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Abstract
In this paper, we investigate the quality of selected models of theoretical genetic codes
in terms of their robustness against point mutations. To deal with this problem, we used
a graph representation including all possible single nucleotide point mutations occur-
ring in codons, which are building blocks of every protein-coding sequence. Following
graph theory, the quality of a given code model is measured using the set conductance
property which has a useful biological interpretation. Taking this approach, we found
the most robust genetic code structures for a given number of coding blocks. In addi-
tion, we tested several properties of genetic code models generated by the binary
dichotomic algorithms (BDA) and compared them with randomly generated genetic
code models. The results indicate that BDA-generated models possess better prop-
erties in terms of the conductance measure than the majority of randomly generated
genetic code models and, even more, that BDA-models can achieve the best possi-
ble conductance values. Therefore, BDA-generated models are very robust towards
changes in encoded information generated by single nucleotide substitutions.
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1 Introduction

The standard genetic code is a template according to which 64 codons are mapped
into 20 amino acids and a stop coding signal. This set of rules, with rare excep-
tions, is nearly universal for all domains of life and is responsible for transmitting
genetic information stored in the DNA molecule into proteins. The questions about
the origin and also the present structure of the standard genetic code have been puz-
zling biologists since the first codon assignments were discovered in the sixties of
the last century (Khorana et al. 1966; Nirenberg et al. 1966). In particular, the ques-
tion about the way of the standard genetic code’s degeneracy appears to be intriguing
because if we assume that potential theoretical genetic code must encode 20 amino
acids and stop coding signals then we get around 1084 possible variations (Schö-
nauer and Clote 1997). Therefore, the standard genetic code is just one potential
solution out of extremely many different scenarios. This fact gives a motivation for
studying which features are playing a decisive role in the process of genetic code
emerging.

There are three main hypotheses concerning origin of the standard genetic code (Di
Giulio 2005). These are stereochemical, coevolution, and adaptive. The first claims
that the genetic code evolves as a result of a high affinity between amino acids and
respective codons/anti-codons or other aptamers and oligomers (Dunnill 1966; Pelc
and Welton 1966; Yarus et al. 2005). However, some evidences to support this evolu-
tionary scenario were found only in very few cases. The coevolution hypothesis posits
that the present structure of the standard genetic code evolved from its ancestral version
including small number of simple amino acids. This code has been changed simul-
taneously with the development of metabolic pathways, i.e. the newly synthesized
amino acids took over the codons of their precursors (Wong 1975; Di Giulio 2017).
This process required the simultaneous evolution of the genetic code and biosyn-
thetic pathways. In the framework of this hypothesis, the physicochemical properties
of amino acid played only a subsidiary role in the standard genetic code evolution.
The adaptive hypothesis postulates that the code was created to minimize the effect
of amino acid replacements and errors which occur during the translation process
(Epstein 1966; Freeland and Hurst 1998a, b). The main argument for this explanations
follows from the present structure of the standard genetic code where there is observed
a tendency to group similar amino acids in the same column of the code table. How-
ever, using several optimization methods it was shown that the standard genetic code
can be significantly improved under some criteria to minimize genetic errors and is
rather a suboptimal solution in the vast space of possible genetic codes (Di Giulio
1989; Santos and Monteagudo 2010; Blazej et al. 2016, 2018a). It should be noted
that proposed explanations are still not satisfactory, and none of these hypotheses
became a comprehensive explanatory theory. On the other hand, they are not to be
mutually exclusive because the main drivers of the standard genetic code evolution
postulated by these hypotheses could have a significant impact on the evolution at
different stages.

It is interesting thatmanyquestions concerning the properties of the standard genetic
code can be formulated as an interesting problem from mathematical and also com-
putational point of view. Many authors used some optimization methods, such as
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single or multi-objective evolutionary algorithms, to test the quality of the standard
genetic code under selected criteria. Moreover, they used many different and—at the
same time—interesting mathematical approaches to describe properties or more gen-
erally to develop some rules for generating theoretical genetic codes. These techniques
mainly follow from graph theory, coding theory, and group theory (Fimmel et al. 2016,
2017, 2018, 2014; José et al. 2017; Tlusty 2010).

