ00
2 ,y) =

(1
2

)5
(1 + y1)(1 − y2)(1 + y3)(1 + y4)(1 + yuv)

L(χ00
3 ,y) =

(1
2

)5
(1 + y1)(1 + y2)(1 − y3)(1 + y4)(1 + yuv)

L(χ00
4 ,y) =

(1
2

)5
(1 + y1)(1 + y2)(1 + y3)(1 − y4)(1 + yuv)

L(χ00
uv ,y) =

(1
2

)5
(1 + y1)(1 + y2)(1 − y3)(1 − y4)(1 + yuv).

Fig. 2 The labeled likelihood functions for the compatible characters for the tree in Fig. 1 extended with
the 00 state assignment

that the character stays the same across the edge and probability Q(ti ) that it changes
across the edge as:

P(ti ) = 1

2
(1 + e−2ti ), Q(ti ) = 1

2
(1 − e−2ti ). (1)

These transitions are symmetric: the probability of that a character changes from 0 to
1 across a branch equals the probability of changing from 1 to 0. We change variables
to simplify the notation by setting yi = e−2ti . The range of each yi is [0, 1]. We use y
to refer to the vector (yi )i∈E(T ). Then, the likelihood that an observed character was
derived from T is given by:

L(χ�, y) =
(1
2

)|E(T )| ∏
i∈E(T )

(1 + (−1)δi yi ) (2)

where δi = 1 if χ�(u) 	= χ�(v) and 0 otherwise for i = (u, v) ∈ E(T ), modeling the
notion that state transitions across edges are unlikely under this model of evolution.

For the unrooted tree on four leaves given in Fig. 1, the vector y = (y1, y2, y3,
y4, yuv) corresponds to the edge lengths after the change of variables. Figure 1a lists the
six binary characters, up to equivalence, that are compatible with the tree. Letχ0 be the
character that assigns the same state to all of the leaves, i.e., the constant character. We
note that the constant character fits the definition above of binary characters (i.e., it is a
function from the leaves of T to {0,1}), though it is often not included in the character
set since it does not have two distinct states. We name the remaining characters by the
leaf on which they differ (for χ1, χ2, χ3, and χ4). The remaining compatible character
that has different labels for the leaves on opposite sides of the edge (u, v) we call χuv

. The labeled character likelihood functions for the compatible characters of the tree
in Fig. 1 with the internal nodes u, v assigned states (0, 0) are shown in Fig. 2.

When we fix an extension of the set of characters to all the internal nodes, we can
view this as inducing a single labeled likelihood function (see Fig. 3):
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I for all χ ∈ S such that LMP (S,y) = L(S, I,y) for all
y. This would imply that LMP has a single optimum on
[0, 1]|E(T )|.

(a) The case in which there is a single state assignment (b) The case in which there is no single individual like-
lihood function that “covers” all of the other optima for
all y, implying that LMP exhibits multiple optima, even
though each L(S, I,y) is shown to have a single optimum
in Lemma 6.

Fig. 3 A drawing showing several individual labeled likelihood functions, projected down to a single
component, and their interactions. The dashed line denotes the value of LMP, the maximum over all of the
individual functions at each point

Definition 1 Given a tree T and a sequence of characters, S = {χ1, . . . , χk}, on the
leaves of the tree, and an extension I = {�1, . . . , �k} of the character sequence to the
internal nodes, we define a labeled likelihood function for I to be the function

L(S, I , y) =
∏
�∈I

L(χ�, y), (3)

where y with components yi = e−2ti and ti the length of the branch i of the tree and
ti ≥ 0.

With this notation in mind, we can now formally define the variations of likelihood:
maximum average likelihood (MavL) and most parsimonious likelihood (MPL). To
compute the maximum average likelihood, we average over all of the possible internal
states. Given a tree T and a sequence of characters S = {χ1, . . . , χk}, the average
likelihood function can be written as

Lav(S, y) =
(1
2

)k ∏
χ∈S

∑
� extends χ

L(χ�, y), (4)

where S is the sequence (multiset) of characters and each � extends the character to
assign states to the internal nodes of T . For example, the data set S = {χ0, χ1, χ1}
from Fig. 1 has average likelihood function:

Lav(S, y) =
(1
2

)3(
L(χ00

0 , y) + L(χ01
0 , y) + L(χ10

0 , y) + L(χ11
0 , y)

)

