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Abstract
Growth curvemodels serve as the mathematical framework for the quantitative studies
of growth in many areas of applied science. The evolution of novel growth curves can
be categorized in two notable directions, namely generalization and unification. In
case of generalization, a modeler starts with a simple mathematical form to describe
the behavior of the data and increases the complexity of the equation by incorporating
more parameters to obtain a more flexible shape. The unification refers to the process
of obtaining a compact representation of a large number of growth equations. An enor-
mous number of growth equations are made available in the literature by means of the
generalization of existing growth laws. However, the unification of growth equations
has received relatively less attention from the researchers. Two significant unifica-
tion functions are available in the literature, namely the Box–Cox transformation
by Garcia (For Biometry Model Inf Sci 1:63–68, 2005) and generalized logarithmic
and exponential functions by Martinez et al. (Phys A 387:5679–5687, 2008; Phys
A 388:2922–2930, 2009). Existing unification approaches are found to have limited
applications if the growth equation is characterized by the relative growth rate (RGR).
RGR has immense practical value in biological growth curve analysis, which has been
amplified by the construction of size and time covariate models, in which; RGR is
represented either as a function of size or time or both. The present study offers a
unification function for the RGR growth curves. The proposed function combines a
broad class of the growth curves and possesses a greater generality than the existing
unification functions. We also propose the notion of generalized RGR, which is capa-
ble of making interrelations among the unifying functions. Our proposed method is
expected to enhance the generality of software and may aid in choosing an optimal
model from a set of competitor growth equations.
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1 Introduction

Plenty of growth curve models are available in the existing literature (Gompertz 1825;
Verhulst 1838; Richards 1959; von Bertalanffy 1960; Tsoularis and Wallace 2002;
Koya and Goshu 2013; Crescenzo and Spina 2016), which were developed over a
century. The evolution of novel growth equations can be classified into two notable
directions: generalization andUnification. By generalization, we refer to the process in
whichwe startwith a simple equation to understand the growthmechanismof a specific
biological process. Then to generate more flexible shapes and increase its applications
for a wide range of research areas, more parameters are incorporated within the model.
Naturally, the original equation, from which the process started, becomes a special
case of the generalized equation that contains more parameters. Unification refers to a
compact representation of different growth curve models. This is usually achieved by
proposing a single function to represent a larger class of growth models. Unification
allows a better mathematical tractability as it deals with a particular function with
some fundamental (key) parameters.

Recently, there have been some innovations in growth curve literature, which deals
with these two concepts. Two notable generalizations were proposed by Tsoularis
and Wallace (2002) and Koya and Goshu (2013). Tsoularis and Wallace (2002) intro-
duced a generalized form of the logistic growth equation (henceforth, TW model)
which included many common growth laws as special cases. Koya and Goshu (2013)
proposed an eight parameter growth function (henceforth, KG model) which accom-
modates several commonly known growth models such as logistic, Gompertz, Brody,
Monomolecular, Mitscherlich, Von Bertalanffy, Richards, generalized Weibull. The
TW model contains three more parameters in comparison with Gompertz and logis-
tic growth and two extra parameters in comparison with Richards’ growth function.
Similarly, the KG model (Koya and Goshu 2013) contains a total of five additional
parameters in comparison with the logistic, Gompertz and Weibull growth functions.
Although the generalized equations offer a better flexibility in shapes, these models
are difficult to fit real data sets as the model complexity increases significantly due to
the presence of a large number of parameters. The estimators of the model parameters,
which are to be estimated from data, often lack many desirable statistical properties.

The unification of the growth curves has also attracted many researchers (Garcia
2005;Martinez et al. 2008, 2009; Tjørve and Tjørve 2010, 2017). Using the Box–Cox
transformation Garcia (2005) proposed a single growth equation that unifies many of
the existing sigmoid growth curves. Martinez et al. (2008, 2009) obtained the one-
parameter generalization of the logarithmic and exponential functions to unify a great
majority of growth models. An important feature of the unification of growth curves is
that it formulates a relationship betweendifferentmodels,which is useful in visualizing
various growth functions in a single mathematical framework. The unification usu-
ally enhances the generality of software, facilitating the development of more widely
applicable software, and identification of suitable statistical procedures (Garcia 2005).
The unification function for different growth curves is more appealing because of its
compactness in terms of a reduced number of parameters. For instance, the unifi-
cation function described by Garcia (2005) contains only two shape parameters. So
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for the advancement of growth curve analysis, a further research and development of
unification would be more useful than the generalization.

Recently, there have been significant innovations going on to analyze the real data
using growth functions that explicitly involve the relative growth rate (henceforth,
RGR). RGR is expressed either as a function of size (state variable) or time or both
in this model set up. We refer such models as “RGR growth curves” in rest of the
manuscript. We shall elaborate it in later sections. A number of research papers are
available in which the utilities of RGR growth curves are well discussed (Bhattacharya
et al. 2009; Bhowmick et al. 2014; Bhowmick and Bhattacharya 2014;Mukhopadhyay
et al. 2016;Chakraborty et al. 2017; Pal et al. 2018). The unification functions proposed
byGarcia (2005) andMartinez et al. (2008) are developed on the pillars of two arbitrary
chosen mathematical functions that apparently do not provide much useful insight
about the underlying biological process. It is necessary to mention that these existing
unification approaches do not offer functions, which are able to combine the RGR
growth curves which are functions of both size and time, respectively.