A broader class of models of the genetic code, the so-called BDA-generatedmodels
(binary dichotomic algorithms) (Gumbel et al. 2015), is based on overlappings of the
so-called dichotomic partitions of the set of codons. The most known dichotomic par-
tition is the Rumer’s degeneracy dichotomy (Fimmel and Strüngmann 2016; Rumer
2016a, b, c) which decomposes codons into two disjoint equal-sized classes: the first
Rumer class identifies amino acids with degeneracy 4 (for which the first two bases
of the triplet are sufficient to define unambiguously the amino acid), while the second
one specifies amino acids with degeneracy non-4 (i.e. 1, 2 or 3). A generalization of
Rumer’s algorithm (Fimmel et al. 2013) has led to a family of binary dichotomic algo-
rithms (BDAs) which derive their decision for classifying a codon from biochemical
properties of the bases involved. These algorithms distinguish whether a base is of
type

• purine (denoted as R = {A, G}) or pyrimidine (Y = {C, T})
• keto (K = {T, G} or amino (Am = (C, A)
• strong (S = {C, G}) or weak (W = {A, T}).

and classify the codons into two disjoint classes of equal size. Dichotomic partitions
seem to contribute to frame retrieval and error detection properties, sustaining a robust-
ness of the code (Giannerini et al. 2012).

The other approach involved to investigate the properties of the standard genetic
code follows on graph theory. Many authors (Tlusty 2010) used this methodology to
develop several genetic code representations. They applied this approach to their stud-
ies about the structure and evolution of the standard genetic code. Among them, the set
conductance approach presented in Blazej et al. (2018b) appears to be especially inter-
esting in testing the quality of codon blocks structure generated by BDA-algorithms.
Moreover, this methodology has an interesting biological interpretation as the level of
robustness of the genetic code structure against single point mutation.

In the present work, we are developing the conductance approach for studying the
genetic code further, applying it for a measurement of the quality of BDA-generated
models and comparing them with randomly generated models. This enables us to
construct variants of the genetic code with a good set conductance.

2 Methods

2.1 BDA-Models

In the sequel B = {A,C,G, T (U )} will denote the set of four nucleotide bases Uracil
(Thymine), Cytosine, Adenine, and Guanine, in short T (U ),C, A,G. A codon is an
element of B3, e.g. ACU.
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The alphabet B can be decomposed in three different ways into two disjoint equal-
sized subsets. Each of these decompositions has a biochemical meaning:

B = {C,G} ∪ {A, T } (strong/weak),

B = {C, A} ∪ {G, T } (amino/keto),

B = {C, T } ∪ {A,G} (pyrimidine/purine).

Based on these biochemical properties of nucleotides, we can classify the set of codons
into two disjoint equal-sized subsets, establishing a dichotomic partition of B3. Let us
first give a precise definition of how we understand a dichotomic partition:

Definition 2.1 An ordered pair (H0, H1) of subsets H0, H1 ⊆ B3 is called a
dichotomic partition of B3 if H0 ∩ H1 = ∅, H0 ∪ H1 = B3 and | H0 |=| H1 |.

In other words: the set of 64 codons is divided into two disjoint subsets of equal
size as, for instance, the so-called Rumer partition does, which separates the codons,
where two first bases are enough to determine the encoded amino acid, from the
codons, where the third base for the decision is needed.

In Fimmel et al. (2013), the notion of binary dichotomic algorithms was intro-
duced for sequences of nucleotide bases of arbitrary length, i.e. for classification of
n-nucleotides c ∈ Bn, n ∈ N. For the purposes of the present work, it is sufficient to
consider only the set of codons, i.e. c ∈ B3. Let us recall the definition from Fimmel
et al. (2013) in this special case:

Definition 2.2 Let (H0, H1) be a dichotomic partition of B3. We call an algorithm
A a binary dichotomic algorithm (BDA) with dichotomic partition (H0, H1) if it
follows the following scheme: A chooses two indices i1, i2 ∈ {1, 2, 3} with i1 �= i2,
an ordered pair of different nucleotide bases Q1 = (B1, B2) and a subset Q2 ⊂ B
with |Q2| = 2. Now A classifies c = (b1, b2, b3) ∈ B3 as follows:

(A) if bi1 ∈ {B1, B2}, then

(c ∈ H0 if bi1 = B1, ) and (c ∈ H1 if bi1 = B2, )

(B) if bi1 /∈ {B1, B2}, then

(c ∈ H0 if bi2 ∈ Q2, ) and (c ∈ H1 if bi2 /∈ Q2.)