·
(
L(χ00

1 , y) + L(χ01
1 , y) + L(χ10

1 , y) + L(χ11
1 , y)

)2
.
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Although we refer to S as a sequence of characters, all of our computations on S are
commutative, so we use multiset notation throughout the manuscript. 1

Barry andHartigan (1987) suggest another approach,most parsimonious likelihood,
where, instead of averaging the values over all possible state assignments at each point
y, the state assignment that gives the best score is chosen. This approach echoes that
of maximum parsimony, in that the best possible value under all state assignments is
chosen. Barry and Hartigan write “we call this technique most parsimonious because
the values of internal nodes are usually assigned to agree as much as possible with
neighboring nodes” (Barry and Hartigan 1987), and suggest that they expect this
technique to be easier to apply than maximum average likelihood. We find that this
does not seem to be the case (see Sect. 6). For a fixed underlying tree, T , we interpret
the description of most parsimonious likelihood as the function:

LMP(S, y) = max
I extends S

L(S, I , y) = max
I extends S

∏
�∈I

L(S�, y) (5)

where S is the observed sequence of characters on the leaves of the tree. We note
that there is not a bijection between the character sequences and the corresponding
labeled likelihood functions, since different internal state assignments can yield the
same labeled likelihood function. (We detail when labeled likelihood functions are the
same in Sect. 4.)

While maximum average likelihood averages the L(S�, y) values over all internal
state assignments � that extend S, most parsimonious likelihood chooses the best
internal state assignments for each character copy. Thus, it is consistent with Eq. 5 for
two copies of the same character to receive different state assignments for the internal
nodes of the tree. As we show in Sect. 4, each of these individual labeled functions has
at most one local optimum on [0, 1]|E(T )|. If its local optimum is not “covered”—that
is, exceeded in value—by the value of any other labeled function at that point, we call
it a “lump”.

Definition 2 Let T be a tree and S be a sequence of characters on the leaves of T . If y∗ is
a local optimum of labeled likelihood function L(S, I , y) on [0, 1]|E(T )| for some state
assignment I of S, then we call y∗ a lump of LMP(S, y) if L(S, I ′, y∗) ≤ L(S, I , y∗)
for all other internal state assignment I ′ 	= I , of S.

We show that each labeled likelihood function has at most one local maximum and
characterize the lumps in Sect. 4.

3 Multiple Optima

We include a running example to show the difference between the likelihood variants.
Wenote that unlike themaximumparsimony criterion,MPL takes the best internal state

1 Our goal with the use of the term “sequence” is to call back to the scientific process of obtaining obser-
vations in a continuous setting. We expect likelihood estimates to change as more samples are discovered
and characterized. We do not use the term to refer to unaligned DNA sequences for a single taxon.
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Fig. 4 The local maxima of the running example in Fact 4 ordered by their distance to the vector 1 and
increasing number of additional constant characters (along the y-axis)

assignments for each set of branch lengths, not a single best internal state assignment
for each tree shape.More specifically, given amultiset S of characters, the best internal
state assignment for each character is chosen tomaximize LMP(y) for each y.We show:

Theorem 3 For a phylogenetic tree T , there exists a sequence of compatible characters
S such that most parsimonious likelihood LMP(S, y) has multiple optima.

We demonstrate one such sequence in Fact 4; however, the character sequences that
exhibit this behavior are not difficult to locate. Most of the datasets we explore (using
the code described in Sect. 5) exhibit this behavior. In fact, according to Lemma 6, it
is possible to engineer datasets whose most parsimonious state assignment has a lump
on the interior of (0, 1)|E(T )|. Finally, we can generalize Fact 4 to larger trees, since
every likelihood function, as given by Eq. 2, can be rewritten as

L(χ�, y) =
(1
2

)|E(T )| ∏
i∈E1

(1 + (−1)δi yi )
∏
i∈E2

(1 + (−1)δi yi )

for any partitions E1, E2 of E(T ). Therefore, any extension to a larger tree that pre-
serves the labels on both sides of the five edges of the 4-leaf tree from Fig. 1 will retain
all of the lumps found in Table 1.

The example below, with constant characters, three copies of the characters, χ1 and
χ2 and five copies for the for the character, χuv , corresponding to the middle edge,
has multiple optima for their compatible tree (summarized in Table 1).

