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Abstract
Thehumanadaptive immune response is known toweaken in advanced age, resulting in
increased severity of pathogen-born illness, poor vaccine efficacy, and a higher preva-
lence of cancer in the elderly. Age-related erosion of the T cell compartment has been
implicated as a likely cause, but the underlying mechanisms driving this immunose-
nescence have not been quantitatively modeled and systematically analyzed. T cell
receptor diversity, or the extent of pathogen-derived antigen responsiveness of the T
cell pool, is known to diminish with age, but inherent experimental difficulties pre-
clude accurate analysis on the full organismal level. In this paper, we formulate a
mechanistic mathematical model of T cell population dynamics on the immunoclonal
subpopulation level, which provides quantitative estimates of diversity. We define dif-
ferent estimates for diversity that depend on the individual number of cells in a specific
immunoclone. We show that diversity decreases with age primarily due to diminished
thymic output of new T cells and the resulting overall loss of small immunoclones.
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1 Introduction

Immunosenescence underlies poor health outcomes in the aging population, including
diminished vaccine efficacy (Poland et al. 2010; McElhaney and Dutz 2008; Fleming
and Elliot 2008), increased susceptibility to disease (including irregular presentation,
intensified symptoms, longer recovery times, increased mortality) (Thomas-Crussels
et al. 2012), and aheightened risk of cancer (Ginaldi et al. 2001). This degradative aging
process of the human immune system originates from extensive fundamental changes
to the size and functionality of immune cell pools, and the structure of lymphatic
tissues in which they develop and operate (Salam et al. 2013).

Among the many changes associated with immunosenescence (Globerson and
Effros 2000), the T cell compartment is arguably the most damaged (Wick et al.
2000; Gruver et al. 2007). The T cell pool is comprised of subpopulations of antigen-
inexperienced naive cells and antigen-experienced memory cells, the latter of which
retain immunological record of previous infections. The human immune compart-
ment maintains∼ 1012 T cells in total, of which∼ 1011 are naive (Jenkins et al. 2009;
Trepel 1974). During aging, the population of naive T cells declines in overall size,
while the population of memory T cells undergoes extensive proliferation, thereby
reversing the balance of naive and memory T cells that had persisted at younger
ages (Globerson and Effros 2000; Fagnoni et al. 2000). The expansion of memory
T cells further enhances immunological memory of previously encountered antigens,
reinforcing existent immune protection. The remaining naive pool experiences loss of
T cell receptor (TCR) “structural diversity” (Goronzy et al. 2007, 2015b)—the num-
ber of distinct TCR complexes present across the entire naive pool. The diversity of
T cell clones, or “immunoclones,” characterized by the number of distinct TCR com-
plexes among the cell population, provides the extent of antigen specificity. Unique
TCR complexes are generated during T cell development in the thymus, via recombi-
nation of genes encoding the V and J domains of the TCRα chain and the V, J, and D
domains of the TCRβ chain, along with additional insertion and deletion of nucleotide
fragments (Murphy 2012). Combinatorially, a possible Ω0 ∼ 1015–1020 unique TCR
complexes may be assembled via this rearrangement process (Laydon et al. 2015), but
only Ω ∼ (0.05) × Ω0 of those rearrangements are functionally viable (Yates 2014),
as determined by positive and negative selection tests in the thymus, which screen for
appropriate reactivity to self-peptide/MHC molecules. Each TCR is activated by at
least one peptide fragment presented viaMHCmolecules on the surface of an antigen-
presenting cell; thus, loss of naive TCR structural diversity limits the number of new
antigens to which the full naive T cell pool can respond. Naive cells are also suspected
to suffer major functional deficiencies in aging, such as diminished binding affinity
and proliferative capacity after antigenic stimulation (Moro-García et al. 2013), which
have been studied mostly using murine models to date (Appay and Sauce 2014). Their
effects on human immune systems are not yet well understood but nonetheless beyond
the scope of this paper.

The total abundance of naive T cells, which inhabit both blood and lymphatic
tissue, can be reliably estimated from measurements in small samples (Westermann
andPabst 1990;Bains et al. 2009a).Recently,Westera et al. (2015) estimated an∼ 52%
decrease in the naive T cell population in aging. In contrast, accurate estimation of full-
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organism TCR structural diversity is currently impeded by experimental imprecision
and the inability to extrapolate small sample data to the full organism (Laydon et al.
2015). Experimentation typically entails DNA sequencing of the TCRα or—more
commonly—β chain, in particular the complementarity-determining region 3 (CDR3),
which is the site of TCR binding to antigenic peptide and most significant basis for
diversity (Murphy 2012).

Increasingly sophisticated sequencing and analysis methods have improved esti-
mates (Shugay et al. 2015; Oakes et al. 2017) for the lower bound on TCR diversity,
but direct estimation of TCR diversity remains a challenge due to various experimental
complications, such as the inability to detect rare clonotypes, sequencing errors, and
inaccurate measurement of clonotype frequencies resulting from inconsistencies in
polymerase chain reaction (PCR) amplification (Laydon et al. 2015). Predicting full-
organism TCR diversity from a small sample is typically formulated as an “unseen
species problem,” and one of many canonical solutions to such a problem is employed
in conjunction with experimental data (Chao 1984; Chao and Lee 1992; Colwell and
Coddington 1994), but the true relationship between sample and full diversity is fun-
damentally elusive.

Despite variations across experimental measurements of TCR diversity, its age-
related loss has been consistently observed. An early study conducted by Naylor et
al. (2005) predicted a TCRβ chain diversity of ∼ 2 × 107 that persisted in donors
through age 60, before dropping by two orders of magnitude to ∼ 2 × 105 at age 70.
More recently, Britanova et al. (2014) collected samples from donors of all ages and
observed an approximately linear decrease in TCRβ CDR3 diversity from ∼ 7× 106

in youth (6–25 years) to ∼ 2.4 × 106 in advanced age (61–66 years). Qi et al. (2014)
obtained a particularly high lower bound estimate of ∼ 108 unique TCRβ sequences
in youth (20–35 years), which declined two- to fivefold in advanced age (70–85 years).

Note that only the TCRβ chain is sequenced in these experiments. Sequencing of
both the α and β chains would potentially produce a more accurate measure of TCR
diversity, but the same experimental limitations preclude complete analysis. The mea-
surement of diversity is further complicated by the potentially large disparity between
structural diversity and “functional diversity”—that is, the number of antigens towhich
the T cell pool is capable of responding. Due to the potential for crossreactivity, in
which one TCR might respond to many structurally similar peptide fragments, it is
possible that actual TCR diversity is much higher than structural diversity indicates. It
has been speculated that one TCR might respond to as many as 106 different peptide
epitopes (Mason 1998).

To obtain lifetime estimates of TCR structural diversity and develop an informed
context for discussion of functional diversity,we introduce amechanisticmathematical
model of the generation and replenishment of the naive T lymphocyte pool from birth
through the end of life. Although experimental assessments of full-system informa-
tion remain challenging, measurements for the dynamics of each component related to
the naive T cell population can be found throughout the literature. Our mathematical
approach combines the knowledge of these individual components to study their inter-
play, leading to an understanding of the full-system dynamics. By extending previous
model studies of total cell counts (Mehr et al. 1996, 1997; Ribeiro and Perelson 2007;
Bains et al. 2009a, b; Hapuarachchi et al. 2013; Murray et al. 2003; Reynolds et al.
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2013), our multi-component formulation is able to efficiently track the total number
of distinct naive T cell clones, allowing for a full-system assessment of TCR structural
diversity.

2 Mathematical Models and Results

We develop our mathematical model by first constructing the equation governing the
total population size of the naive T cell pool in Sect. 2.1, through which we quantita-
tively constrain the primaryparameters of ourmodel using experimentalmeasurements
found in the previous literature. The model that describes the evolution of immuno-
clones is derived in Sect. 2.2, allowing us to define and estimate the diversity of the
naive T cell population in Sect. 2.3. In Sect. 2.4, we inspect the impact of sampling
on the estimate of immunoclone diversity, as in practice it is only possible to extract
a small fraction of the entire naive T cell population from a body.

2.1 Total Naive T Cell PopulationModel

There are three fundamental immunological mechanisms that sustain the naive T cell
pool: (1) export of mature naive T cells from the thymus, (2) peripheral prolifera-
tion, and (3) cell removal from the naive pool due to death or phenotypic changes.
These basic mechanisms constitute a birth–death–immigration process described by
the ordinary differential equation:

dN (t)

dt
= γ (t) + pN (t) − μ(N )N (t), (1)

where N (t) denotes the total naive T cell count, γ > 0 denotes the rate of thymic
output, p > 0 denotes the rate of proliferation, and μ(N ) > 0 denotes the rate of
population-dependent regulated cellular death or loss of naive phenotype.

While more complex feedback mechanisms have been proposed (Mehr et al.
1997), other experiments have shown that thymic export is independent of naive T
cell counts (Ribeiro and Perelson 2007; Berzins et al. 1998; Metcalf 1963) and it is
well established that the export rate consistently decays throughout the human lifes-
pan (Murray et al. 2003). The lifelong decline of thymic export is caused by thymic
involution and leads to the degradation of structural integrity and functional capacity
of the thymus with age (Steinmann et al. 1985). The age dependence of the thymic
export rate of newly trained naive T cells is often approximated by an exponentially
decaying function, γ (t) = γ0e−at , where γ0 > 0 is the maximum rate of thymic
output that arises in early years and a > 0 is the rate of decrease in thymic output.

The immune systems of vertebrates maintain a healthy amount of naive T cells
through complex homeostatic mechanisms, which include controlled production and
distribution of common gamma chain cytokines, particularly IL-7, to the naive
pool (Fry and Mackall 2005). IL-7 is secreted by stromal and endothelial cells in
the thymus, bone marrow, and lymphatic tissue, providing T cells with necessary
survival signals. In lymphoreplete conditions, competition for this limited resource
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regulates population size (Bradley et al. 2005; Tan et al. 2001; Vivien et al. 2001),
but in lymphopenic conditions, high levels of IL-7 resulting from low T cell counts
can even stimulate cellular proliferation. While IL-7 concentration may be explicitly
formulated in a mathematical model of the peripheral T cell population, as in the work
of Reynolds et al. (2013), most models incorporate IL-7 regulation implicitly in the
form of carrying capacity, assuming quick equilibration in a state of competition for
IL-7 in the presence of a given number of T cells. Such simplification commonly leads
to the dependence on total cell counts of both cell proliferation and cell death rates,
considering the cytokine’s dual role under lymphoreplete and lymphopenic conditions
described above. Our model assumes a cell count dependence in the cell death rate
only, focusing on scenarios of healthy aging, i.e., lymphoreplete conditions. We thus
assume a regulated N -dependent cell death rate of the form

μ(N ) = μ0 + μ1N θ

N θ + K θ
, (2)

where the first term, μ0 > 0, is the basal rate of cellular death. The second one
describes the IL-7-mediated regulation of cell death, with μ1 > 0 representing the
maximal increase to the death rate as N → ∞. The quantity K is analogous to a
“carrying capacity” and dictates the population at which signaling-induced death starts
to limit the population. We have shown that model predictions are not qualitatively
sensitive to the Hill coefficient, so without loss of generality we fix the Hill coefficient
θ = 2.