We will call Q1 and Q2 the questions ofA, i1, i2 ∈ {1, 2, 3} the indices ofA, and
the pair (H0, H1) a dichotomic partition of B3 generated by the binary dichotomic
algorithm A.

Remark 2.3 We will call in short a binary dichotomic algorithm BDA and will write
for all c ∈ H0 A(c) = 0 and for all c ∈ H1 A(c) = 1.

Figure 1 depicts an example of howaBDAworks in order to getRumer’s degeneracy
dichotomy:
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Fig. 1 Algorithmic way to define Rumer’s dichotomy (Colour figure online)

If we apply several BDAs successively, we ‘cut’ the set of codons B3 into disjoint
subsets. For example, we obtain four subsets labelled as (0, 0), (1, 0), (0, 1), (1, 1)
(or in short 00, 10, 01, 11) when two different BDAs are applied. In the subset (1, 0)
we have, for instance, codons which are classified by the first BDA into the class 1
and by the second BDA into the class 0. In Gumbel et al. (2015), based on this notion,
a class of models of the genetic code was introduced:

Definition 2.4 Let k ∈ N. We will call a bijective mapping

M : B3 → {0, 1}k

a BDA-generated model of the genetic code of grade k if there exist k different BDAs

A1,A2,A3, ...,Ak

such that for all c ∈ B3 the following equation holds:

M(c) = (A1(c),A2(c), ...,Ak(c)).

Remark 2.5 It means for a codon c ∈ B3 that the mapping M assigns c in the j th
coordinate 1 if c is classified byA j for the dichotomic class H1 and 0 if c is classified
by A j for the dichotomic class H0.

Table 1 shows the standard genetic code and the Rumer classification as an example
for a BDA.
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Table 1 Standard genetic code where ! represents a stop codon

U C A G

U Phe 1 Ser 0 Tyr 1 Cys 1 U

U Phe 1 Ser 0 Tyr 1 Cys 1 C

U Leu 1 Ser 0 ! 1 ! 1 A

U Leu 1 Ser 0 ! 1 Trp 1 G

C Leu 0 Pro 0 His 1 Arg 0 U

C Leu 0 Pro 0 His 1 Arg 0 C

C Leu 0 Pro 0 Gln 1 Arg 0 A

C Leu 0 Pro 0 Gln 1 Arg 0 G

A Ile 1 Thr 0 Asn 1 Ser 1 U

A Ile 1 Thr 0 Asn 1 Ser 1 C

A Ile 1 Thr 0 Lys 1 Arg 1 A

A Met 1 Thr 0 Lys 1 Arg 1 G

G Val 0 Ala 0 Asp 1 Gly 0 U

G Val 0 Ala 0 Asp 1 Gly 0 C

G Val 0 Ala 0 Glu 1 Gly 0 A

G Val 0 Ala 0 Glu 1 Gly 0 G

The Rumer classification is labelled as 0 and 1 (bold)

2.2 Conductance

In this section, we introduce a methodology which comes from graph theory. Using
these characteristics, we can describe some new features of BDA-algorithms in terms
of the graph partition quality. We start our investigation by giving a definition of
specific graph, which includes all information about single point mutations occurred
in protein-coding sequences.

Definition 2.6 Let G(V ; E) be a graph in which V is the set of vertices (nodes) repre-
senting all possible 64 codons, whereas E is the set of edges connecting these vertices.
All connections are defined in such a way that two vertices c, c′ ∈ V , i.e. respective
codons, are connected by the edge e(c; c′) ∈ E if and only if the codon c differs from
c′ in exactly one position.

According to Definition 2.6, the graph G is unweighted, undirected and also regular
because the degree of each node is equal to nine (compare Fig. 2).