Fact 4 The most parsimonious likelihood function LMP(S, y) on dataset S =
{3χ1, 3χ2, 5χuv} has 17 distinct lumps in [0, 1]5, four of which occur strictly in (0, 1)5.
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Table 1 The 17 individual lumps of LMP(S, y) on dataset S = {3χ1, 3χ2, 5χuv} with their scaled LMP
and Lav scores

y log 25·11
LMP(S, y)

log 25·11
Lav(S, y)

∇ log 25·11Lav(S, y)

1
(

5
11 , 5

11 , 1, 1, 1
11

)
17.65 14.44 (−1.82, −1.82, 5.5, 5.5, −4.04)

2
(

5
11 , 5

11 , 1, 1, 0
)

17.61 14.8 (−1.55, −1.55, 5.5, 5.5, −3.77)

3
(

1
11 , 1

11 , 1, 1, 5
11

)
16.52 14.81 (−2.51, −2.51, 5.5, 5.5, −0.98)

4
(

1
11 , 0, 1, 1, 5

11

)
16.47 15.03 (−2.48, −2.33, 5.5, 5.5, −0.5)

5
(
0, 1

11 , 1, 1, 5
11

)
16.47 15.03 (−2.33, −2.48, 5.5, 5.5, −0.5)

6
(

5
11 , 5

11 , 1
11 , 1

11 , 1
)

10.07 6.54 (−2.12, −2.12, −3.26, −3.26, −0.79)

7
(

1
11 , 1

11 , 5
11 , 5

11 , 1
)

10.07 8.95 (−4.35, −4.35, 3.58, 3.58, −0.79)

8
(

1
11 , 0, 5

11 , 5
11 , 1

)
10.03 9.32 (−4.36, −3.79, 3.86, 3.86, −0.4)

9
(
0, 1

11 , 5
11 , 5

11 , 1
)

10.03 9.32 (−3.79, −4.36, 3.86, 3.86, −0.4)

10
(

5
11 , 5

11 , 0, 0, 1
)

9.98 7.18 (−1.55, −1.55, −3.77, −3.77, 0.0)

11
(

3
11 , 3

11 , 3
11 , 3

11 , 1
)

9.28 6.82 (−3.24, −3.24, 0.05, 0.05, −1.74)

12
(

9
11 , 1

11 , 1
11 , 1

11 , 7
11

)
6.82 7.07 (−0.78, −1.65, −2.18, −2.18, −0.92)

13
(

1
11 , 9

11 , 1
11 , 1

11 , 7
11

)
6.82 7.07 (−1.65, −0.78, −2.18, −2.18, −0.92)

14
(

9
11 , 1

11 , 0, 0, 7
11

)
6.73 7.52 (−0.17, −1.5, −2.69, −2.69, 0.0)

15
(

1
11 , 9

11 , 0, 0, 7
11

)
6.73 7.52 (−1.5, −0.17, −2.69, −2.69, 0.0)

16
(

9
11 , 1

11 , 3
11 , 3

11 , 5
11

)
6.33 7.12 (−1.7, −1.81, 0.55, 0.55, −3.12)

17
(

1
11 , 9

11 , 3
11 , 3

11 , 5
11

)
6.33 7.12 (−1.81, −1.7, 0.55, 0.55, −3.12)

Note that entries 12, 13, 16, 17 occur strictly on the interior of the domain of LMP. The third column
gives the scaled average likelihood value at each lump. The last column shows the maxima of LMP are not
maxima of Lav(S, y), which has nonzero gradient

In Fig. 4, the lowest row (y = 0) values of the right figure show the 17 local maxima
for our running example. Since it is difficult to visualize 5-dimensional space, we have
mapped the values to a line, ordered by their distance to the point 1 = [1, 1, 1, 1, 1].
The y-axis is indexed by the number of additional constant characters added. Adding
constant characters reduces the number of local maxima and moves them toward 1.
(We state this formally in Corollary 7.)

Lemma 5 Let χ0 : X → {0, 1} be the constant character, defined χ0(x) = 0 , ∀x ∈ X,
and let S be a sequence of characters that contains k0 > 0 copies of the constant
character, and for every y ∈ [0, 1]|E(T )|, let I be a state assignment that extends S
such that:

LMP(S, y) = L(S, I , y).
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Then, I has at least k0 copies of the zero state assignment defined �0(v) = 0 for all
v ∈ I(T ).