The constant rate of cellular proliferation p under healthy conditions is supported
by recent studies of Westera et al. (2015), showing nearly identical naive proliferation
rates at young and old ages during age-related nonlymphopenic loss of naive cells.
IL-7-induced proliferation can arise in unhealthy lymphopenic conditions typically
found in severe disease of the immune system (Brass et al. 2014), cytotoxic drug
use (Gergely 1999), radiation treatment (Grossman et al. 2015), or other abnormal
situations. These scenarios are, however, beyond the scope of our analysis.

Our model has six adjustable parameters, γ0, a, p, μ0, μ1, and K . The first four
are biologically inherent to the mechanism of T cell homeostasis and have been mea-
sured experimentally in humans and rodents. The last two have to be constrained via
parameter sweeps tomatch relevant experimental observations. Tonon-dimensionalize
Eqs. 1, 2, we use a−1 to rescale t and K to rescale N to find

dN ′

dt ′
= γ0

aK
e−t ′ + (p − μ0)

a
N ′
(
1 − μ1

(p − μ0)

N ′2

N ′2 + 1

)
(3)

which depends on the three independent parameters, γ0/(aK ), (p − μ0)/a, and
μ1/ (p − μ0), that control the qualitative behavior of our model. Specifically, the
parameter μ1/(p−μ0) specifies how quickly the N -dependent death rate approaches
its maximal value. Note that p and μ0 always appear together in the form of (p − μ0)

in the model and thus are effectively just one parameter, reducing the number of free
parameters by one.
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Figure 1a illustrates four qualitatively distinct evolution trajectories of N (t) that
may arise from simulations of the model in the presence of a decaying thymic
export rate γ (t) (gray dashed–dotted curve). The black dashed curve arises when
μ1/(p−μ0) < 1. In this case, cell proliferation always exceeds cell death, leading to
unbounded expansion of the naiveT cell population. This scenario is unrealistic, except
perhaps during a period of lymphopenia. For μ1/(p − μ0) ≥ 1, cell death is able to
balance cell proliferation at a homeostatic carrying capacity N = Nss(γ = 0), defined
by μ(Nss(γ = 0)) = p, as γ → 0. As illustrated by the green dotted curve, N (t)
rises and asymptotically converges toward Nss(γ = 0) provided that γ0/(aK ) � 1.
We refer to this scenario as being in the “proliferation-driven” regime, given that the
cell population is driven to Nss(γ = 0) primarily by homeostatic proliferation. The
model’s behavior makes a transition from proliferation driven to “thymus driven” if
we increase γ0/(aK ). As shown by the blue solid curve, N (t), driven by increased
thymic export, overshoots and approaches Nss(γ = 0) from above as γ (t) → 0
asymptotically. In “Appendix A,” we define “direct thymic output” and “proliferation-
generated” subpopulations of naive T cells. A thymus-driven description indicates that
the lifetime evolution of N (t) is entrained by thymic involution. We show that even
in this case, the majority of the naive T cell population is maintained by homeostatic
proliferation, while cells directly exported from the thymus only comprise 10–25% of
the population, consistent with previous experimental findings in human adults (den
Braber et al. 2012.)

Finally, the red dashed–dotted curve arises when (p − μ0)/a ≤ 0. In this
case, cell death always exceeds cell proliferation as γ (t) → 0. In this case, the
naive T cell population is almost entirely sustained by direct thymic export, and
N (t) → Nss(γ = 0) = 0. This scenario is consistent with previous experimen-
tal findings in mice, where the average lifespan of naive T cells is shorter than cell
doubling time, rendering peripheral proliferation of naive T cells highly unlikely in
mice (den Braber et al. 2012). As stated earlier, in this paper we focus on scenarios of
healthy aging (lymphoreplete conditions) in humans, which immediately rules out the
scenarios of unbounded growth (black dashed curve) and complete collapse of the T
cell population (the red dotted–dashed curve), effectively constraining our parameters
to the physiologically reasonable values μ1/(p − μ0) ≥ 1 and (p − μ0)/a > 0.

We can further quantitatively calibrate the parameter values using experimental
measurements for human adults in the literature. The constant peripheral proliferation
rate p has been measured by Westera et al. (2015) as 0.05% day−1, or equivalently
p = 0.18 year−1 in a healthy human. The basal death rate μ0 can be estimated
from the lifespan of T-cells. Based on data from Vrisekoop et al. (2008), De Boer
and Perelson (2013) obtain an average naive human CD4+ T-cell lifespan of ∼ 5
years and an average naive human CD8+ lifespan of ∼ 7.6 years. Given the normal
CD4+:CD8+ ratio of 2:1, the average combined naive T-cell clearance rate isμ0 = 1

5.9
year−1 = 0.17 year−1. Thymic involution within an aging human can be quantified by
measuring the decrease in thymic epithelial volume (Steinmann 1986), based onwhich
Murray et al. (2003) showed that thymic output decreases by an average of 4.3% per
year between ages 0 and 100, implying a decay factor of a = | ln(0.957)| 	 0.044.
The rate of thymic export has recently been measured for young adults (20–25 years
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(a) (b)

Fig. 1 (Color figure online) Qualitative behavior of the total naive T cell population model (Eqs. 1, 2).
a The total naive T cell population N (t) as a function of time (in years) for four qualitatively distinct
scenarios. Unbounded growth arises when μ1/(p − μ0) < 1 and the naive T cell population collapses
when (p − μ0)/a < 0. Outside of these two regimes, N (t) converges asymptotically to a positive steady
state as γ (t) → 0. If γ0/(aK ) � 1, N (t) is driven primarily by homeostatic proliferation and increases
monotonically toward the constant plateau. Increasing γ0/(aK ) leads to a transition from proliferation-
driven scenario to thymus-driven populations, in which N (t) reaches a peak value before converging to the
steady state. The decaying thymic export rate γ (t) is plotted alongside the N (t) curves as a reference. To
quantify the decrease in cell counts with age, we define N̄y as the average of N (t) between ages 20 and
30, and N̄o between 70 and 80; then, �

(
N̄
) = (

N̄o − N̄y
)
/N̄y is the relative change in cell counts. The

parameter values used are γ0 = 1.8 × 1010, a = 0.044, and K = 1010 and p = 0.022, μ0 = 0.017,
and μ1 = 0.004 for unbounded growth, p = 0.17, μ0 = 0.18, and μ1 = 0.04 for the collapse scenario,
p = 0.18, μ0 = 0.17, and μ1 = 0.01001 for the homeostasis-driven case, and p = 0.18, μ0 = 0.17, and
μ1 = 0.04 for the thymus-driven case. The initial value is N (1) = 1010 at t = 1 year. b�

(
N̄
)
as a function

of γ0/(aK ) and μ1/(p − μ0). When γ0/(aK ) and μ1/(p − μ0) are small, N (t) is driven primarily by
proliferation and keeps increasing well into old age, leading to positive �(N̄ ) values. Conversely, for large
γ0/(aK ) and μ1/(p − μ0), thymic export dominates and N (t) peaks at early ages, resulting in negative
�(N̄ ). The black dotted curve corresponds to �(N̄ ) = −52% as previously reported by Westera et al. for
human adults. At fixed μ1/(p − μ0) = 4, we are able to reproduce this curve by setting γ0/(aK ) 	 41
(corresponding to K = 1010 for our choice of parameter values). The value of �(N̄ ) increases with
decreasing γ0/(aK ) and becomes positive when γ0/(aK ) � 1. Here, we fixed (p − μ0)/a = 0.2 and
a = 0.044

old) at ∼ 1.6 × 107 trained cells daily or equivalently 5.8 × 109 per year (Westera
et al. 2015). Assuming that this rate is γ (t) at t = 25 years, we can back-calculate
γ0 = (5.8 × 109) × ( 100

33.3

) ≈ 1.75 × 1010 cell exports/year. Note that these values
of p, μ0, and a satisfy the constraint (p − μ0) /a > 0 that prevents the human naive
T-cell population from completely collapsing once γ (t) → 0.

While direct experimental measurements of μ1 and K are not available in the
literature, further inspection of Fig. 1a reveals that μ1 and K determine whether
thymic export or homeostatic proliferation dominates the evolution of N (t). Through
the dimensionless parameters, γ0/(aK ) and μ1/(p − μ0), the time at which N (t)
peaks and how fast it declines from the peak vary with changes to the values of μ1
and K . Recently, Westera et al. (2015) reported a 52% decrease in total naive T-cell
counts between young human adults and elderly individuals, which we can use to
quantitatively constrain μ1 and K . Let us define individuals of an age between t = 20
and30 years as young adults, and those between t = 70 and80 as the elderly.Assuming
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that interpersonal heterogeneity unrelated to age averages out over large sample sizes
in clinical data, we may evaluate N̄y = 1

10

∫ 30
20 N (t)dt and N̄o = 1

10

∫ 80
70 N (t)dt as the

average naive T-cell counts, respectively, for the young and the elderly, as illustrated
by the shaded areas under the thymus-domination curve in Fig. 1a. The relative change
in the naive T-cell count between young and elderly adults can thus be evaluated as

�(N̄ ) = (N̄o − N̄y)

N̄y
. (4)

Figure 1b plots �(N̄ ) as a function of γ0/(aK ) and μ1/(p − μ0), with a =
0.044 year−1 for converting the dimensionless time to years to compute N̄y and N̄o.
When γ0/(aK ) � 1 and μ1/(p − μ0) � 2, �(N̄ ) > 0. Note that the homeostatic
carrying capacity when γ (t) = 0 is Nss(γ = 0) = K (μ1/(p − μ0) − 1)−1. A small
γ0/(aK ) value represents a relatively low thymic export rate, and the carrying capacity
increases rapidly as μ1/(p − μ0) → 1, both of which make it challenging for thymic
output to fill up the naive T-cell pool to carrying capacity before γ (t) considerably
decays within t ∼ a−1. As a result, N (t) does not reach a peak value at a young age
and continues increasing into old age. The ≈ 52% decrease in naive T-cell counts
reported byWestera et al. (2015) is depicted by the black dotted curve, which exhibits
an abrupt turn around μ1/(p − μ0) ≈ 4, suggesting that the value of μ1/(p − μ0)

may most likely be around or above four.
In “Appendix A,” we further find that increasing μ1/(p − μ0) leads to a higher

fraction of the naive T cell population coming from direct thymic export. Forμ1/(p−
μ0) ≥ 10, this fraction stays consistently above 25% throughout most of an adult
human life, which exceeds previous experimental observations of 11–23% (denBraber
et al. 2012), suggesting that 10 may be an upper bound on μ1/(p− μ0). Without loss
of generality, we set μ1/(p − μ0) = 4, yielding K = 1010 by calibrating our model
to reproduce this decrease in the cell count (γ0/(aK ) 	 41 with γ0 = 1.8× 1010 and
a = 0.044). In contrast, K = 1012 yields γ0/(aK ) 	 0.41, leading to an increase in
the cell count (�(N̄ ) 	 0.63). In between, K = 1011 results in a moderate decrease
in the cell count (�(N̄ ) 	 −0.33). For the rest of the paper, we fix K = 1010 and
μ1/(p − μ0) = 4, or equivalently μ1 = 0.04 given that p = 0.18 and μ0 = 0.17,
so that the age-related decline of N (t) in our model is consistent with Westera et
al. (2015).