Therefore, the present study is aimed to investigate the existence of further uni-
fication functions that offer a simple but compact mathematical expression to unify
the RGR growth curves. In addition, the proposed candidate should be able to derive
the existing unification approaches by Garcia (2005) and Martinez et al. (2009) as
special cases. In this article, we propose a novel unification function that possesses the
above two existing unifications. The unification is achieved by introducing size and
time allometry together into the basic Richards’ equation. Although the existing math-
ematical form of the Richards’ equation can capture most of the monotonic shapes
of RGR, but due to the joint impact of both time and size, the proposed framework
integrates a much bigger class of growth models. Moreover, the proposed unification
function can be well interpreted as it is originated from a basic RGR equation which
is not the case for Garcia (2005) and Martinez et al. (2008).

The organization of the rest of the paper is as follows. We first describe the existing
unification methods in Sect. 2. We provide a short description RGR to facilitate a
smooth transition between unification and RGR functions. Then, we develop unifica-
tion technique based on RGR in Sect. 3. The various shapes of RGR expressed by the
proposed unification are studied in Sect. 4.

2 Literature Survey: Existing Unification

We describe two existing unification approaches proposed by Garcia (2005) and Mar-
tinez et al. (2008) in this section. Garcia (2005) used the Box–Cox transformation to
unify a larger class of sigmoidal growth curves. TheBox–Cox transformation, given by

x (a) =
{

(xa−1)
a if a �= 0,

ln(x) if a = 0,
(1)

is away to transform an approximately normal randomvariables into a normal random
variable (Box and Cox 1964). Normality is an important assumption for many statis-
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tical techniques. However, if the underlying random variable is not normal, applying
the Box–Cox transformation, one can transform an approximately normal variable
into a normal variable, which can enable to run a broader number of tests. Not only in
Statistics, the Box–Cox transformation has a nice application to unify many sigmoidal
growth curves. Garcia (2005) used the Box–Cox transform to unify the growth curves
such as logistic (Verhulst 1838; Gompertz 1825; Richards 1959; Korf 1939; Weibull
1951), etc. The unified growth equation is given by

B(B(y, a), b) = t, (2)

where a and b are the parameters. Note that B(y, a) = −y(a), where y(a) is the
Box–Cox transformation of y (Eq. 1) and y is the proportion of size with respect to
asymptotic size, that is, if x(t) denotes the size at time t and x∞ is the size at t → ∞,
then y(t) = x(t)/x∞. For different parameter values of a and b, various growth curves
are obtained such as logistic (a = −1, b = 0), Gompertz (a → 0, b = 0), Richards
/ θ−logistic (a = −θ, b = 0).

The one-parameter generalization of the logarithmic and exponential functions is
used to unify a great majority of growth models by Martinez et al. (2008, 2009). The
one-parameter generalization of the logarithm function is given by

lnq(x) =
∫ x

1

dt

t1−q
= lim

p→q

x p − 1

p
, (3)

which is the natural logarithm for q = 0. It is important to note that lnq(x) is same as
−B(x, q). The unified growth equation of Martinez et al. (2008) is given by

d lnq(y)

dt
= k[− lnp(y)]γ , (4)

which contains many growth curves as a special case. It includes logistic (q = 0, p =
1, γ = 1), Gompertz (q = 0, p → 0, γ = 1), Richards (q = 0, p = −θ, γ = 1),
Von Bertalanffy (q = − 1

3 , p = 1
3 , γ = 1), etc. like Garcia’s unified equation. It

also contains the general logistic model proposed by Tsoularis and Wallace (2002),
which cannot be obtained from Garcia’s unified equation. More precisely, if we take
a → 0 in case of Garcia’s unification, we get 1

y
dy
dt = [− ln(y)](1−b), whereas if we

take p → 0 for Matrinez et. al.(2008) unification, we get 1
y
dy
dt = ky1−q [− ln(y)]γ .

3 Proposed UnificationMethod

3.1 Relative Growth Rate

Relative growth rate (RGR) (Fisher 1921) plays an important role to understand the
rate of growth associated with the growth process. The RGR is defined as the per unit
rate of change in the value of the variable. Let X(t) be the size of the growth process
at time t, t ≥ 0, and R(t) be the RGR at time t . Mathematically, R(t) is defined by
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R(t) = 1

X(t)

dX(t)

dt
= d ln X(t)

dt
. (5)

The simplest growth equation is exponential growth where size is unbounded and
RGR is constant (Malthus 1798). However, in reality, unrestricted growth is rare and
RGR must be density dependent. The logistic law is the first member of this bounded
density-dependent family, where RGR is linearly dependent on density. The simplest
nonlinear extension of this growth law was due to von Bertalanffy (1949), which was
further extended to negative power by Richards (1959) (Garcia 2008).