Furthermore, G has a nice interpretation from biological point of view because the
set of edges E represents all possible single point mutations, i.e. single nucleotide
substitutions, which can occur between codons in protein-coding sequences. In this
work, we would like to investigate properties of the selected partitions of the vertices
of the graph represented in Fig. 3 into fixed number 1 < k ≤ 64 of disjoint and
non-empty subsets Ck , i.e. k codon groups. The Ck partition is defined in the following
way:

Ck = {S1, S2, . . . , Sk : Si ∩ S j = ∅, S1 ∪ S2 ∪ . . . ∪ Sk = V }.
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Fig. 2 The example of AAA
codon neighbourhood generated
by single nucleotide
substitution. There are exactly
nine codons which differ from
AAA in exactly one nucleotide
(Colour figure online)
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Fig. 3 Graphical representation of the graph defined in 2.6 (Colour figure online)
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It is easy to see that for k = 21, we get C21 which is a representation of the
genetic code as a partition of the set of vertices V into 21 disjoint and non-empty
subsets. Therefore, it is interesting to test some characteristics of the Ck following
graph theory. Particularly, we considered properties of Ck in terms of the optimal
graph partitioning. Generally, the problem of finding optimal, in some sense, partition
of G can be investigated from different perspectives. However, the idea presented in
Blazej et al. (2018b), using the conductance property, appears to be promising for
further research around the standard genetic code. The central role in this approach
plays the set conductance measure which is used to calculate the quality of a given
genetic code but clearly this method is used in more general clustering problem. This
characteristic is defined in the following way:

Definition 2.7 For a given graph G = (V , E) let S be a subset of V . The conductance
of S is defined as:

φ(S) = E(S, S)

9|S|

where E(S, S̄) is the number of edges of G crossing from S to its complement S̄.

The set conductance has many applications, for example, in the theory of random
walks, theory of Markov processes (Levin et al. 2009) and also in social networks
(Bollobàs 1998). Moreover, φ(S) has also a very interesting biological interpretation.
Assuming that all codons belonging to S encode the same label, i.e. amino acids or
stop coding signal, φ(S) is the ratio of the total number of non-synonymous single
nucleotide substitution to all possible nucleotide substitution generated by all codons
from S. Moreover, the Definition 2.7 allowed us as to define the conductance of the
partition Ck .
Definition 2.8 The conductance of a partition Ck is defined as

�(Ck) = max
S∈Ck

φ(S).

Therefore, the�measure gives us a characterization of the quality of a given partition
Ck as the set conductance of the worst, in this term, codon group. What is more, �

measure involves a question about the structure of the optimal graph G partition Ck
for a fixed k. In this context, the best partition Ck of the graph G in terms of � follows
in a natural way and is given by the formula:

�min(k) = min
Ck

�(Ck).

The definition of �min is identical with the definition of the kth-order graph conduc-
tance presented in Lee et al. (2014) and has an interpretation as lower boundary of
a set robustness against changes which cause transitions between codon groups. It
should be noted that in the case of k = 2, the minimum partition conductance �min is
equivalent to the definition of the graph conductance (Lee et al. 2014).
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3 Results and Discussion

3.1 Conductance of BDA-Partitions

We consider in this paper BDA-generated models of the genetic code from the view-
point of their conductance. The next proposition shows that the conductance of only
one BDA-partition is independent on the algorithm applied:

Proposition 3.1 Let A be a BDA with the indices i1, i2 ∈ {1, 2, 3}, i1 �= i2 and the
questions Q1 = (B1, B2)(B1 �= B2), and Q2 = {B3, B4} with B3 �= B4, C =
(H0, H1) the corresponding BDA-partition of B3. Then, the following formula holds:

φ(H0) = φ(H1) = �(C) = 80

9 · 32 = 0.2(7).

Proof Since |H0| = |H1| and E(H1, H2) = E(H2, H1), we get immediatelyφ(H0) =
φ(H1) = �(C2). Therefore, it is sufficient to show φ(H0) = 0.2(7). Let us consider
c = (b1, b2, b3) ∈ H0 and assume also without loss of generality that i1 = 1, i2 = 2.
Since all codons of the form c = (B2, b2, b3) are in H1, we have to take into account
the following two cases:

Case 1: Let b1 = B1. There are 16 codons fulfilling this condition in total. We have
two cases in which the edge could go outside the set H0, namely if the base in
the first position in codon is substituted, i.e. b1 → B2, we have one possible
edge going outside H0. Moreover, when codon c fulfils additional condition,
i.e. for 8 codons out of 16: b2 /∈ Q2, we obtain two additional edges, i.e.
b1 → {B1, B2}. Therefore, the total number of crossing edges calculated for
all (B1, b2, b3) type codons is equal to 32.