Proof From the definitions given in Sect. 2, we can write

L(χ
�0
0 , y) =

(1
2

)|E(T )| ∏
i∈E(T )

(1 + yi ).

Since log preserves order, we can also write

log L(χ
�0
0 , y) = |E(T )| log 1

2
+

∑
i∈E(T )

log(1 + yi ).

We can see from Fig. 1 that if we were to change any one of the internal state assign-
ments to 1, we would create a state change on three edges of T . If we were to set
all internal state assignments to 1, we would still have disagreements on all of the
edges incident to the leaves of T . Therefore, �0 is the only state assignment that
does not give rise to any disagreements on T . Therefore, since y ∈ [0, 1]|E(T )|, then
log(1 + yi ) ≥ log(1 − yi ), and since log preserves order,

L(χ
�0
0 , y) ≥ L(χ�

0 , y) (6)

for all � 	= �0, y ∈ [0, 1]|E(T )|. Then, it follows that, since �0 is the best state assign-
ment for a single constant character, then

L({k0χ0}, {k0�0}, y) =
k0∏
k=1

L(χ
�0
0 , y) ≥

k0∏
k=1

L(χ
� 	=�0
0 , y), (7)

where we use multiset notation for k0 copies of the constant character, and k0 copies
of the all-zero state assignment for those characters. Then, if S contains k0 copies of
the constant character, LMP(S, y) can always be rewritten as

LMP(S, y) = max
I extends S

(( ∏
� extends χ0

L(χ�
0 , y)

)
· L(S\{k0χ0}, I , y)

)

and then, by Eq. 7,

LMP(S, y) =
k0∏
k=1

L(χ
�0
0 , y) max

I extends S\{k0χ0}
L(S\{k0χ0}, I , y).

��
Therefore, for constant characters, if suffices to only check the single internal state

assignment when computing the most parsimonious likelihood.
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4 Characterizing Labeled Likelihood Functions

In this section, we analyze the individual labeled likelihood functions that are the
building blocks of the overall most parsimonious likelihood function LMP. While this
paper focuses on compatible characters, we note that we do not assume compatible
character sets for the results in this section.

In order to locate the extrema of an MP likelihood function given in Eq. 5, we
compute the common roots of the system of its first partial derivatives. We note that
a labeled likelihood function L(S, I , y) simplifies to a product of monomials in each
of the tree edge variables. This means that the likelihood function for character set S
and internal state assignment I that extends S is given by

L(S, I , y) = 1

2

|E(T )||S| ∏
i∈E(T )

(1 + yi )
pi (1 − yi )

ni , (8)

where pi+ni = |S| for all i ∈ E(T ). These values depend on internal state assignment
I and are obtained by resolving the δi functions in Eq. 2, which add one to pi if the two
endpoints of edge i agree and add one to ni otherwise. As such, pi and ni are uniquely
determined for each S and I . Further, pi is the total number of state agreements
over edge i ∈ E(T ) and ni is the total number of state disagreements. We note that∑

i∈E(T ) ni is the parsimony score for T with leaves labeled by S and internal nodes
by I . We let p be the vector of the values of pi and similarly n be the vector of the
values of ni .

Lemma 6 Every labeled likelihood function L(S, I , y) has a global maximum at y∗
with coordinates

y∗
i = pi − ni

pi + ni

where pi and ni satisfy Eq. 2 for I and for i ∈ E(T ) for pi , ni 	= 0.

Before we prove this claim, we point out that these optimal branch lengths are
intuitive and similar to the ranking obtained from the traditional maximum parsimony
criterion. Since pi gives the number of state agreements over an edge and ni gives the
number of disagreements, the value above is reminiscent of taking a consensus vote
along each edge. We expect edges with more state agreements to be considered more
likely under the evolutionary assumption that state transitions are rare.