As pointed out by Bhowmick et al. (2014) sometimes it is not easy, and even
misleading, for an experimenter to identify the suitable underlying model by studying
the shape of the size profile curves among the available growth curves. However, in
comparison, if we plot the empirical estimate of RGR against time or size, we can
at least guess and identify the growth curves that are appropriate for the given data
based on the monotonic structure of RGR. So the identification of the proper model
is comparatively easy for RGR profile than the size profile curves. In addition, RGR
contains a reduced number of parameters, which may be appeared to be advantageous
in model fitting exercises using real data (Eberhardt et al. 2008). This is particularly
important when growth profile curves look similar to common and existing growth
curves, but the RGR is not monotonically decreasing with time (Gompertz), size
(logistic, Richards, Von Bertalanffy, etc.), or constant (exponential). This observation
has also motivated us to search for a unification function based on RGR rather than
the size variable.

3.2 RGR and Unification

We shall ignore any linear transformations of the size variable X(t) and time t in the
development of novel unification function, and we consider y(t) = X(t)

K or simply y,
where X(t) is the size at time t , and K is the asymptotic size. So y has been scaled
to the interval 0 ≤ y ≤ 1. Thus, disregarding differences in location and scale, the
various models correspond to specific values of two essential shape parameters.

We shall start our development with the Richards’ growth equation. Basically,
Richards growth law is that fundamental growth which can capture three shapes of
RGR, namely linear, monotonic convex and monotonic concave. The Box–Cox trans-
formation is a tool by which we can convert an approximately normal random variable
to another random variable following a normal distribution. Garcia (2005) used this
transformation to build a unified growth equation. The Richards’ growth equation is
given by R(t) = r(1− yb), which implies that R(t) ∝ B(y, b). Starting with a single
parameter, the proposed unification is followed by the following three steps.

I: Mathematically, RGR is proportional to a polynomial of density with constant
and the higher-order terms only in Richards’ growth. A more general density-
dependent growth curve can be obtained by considering RGR proportional to
B(y, b)d . Note that the modified RGR equation

[
R(t) ∝ B(y, b)d

]
includes

additional terms of polynomial in comparison with the original Richards equa-
tion.
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II: Again the RGR R(t) is proportional to ya in case of size allometry. Combining
all these factors, we can get R(t) = r ya B(y, b)d (Ross 2009), r is the constant
of proportionality.

III: RGR is also assumed to be proportional to a time-dependent factor f (t) (say) to
capture the time allometry form. Hence, the modified unification equation can
be written as R(t) = r ya B(y, b)d f (t), where ya B(y, b)d is the size-dependent
factor and f (t) is the time-dependent factor which can control the species fit-
ness. One of the simplest but important time-dependent factors is given by the
allometric power of time i.e., to tc−1 (Bhowmick and Bhattacharya 2014).

We propose the following unification equation based on the above discussion

R(t) = r ya[B(y, b)]d tc−1 = r ya
[
1 − yb

b

]d
tc−1, (6)

where r , a, b, c and d real numbers. Note that the last term of Eq. (6) is only valid
for b �= 0, otherwise it involves a logarithm. This is the usefulness of the Box–Cox
transformation in the context of growth models. Alternatively, the unification equation
can also be written as

dB(y,−a)

dt
= −r [B(y, b)]d tc−1. (7)

We shall demonstrate that existing unification approaches proposed by Garcia
(2005) and Martinez et al. (2008) are special cases of the proposed unified growth
equation.

3.3 Relationship with Existing Unification

The unification of Garcia (2005) can be obtained as a special case of our proposed
unification equation Eq. (6). Garcia (2005) assumed B(B(y, p), q) = t , so they got
a general age invariant growth equation as follows: Differentiating the yield equation
we get,

dB(B(y, p), q)

dt
= 1

⇒ B ′(B(y, p), q)
dB(y, p)

dt
= 1

⇒ −(B(y, p))q−1 dB(y, p)

dt
= 1 (8)

⇒ dB(y, p)

dt
= −(B(y, p))1−q
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⇒ dy

dt
= y1−p(B(y, q))1−q

⇒ 1

y

dy

dt
= y−p(B(y, p))1−q . (9)

So, Garcia (2005)’s unification equation is given by

1

y

dy

dt
= y−p

(
1 − y p

p

)1−q

. (10)

It is easy to follow that Eq. (10) is a special case of Eq. (6), where a = −p, b =
p, d = 1 − q, c = 1.

The unification of Martinez et al. (2008) can be obtained as a special case of our
proposed unification equationEq. (6). The convenience of generalizing the logarithmic
and exponential functions is an important tool to unify many growth curves. The one-
parameter generalizations of the logarithmic and exponential functions can unify the
great majority of growth models (Martinez et al. 2008, 2009).

The unification of Martinez et al. (2008) (Eq. 4) can be written as

R(t) = ky1−q [B(y, p)]γ . (11)

We observe from Eq. (11) that the unification of Martinez et al. (2008) is a special
case of our proposed unification Eq. (6) for (c = 1).