Case 2: Let b1 /∈ {B1, B2}. In this case, all codons c belonging to the set H0, 16
in total, have the following form: c = (b1, [B3|B4], b3). In this case, each
c has one crossing edge generated by substitution in the first position in
codon i.e. b1 → B2. Moreover, they all have two possible crossing edges
generated by nucleotide substitution in the second position in codon, i.e.
b2 → Q2. As a result, the total number of crossing edges is equal, in this
case, to 48.

To sum up, we have 48 + 32 = 80 edges crossing from H0 to H1 and, thus,

φ(H0) = 80

9 · 32
what completes the proof. �


The following Theorem helps to calculate the minimal possible conductances for
subsets of B3 of arbitrary size:

Theorem 3.2 Let G = (V ; E) be the graph according to the Definition 2.6, N1 <

N2 < N3 < N4 a linear order over the alphabet B = {A;C;G; T (U )}, e.g. C <

G < A < T , and Sk ⊆ V the collection of the first k = 1, 2, . . . , 64 vertices of
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the graph G in the lexicographic order. Then, the following recursive formula for the
number of edges of G crossing from Sk to its complement S̄k holds:

E(Sk+1, Sk+1) = E(Sk, Sk) + 9 − 2 · (k1 + k2 + k3), E(S1, S1) = 9

where (k1, k2, k3)4, ki ∈ {0, 1, 2, 3}1 is the representation of k to base 4, i.e.

k = k1 · 42 + k2 · 41 + k3 · 40.
The conductance of Sk is accordingly equal to

φ(Sk) = E(Sk, Sk)

9 · k .

Proof It is clear that E(S1, S1) = 9 since the graph 2.6 is 9-regular and for only one
codon in S1 all edges are crossing edges between S1 and S̄1.

Let us assume now that we already have calculated E(Sk, Sk) for k ≥ 1 and we
are inserting now the next codon c ∈ B3 in the lexicographic order. It is easy to
see that all codons ordered in lexicographic order can be rewritten as a sequence
of consecutive three-digit numbers to the base 4 if we assign, for example, N1 →
0, N2 → 1, N3 → 2, N4 → 3. Therefore, newly included codon c has a numeric
representation c = (k1, k2, k3)4, where ki = 0, 1, 2, 3. What is more, ki , i = 1, 2, 3
is the number of codons that differ from c at the position i which are smaller than c in
the lexicographic order and the total number of edges crossing Sk and c, i.e. E(Sk, {c}),
is, consequently, equal to k1 + k2 + k3. As a result, the total number of edges between
Sk+1 to its complement fulfils the equation:

E(Sk+1, Sk+1) = E(Sk, Sk) − E(Sk, {c}) + 9 − E(Sk, {c})
= E(Sk, Sk) + 9 − 2 · (k1 + k2 + k3).

That completes the proof. �

With Table 2, we calculate conductances for all Sk from Theorem 3.2 for 1 ≤ k ≤

32. It suffices if we calculate it for 1 ≤ k ≤ 32 since in the case of at least one
partitioning of B3 into at least 2 subsets, the size of one of them will be at most 32:

Following the approach from Proposition 3.2, we can calculate the minimal con-
ductances for arbitrary partitions:

Proposition 3.3 Let Cn be a partition of graph G where n ∈ N, i.e. with n classes.
Then, we have the following lower boundary for the conductance of the partition Cn :
(1) For n �= 12, n �= 3

�(Cn) ≥ φ(Sk) with k =
⌊
64

n

⌋
,

1 In the formula, we need for calculations always the ‘previous’ k. For instance, for calculation of
E(S64, S̄64) we need k = 63. This is why we can always represent k as a three-digit number to base
4.
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Table 2 The Table shows exact values for conductances of all Sk from Theorem 3.2 and 1 ≤ k ≤ 32

k = |Sk | E(Sk , S̄k ) φ(Sk ) k = |Sk | E(Sk , S̄k ) φ(Sk )

1 9 9
9 = 1 17 55 55

9·17 = 55
153 = 0.(359477..)