Note that there exist two intrinsic timescales in Eq. 1; thymic export decays at a
rate a, while the homeostatic time scale is controlled primarily by p, μ0, and also
by μ1 to a lesser degree. If homeostasis is much faster than thymic involution, the
solution N (t) will quickly converge to the quasisteady-state solution as γ (t) evolves.
We compare these two solutions in Fig. 2a, where the quasisteady-state solution is
obtained by solving for the steady-state solution Nss of Eq. 1 with fixed γ (t) at each
time t , and Nss(γ (t)) (black dashed curve) decreasesmonotonicallywith age due to the
continuous decline of γ (t). In contrast, N (t) (blue solid curve) slowly rises from the
initial condition N (1) = 1011 and does not approach the quasisteady-state level until
age≈ 20years. The trajectory of N (t) then overshoots the declining Nss(γ (t)), reaches
a peak value, and reverses course to go after Nss(γ (t)). However, N (t) never catches up
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(a) (b)

Fig. 2 (Color figure online) Comparison of thymic export and cell population evolution time scales. a
Plots of N (t) and Nss show discrepancy. The γ (t) dependence makes Nss decline monotonically with the
exponentially decaying thymic export, and Nss approaches a small positive value as γ (t) → 0. The solution
N (t) evolves toward Nss but never catches upwith it because of a slower evolution time scale. bComparison
of timescales of thymic atrophy and cell population evolution. Thymic atrophy is the faster mechanism for
most choices of the system’s parameters. Increasingμ1 shortens the time scale of clone evolution, indicating
that the steady-state solution can be a reasonable approximation to the fully time-dependent solution at very
large μ1 and very small p − μ0. Here, varying Nss within the range [1010, 1012] yields almost identical
results, and the values of γ0 and K , chosen within the reasonable parameter regime, do not affect the results
significantly. Parameter values used are γ0 = 1.8 × 1010, a = 0.044, p = 0.18, μ0 = 0.17, K = 1010,
Ω = 1016. In panel a, μ1 = 0.04, and the initial condition is N (1) = 1011

with Nss(γ (t)) before the latter reaches a steady state of very low cell counts. That N (t)
keeps lagging behind Nss(γ (t)) indicates that the timescale for the full model solution
to converge to the steady state is slower than the evolution of the nonautonomous term
γ (t). The results here suggest that steady-state solutions cannot adequately describe
the temporal evolution of the naive T-cell population in the biologically relevant range
of parameter values that we have implemented. It is necessary to numerically compute
the time-dependent solutions for the full nonautonomous equation.

Indeed, we find a disparity in the rates at which thymic export decays and the
steady-state solutions evolve. The latter is provided by the inverse of the eigen-
value of Eq. 1 linearized around N = Nss(γ (t)). The eigenvalue takes the form
λ1 = p0 − (μ0 + μ1((3N 2

ssK
2 + N 4

ss)/((K
2 + N 2

ss)
2)). Simulations in Fig. 2b show

that for the biologically relevant parameter values we have implemented, the cell
population evolution timescale, |λ1|−1 (red solid curve), is generally longer than the
timescale of thymic involution (a−1 	 22.7 years for a = 0.044 as denoted by the
horizontal black dotted line). Hence, the nonautonomous solutions N (t) are expected
to lag behind the thymus-driven steady-state solutions Nss. For N (t) to be reason-
ably approximated by Nss, the cell population has to evolve much faster than thymic
involution, corresponding to the regime of very large μ1, as indicated by the blue
dashed–dotted curve, where cell death is extremely sensitive to the cell population
size. However, μ1 is bounded above by experimental observations, as discussed pre-
viously in parameter calibration. Thus, our conclusions derived from Fig. 2a and b
should hold for parameter values within the biologically relevant range.
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2.2 Clonotype Abundance Distributions

Quantification of the populations of individual clonotypes would require analysis of
models that track the populationdynamics of naiveT-cells of eachTCR type.Assuming
the same population dynamics for each T-cell clonotype i , which may be appropriate
in certain scenarios, the evolution of the expected cell count ni (t) may be deduced
from Eq. 1 and take the following generalized form:

dni
dt

= γ (t)

Ω
+ pni − μ(N )ni , (5)

where γ (t)/Ω represents thymic export of naive T-cells of each clonotype (the total
thymic export rate normalized by the total number of viable TCR combinations Ω),
and N (t) = ∑

i ni (t). Within the framework of these “neutral” models, basic qualita-
tive behaviors of T-cell population dynamics have been investigated, particularly for
scale-invariant properties that can be studied in a reduced system (Lythe et al. 2016;
Desponds et al. 2015). Indeed, the total numbers of T-cell clonotypes Ω in rodent
or human bodies are prohibitively large for direct numerical simulations of the full
system using Eq. 5. It is thus common to reduce the full system to a more manageable
size with the assumption that the phenomena under investigation are scale invariant.
However, it is sometimes difficult to assert whether a certain property really does not
change in a rescaled system, as nonlinear phenomena, such as the Allee effects, often
arise in population dynamics and cast doubt on the scalability of the system.Moreover,
some properties, such as the thymic export rate γ (t), are naturally scale dependent.
It is not always clear how these quantities should be rescaled in a reduced system,
and they have usually been omitted by simplification arguments in previous models,
which limits the applicability of these models.

In particular, thymic involution is known to be associated with the age-related loss
of naive T-cell diversity. Without the explicit inclusion of the thymic export rate,
such loss of naive T-cell diversity cannot be properly investigated. To facilitate a
more manageable full-system model, we consider a formulation that tracks how the
expected number of clones of a given size changes with time. By focusing on clone
count rather than the explicit cell count of each distinct clonotype, we are able to
effectively reduce the number of tracked variables and thus the dimension of the
model. This representation was used by Ewens (1972) in population genetics, by
Goyal et al. (2015) in the context of hematopoietic stem cell population dynamics,
and by Desponds et al. (2017) in the context of T-cells. We define ĉk(t) to be the
number of clones represented by exactly k naive T-cells in the organism at time t :

ĉk(t) =
Ω∑
i=1

δni (t),k, (6)

where theKronecker delta function δx,y = 1when x = y and 0 otherwise. By lumping
clonotypes of the same cell count into one single variable ĉk , this alternative formu-
lation can efficiently describe changes to the TCR clone diversity in the full system,
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albeit at the expense of the ability to distinguish each specific clonotype (Morris et al.
2014; Mora andWalczak 2016). Individual clone information is lost, and ni (t) cannot
be recovered from ĉk(t) after the transformation in Eq. 6. Nonetheless, the amount
of computation can be significantly reduced by truncating ĉk(t) at a reasonably large
k, as few large clones exist in realistic scenarios, and ĉk(t) for large k is negligible.
Letting c0(t) ≡ 〈ĉ0(t)〉 denote the expected number of all possible (thymus-allowed)
clonotypes unrepresented in the periphery at time t , and ck(t) ≡ 〈ĉk(t)〉 the expected
number of clones of size k at time t , a set of equations governing the evolution of
ck(t) consistent with Eq. 5 can be derived in the mean-field limit. Below, we provide
a heuristic derivation and leave the more formal development to “Appendix B.” The
mean-field equation for the expected clone counts can be written as

dck(t)

dt
= γ (t)

Ω

[
ck−1 − ck

]+ p
[
(k − 1)ck−1 − kck

]+ μ(N )
[
(k + 1)ck+1 − kck

]
,

(7)

where N (t) = ∑∞
i ni (t) = ∑∞


=1 
c
(t). The expected values ck(t) are also called
species abundances in the ecology literature. The number of unrepresented clones is
c0 = Ω −∑∞

k=1 ck , and summing Eq. 7 multiplied by k over k = 1, 2, . . . recovers
Eq. 1. The mean-field assumption is articulated in terms such as μ(

∑

 
ĉ
)ĉk that

involve higher-order products of ĉk rather than correlations of products of ĉk .
In Eq. 7, the terms in the forms of (γ (t)/Ω)ck , pkck , and μ(N )kck represent,

respectively, the effect of thymic export, homeostatic proliferation and cell death on
a naive T-cell clone already represented by k cells in the peripheral blood. Adding
one cell via thymic export or homeostatic proliferation moves one clone from the
ck-compartment to the ck+1-compartment, while the death of one cell shifts one clone
from the ck-compartment to the ck−1-compartment. We approximate the proliferation
rate, p, as a constant, at which rate all cells of all clones of size k replicate via
homeostatic proliferation. Proliferation reduces ck and increases ck+1. Terms of the
form μ(N )kck , where the IL-7 regulated death rate μ(N ) is given by Eq. 2, reduce ck
and increase ck−1.

In a recent study, we found that the mean-field approximation breaks down only
when γ /μ < 1/Ω � 1; under these circumstances, the total population is prolifera-
tion driven and the quasistatic configuration is N ∼ K and all ck ∼ 0 except cN (Xu
and Chou 2018). Thus, we reasonably assume that γ (t) > μ/Ω allowing the use of
the mean-field equations 7 in the rest of this paper.

For a healthy aging human adult, the naive TCR repertoire is mostly comprised of
small clones with the probability of finding large clones decreasing with clone size
k. To numerically solve Eq. 7, we thus truncate the model at a maximum clone size
M � 1, beyondwhich the probability of finding a clone is assumed negligible. For our
implementation of the truncation, please see “Appendix C.” In Fig. 3a, we examine the
effect of the truncation clone size M , showing sufficient convergence of c10 at t = 40
and 70 to fixed values when M � 30, which indicates that further inclusion of clones
beyond c30 has little effect on the solution for t � 70 years. For numerical simulations
of Eq. 7 in this paper, we set M = 200 to ensure minimal truncation errors.
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(a) (b)

Fig. 3 Simulations of Eq. 7. a Effect of numerical truncation. We plot c10(40) and c10(70) as functions of
M for 10 ≤ M ≤ 100. Compartment sizes are effectively fixed when M � 30. b Temporal evolution of
ck (t). We plot c2(t), c19(t), and c59(t). Each ck (t) curve rises to a peak value and subsequently decreases.
As k increases, ck (t) decreases in magnitude, and the time at which it reaches the peak value is pushed back.
Parameter values: γ0 = 1.8 × 1010, a = 0.044, p = 0.18, μ0 = 0.17, μ1 = 0.04, K = 1010, Ω = 1016.
Initial values c1(1) = 1011, c0(1) = Ω − 1011, ck (1) = 0 for all k ≥ 2

Figure 3b shows the temporal evolution of ck(t) for k = 2, 19, and 59. As k
increases, the overall magnitude of the ck(t) curve decreases, and the age at which
ck(t) peaks increases. For example, c2(t) peaks around t � 20 years, and there are
many fewer clones of exactly two cells in old age than at young ages. In contrast,
c19(t) peaks around age 55, and the numbers of clones that have exactly 19 cells are
roughly the same between old and young ages, whereas the number of clones that
have exactly 59 cells (c59(t)) keeps increasing into old age.