3.4 Utility of the Proposed Unification

The above two unification techniques (given in Sect. 3.3) unify a large number of
growth curves. However, there are a number of growth models, which are not possible
to describe by these two methods. Few examples are: KG model (Koya and Goshu
2013), extended Gompertz (Bhowmick and Bhattacharya 2014), extended logistic
(Chakraborty et al. 2017), modified Gompertz using Korf law (Crescenzo and Spina
2016). Our proposed function can be regarded as a unified version of these models. As
an example, the generalized growthmodels of Koya andGoshu (2013) can be obtained
as a special case of the proposed unification equation Eq. (6). The KG growth equation
after ignoring the time and size location and scale parameters is given by

y =
[
1 − Be−ktγ

]m
. (12)

So the growth equation in RGR form can be described as

R(t) = r y− 1
m (1 − y

1
m )tγ−1, (13)

when m > 0 and

R(t) = r(1 − y− 1
m )tγ−1, (14)

123



2536 B. Chakraborty et al.

when m < 0. Equation (13) is a special case of our proposed unified growth equation
(6) with a = − 1

m , b = 1
m , d = 1 and c = γ . Similarly, Eq. (14) is a special case of

Eq. (6) with a = 0, b = − 1
m , d = 1, and c = γ .

The proposed model of Crescenzo and Spina (2016) is given by

R(t) = α(1 + t)−(β+1), (15)

where α > 0 and β > 0. It can be easily verified with a simple algebra that the
proposed model by Crescenzo and Spina (2016) is a special case of unifying Eq. (6)
with the values of the unifying parameters being a = 0, b → 0, d > 1, and c = 1.
The size variable X(t) at time t corresponding to Eq. (15) is given by

X(t) = K e− α
β
(1+t)−β

, (16)

where K is the asymptotic size. Let y(t) = X(t)
K . The RGR equation Eq. (15) can be

expressed as follows

R(t) = r(− ln y)d , (17)

where d = β+1
β

. Clearly, d > 1. So, our proposed model also unifies growth equation
proposed by Crescenzo and Spina (2016) with a = 0, b → 0, d > 1, and c = 1. Note
that the model is a particular case of generalized Gompertz (d > 0) model. The model
was developed by combining Gompertz and Korf laws, which can be recovered for
the limiting parameter values. For example, for large values of β, d tends to 1 and we
obtain the Gompertz growth model. It is also to be noted that the model of Crescenzo
and Spina is the same as the model of Korf, except the shift t → t + 1.

The list of growth models which can be obtained as a special case of the proposed
unification equation is given in Table 1. We provide a flowchart in Fig. 1 to show the
relationship between the growth curves.

3.5 Non uniqueness of Forms of RGR

It is often overlooked that the differential form of a growth curve is not unique. For
any (smooth) growth function y = f (t), there is a unique derivative dy

dt = f (t) and a

unique autonomous differential equation dy
dt = g(y), but there is an infinity of forms

dy
dt = h(y, t) containing both y and t . For instance, in h(y, t) one can substitute
y → y p f (t)(1−p) and/or t → tq f −1(y)(1−q), for any real p and q. For example,
Garcia (2011) illustrated five differential forms of the Schumacher growth curve, for
which the absolute growth rate dy

dt is of the form h(y, t). The same is the case with
Korf, Gompertz, Extended logistic and Weibull, etc.

Note that in the above case, the absolute growth rate was written as the model
equation. So a similar discussionwithRGR is of immense importance in this regard.As
a consequence, the representation of RGR in terms of size and time will not be unique
and there can be several forms R(t) = h(y, t) containing both y and t . Hence, a growth
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Table 2 The mathematical expressions of RGR for different growth models

Growth models Various forms of RGR

Korf 1. R(t) = r tc−1 4. R(t) = rye− r
c t

c
tc−1

2. R(t) = r
ac−1c

(− ln y)
c−1
c 5. R(t) = r(1 − y)

(
1 − e−atc

)
tc−1

3. R(t) = r
a ln(y)t−1

Gompertz 1. R(t) = (−r ln y0)e−r t 4. R(t) = ry(− ln y)e−(ln y0)e
−r t

2. R(t) = r(− ln y) 5. R(t) = r (− ln y)e+ ln y0e
−r t

y

3. R(t) = r
ln y0

(− ln y)2ert

Richards 1. R(t) = r(1 − yb) 3. R(t) = r y−1(1−yb)

[1+(1/yb0−1)e−brt ]1/b

2. R(t) = r y(1−yb)[
1+(1/yb0−1)e−brt

]−1/b 4. R(t) = r(1/yb0−1)e−brt

1+(1/yb0−1)e−brt

Weibull 1. R(t) = r (1−y)tc−1

y 4. R(t) = c1−1/cr−1/c (1−y)(− ln(1−y))1−1/c

y

2. R(t) = ry−1e− r
c t

c
tc−1 5. R(t) = r e

− r tc
c tc−1

1−e−r tc/c

3. R(t) = c (1−y)(− ln(1−y))t−1

y

Extended logistic 1. R(t) = r(1 − y)tc−1 3. R(t) = ry(1 − y)tc−1(1 + e−atc+b)

2. R(t) = re−atc+btc−1

1+e−atc+b

having two different RGR forms may be regarded as two different growth laws. For
example, Crescenzo–Spina and generalized Gompertz were regarded as two different
growth laws. Thismotivated us to inspect the presentation of the possible occurrence of
various growthmodels.We kept our discussion restricted toKorf, Gompertz, Richards,
Weibull and Extended logistic models only. Some alternative forms of RGR for these
models are presented in Table 2.