2 16 8·2
9·2 = 8

9 = 0.(8) 18 60 60
9·18 = 10

27 = 0.(370)

3 21 7·3
9·3 = 7

9 = 0.(7) 19 63 63
9·19 = 7

19 = 0.(368421053..)

4 24 6·4
9·4 = 6

9 = 0.(6) 20 64 64
9·20 = 16

45 = 0.3(5)

5 31 31
9·5 = 31

45 = 0.6(8) 21 69 69
9·21 = 23

63 = 0.(365079)

6 36 36
9·6 = 6

9 = 0.(6) 22 72 72
9·22 = 4

11 = 0.(36)

7 39 39
9·7 = 13

21 = 0.(6190407) 23 73 73
9·23 = 73

207 = 0.(352657005...)

8 40 5·8
9·8 = 5

9 = 0.(5) 24 72 72
9·24 = 1

3 = 0.(3)

9 45 45
9·9 = 5

9 = 0.(5) 25 75 75
9·25 = 1

3 = 0.(3)

10 48 48
9·10 = 8

15 = 0.5(3) 26 76 76
9·26 = 38

117 = 0.(324786)

11 49 49
9·11 = 49

99 = 0.(49) 27 75 75
9·27 = 25

81 = 0.(308641975...)

12 48 4·12
9·12 = 4

9 = 0.(4) 28 72 72
9·28 = 2

7 = 0.(285714)

13 51 51
9·13 = 51

117 = 0.(435897) 29 73 73
9·29 = 73

261 = 0.(279693487...)

14 52 52
9·14 = 26

63 = 0.(412698) 30 72 72
9·30 = 4

15 = 0.2(6)

15 51 51
9·15 = 17

45 = 0.3(7) 31 69 69
9·31 = 23

93 = 0.(247311828...)

16 48 3·16
9·16 = 1

3 = 0.(3) 32 64 64
9·32 = 2

9 = 0.(2)

The notation, for example, 0.2(6) means the periodical fraction 0.2666666... where the repetend is taken in
parentheses

(2) For n = 12

�(C12) ≥ φ(S6),

(3) For n = 3

�(C3) ≥ φ(S23),

where φ(Sk) is the entry corresponding to k from Table2.

Proof According to Proposition 3 from Blazej et al. (2018b), the collection of the first
k vertices taken in lexicographic order of a graph as defined in 2.6 has the minimal
conductance among all subsets of the same size k.

(1) For n = 2 we have two subsets, the size of one of them has to be at most 32. Since

φ(S64) < φ(Sk) for all k < 32

takes place, a partition with the minimal conductance has to consist of two equal-
sized subsets. Thus,we get a partitionwith theminimumconductance ifwe classify
in the lexicographic order the first 32 codons into one class and the remaining 32
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into the other one. Corresponding to Table 2, the conductance of such partition is
equal to

�(C) = 64

9 · 32 = 0.(2)

Let n ≥ 4, n �= 12. In this case, k = � 64
n � ≤ 16 represents the average size of a

subset in a partition and φ(Sk) is decreasing with increasing of k with only one
exception φ(S4) < φ(S5).
Since�(Cn) is defined as the maximal value of conductances of all subsets from

C, it is equal to the conductance of the ‘worst’, in this sense, subset. Since, on the
one hand, the following inequality takes place

φ(Si ) > φ(S15) ≥ φ(S j ), 1 ≤ i ≤ 14, 17 ≤ j ≤ 32 (compare table 2)

and, on the other hand, increasing the size of one subset leads to decreasing it for
another subset of the partition, we have that it is not favourable to have bigger than
16 codons subsets in the partition.
Let us now assume that

�(Cn) < φ(Sk).

It means that for all subsets Ci ∈ Cn , we have

φ(Ci ) < φ(Sk).