The relatively earlier decline of ck(t) with smaller k is expected, considering that
rare clones are introduced into the peripheral circulation primarily by the thymus,
which started to involute after birth. With increasing k, the influence of thymic export
on ck(t) decreases, whereas the dependence on homeostatic proliferation increases.
Recalling that the rate of thymic involution is faster than the time scale for homeostasis
to drive the clonal population toward equilibrium, the fast decline of the rare clone
population leaves room for larger clones to expand.

To accompany the steady state Nss, we compute analogous fixed-γ0 steady-state
values of the full system, cssk , in “Appendix D.” The steady states satisfy cssk → 0 as
γ0 → 0 for all 1 ≤ k ≤ M . We further show that in spite of the fact that cssk → 0,

Eq. 7 asymptotically yields a positive total cell count N = limM→∞
∑M

k=1 kc
ss
k > 0

as M → ∞, qualitatively consistent with Eq. 1. Moreover, we prove in “Appendix E”
that solutions ck(t) of the full nonautonomous system satisfy ck(t) → 0 for all
k ≤ M , with arbitrarily large M , as t → ∞. This result is completely independent
of the assumed functional forms of the proliferation and death rates, suggest-
ing that manipulation of homeostatic regulatory mechanisms cannot prevent the
extinction of small T-cell clones caused by decaying γ (t). We thus conclude that
thymic involution dictates the age-related decline of the TCR diversity of the naive
compartment.
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(a) (b)

(c) (d)

Fig. 4 (Color figure online) Simulation of threshold richness diversity. a Rq (t) as a function of t , for
q = 1, 2, 3. Rq peaks at later times as q increases. b �(R̄q (t)) for varying q, μ1. Higher μ1 correspond to
more severe loss of T-cell clones in advanced age. c �(R̄q ) for varying q, K . Small values of q result in a
lifetime decrease to Rq , but larger values result in a lifetime increase. This is due to the fact that Rq peaks
at later times as q increases. d �(R̄1) for varying μ1, K . Initial values c0(1) = Ω − 1011, c1(1) = 1011

ck (1) = 0 for k ≥ 2. Parameter values, when not varying: Ω = 1016, K = 1010, p0 = 0.18, μ0 = 0.17,
μ1 = 0.04, a = 0.044, γ0 = 1.8 × 1010

2.3 Diversity of the Naive T-cell Repertoire

By computing the functions ck that track the number of clones consisting of k cells,
we should have sufficient information to evaluate the variation in naive TCR structural
diversity over a lifetime. Expected naive TCR structural diversity or “richness” is the
total number of distinct naive T cell clones present in the immune compartment, for
which we define a threshold naive TCR richness diversity

Rq(t) =
∑
k≥q

ck(t), (8)

where q ∈ N is a threshold, so that the quantity Rq(t) represents the number of clones
of size at least q present in the immune compartment at time t . Rq(t) is a generalization
of R1(t), which is typically defined as the richness of naive TCR diversity. A higher
threshold q > 1 may arise because of immune surveillance, in which small clones
may evade detection, or effectiveness of antigen detection, in which small clones may
have an insufficient probability of encountering their specific antigens.

As shown in Fig. 4a, Rq(t) increases at young ages, peaks at a mature age, and
declines afterward. For our previous parameter values, the peak age of R1(t) is approx-
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imately t ∼ 16. Higher q leads to older peak ages of Rq(t), consistent with the results
in Fig. 3b, in which the number of larger clones peaks in old age.

To compare Rq(t) between the elderly and young, we adopt the same criterion as
with total cell counts and compute window-averaged values of Rq(t) between ages
20 and 30 for the young and between ages 70 and 80 for the elderly. By defining
R̄y(q) ≡ 1

10

∫ 30
20 Rq(t)dt , R̄o(q) ≡ 1

10

∫ 80
70 Rq(t)dt , we quantify the loss of richness

by computing its relative change:

�(R̄q) ≡ (R̄o(q) − R̄y(q))

R̄y(q)
. (9)

Using the same parameter values as shown in Fig. 4a, we plot �(R̄q) with respect to
μ1 and q in Fig. 4b and c. In Fig. 4b, �(R̄q) decreases monotonically with increasing
μ1, suggesting that upregulated death rate exacerbates the age-related loss of richness,
and the impact is more significant for larger q. Figure 4c shows that when K = 1010,
�(R̄q) < 0 for q ≤ 4. This decreasing trend of Rq generally agrees with the loss of
diversity observed in recent experiments where measurements were available across
multiple ages (Qi et al. 2014; Britanova et al. 2014). For q = 5, 6, �(R̄q) ≈ 0, and
Rq is nearly unchanged between youth and advanced age. For q ≥ 7, �(R̄q) > 0,
indicating higher Rq in old age. Generally, the lifetime decrease in Rq(t) occurs with
small q, whereas for large q, the trend is reversed, in agreement with our discussion of
Figs. 3b and 4a regarding peak ages. This phenomenon indicates that loss of diversity is
primarily due to the extinction of rare clones, which is consistent with the observation
made by Naylor et al. (2005). In contrast, the number of larger clones increases over
time, leading to the lifetime increase to Rq(t) at higher q.

Recent TCR-β sequencing studies have attempted to estimate the change in the
repertoire richness of the naive T-cells with age. Despite the difference in orders of
magnitude regarding the total number of circulating naive T-cell clones, these studies
agreed quantitatively in the ratio of the age-related loss of richness. For example,
Britanova et al. (2014) estimated ∼ 7 × 106 clonotypes in youth (ages 6–25) and
∼ 2.4 × 106 in aged individuals (ages 61–66), a roughly 66% drop from the youth
figure. Similar measurements were also reported by Qi et al. (2014), in which a two-
to fivefold decline (i.e., a 50–80% drop) between youth (ages 20–35) and advanced
age (ages 70–84) was observed. These results are quantitatively consistent with our
computation of�(R̄1) for K = 1010–1011.5 and 0.03 ≤ μ1 ≤ 0.05 in Fig. 4d, whereas
the decline of Rq for q ≥ 2 is not as pronounced as in these experimental observations.

Also note that the loss of clonal richness is more severe than the decrease in the total
cell count between young and aged individuals. In Fig. 4a, �(R̄1) changes between
∼ − 66% and ∼ − 76% for 0.03 ≤ μ1 ≤ 0.05 and K = 1010. In contrast, Fig. 1b
shows that for the same parameter range, �(N̄ ) varies from ∼ − 30% to ∼ − 62%.
However, the figures also reveal that richness is relatively less sensitive to changes
to the cellular death rate, compared to the total cell count. This outcome reflects the
fact that homeostatic cellular death is uniformly random across the entire naive T-
cell population. The drop in richness is due to cell death within small clones that
drives these clones to extinction, as observed by Naylor et al. (2005). Increases to

123



A Mathematical Model of the Effects of Aging on Naive T… 2797

the cellular death rate do not cause as much additional clonal extinction as they do
additional cellular extinction, as many surviving clones are too large to wipe out by
the death of a few cells.

2.4 Sampling Statistics

Considering that naive T-cell richness is often assessed via small blood samples, let us
next use the same framework to examine the relation between the detected clone sizes
in small samples and the true clone sizes in the full organism. As before, denote by
N the total number of naive T-cells in the human’s immune compartment and Y ≤ N
the number of cells collected during sampling from among the N total. We assume
that the N total cells consist of R distinct clones, which we number from 1 to R. In
this section, we denote by cNk the mean number of clones of size k from among the N
total cells in the full organism (denoted by ck in the previous simulations) and by cYk
the mean number of clones of size k in the sampling of Y cells taken from the N total
cells. Then the expectation of cYk , denoted by E[cYk ], is:

E

[
cYk

]
=

R∑
j=1

j P
(
cYk = j

)
, (10)

where P
(
cYk = j

)
represents the probability that there are precisely j clones of size

k in the sampling. Then E[cYk ] may be expressed explicitly in terms of the cNk as:

E

[
cYk

]
=

R∑
l=k

1(N
Y

)cNl
(
l

k

)(
N − l

Y − k

)
. (11)

(See “Appendix F” for the detailed proof.) The collection of expressions given by
Eq. 11 for k = 1, 2, . . . , R yields a linear system of equations solvable for cNk , using
sampled data for the quantities E[cYk ]. More specifically, if we define the vectors
Ê := (E[cY1 ],E[cY2 ], . . . ,E[cYR], ) and E := (cN1 , cN2 , . . . , cNR ), Eq. 11 can be written
as Ê = AE, where A is a constant matrix that has nonzero elements only in the upper
triangle, with nonzero diagonal entry 1

(NY )

(N−k
Y−k

)
in position (k, k). The equation can

always be solved uniquely for E given Ê. Thus, the full size distribution E can be
uniquely reconstructed from the expected mean sample size distribution Ê measured
experimentally, provided that the latter can be reliably estimated through a sufficient
number of repeated samplings.

In Fig. 5a, we use Eq. 11 to compute E[cYk ] from simulated cNk , comparing the
predicted sampling results of the richness R1(t) for varying choices of Y . The results
indicate that each decrease by one order of magnitude to the sample size results in a
decrease in R1(t) by roughly the same order of magnitude to the predicted diversity,
except between the full sample and one-tenth of the sample ( f = 10−1), where the
decrease in R1(t) is less than one order ofmagnitude. Predictions of diversity varywith
sample size, and small samples do not result in accurate measurements of diversity.
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(a) (b)

Fig. 5 (Color figure online) Comparison of actual and sampled richness. a True lifetime R1, as well as the
expected R1 that result from extracting 10%, 1%, and 0.1% of the total cell count for sampling. (Y = f ×N ,
with f = 10−1, 10−2, 10−3.) Except between the full sample and f = 10−1, each decrease in the sample
size by one order of magnitude results in a decrease to the expected R1 by approximately one order of
magnitude. b The ratio of age-related TCR richness decline�

(
R̄q
)
as a function of sampling fraction f for

clone size thresholds q = 1–5. As f decreases, the value of �
(
R̄q
)
increases, indicating a lower estimate

of the TCR richness decline. When f is very small, �
(
R̄q
)
becomes insensitive to further decreases to

f . Parameter values used: γ0 = 1.8 × 1010, a = 0.044, p = 0.18, μ0 = 0.17, K0 = 1010, Ω = 1016,
μ1 = 0.04. Initial values c0(0) = Ω , ck (0) = 0 for k ≥ 1

In Fig. 5b, we examine how sampling may affect the diagnosis of the age-related
TCR richness decline �

(
R̄q
)
defined in the previous subsection. We find �

(
R̄q
)
,

which is negative, increasing with decreasing sampling fraction f , revealing that sam-
pling causes an underestimate of the richness decline. As previously discussed, the
decline of TCR richness in old age is primarily due to the extinction of small clones.
Since small clones often evade detection during sampling, their extinction is largely
unaccounted for, leading to lessened reduction in the richness measure. When f is
very small, most of the small clones have escaped detection; thus, decreasing f fur-
ther does not change �

(
R̄q
)
. Moreover, we note that �

(
R̄1
)
, which represents the

case in Fig. 5a and is the most straightforward measure for age-related loss of TCR
richness, converges from − 73% for the full sample, to − 59% for a sampling fraction
f � 10−2, which is close to the value of �

(
R̄3
)
for the full sample. This reaffirms

our discussion in the previous subsection that a threshold q > 1 may arise during
the process of sampling. The results here indicate that when only a small fraction of
a T-cell population is used to measure �

(
R̄1
)
, clones fewer than three cells largely

evade detection, yielding a result equivalent to�
(
R̄3
)
of the full sample, which under-

estimates the actual decrease in the TCR richness. Also note that the convergence of
�
(
R̄1
)
for f � 10−2 corresponds to the proportional downscaling of R1(t) in Fig. 5a

with decreasing f . For larger q, �
(
R̄q
)
does not converge until f is lower, indicating

that Rq(t) does not downscale proportionally until the sample fraction is very small.