From the above discussion, it is clear that theRGRcolumn inTable 1 shows only one
of many possibilities. We would like to emphasize that the proposed form of RGR as a
function of size and time is not arbitrary, rather itwasmotivated by important biological
phenomena such as density-dependent decay (generally considered as (1− yb)d ) and
the size allometry reflected through (ya) and the time allometry (tc−1). Hence, the
proposed unification can explain three different aspects of growth law. In particular,
the proposed unification provides a platform to chose a RGR equation to start with.

It is worth noting that the equivalence is only valid in a fully deterministic setting. In
case of stochastic setup, after any disturbance, the drift forms of stochastic differential
equation follow different trajectories (Garcia 2011). Donnet et al. (2010) and Garcia
(1983, 2018) used deterministically equivalent forms of the Bertalanffy–Richards
model that have different stochastic properties.

Remark The proposed unified growth equation can combine a large class of growth
curves. However, the extended Gompertz model proposed by Bhowmick and Bhat-
tacharya (2014) cannot be unifiedwith Eq. 6. Instead of considering f (t) = tc−1, if we
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consider f (t) = e−st t c−1 then the model developed in Bhowmick and Bhattacharya
(2014) can be covered. But, in that situation, we will have one extra parameter. Note
that Gompertz growth has two forms R(t) = re−st and R(t) = r(− ln y). We only
consider the size-dependent form, R(t) = r(− ln y). The size-dependent extension
of Gompertz growth has additional advantages such as closed-form solution of RGR
equation exists for all parameter values.

3.6 Generalized RGR: An Alternative Interpretation of the Proposed Unification

We study the relationship between the unifying functions ofGarcia (2005) and the one-
parameter generalized logarithm with RGR in this section. We define γ -generalized
relative growth rate at time t ,

[
Rγ (t)

]
, as the ratio of rate of change of growth in per

unit time and the γ th power of size at time t , i.e.,

Rγ (t) = 1

xγ

dx

dt
.

Note that Rγ (t) is the per capita growth rate when γ = 1. Generalized RGR is not
a scale invariant quantity unless γ = 1.

The unified growth equation using generalized RGR is expressed as

R(a+1)(t) = r [B(y, b)]d tc−1. (18)

Recall that

B(x, c) =
{

(1−xc)
c if c �= 0

− ln(x) if c = 0.

Now, differentiating B(x, c) with respect to t , we get dB(x,c)
dt = −xc−1 dx

dt =
−R1−c(t). The γ -generalized relative growth rate at time t , Rγ (t) is nothing but

− dB(x,1−γ )
dt and the relative growth rate is − dB(x,0)

dt .
Again we have the one-parameter generalization of logarithm function as

lnc(x) =
∫ x

1

dt

t1−c
= lim

p→c

x p − 1

p
. (19)

Differentiating, we get d lnc(x)
dt = xc−1 dx

dt = R1−c(t). So the Rγ (t) is the growth

rate of ln1−γ (x), i.e., Rγ (t) = d ln1−γ (x)
dt . The usual relative growth rate is d lnc(x)

dt for
c = 0.

If the functional form of generalized RGR is given then the functional form of size
is derived as follows:
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We have,

d ln1−γ (x)

dt
= Rγ (t)

⇒
∫ t

0
d ln1−γ (x) =

∫ t

0
Rγ (s)ds

⇒ ln1−γ X(t) − ln1−γ X(0) =
∫ t

0
Rγ (s)ds

⇒ X(t) = X(0)

[
1 + 1 − γ

X(0)1−γ

∫ t

0
Rγ (s)ds

]1/(1−γ )

⇒ X(t) = X(0)e1−γ

(
1

X(0)1−γ

∫ t

0
Rγ (s)ds

)
, (20)

where ec(x) is the one-parameter generalized exponential function and defined as

ec(x) = limq→c(1 + qx)
1
q . If 1 + qx is negative then ec(x) is defined as 0.

3.6.1 Example-I

Garcia’s unification B(B(y, p), q) = t is equivalent to saying (1 − q)th generalized
RGR of B(y, p) is constant. As already mentioned, the yield equation of Garcia

(2005) is given by B(B(y, p), q) = t , and we observe that
dB(y,p)

dt
B(y,p)1−q = −1 (Eq. 9).