According to the behaviour of the function φ(Sk) (compare Table 2), it means that
for all i = 1, ..., n |Ci | > k or k = 5. In the first case, we obtain immediately a
contradiction since then we have

n∑
i=1

|Ci | ≥ n · (k + 1) > 64.

In the second case (k = 5), we have n = 12 what is excluded.
(2) Let n = 12 and �(C12) < φ(S6). It means that for all subsets Ci ∈ C12, we have

φ(Ci ) < φ(S6)

and, thus, for all i = 1, ..., 12 |Ci | > 6. Consequently,

12∑
i=1

|Ci | ≥ 12 · 7 = 84 > 64.

This is a contradiction.
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(3) Let n = 3 and �(C3) < φ(S23). It means that for all subsets Ci ∈ C3, we have

φ(Ci ) < φ(S23)

and, thus, for all i = 1, 2, 3 |Ci | > 23. Consequently,

3∑
i=1

|Ci | ≥ 3 · 23 = 69 > 64.

This is a contradiction.

�

Applying the Proposition 3.3 in the special case of BDA-partitions, we obtain:

Corollary 3.4 Let M beaBDA-model ofB3 with n ∈ N classes andC the corresponding
BDA-partition. Then, we have for the conductance of C the following lower boundary:

(1) For n �= 12

�(C) ≥ φ(Sk) with k =
⌊
64

n

⌋

and φ(Sk) the entry corresponding k from Table2.
(2) For n = 12

�(C) ≥ 0.(6).

Proof According to Proposition 6 in Gumbel et al. (2015), it is not possible for a
BDA-generated model that n = 3. The remaining part follows immediately from 3.3.

�


3.2 Best Conductance BDAs

In the previous section, we found lower boundaries for BDA-generated partitions.
However, it is not clear yet whether these boundaries are sharp. We have adapted the
algorithm described in Gumbel et al. (2015) and searched for models of the genetic
code based on BDAs with the best conductance �min. The following examples in
Tables3, 4, 5 and 6 show that we can indeed obtain partitions generated with BDAs
with the best possible conductance for the class sizes 8, 12, 16, and 24. All these
code tables contain the Rumer-BDA, the code table for 24 classes additionally uses
the Complementary-BDA. These partitions are achieved with the minimum number
of BDAs required, i.e. 3 for 8 classes, 4 for 12 and 16 classes and 5 for 24 classes.

According to the corollary 3.3, we have an exception if the number of generated
classes is equal to 12. Table 4 shows that we can also obtain in this case a partition
with the best possible conductance with a BDA-model.
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Table 3 |M | = 8 classes generated by three BDAs including Rumer. (A) Code table, (B) list of BDAs.
Conductance of C8 is �(C8) = 5/9 = �min(8). ! represents a stop codon (Colour figure online)

Table 4 |M | = 12 classes generated by three BDAs including Rumer. (A) Code table, (B) list of BDAs.
Conduction of C12 is �(C12) = 2/3 = 0.(6) = �min(12) (Colour figure online)

Next, itwas analysedwhether a code table for the standard genetic code could be cre-
ated by means of BDAs, i.e. if we can classify 21 classes (20 for amino acids plus 1 for
stop codons). If we consider codons of degeneracy 6 (like those for Serine) as codons
belonging to two groups of size 4 and 2 each—like in the Rumer transformation—we
get three extra classes, and thus 24 classes in total. Table 6 shows such a model of the
genetic code with 24 classes and optimal conductance (�(C24) = 8/9). It is striking
that again the Rumer-BDA but this time also the Complementary-BDA is included.
Moreover, the code with optimal conductance is also to some extend compatible with
the standard universal code. In Gumbel et al. (2015), an error metric E , (0 ≤ E ≤ 1)
was introduced to indicate how “good” a code is compatible with the standard genetic
code, where an error of E = 0 represents a perfect match. It is known that the standard
genetic code does not have an optimal conductance as there are codons coding only
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Table 5 |M | = 16 classes generated by four BDAs including Rumer. (A) Code table, (B) list of BDAs.
Conductance of C16 is �(C16) = 2/3 = �min(16) (Colour figure online)

for one amino acid, e.g. AUG for Methionine (Blazej et al. 2018b). However, the code
in Table 6 with optimal conductance has only a compatibility error of E = 12/64.
That is, only 12 changes in the assignments of codons to amino acids are required
to get a perfect standard universal code. When the mitochondrial vertebrate code
is considered (table not shown), this comparability error could even be reduced to
E = 10/64 = 0.15625.