3 Discussion

We have formulated a model of lifetime human naive T cell population dynamics,
which traces T cell lineages on the level of individual clones. It accounts for expo-

123



A Mathematical Model of the Effects of Aging on Naive T… 2799

nentially decaying lifetime thymic export, a constant rate of cellular proliferation, and
variable cellular death rate that adjusts to present cell counts and the availability of
survival resources. It depicts the generation of the naive T cell pool in early life via
thymic export, and long-term maintenance of the population via peripheral turnover
after thymic export has waned. Values of most of the model’s parameters can be found
in the previous literature on humans, while the few exceptions are obtained by fitting
some basic results of the model, such as age-related T cell loss, to experimental obser-
vations. Our analysis serves two important purposes: to map the thymic machinery,
identifying which components do and do not contribute to age-related cellular loss,
and then to interpret the nuanced role of that cellular loss in immunosenescence.While
our results are intended for describing human aging, our approach can be adapted and
interpreted to mice where thymic output plays a larger role in sustaining the naive T
cell pool and where we might expect the diversity to be more immediately sensitive to
changes in thymic output rates. In either case, we have found that if thymic export is
assumed to decay exponentially to zero, then all compartments ck(t) (with 1 ≤ k ≤ M)
deplete as t → ∞, independent of essentially any restrictive assumptions about the
homeostatic proliferative mechanism in the periphery. Concretely, for any choice of
proliferation and death rates p(N ), μ(N ), that satisfy p(0), μ(0) > 0 and the choice
γ (t) = γ0e−at with γ0, a > 0, there exists a sufficiently small δ > 0 guaranteeing
ck(t) → 0 as t → ∞ for all 1 ≤ k ≤ M , provided that

∑ |ck(1)| ≤ δ. Although this
result only guarantees that trajectories ck(t) started sufficiently close to zero converge
to zero, simulation indicates that the basin of attraction to this “zero state” is actu-
ally quite large. In fact, for the typical initial conditions used throughout this paper,
simulation suggests convergence of all compartments ck to zero in infinite time.

Although it takes an extremely long time to deplete all ck compartments for
1 ≤ k ≤ M , the initial phase of this process can still cause significant loss of T
cell diversity in aging individuals within a human lifespan. Most importantly, we find
that the T cell loss driven by exponentially diminishing thymic export alone is robust
against any assumptions about the homeostatic proliferative mechanism in the periph-
ery that depend uniformly on the population size N , as this outcome is universal for all
functional forms of p(N ), μ(N ). Even a particularly strong homeostatic mechanism
(say, one with p(0) � μ(0)) cannot rescue a plunging diversity. This, in turn, sug-
gests that in searching for treatments of age-induced loss of diversity, efforts should be
directed at the thymus, in particular to maintaining thymic productivity into advanced
age. In reality, heterogeneity can arise in the rates of peripheral proliferation and thymic
output for naive T cells of distinct TCR expressions, due to differentiated responses
to various growth factors in the periphery (Desponds et al. 2015; Lythe et al. 2016)
and disparate sequencing frequencies in the thymus (Marcou et al. 2018). Even for
naive T cells of identical TCR expressions, the peripheral proliferation rate decreases
due to telomere shortening with each cell division (Weng et al. 1995; Hodes et al.
2002). Heterogeneity among different TCR expressions may provide a fitness advan-
tage for certain clones and allow them to survive relatively longer than others when
the TCR diversity is plunging. Telomere shortening likely makes older clones more
easily replaced by newer ones, increasing the turnover rate of distinct TCR clones.
Nevertheless, we do not expect such heterogeneity to qualitatively change our results
here and rescue the diminishing TCR diversity caused by thymic involution.
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Moreover, we compare the real-time simulations and the quasisteady-state solutions
of the total cell count, as well as the number of distinct clones, over the course of age-
related thymic output erosion. We find that our simulation results keep lagging behind
the quasi steady-state solutions, suggesting that the erosion time scale of thymic output
is faster than the time scale for the population dynamics to relax toward a steady state.
Mathematically, this result reveals that the evolution of the T cell population within the
human lifespan is a rather dynamical phenomenon, which may not be well described
by quasistatic solutions, requiring evaluation of the fully nonautonomous system.
Biologically, our results indicate that the loss of T cell diversity is a delayed response
to thymic involution, and assessment of thymic function may predict the health of the
immune system.

Although peripheral division cannot salvage the T cell population on a long time
scale, higher basal proliferation rates may at least delay the erosion of the T cell
compartment, sustaining acceptable effectiveness of the immune system within the
human lifespan (Naylor et al. 2005). We assumed a constant lifetime rate of cellular
proliferation, but alternative research suggests that proliferation rates may increase
with age (Naylor et al. 2005). In light of this finding, we briefly inspect the effect of
increased proliferation rates at advanced ages on cellular and clonal loss by modifying
p(N ) and μ(N ) in Eq. 7. To prevent unbounded growth caused by p(N ) exceeding
μ(N ) as N → +∞, we adopt a logistic growth rate, p(N , t) = p(t)(1 − N/K ),
where growth is bounded by the negative term; a discrete increase in the proliferation
rate is incorporated in p(t) = p0(1 + r H(t − T )), with p0 > 0 the early-life basal
cellular proliferation rate, and H(t) the Heaviside function, with T the age at which
the rate increases. The constant r specifies the increase to the proliferation rate. The
death rate is set to a constant value (μ(N ) = μ0 > 0) for simplicity, omitting the N -
dependent term in Eq. 2 that practically becomes negligible compared to the negative
term of p(N ) as N → +∞. By varying r , simulation under these alternate hypotheses
indicates that increased basal proliferation rates do lead to notably higher total cell
counts (Fig. 6a), but have little effect on diversity (Fig. 6b). These results further
affirm that expansion of peripheral proliferation is unlikely to rescue the eroding naive
T cell diversity, despite the increased cell count. If diversity loss is the main cause
of immunosenescence (still a debatable topic in the medical community), peripheral
proliferation may not be the sensible target of treatments.

The increased N (70) and nearly unchanged R1(70) in Fig. 6 imply that the decline
of T cell diversity in old age may appear more dramatic if the diversity is measured
in terms of the frequency of distinct TCR sequences among the cycling cells, which
corroborates the explanation that an increase in the proliferation rate in old age leads to
a sharp decrease in T cell diversity (Naylor et al. 2005). Previous models have shown
that even sharper decline of T cell diversity can be induced by fitness selection, where
certain clonotypes increase their fitness in old age possibly due to higher avidity to
self-antigens (Johnson et al. 2012, 2014; Goronzy et al. 2015a).

Although the boosts to the total cell count through artificial expansion of the prolif-
erative mechanism are unable to replenish the declining TCR diversity in the naive T
cell pool, it is possible that the impact is less severe than the decaying richness would
have indicated, considering that most of the extinct clones are originally small clones,
which may be much less effective than larger clones. In this regard, the viability of
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(a)

(b)

Fig. 6 (Color figure online) Total cell count and richness with rise in proliferation. Simulation of Eq. 7
with exponentially decaying thymic export, and peripheral homeostasis described by time-varying logistic
growth.We use the thymic export rate γ (t) = γ0e−at , peripheral death rateμ(N ) = μ0 > 0, and peripheral
proliferation rate p(N , t) = p(t)(1 − (N/K )), with p(t) = p0(1 + r H(t − T )). Here, H(t) represents
the Heaviside function with jump at t = 0. The constant r determines the magnitude of the increase to the
basal proliferation rate, and T represents the time at which the jump occurs. We take the jump to occur at
varying ages. a �(N̄ ) with jump at ages T = 30 and 70, for varying r . (Curve corresponding to T = 50
is omitted due to close similarity to T = 30 curve.) Raising the basal proliferation rate diminishes cellular
loss in advanced age, with sufficiently high values of r producing a lifetime increase in total cell counts. The
positive steady-state solution of the autonomous total cell ODE, dN/dt = γ0 + p0(1 − N/K ) − μ0N , is
given by N∗ = (K/2)(1−μ0/p0+

√
(1 − μ0/p0)2 + 4γ0/Kp0) and can be seen to satisfy ∂N∗/∂ p0 > 0

if γ0 < Kμ0, suggesting that increases to the basal proliferation rate are likely to increase the total cell
count. b �(R̄1) with T = 30, 50, and 70, for varying r . Increases to the basal proliferation rate do mitigate
diversity loss, but the effect is minor and potentially insignificant. Increases to the basal proliferation rate
increase ck+1 due to a decrease in ck , preserving additional diversity, but the lifetime diversity loss is still
observed, even when proliferation rates are high enough to generate a lifetime increase to the total cell
count. Fixed parameter values: γ0 = 1.8 × 1010, a = 0.044, p0 = 0.18, μ0 = 0.17, K0 = 3 × 1011,
Ω = 1016. Initial values: c0(1) = Ω − 1011, c1(1) = 1011 ck (1) = 0 for k ≥ 1. Equation 7 is truncated
at k = 200

treating immunosenescence by expanding peripheral proliferation depends on the elu-
cidation of the T cell pool’s effectiveness clone size—that is, the size a clone must
have attained to effectively guarantee activation of the clone when its cognate anti-
gen infiltrates the organism. The effectiveness clone size is intrinsically linked to true
functional TCR diversity; if we can identify a threshold integer q∗, such that clones
of size at least q∗ are reliably activated in the presence of their cognate antigen(s),
but that smaller clones are not, then Rq∗(t) is naturally the most useful measure of
diversity, because it accounts for precisely those clones actively participating in the
adaptive immune mechanism. The larger the “correct” choice of q∗ is, the more effec-
tive treatments to boost cellular proliferation in the periphery will be. Our model
directly yields the number of clones of a particular size, making it straightforward to
include or exclude clones below a certain cell count, should such a threshold exist and
be identified.