So (1 − q)th generalized RGR of B(y, p) is a constant for the growth laws that
obey Garcia (2005)’s unification, namely logistic, Gompertz and Richard’s. Fewmore
interesting observations in characterizing growth curves are listed below:

1. If p → 0 and q = 0 then we get the Gompertz growth law. But when p → 0,
B(y, p) = − ln y and − dB(y,p)

dt = d ln y
dt . Hence, RGR of logarithmic of size

variable is constant in case of the Gompertz growth.
2. We have p = −1 and q = 0 in case of the logistic growth law. But when p = −1,

B(y, p) is 1 − 1
y . So in case of the logistic growth model RGR of (1 − y−1) is

constant.
3. We put p = 1 and q = 0 to get the Monomolecular growth law. So in this case,

− dB(y,p)
dt is the absolute growth rate and B(y, p) is 1 − y. Hence, the RGR of

(1 − y) is constant in case of the Monomolecular growth.
4. If we put q = 0 and 0 < p < 1, we get general Von Bertalanffy growth model. So

for the general Von Bertalanffy growth model, we have RGR of 1− y p is constant.

3.6.2 Example-II

The Martinez’s unified growth equation using generalized RGR is expressed as

R(a+1)(t) = r [B(y, b)]d . (21)
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4 Illustration of the Proposed Unification

We demonstrate that how our proposed unification function can be used for a large
family of growth functions in this section. The identification of growth curves is
relatively easier if we consider the shapes of RGR instead of size (Bhowmick and
Bhattacharya 2014), which motivated us to study the various shapes of RGR of growth
curvemodels in light of the unified growth equation. The unified growthmodel is given
by

R(t) = r

bd
ya(1 − yb)d tc−1. (22)

Differentiating with respect to t , we get,

dR(t)

dt
= r

bd

[
ya(1 − yb)d (c − 1)tc−2 + ya−1(1 − yb)d−1tc−1[a − (a + bd)yb]dy

dt

]

= r

bd
ya−1(1 − yb)d−1tc−2

[
(c − 1)y(1 − yb) + t

[
a − (a + bd)yb

] dy

dt

]
.

(23)

1. Tsoularis and Wallace: If we put c = 1 in the unified growth equation, we get
the Tsoularis and Wallace (2002) model

R(t) = r

bd
ya(1 − yb)d , (24)

and

dR(t)

dt
= r

bd
ya−1(1 − yb)d−1

[
a − (a + bd)yb

] dy

dt
.

We know y is size at time t and dy
dt is the growth rate. So dy

dt is non negative. The

term ya−1(1 − yb)(d−1) is also non negative. If a ≤ 0, then dR(t)
dt is negative for

all y. Hence, R(t) is a decreasing function when a ≤ 0.
If a > 0 then dR(t)

dt is non-monotonous as it does not take same sign for all 0 ≤
y ≤ 1. RGR is bell shaped in this case. RGR is increasing for 0 ≤ y ≤ ( a

a+b )1/b

and decreasing otherwise. Now we consider the following special cases of TW
model.

(a) Marusic–Bajzer growth (d = 1): The Marusic and Bajzer (1993) model
takes both monotone and non-monotone shapes. It takes decreasing shapes
when (a ≤ 0) and bell shapes when (a > 0). The various possible shapes of
RGR are depicted in Fig. 2a.
Now if we put a = 0, we get Richards growth model for b ≥ −1. Since
a = 0, RGR takes decreasing shapes only. Hence, the special cases of this
model such as Monomolecular (b = −1, r < 0), general Von Bertalanffy
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Fig. 2 (Color figure online) RGR profile of the members of Tsoularis–Wallace model is shown in the panels
(a)–(d). We see from the panel (a) that RGR can take both the decreasing as well as bell shapes depending
on the values of a. The RGR profile of Richards family of growth curves (R(t) = r(1− yb)) over size and
time is depicted in the panels (b) and (c), respectively.We assume r = −1 for first three graphs of the panels
(b) and (c) where b is negative and r = 1 elsewhere. We get various RGR curves for different values of
b such as Monomolecular (b = −1), Von Bertalanffy (b = −0.33), general Von Bertalanffy (b = −0.2),
and logistic (b = 1). We observe that RGR can take only decreasing shapes for any values of d, which is
depicted in the subfigure (d)

(0 < b < 1, r < 0), Von Bertalanffy (b = − 1
3 , r < 0) (von Bertalanffy

1960), logistic (b = 1) (Verhulst 1838), Gompertz (b → 0) (Gompertz 1825)
models take only decreasing shapes. The shapes of RGR for different values
of b are shown in Fig. 2b, c.

(b) Blumberg (b = 1): The Blumberg (1968) model takes both monotone and
non-monotone shapes depending on the values of a. If a ≤ 0 then it takes
decreasing shapes and bell shapeswhena > 0. The shapes ofRGR for different
values of d are shown in Fig. 2d.

(c) General Gompertz (a = 0, b → 0): The RGR function takes only decreasing
shapes since a = 0. The shapes of RGR are shown in Fig. 3. The figure also
includes its particular cases Gompertz (d = 1) and second-order exponential
polynomial (d = 1

2 ) growth curves. Note that the RGR of second exponential
polynomial decreases linearly over time.