Proof of Lemma 6 Let I be an internal state assignment with associated pi and ni for
i ∈ E(T ) and let |S| = k. We examine the following cases: (1) where pi , ni 	= 0, (2)
where pi = 0, and (3) where ni = 0.
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In Case (1), the first partial derivative of L(S, I , y):

∂

∂ yi
L(S, I , y) =

(
pi (1 + yi )

pi−1(1 − yi )
ni − ni (1 + yi )

pi (1 − yi )
ni−1

) 1

2k∏
j 	=i∈E(T )

(1 + y j )
p j (1 − y j )

n j

=
(
(pi − ni ) − (pi + ni )yi

) L(S, I , y)
(1 + yi )(1 − yi )

(9)

which means that ∂
∂ yi

L(S, I , y) = 0 lies on the hyperplane defined by:

yi = pi − ni
pi + ni

regardless of the other values of y j 	=i . In order to characterize this critical point, we
inspect the value of the Hessian matrix of second partial derivatives evaluated at this
point (Stewart 2005). This is a generalization of the second derivative test to the
multivariable case; if the Hessian can be shown to be negative definite at y∗, then y∗
is a maximum of L(S, I , y). Let ai = pi − ni and bi = pi + ni ; then let y∗

i = ai
bi
. We

can rewrite the first partial derivative, using ai and bi as:

∂

∂ yi
L(S, I , y) = ai − bi yi

1 − y2i
L(S, I , y) (10)

Using ai and bi to simplify notation, the second partial derivative is:

∂2

∂ y2i
L(S, I , y) =

( −bi
1 − y2i

+ 2yi (ai − bi yi )

(1 − y2i )
2

+ (ai − bi yi )2

(1 − y2i )
2

)
L(S, I , y)

When y = y∗, where yi = ai
bi
, we have:

∂2

∂ y2i
L(S, I , y)|y=y∗ = −bi

1 − (
ai
bi

)2
L(S, I , y∗)

Therefore, the second partial derivative with respect to yi is negative at y∗
i . Finally,

we observe that the cross partial derivatives of L(S, I , y) can be written generally as

∂2

∂ yi y j
L(S, I , y) = (ai − bi yi )

∂

∂ y j

(
L(S, I , y)

1 − y2i

)
,

demonstrating that the cross partial derivative also has a root at y∗
i = pi−ni

pi+ni
. Thus, we

can summarize that in Case (1) when pi , ni 	= 0, the i th row of the Hessian matrix of
second partial derivatives has a negative number on the diagonal and zero everywhere
else, when evaluated at y∗

i = ai
bi

= pi−ni
pi+ni

.
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Next, we examine Case (2) where pi = 0. In this case, the partial derivative of
L(S, I , y) is

∂

∂ yi
L(S, I , y) = −ni (1 − yi )

ni−1 L(S, I , y)
(1 − yi )ni

= −ni
L(S, I , y)
(1 − yi )

,

which only has roots at yi = 1, where L(S, I , y) has roots. The roots still exist for
the cross partial derivative, and the second partial derivative with respect to yi , given
below:

∂2

∂ y2i
L(S, I , y) = ni (ni − 1)

L(S, I , y)
(1 − yi )2

.

Since the i th partial derivative has no roots on the interior, then L(S, I , y) has no
critical point on the interior.

Finally, Case (3) is similar to Case (2). If ni = 0, then

∂

∂ yi
L(S, I , y) = pi (1 + yi )

pi−1 L(S, I , y)
(1 + yi )pi

= pi
L(S, I , y)
(1 + yi )

,

which puts the root at yi = −1, which is not in the domain of L(S, I , y). That root is
still there for all the different partial derivatives, so for the matching partial derivative,
we get

∂2

∂ y2i
L(S, I , y) = pi (pi − 1)

L(S, I , y)
(1 + yi )2

.

Otherwise, there are no critical points on the interior, because the i th component of y
lands on the boundary. ��

Therefore, in the case where pi , ni 	= 0, for all i ∈ E(T ), the function L(S, I , y)
has a single maximum in the interior. We know that it is a maximum, because each
row of the Hessian has a negative value on the diagonal and zero everywhere else;
thus, it is negative definite at

yi = pi − ni
pi + ni

.

The occurrence of a maximum on the interior of L is entirely determined by the
exponents on the monomials corresponding to the edges.We also know that the choice
of the internal state assignment changes the values of pi and ni .

Since the MP likelihood function, given in Eq. 5, is defined as the maximum over
all choices of internal state assignments, we can demonstrate sets of characters S such
that LMP has multiple local maxima on the interior. We note that the polynomials
can have negative roots, but these are not maxima of LMP, which is only defined on
y ∈ [0, 1]|E(T )| as given in Eq. 1.
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We showed in Lemma 5 that the best state assignment for the internal nodes for
the constant character is the all-zero assignment, which creates agreements across all
edges. Therefore, a consequence of Lemma 5 is that adding k0 constant characters to
a given dataset increases pi by k0 for all i ∈ E(T ). This change shifts the location of
y∗, the local maximum of L(S, I , y) for all I , regardless of the original values of S.
In the limit, the local maximum of L(S, I , y) shifts toward y = 1 as more constant
characters are added. As a corollary to Lemmas 5 and 6, we note that:

Corollary 7 Let S be a sequence of characters and let Sk = S ∪ {kχ0} be S with an
additional k constant characters. Then, let Mk be the set of lumps of LMP(Sk, y) for
a fixed tree T , then

lim
k→∞

∑
y∗∈Mk

|1 − y∗| = 0.