The effectiveness clone size is also significant to the question of whether diversity
loss is the driving factor in immunosenescence. Using the parameter values that we
found in the literature, Rq(t) decreases for q ≤ 4 from youth to advanced age, stays
nearly constant for q = 5, 6, and increases for q ≥ 7. The extinction of small clones
allows the surviving clones to expand in size, leading the richness of large clones to
increase in old age. If the minimal size for a T cell clone to effectively respond to
antigens is large, the diversity of such “effective” clones may actually increase with
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age, strengthening the immune response. Therefore, either the minimal clone size
required for effective immune response is low, or the weakened immune response in
old age is caused primarily by other mechanisms. For example, functional deficiencies
acquired by naive T cells in aging are one possible alternative cause of the weakened
immune response. Such functional deficiencies have been studied heavily in mouse
models, but research in humans is still lacking (Appay and Sauce 2014). Diminished
naive T cell effector responsiveness and proliferative capacity have been observed
in aged mice (Moro-García et al. 2013). It is possible that similar changes occur
in humans. Conversely, experiments on mice have directly shown that loss of TCR
diversity does have an actively detrimental effect on immune responsiveness (Yagger
et al. 2008), supporting the notion that loss of TCR diversity is a significant contributor
to immunosenescence.

Our model illustrates the feasibility of several different scenarios, in which loss of
naive T cell diversity contributes to immunosenescence on drastically different levels.
While we consider only the naive T cell population, memory T cells expand upon
encountering antigens over the lifespan of an individual, eventually outnumbering
naive T cells at around 30–40 years of age (Saule et al. 2005). Memory T cells rely on
a mixture of IL-7 and IL-15 as survival signals (Rubinstein et al. 2008), which may
reduce the amount of IL-7 available to naive T cells. However, memory T cells are
observed to down-regulate expression of IL-7 receptor CD127 when the local con-
centration of IL-7 is low, thus preserving the naive repertoire (Surh and Sprent 2008).
In addition, distinct population dynamics have been observed among various subsets
of memory T cells, such as CD4+/CD8+ central memory/effector memory/terminally
differentiated T cells (Saule et al. 2005), as well as among memory T cells expressing
naive phenotypes that accumulate with aging but do not contribute to the capacity to
respond to new infections (Pulko et al. 2016). While a more complete picture of T cell
population dynamics would include the memory compartment, our model may serve
as a first step in that direction, in which each subset of memory T cells may be added.
Moreover, our model indicates that the effectiveness clone size and crossreactivity in
vivo are valuable pieces of missing information, the elucidation of which would allow
for the identification of effective options to treat immunosenescence.

4 Summary and Conclusions

We have simulated the time evolution of the functions ck(t), which represent the num-
ber of naive T cell clones of size k present in a human’s immune compartment at
time t . We determined that under essentially any realistic assumptions about home-
ostatic proliferation and death, all clones deplete in infinite time if thymic export
is assumed to decay exponentially. This implicates thymic export as a fundamental
cause of age-associated diversity loss. We simulated our model under the assumption
that a carrying capacity is regulated by homeostatic proliferation and death through
N -dependent rates. We found that the manipulation of homeostatic proliferation and
death rates, which may notably raise the carrying capacity and thus the total cell
count, was unable to save falling diversity as an individual ages. It affirms the vital
role of thymic output in age-related diversity loss and indicates that boosting the pro-
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liferation rate is unlikely an effective solution. However, if only clones of large size
are sufficiently effective in the immune response, boosting proliferation rates might
raise average clone sizes and help to mitigate the effects of lost diversity. We simu-
lated “threshold richness diversity,” Rq(t), which counts the total number of clones of
size q or larger. We found that by increasing q, the trajectory of Rq(t) changes from
decreasing to increasing over a human lifetime. From this trend, we concluded that
if only large clones are effective, the effective richness would actually increase with
age, suggesting that it is important to identify the minimal effective clone size in order
to determine whether the loss of TCR diversity is the primary driving mechanism of
the immune dysfunction seen in advanced age. Lastly, we derived a one-to-one map-
ping between the full-sample diversity cNk of N cells and the expected measurement
of diversity E[cYk ] in samples of Y cells. We found that the probability of detecting
small clones shrank significantly with small sample sizes, which could potentially
skew small sample statistics. In particular, we show that small samples tend to under-
estimate the age-related loss of T cell richness diversity. Our formulation provides
a rigorous method for accurately inferring the statistical distribution of clonal sizes
from small sample measurements.

Acknowledgements This work was supported by the NIH via Grants R56HL126544 (SL) and R01HL146
552 (TC), the NSF via Grants R56HL126544 (TC), and the Army Research Office (YLC, W1911NF14-1-
0472).

A Thymic Export and Proliferation Subpopulations

While the total cell count, N , of the naive T cell population is governed by Eq. 1 in
our model, the subpopulation directly exported from the thymus Nthy can be explicitly
tracked via

dNthy(t)

dt
= γ (t) − μ(N )Nthy(t). (A1)

The subpopulation of proliferation-generated cells is thus N − Nthy, assuming for
simplicity that the cell death rate depends only on the total population and is the same
for both subpopulations. Equation A1 allows us to determine whether the majority
of the naive T cells are directly exported from the thymus or generated by peripheral
proliferation.

The evolution of N (t) and Nthy(t) is shown in Fig. 7a and b for proliferation-driven,
thymus-driven, and population collapse scenarios. The proliferation-driven and the
thymus-driven scenarios are identical to the corresponding cases shown in Fig. 1a;
for both cases, only a small fraction of the total naive T cell population is directly
exported by thymus with the majority generated by peripheral proliferation. This limit
is consistent with what was previously found for human naive T cell populations (den
Braber et al. 2012). For the scenario of population collapse in Fig. 7c, naive T cells
directly exported from the thymus comprise themajority of the naive T cell population,
consistent with naive T cells in mice (den Braber et al. 2012). For this case, we adopt
the same parameter values as in the corresponding case in Fig. 1a, but change μ0 to

123



2804 S. Lewkiewicz et al.

(a) (d)

(b)

(c)

Fig. 7 (Color figure online) Thymus-produced vs. proliferation-generated subpopulations. a–c show the
number of total cells N (t) and the number of cells directly exported from the thymus Nthy(t) for
proliferation-driven, thymus-driven, and population collapse scenarios, respectively. Parameter values used
are the same as those for corresponding curves in Fig. 1a, except that μ0 is set to 0.51 in c so that the death
rate is more than three times higher than the proliferation rate, as reported for naive T cells in mice. The
initial conditions are also the same as those in Fig. 1a, whereas all cells are assumed exported from the
thymus initially. The fractions Nthy(t)/N (t) are plotted in d for these three scenarios, with an additional
thymus-driven case in which μ1/(p − μ0) = 10. The shaded region highlights the 11–23% fraction of
direct thymic export reported for naive T cells in human adults (den Braber et al. 2012)

0.51, as previous experiments find that in mice, the cell division time is about three to
14 times longer than the average cell lifespan (denBraber et al. 2012), implying that the
cell death rate is about three to 14 times faster than the cell proliferation rate. Note that
as t → ∞ and γ (t) → 0, both Nthy(t) and N (t) → 0 for the scenario of population
collapse, while for thymus-driven and proliferation-driven cases, only Nthy(t) →
0 and N (t) converges to a nonzero steady state. This distinction is quantitatively
illustrated by the time evolution of the fraction Nthy(t)/N (t) in Fig. 7d. Initially
all naive T cells are directly exported from the thymus; the percentage decreases
over time, plateaus around 65% in the case of population collapse, and approaches
zero in the thymus-driven and proliferation-driven cases. Previous studies find that in
human adults 11–23% of the total naive T cell population is directly exported from the
thymus, and we highlight this range of percentages by the shaded area. We find that
for the thymus-driven case shown in Fig. 7b, where the parameter μ1/(p − μ0) = 4,
this percentage range corresponds to ages from ∼ 20 years to almost 50 years. In
contrast, for the proliferation-driven case, where μ1/(p − μ0) = 1, this percentage
range corresponds to a narrower age range (∼20–30 years), implying that the fraction
Nthy(t)/N (t) may be dropping too fast and is below the experimental observation
for most of adult life. Additionally, we examine another thymus-driven case with
μ1/(p − μ0) = 10 in which the fraction Nthy(t)/N (t) decreases slowly and stays
above the experimental observation for most of adult life. Therefore, we conclude that
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the parameter μ1/(p − μ0) should be bounded between one and ten, motivating our
choice of μ1/(p − μ0) = 4.

B Derivation of the Equation for Mean Clone Counts ck(t)

If we formally define P(n1, n2, . . . , nΩ, t) as the probability of observing n1 cells of
clonotype 1, n2 cells of clonotype 2, and so on, the average over the definition in Eq. 6,
ĉk(t) ≡ ∑

i=1 δni (t),k can be formally written as ck(t) ≡ 〈ĉk(t)〉 = ΩP(n = k, t)
where P(n, t) ≡ ∑∞

n2=0 . . .
∑∞

nΩ=0 P(n1, n2, . . . , nΩ, t) is the single-clonemarginal
probability. This single-clone probability obeys a simple birth–death–immigration
master equation

dP(k, t)

dt
= γ (t)

Ω
[P(k − 1) − P(k)] + p [(k − 1)P(k − 1) − kP(k)]

+ μ(N ) [(k + 1)P(k + 1) − kP(k)] , (A2)

where N is the total population that includes the population K of the singled-out
clone. Thus, to close Eq. A2, a model for the stochastic dynamics of N is required. A
mean-field model can be implemented by approximating the stochastic variable N by
the deterministic solution N (t) found by solving Eq. 1. The mean-field approximation
thus neglects the correlation between the clone population k and the total population
N , leading to Eq. 7

dck(t)

dt
= γ (t)

Ω

[
ck−1 − ck

]+ p
[
(k − 1)ck−1 − kck

]+μ(N (t))
[
(k + 1)ck+1 − kck

]
.

(A3)

C Implementation of Numerical Truncation

The most straightforward way to truncate Eq. 7 at k = M is to neglect the exchange
terms between cM and cM+1, assuming a negligible contribution for k > M and essen-
tially imposing a “no-flux” boundary condition. This leads to the following equation
for the boundary term cM (t):

dcM (t)

dt
= γ (t)

Ω
cM−1 + p(M − 1)cM−1 − μ(N )McM . (A4)

This formulation, however, introduces a truncation error in Eq. 1 if we define N =∑M
k=1 kck . The neglected terms leave a small loss of total cell count in dN/dt . An

alternative implementation of the truncation is adding these small loss terms to the
boundary equation:

dcM (t)

dt
= γ (t)

Ω

(
cM−1 + cM

M

)
+ p(M − 1)cM−1 + pcM − μ(N )McM , (A5)
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thus preserving the total cell count N . However, for Eq. A5 the truncation error shows
up in the total number of clonal types Ω = ∑M

k=0 ck , as the terms added to Eq. A5
to preserve N artificially introduce new clonal types into the model. In contrast, Ω

is preserved with the implementation of Eq. A4. If M → ∞, the truncation errors
for both implementations go to zero at ∼ 1/M , and the two implementations become
equivalent. Assuming sufficiently large M , the truncation errors can be negligible in
the context of γ (t) > 0 or have minimal cumulative effects within a limited duration,
such as a human lifetime, on which our investigations in this paper have primarily
focused.