(d) Generic [a = b(1−d)]: The generic model (Turner et al. 1976) takes decreas-
ing shape when a ≤ 0 i.e., d ≥ 1. RGR is bell shaped when 0 < d < 1. The
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Fig. 3 (Color figure online) Profile plot of RGR of generalized Gompertz growth over size and time. d = 1
2

represents the second-order exponential growth model, and d = 1 represents the Gompertz growth models.
Note that RGR is always decreasing for different values of d. Also, note that for second-order exponential
polynomial RGR decreases linearly over time

hyperbolic growthmodel is a special case of the generic growth when a = − 1
n .

RGR takes only decreasing shapes for hyperbolic growth since a is always neg-
ative.

2. Korf: We have a = 0, d = 0, c < 0, in case of Korf (1939) model and dR(t)
dt =

r(c− 1)tc−2 < 0. Hence, RGR takes only decreasing shapes. The shapes of RGR
over time and size are depicted in Fig. 4.

3. Koya–Goshu Model: Koya and Goshu (2013) proposed a generalized growth
model as a solution of the ordinary differential equation that quantifies the growth
phenomena. The eight parameter generalization is given by the following equation:

y(t) = y0 − [K − y0]
[
1 − Be

−k
(
t−μ

δ

)γ ]m
, (25)

where y(t) is size at time t . The interpretation of the parameters are as follows: y0:

initial size, K : asymptotic size, B = 1 −
[

θ−y0
K−y0

] 1
m
, μ : time shift parameter, δ :

time scale parameter, γ,m : shape parameters of the growth function. The growth
equation after ignoring the location and scale parameters is given in Eq. 12. The
RGR equations are given in Eqs. (13) and (14). It can be shown that if a = 0 (14)
then

dR(t)

dt
= R(t)

t
(c − 1 − r ybtc). (26)

Here, RGR can take decreasing shape (c ≤ 1) and bell shape (c > 1).
If a = −b < 0 (13) then

dR(t)

dt
= R(t)

t
(c − 1 − r y−btc), (27)
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Fig. 4 (Color figure online) Profile plot of RGR of Korf growth over size and time. For various possible
values of c, we get only different decreasing shapes of RGR

and RGR can take both decreasing and bell shapes.
Different parameter choices lead to different growth models, which are described
as follows:

(a) Weibull: The Weibull (1951) growth model is obtained by putting a =
−1, b = 1, d = 1. Putting the values of a, b, d in (23) we get

dR(t)

dt
= r y−2tc−2

[
(c − 1)y(1 − y) − t

dy

dt

]
.

If c ≤ 1, then dR(t)
dt < 0 and RGR is a decreasing function.

dR(t)

dt
= r R(t)

t

[
c − 1

r
− tc

y

]

= r R(t)

t

[
c

r
− tc

y
− 1

r

]
.

It can be shown that r tc ≥ cy using the size–time relationship, and hence,
dR(t)
dt < 0 when c > 1. So RGR is always a decreasing function. We have

depicted the various possible shapes of RGR in Fig. 5.
(b) ExtendedGompertzModel:TheRGRequation of extendedGompertzmodel

proposed by Chakraborty et al. (2017) is given by

1

X(t)

dX(t)

dt
= ac(ln K − ln X(t))tc−1, (28)

where a > 0 and c > 0. Integrating the above equation (Eq. 28), we obtain
the following relation of size and time

ln
X(t)

X0
= ln

K

X0

(
1 − e−atc

)
, (29)
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Fig. 5 (Color figure online) Profile plot of RGR of Weibull growth over size and time. Note that in the case
of Weibull growth RGR takes only decreasing shapes over both size and time
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Fig. 6 (Color figure online) RGR profile of the extended Gompertz growth over size and time. Here, the
RGR can take both decreasing and bell shapes over both size and time depending on the parameter c. c = 1
represents the Gompertz growth. If c < 1 RGR takes decreasing shapes, the maximum value of RGR is
observed at the initial time point, and the initial value of RGR is more than the initial RGR of Gompertz
growth. If c > 1 RGR is bell shaped, the maximum value of RGR is observed after the initial time point,
and the initial RGR is smaller in comparison with the Gompertz growth

where X0 is the size at t = 0. Differentiating Eq. (28), we get,

dR(t)

dt
= btc−2e−atc(c − 1 − actc). (30)

If c ≤ 1, then RGR is a decreasing function of time. If c > 1 RGR initially

increases up to the time point ( c−1
ac )

1
c and decreases there after. The shapes of

RGR are illustrated in Fig. 6.
(b) Extended logistic Model: The extension of logistic model proposed by

Chakraborty et al. (2017) is given by

1

X(t)

dX(t)

dt
= r

K
(K − X(t))tc−1, (31)
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Fig. 7 (Colorfigure online)RGRprofile of extended logistic growthover size and time.The extended logistic
model also captures both decreasing and bell shapes over both size and time like extended Gompertz model
depending on the parameter c. c = 1 represents the logistic growth. When c < 1 RGR takes decreasing
shapes, the maximum value of RGR is observed at the initial time point, and the initial value of RGR is
more than the initial RGR of the logistic growth. When c > 1 RGR is bell shaped, the maximum value of
RGR is observed after the initial time point, and the initial RGR is smaller in comparison with the logistic
growth

where r > 0 and K > 0. Integrating the above equation (Eq. 31), we obtain
the following relation of size and time

X(t) = K

1 + ln
(

K
X0

− 1
)
e−atc

, (32)

where X0 is the initial size. Differentiating Eq. (31), we get

dR(t)

dt
= R(t)

t
(c − 1 − r ytc). (33)

If c ≤ 1, then RGR is a decreasing function of time. On the other hand, if
c > 1 RGR is bell shaped. The possible shapes of RGR are shown in Fig. 7.