This behavior is illustrated in Fig. 4. The optima move toward 1 as constant characters
are added.

5 Implementation

As shown in Eq. 5, there are two components to computing most parsimonious like-
lihood. First, it is necessary to compute optima of the individual labeled likelihood
functions L(S, I , y); then, it is necessary to maximize L(S, I , y) at every y over all
state assignments I that extend the dataset S. For the first step, we leverage the result in
Sect. 4 to locate the optima of the individual labeled functions L(S, I , y). ByLemma6,
the location of the maximum y∗ of L(S, I , y) depends entirely on the resulting p,n
derived from the internal state assignment I . This requires no numerical root-finding
since the result is derived already.

The difficulty of computing LMP stems from the second step that requires finding
the internal state assignment with the maximum LMP value at each point. Even the
small dataset in Fig. 1 has |S| = 11 character copies, which means there are a total
of 22·11 = 4096 internal state assignments I that extend S on the tree in Fig. 1.
We explore this space by starting at a most parsimonious state assignment IMP that
extends S and changing one assignment at a time in a breadth-first order.2 For each
subsequent labeling I , we check if the value of L(S, I , y∗) at its maximum is bounded
above by L(S, I ′, y∗) for all state assignments I ′ that have been examined already. By
definition, amost parsimonious state assignment IMP has theminimum number of label
disagreements for that dataset, that is, the lowest value of

∑
i∈E(T ) ni corresponding to

IMP. Therefore, we expect it to have “competitive” values of LMP for yi > 0, allowing
us to filter out the maxima of individual labeled functions that are not lumps of LMP
in an efficient order. Note that none of the MPL extrema are optimal for MavL .

These techniques are implemented as a proof of concept in the mathematics soft-
ware system SageMath (Stein et al. 2015) and supplemented with scripts in Python
2.7 (Foundation 2010). Despite several optimization strategies, such as leveraging the

2 Note that IMP yields the first lump given in Table 1.
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result from Lemma 5 and choosing IMP as the starting point, the exhaustive search
performed by this methods exhibits poor runtime performance, as it takes around
5–10min to process the small example given in this paper. However, we chose this
trade-off to ensure that the method does not mis-identify any lumps. A more sophis-
ticated treatment of the combinatorics involved in converting state assignments into
p,n would be a necessary step in developing more efficient algorithms for locating
the optima for LMP. We encourage researchers interested in experimenting with our
code to contact us via email.

6 Conclusion and FutureWork

Our analysis ofmost parsimonious likelihood illuminates surprising behavior. Even for
character sequences that are compatible with the tree, multiple sets of branch lengths
give local optima for the estimator. Symmetry in the character sequences is a natural
way to have multiple optima. The number of lumps (including those on the boundary)
can be quite high, bounded by the number of possible internal state assignments of the
nodes. When given a single compatible character, the optima occur on the boundary of
the tree lengths. We show that the addition of constant characters to the dataset moves
the optima of the most parsimonious likelihood criterion in predictable ways, similar
to the work of Tuffley and Steel for maximum average likelihood (Tuffley and Steel
1997).

While we characterize the behavior of most parsimonious likelihood for compatible
characters, the original question of Steel (2011) of the behavior of maximum average
likelihood for compatible characters is still open. The difficulties in characterizing the
behavior of maximum average likelihood arise from the number of variables and the
high degree of the polynomials involved; however, if one is interested in the value of
Lav at a certain point, the computation is simple. We observe that most parsimonious
likelihood has the opposite problem: the behavior of the individual labeled functions
is known and their optima are simple to compute; however, we do not currently have
a method for computing LMP at a point that is not known to be an optimum of any
labeled function. This leads to the interesting computational problem of efficiently
finding and ranking the labeled likelihood functions with maxima that are closest to a
given point, which is necessary to evaluate LMP at that point.
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