In this paper, we adopt, for simplicity, Eq. A4 to numerically truncate Eq. 7. Note
that this choice may seem “natural” if one regards M as the carrying capacity, making
it reasonable for cM to have zero proliferation rate. However, the full mechanisms
associated with the carrying capacity are far more sophisticated than simply eliminat-
ing the proliferation of cM . Not only should the proliferation rate of cM go to zero,
the proliferation rate of the other ck should also have a k dependence. The k depen-
dence may be weak for small k, but as k → M , the proliferation rate should attenuate
significantly. The probability that ck→M will proliferate should be very small, as it
is highly likely that there exist other smaller clones to push the total cell count up to
the carrying capacity, prohibiting further proliferation. The k-dependent proliferation
rate will yield a natural truncation threshold at the carrying capacity. However, such a
sophisticated k dependence of the proliferation rate is beyond the scope of this paper.
Our assumption here is simply that the truncation errors introduced by Eq. A4 are
numerically negligible and not biologically significant.

D Steady States of the Autonomous Equations

If we fix γ (t) = γ0, Eqs. 1, 7, and A4 become autonomous and admit the following
steady-state solution:

css1 = γ0

⎡
⎣γ0

Ω

M∑
i=1

1

i !μ(Nss)i−1

⎛
⎝i−1∏

j=1

[γ0
Ω

+ j p
]⎞⎠+ μ(Nss)

⎤
⎦

−1

, (A6)

cssk = css1
k!μ(Nss)k−1

(
k−1∏
n=1

[γ0
Ω

+ np
])

, (A7)

where Nss is the total population at steady state, given by the unique positive root of
the cubic:

c(N ; γ0) = (p0 − (μ0 + μ1)) N
3 + γ0N

2 + (p0 − μ0)K
2N + γ0K

2. (A8)

Whenγ0 = 0, c(N ; 0)has three real roots, N = 0,±√((p − μ0)K 2)/(μ0 + μ1 − p).
The positive steady-state solution, which we denote by Nss(0), is stable and the zero
solution unstable, under the parameter restrictions described in Sect. 2.1. We now
demonstrate that even though Eqs. A6, A7 indicate that each cssk → 0 as γ0 → 0,
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the quantity limM→∞
∑M

k=1 kc
ss
k converges to a positive value qualitatively consistent

with Nss(0) as γ0 → 0.

Proposition D The steady-state solutions cssk , as given in Eqs. A6, A7, satisfy

lim
γ0→0

lim
M→∞

M∑
k=1

kcssk > 0.

Proof We seek to derive upper and lower bounds, U (γ0), L(γ0), which satisfy:

L(γ0) ≤ lim
M→∞

M∑
k=1

kcssk ≤ U (γ0),

for γ0 > 0, and limγ0→0U (γ0) ≥ limγ0→0 L(γ0) > 0. We first establish two small
results, which will be used later on: ��
Proposition D1 For μ = μ(Nss(γ0)), limγ0→0

dμ
dγ0

> 0.

Proof Recalling that μ = μ(Nss(γ0)) = μ0 + μ1(Nss(γ0)
2/(Nss(γ0)

2 + K 2)), we
have

dμ

dγ0
= dμ

dNss

dNss

dγ0

= 2μ1K 2Nss

(N 2
ss + K 2)2

[ −(N 2
ss + K 2)

3(p0 − (μ0 + μ1))N 2
ss + 2γ0Nss + (p0 − μ0)K 2

]

= −2μ1K 2Nss

(N 2
ss + K 2)

[
3(p0 − (μ0 + μ1))N 2

ss + 2γ0Nss + (p0 − μ0)K 2
]

wherewecomputed thederivative dNss
dγ0

implicitly from the expression c(Nss(γ0); γ0) =
0. From the explicit form Nss(0) = √

(p0 − μ0)K 2/((μ0 + μ1) − p0), we have

lim
γ0−→0

dμ

dγ0
= −2μ1K 2NSS(0)

(NSS(0)2 + K 2)
[
3(p0 − (μ0 + μ1))NSS(0)2 + (p0 − μ0)K 2

]
= −2μ1K 2NSS(0)

(NSS(0)2 + K 2)
[−2(p0 − μ0)K 2

]
> 0.

��

Proposition D2 For f (p/μ(Nss(γ0)); γ0) = γ0
pΩ

(
1 − p

μ(Nss(γ0))

)− γ0
pΩ −1

, limγ0→0

f (p/μ(Nss(γ0)); γ0) > 0.
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Proof We write the function f (p/μ(Nss(γ0)); γ0) as a product of two functions as
follows:

f (p/μ(Nss(γ0)); γ0) = γ0

pΩ

(
1 − p

μ(Nss(γ0))

)− γ0
pΩ −1

=
(
1 − p

μ(Nss(γ0))

)− γ0
pΩ γ0

pΩ

(
1 − p

μ(Nss(γ0))

)−1

= A(γ0)B(γ0).

We define A0 = limγ0→0 A(γ0) and B0 = limγ0→0 B(γ0), and compute A0 and B0:

ln(A0) = lim
γ0−→0

−γ0

pΩ
ln

(
1 − p

μ(Nss(γ0))

)

= − 1

pΩ
lim

γ0−→0
γ0 ln

(
1 − p

μ(Nss(γ0))

)

= 1

pΩ
lim

γ0−→0
γ 2
0

(
1 − p

μ(Nss(γ0))

)−1 d

dγ0

(
− p

μ(Nss(γ0))

)

= 1

pΩ
lim

γ0−→0
γ 2
0

[
1 − p

μ(Nss(γ0))

]−1 [
pμ(Nss(γ0))

−2 dμ

dγ0

]

= 1

pΩ
lim

γ0−→0

[
γ 2
0 p

dμ
dγ0

μ(Nss(γ0))2 − pμ(Nss(γ0))

]

= 1

Ω
lim

γ0−→0

⎡
⎢⎣2γ0

dμ
dγ0

+ γ 2
0
d2μ
dγ 2

0

(2μ − p) dμ
dγ0

⎤
⎥⎦

= 1

Ω

⎡
⎢⎣2γ0 limγ0→0

dμ
dγ0

+ γ 2
0 limγ0→0

d2μ
dγ 2

0

p limγ0→0
dμ
dγ0

⎤
⎥⎦ ,

where we used that μ(Nss(γ0)) → p as γ0 → 0. From Proposition D1,

limγ0−→0
dμ
dγ0

> 0, and a similar computation shows that limγ0→0
d2μ
dγ 2

0
∈ R. Thus,

ln(A0) ∈ R, and A0 > 0. Now,

B0 = lim
γ0→0

γ0

pΩ

(
1 − p

μ(Nss(γ0))

)−1

= lim
γ0→0

(γ0/pΩ)(
1 − p

μ(Nss(γ0))

)
= lim

γ0→0

(1/pΩ)

pμ(Nss(γ0))−2 dμ
dγ0

123



A Mathematical Model of the Effects of Aging on Naive T… 2809

= lim
γ0→0

μ(Nss(γ0))
2

p2Ω dμ
dγ0

> 0.

Thus, limγ0→0
γ0
pΩ

(
1 − p

μ(Nss)

)− γ0
pΩ −1 = A0B0 > 0.

We now resume the proof of Proposition D. We first derive upper and lower bounds
on the term css1 , to simplify calculations. From the nonnegativity of the parameters
and coefficient functions, and the form in Eq. A6, css1 ≤ γ0/μ0, independent of M .
To derive an M-independent lower bound on css1 , we observe that the sum in the
denominator of Eq. A6 satisfies

γ0

Ω

M∑
i=1

1

i !μ(Nss(γ0))i−1

⎛
⎝i−1∏

j=1

[γ0
Ω

+ j p
]⎞⎠

≤
M∑
i=1

1

(i − 1)!μ(Nss(γ0))i−1

⎛
⎝i−1∏

j=0

[γ0
Ω

+ j p
]⎞⎠

= p
M∑
i=1

1

(i − 1)!

⎛
⎝i−1∏

j=0

[
γ0

pΩ
+ j

]⎞⎠( p

μ(Nss(γ0))

)i−1

and that the sum on the right above is the M th Taylor polynomial, SM,γ0 , for the

function f (x; γ0) = γ0
pΩ (1 − x)

−γ0
pΩ −1 expanded around x = 0 and evaluated at

x = p
μ(Nss(γ0))

. The function f (x; γ0) is analytic in x away from x = 1, and in
particular, the SM,γ0 increases monotonically to f (p/μ(Nss(γ0)); γ0). It follows that

1

p

M∑
i=1

1

i !μ(Nss(γ0))i−1

⎛
⎝i−1∏

j=0

[γ0
Ω

+ j p
]⎞⎠ ≤ SM,γ0 ≤ f

(
p

μ(Nss(γ0))
; γ0

)
:= fγ0

and thus that css1 ≥ γ0/(p fγ0 +μ0 +μ1). After using the css1 bounds in the expression
for cssk , we have

pΩ

p fγ0 + μ0 + μ1
SM,γ0 ≤

M∑
k=1

kcssk ≤ pΩ

μ0
SM,γ0

−→ lim
M→∞

pΩ

p fγ0 + μ0 + μ1
SM,γ0 ≤ lim

M→∞

M∑
k=1

kcssk ≤ lim
M→∞

pΩ

μ0
SM,γ0

−→ pΩ

p fγ0 + μ0 + μ1
fγ0 ≤ lim

M→∞

M∑
k=1

kcssk ≤ pΩ

μ0
fγ0 .
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Now we let L(γ0) = pΩ
p fγ0+μ0+μ1

fγ0 and U (γ0) = pΩ
μ0

fγ0 . From Proposition D2,

limγ0→0 fγ0 > 0, so limγ0→0 L(γ0), limγ0→0U (γ0) > 0, and Proposition D follows.
��

E Convergence and Stability of ck When �(t) → 0

In this section,wewill prove that solutions ck to ourODEsystem initialized sufficiently
close to

−→
0 converge to

−→
0 as t → ∞. Denote by (P) the “perturbed”ODEsystemgiven

byEqs. 7,A4,withγ (t) = γ0e−at , and by (U) the “unperturbed”ODEsystem resulting
from the alternate choice γ (t) ≡ 0. For the sake of generality, we omit previous
assumptions about the form of the functions p(N ), μ(N ), except that p(0), μ(0) >

0. Additionally, in this section, we regard the term N that appears in the ODEs as∑
k≥1 kck instead of its own variable and thus do not explicitly include Eq. 1 in our

analysis as shown in “Appendix D.” Note that the residual N − ∑
k≥1 kck → 0

as M → ∞. We begin by noting that the unperturbed system (U) has steady state
cUk (t) ≡ 0 for k ≥ 1. To analyze the stability of this steady state, we consider the
linearization of (U) around this steady state, which is represented by theM×M matrix
we call LU (LU = (li j )1≤i, j≤M ). The components li j of LU are given explicitly by:

li j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− j(p(0) + μ(0)), if i = j ≤ M − 1

−Mμ(0), if i = j = M

jμ(0), if i = j − 1; 2 ≤ j ≤ M

jp(0), if i = j + 1; 1 ≤ j ≤ M − 1

0, otherwise

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A9)

Although the matrix is tridiagonal, it is high-dimensional, and thus, its eigenvalues
cannot be computed analytically. However, we may nevertheless demonstrate that
all eigenvalues possess strictly negative real part, indicating that the zero solution is
asymptotically stable. To do this, we use Gershgorin’s circle theorem to show that if
there exists an eigenvalue λ ∈ C satisfying �(λ) ≥ 0, then λ = 0. We then verify that
λ = 0 is never an eigenvalue of LU, by directly demonstrating that LU has linearly
independent rows.