Various shapes of RGR are summarized in Table 1.

4.1 Some Important Points

1. If c = 1 then RGR is a function of size only and all the models take decreasing
shapes when a ≤ 0 and bell shapes when a > 0.

2. The RGR form of general Von Bertalanffy growth is R(t) = r y−a(1 − ya) =
−r(1 − y−a), where 0 < a < 1. Note that the Von Bertalanffy growth can be
considered as the form of the Richards growth with −1 < b < 0 and r < 0.
Hence, we can conclude that Monomolecular (b = −1), Von Bertalanffy (−1 <

b < 0, r < 0), Bertalanffy (b = − 1
3 , r < 0), Gompertz (b → 0), logistic (b = 1)

are special cases of Richards’ growth.
3. Korf growth can be interpreted as a special case of generalized Gompertz growth,

and it converges to Gompertz growth for large values of c.
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4. Weibull is time covariate generalization of the Monomolecular growth model.
Weibull is one of the growth curves with c > 0 where RGR takes only decreasing
shape for any values of c.

5. The KGmodel is the time covariate generalization of the Richards’ growth model,
whereas the extended logistic and extended Gompertz models (Chakraborty et al.
2017) are time covariate generalization of logistic and Gompertz models, respec-
tively.

4.2 Allee Effect and Unified Growth Equation

Conceptually, a much wider range of growth models are retrieved from the unified
equation as special cases. We have already discussed such cases in Sect. 3 of this
article. In particular, increasing shape of RGR at low size is of special importance in
ecology. Such profiles indicate the presence ofAllee effect. In ecology, Allee effect in a
natural population refers to the density-mediated drop in population fitness when they
are small in numbers. The evidence of Allee effect in real data is generally detected
by positive correlation between per capita growth rate and populations size. Some of
the ecological factors that lead to the Allee effects are mate limitation, cooperative
breeding, high predation, etc. (Courchamp et al. 2008; Bhowmick et al. 2015). In this
manuscript, RGR and density (size) have positive association in some of these models,
namely Tsoularis–Wallace (a > 0) and Koya–Goshu (c > 1). Many flexible shapes,
offered in this manuscript, represent an Allee growth profile. For example, in Fig. 2a
(a = 1 or a = 1

2 ) RGR increases at small sizes. Similar cases are observed in Figs. 6a
and Fig. 7a for c = 2 and c = 3, respectively. More precisely, these designated
growth profiles demonstrate the weak Allee effect, in which, RGR is small at low
abundance, but is never negative. On the other hand, a strong Allee effect refers to the
situation where RGR is negative below a critical threshold populations size. A detailed
discussion on this can be found in Courchamp et al. (2008). The proposed unification
may aid in identifying the weak Allee effect by identifying the correct growth profile.
Thus, the proposed unification method can additionally integrate a family of weak
Allee effect model with the existing density-dependent growth equation.

5 Conclusion

Mathematical modeling of growth processes has a long history, and its applications
are widespread. However, substantial evidence on the unification of growth equations
is still lacking in this vast growth literature. Garcia (2005) and Martinez et al. (2008)
are two significant contributions in the literature that unify a large class of existing
growth models. Recently, a rich family of growth curves has been developed, which
is characterized by the RGR function of both time and size. The exiting unification
approaches are not sufficient to represent such RGR growth curves. We developed
a unification approach based on this generalized RGR function that is capable of
covering the limitation of existing unification.
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RGR has immense practical value in biological growth curve analysis, which has
been amplified by the construction of RGR curves in the literature. The said unifica-
tion method is originally motivated to explain the growth process by RGR, which is
more appropriate than the original size variable in data analysis. Thus, the proposed
mathematical framework enjoys a better biological rationale compared to existing
unification, which was achieved by selecting some arbitrary function mechanistically.
Consequently, the unification of RGR curves reinforces greater utility in real-life
applications.

Due to a large number of models, considerable misunderstanding is there in the
growth curve literature because many models are presented as parameterization or
re-parameterization of the other models (Tjørve and Tjørve 2010). Our proposed
unification might be useful in reducing the number of growth models and facilitate
searching for the best model for a given data set more efficiently. Thus, it is expected
to reduce the confusion by comparing two similar rival models (often containing a
large number of parameters) by appropriate selection of unification parameters only.
This would also allow a better performance in the statistical fitting of growth functions
by nonlinear regression analysis.
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