Proposition E All eigenvalues λ ∈ C of the matrix LU satisfy �λ < 0, so that the zero
solution of (U) is asymptotically stable.

We first apply Gershgorin’s circle theorem to the columns of the matrix LU to
conclude that all eigenvalues λ ∈ C of the truncated system (finite M) are contained
within the following union of disks:

(
M−1⋃
i=1

{λ ∈ C : |λ + i(p(0) + μ(0))| ≤ i(p(0) + μ(0))}
)⋃

{λ ∈ C : |λ

+Mμ(0)| ≤ Mμ(0)}, (A10)
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where we have used the fact that {λ ∈ C : |λ + D| ≤ D} ⊂ {λ ∈ C : |λ + (D + ε)| ≤
D + ε} for D, ε > 0. Given the assumption that p(0), μ(0) > 0, each of these disks
is tangent to the line �λ = 0 at λ = 0 and otherwise lies entirely in the half plane
�λ < 0. Thus, LU can only possess an eigenvalue λ satisfying �λ = 0 if λ = 0 is
itself an eigenvalue. We next verify that λ = 0 is never an eigenvalue of LU directly,
by establishing the linear independence of the rows of LU.

Let us assume that there exist scalars a1, a2, . . . , aM , such that
∑M

j=1 a j
(
li j − 0

) =
0 for all 1 ≤ i ≤ M . Hence, a normalized vector a = (a1, a2, . . . , aM ) represents
the eigenvector of the zero eigenvalue. For i = 1, we find that 2a2μ(0) − a1(p(0) +
μ(0)) = 0, so that a2 = 2−1μ(0)−1(p(0) + μ(0))a1. By moving on to larger i ,
we can recursively derive ai = Θi a1 for all 2 ≤ i ≤ M with a proportional constant
coefficientΘi . Moreover,

∑M
i=1

∑M
j=1 a j li j = −a1μ(0) = 0, leading to a1 = 0 given

that μ(0) > 0. If a1 = 0, a ≡ 0, and a nonzero eigenvector does not exist, implying
that zero is not among the eigenvalues of the M × M matrix LU. We thus conclude
that all eigenvalues λ of the matrix LU satisfy �(λ) < 0, and the zero solution of
(U) is asymptotically stable for Eq. 7 truncated using Eq. A4 at an arbitrarily large
M . Note that the proof in Eq. A10 does not hold if we use the alternative truncation
formula Eq. A5. By forcing all cells to remain below the truncation threshold M , it
is not possible for all ck to go to zero with a finite M . For the alternative truncation,
the stable steady-state solution is ck = 2Nss/(M(M + 1)), which nevertheless goes
to zero as M → ∞.

We next proceed to demonstrate that the uniform asymptotic stability of the zero
solution (cUk (t) ≡ 0 for k ≥ 1) of the unperturbed system (U) confers a similar
notion of “stability” on the perturbed system (P). In particular, the uniform asymptotic
stability of the system (U), in conjunction with the exponential decay of the func-
tion γ (t), implies that solutions of the perturbed system (P) also converge to zero in
magnitude, in a sense to be made more precise later on. Here let us simplify our nota-
tion by writing (U) as dc/dt = f (c), where c ≡ (c1, c2, . . . , cM ). The autonomous
term f (c) consists of cell proliferation and death. Correspondingly, we express (P)
as dc/dt = f (c) + g (t, c), where the nonautonomous term g (t, c) describes thymic
export that depends explicitly on the argument t . We appeal to results of Strauss and
Yorke in (1967), in particular their Theorem 4.6, which we may invoke to prove that
the solution of the perturbed system cP (t) → 0 if the unperturbed and perturbed
systems (U) and (P) satisfy the following conditions:

1. The zero solution (cU (t) ≡ 0) of the unperturbed system (U) is uniformly asymp-
totically stable.

2. The autonomous term f(c) is C1.
3. There exists r > 0 such that if |c| ≤ r , then |g(t, c)| ≤ η(t) for all t ≥ 0 where

G(t) := ∫ t+1
t η(s)ds → 0 as t → ∞. (Here, we use the norm |c| = ∑M

i=1 |ci |.)

We now verify Conditions 1–3. Condition 1 follows immediately from the previous
discussion, and the fact that for an autonomous system, asymptotic stability and uni-
form asymptotic stability are equivalent. Condition 2 is trivial. To verify Condition 3,
we must construct a suitable function η(t), using the definition of the function g(t, c):
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|g(t, c)| =
∣∣∣∣∣∣
γ0e−at

Ω

⎛
⎝Ω −

M∑
j=1

c j − c1

⎞
⎠
∣∣∣∣∣∣+

M−2∑
j=2

∣∣∣∣γ0e−at

Ω

(
c j − c j+1

)∣∣∣∣
+
∣∣∣∣γ0e−at

Ω
cM−1

∣∣∣∣
≤ γ0e−at

Ω

(
|Ω| +

(
M∑
i=1

|ci |
)

+ |c1|
)

+
M−2∑
j=2

γ0e−at

Ω

(|c j | + |c j+1|
)

+ γ0e−at

Ω
|cM−1|

≤ γ0e−at

Ω

(
Ω + 3

M−1∑
i=1

|ci |
)

≤ γ0e−at

Ω
(Ω + 3|c|)

= γ0e
−at

(
1 + 3

Ω
|c|
)

(A11)

Thus, |g(t, c)| ≤ γ0e−at
(
1 + 3

Ω
|c|), and for a given choice of r > 0, we may

define ηr (t) := γ0e−at
(
1 + 3r

Ω

)
. From the exponential form of ηr (t), it is clear that

limt→∞
∫ t+1
t ηr (s)ds = 0. Moreover, not only does there exist a single choice of

r > 0 that produces a suitable ηr (t), but any choice of r produces a suitable ηr (t).
From Theorem 4.6 in Strauss and Yorke (1967), we may conclude that for any T0 ≥

0, there exists a δ0 > 0 such that if t0 ≥ T0 and |cP (t0)| ≤ δ0, then the solution of the
perturbed problem, cP (t), passing through (t0, cP (t0)) converges to zero in magnitude
as t → ∞. Here the proof of convergence holds for any sufficiently smooth function
γ (t) → 0. Given Eq. 7 truncated at an arbitrarily large threshold M , all ck decline
with the decaying thymic export as t → ∞. While the total cell count is preserved by
proliferation driving all cells above the truncation threshold and out of the truncated
system through truncation errors, the mean-field approximation breaks down at the
limit γ (t)/μ → 1/Ω � 1, and Eq. 7 no longer accurately describes the real biology.
Nonetheless, our analysis here describes the decline of the number of T cell clones
with decaying γ (t) as t → ∞, before the mean-field approximation breaks down.

F Computation of Expected Sample Clonal Size Distribution

In this section, we detail the derivation of Eq. 11, the explicit expression for E[cYk ].
We begin with Eq. 10,

E[ck] =
R∑
j=1

j P
(
cYk = j

)
. (A12)
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Each term P
(
cYk = j

)
in Eq. A12 can itself be expanded as a sum over all the ways

to choose the j clones that are of size k. For a sample containing exactly Z clones of
size k, we introduce the following Z -tuple notation, for Z ∈ N:

IZ := {iZ = (i1, i2, . . . , iZ ) : i j ∈ {1, 2, . . . , R}, i j < i j+1 for all j}.

where iZ lists the indices of all the sample clones consisting of precisely k cells.
Additionally, let yi denote the size of the i th ordered sample clone, so that yi1 =
yi2 = · · · = yiZ = k, but no other sample clone consists of k cells. Note that in iZ,
clones are listed in numerical order, due to the assumption i j < i j+1, in order to avoid
repetition (e.g., in I2, (i1, i2) should be indistinct from (i2, i1), and this pair should not
be counted twice, as the significance is in which clone numbers are listed at all, and
not the order in which they are written.) With this, let P(iZ, k) denote the probability
that there are precisely Z clones of size k in the sample, and that their clone numbers
are listed in the vector iZ. Additionally, for s ∈ N, denote by IZ ,s ⊂ IZ the collection
of all iZ ∈ IZ such that iz∗ = s for some z∗ ∈ {1, 2, . . . , Z}. Essentially, we are
imposing the assumption that the sth clone specifically belongs somewhere in the list
iZ,s. Explicitly, we may write IZ ,s as:

IZ ,s = {iZ,s = (i1, . . . , iz∗−1, iz∗ = s, iz∗+1, . . . , iZ ) : i j ∈ {1, 2, . . . , R},
i j < i j+1 for all j}. (A13)

We define P(iZ,s, k) as the probability that there are precisely Z clones of size k, with
clone numbers listed in iZ,s, recalling that the sth clone is in the list. We may further
simplify Eq. A12 with this notation, rearranging sums by strategically regrouping
clone size distributions that share a common size k clone.

E[ck] =
R∑
j=1

j P(cYk = j)

=
R∑
j=1

j

⎛
⎝∑

ij∈I j
P(ij, k)

⎞
⎠

=
R∑

s=1

⎛
⎝ R∑

j=1

∑
ij,s∈I j,s

P(ij,s, k)

⎞
⎠

=
R∑

s=1

P(ys = k). (A14)

The terms of the final sum in Eq. A14 give the probability that the sth clone is of size
k, independent of any other information about the sampling. This probability is easy
to compute and given by:
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P(ys = k) = 1(N
Y

)(ns
k

)(
N − ns
Y − k

)
. (A15)

Inserting Eq. A15 into Eq. A14, we obtain a simple expression for the expected sample
clone size distribution:

E[ck] =
R∑

s=1

1(N
Y

)(ns
k

)(
N − ns
Y − k

)
. (A16)

We can further simplify Eq. A16 by recognizing that the term
(ns
k

)
is nonzero only

if ns ≥ k. We can thus rewrite Eq. A16 in terms of the true clone size distribution
{cNl }Rl=1 as:

E[ck] =
R∑

l=k

1(N
Y

)cNl
(
l

k

)(
N − l

Y − k

)
. (A17)
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