For the sake of completeness and to ensure that the best conductance BDAs are
not a multiple of four for the number of classes, other class sizes ranging from 4 to
23 have been tested. BDA-generated models with best possible conductance values
could be indeed obtained for

|M | = 4, 7, 8, 10, 11, 12, 13, 14, 15, 16, 22, 23, 24.

However, it is not possible, for example, for |M | = 21 as it was proven with a
comprehensive search as explained in Gumbel et al. (2015). In this case, the best
possible partitioning has the conductance value equal to 7/9 (Blazej et al. 2018b)
and cannot be obtained using a BDA-generated model of the genetic code. For the
remaining class sizes (|M | = 5, 6, 9, 17, 18, 19, 20), a sample of 10,000 partitions for
each class size (compare Fig. 4) did not show any best BDA-model and it remains to
be shown, whether there are any BDA-models; however, this is very unlikely.

3.3 Distribution of Conductance

Lower boundaries for the optimal conductance of BDA-generated models were
derived, and it was proven that there are BDA-models which are optimal. This section
shows that those models have a much better conductance compared to random parti-
tions with the same number of classes. Figure 4a–c shows the distribution of the set
conductance for code tables (1) generated by random BDAs and (2) random partitions
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Table 6 |M | = 24 classes generated by six BDAs including Rumer and Complementary. (A) Code table,
(B) list of BDAs. Conductance of C24 is �(C24) = 8/9 = �min(24). The compatibility error is E =
0.1875 = 12/64 (Colour figure online)

with 8, 16, and 24 classes. The number of BDAs of a random model ranges from the
minimum number required, e.g. 3 for 8 classes to four extra BDAs, i.e. 7. for 8 classes.
Those redundant BDAs were included because it was shown in Gumbel et al. (2015)
that some partitions can only be achieved with more than the minimum number of
BDAs.

In any case, randomBDAs create code tables with a better conductance and some of
them are optimal. All random partitions for 24 classes have theworst conductance of 1.
BDA-generated partitions, however, have either the best conductance (�(C24) = 8/9)
or the worst, too.

Even if there exist noBDA-generatedmodelswith the best possible conductance for
some class sizes (compare the previous section), the BDA-generated models perform
in terms of average conductance significantly better than the randomly generated ones.

4 Conclusions

In this work, we are discussing more deeply the properties of BDA-generated models
of the genetic code. To do so, we are incorporating a new methodology following on
graph theory. According to this approach, each BDA algorithm and, more generally,
genetic code induces its own partition of graph vertices into disjoint and non-empty
subsets, corresponding to amino acids to be encoded. The quality of a given partition
was calculated by using the maximum partition conductance measure. This measure
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(A) (B) (C)

(D) (E)

Fig. 4 Distribution of conduction for different partitions Ck . Green bars show partitions generated by BDAs,
and red bars show random partitions. Blue dashed line indicates the best conductance of Ck . No random
partition has an optimal conductance. d, e zoom in and show only a fraction of the y-axis as the scale in a
and b is not sufficient to see the details. This is not required in c as all frequencies are visible. Sample size is
10,000. (a,d) Eight classes: there are about 0.2%BDA-partitionswith optimal conductance (�(C8) = 5/9).
Numbers of BDAs per model (A1, . . . ,Al ) range from 3 ≤ l ≤ 7. b, e 16 classes: again there are BDA-
partitions (about 0.4 %) with optimal conductance (�(C16) = 2/3). Numbers of BDAs per model range
from 4 to 8. c 24 classes: also BDA-partitions (8 %) with optimal conductance (�(C24) = 8/9). Numbers
of BDAs per model range from 5 to 9 (Color figure online)

gives us a general overview of the quality of each set of codons belonging to its
partition because it is based on calculating a proportion of a number of all possible non-
synonymous substitution to all nucleotide changes for every codon group. Therefore,
themaximumconductance has a biological interpretation as ameasure of robustness of
partition sets against point mutations. Moreover, the maximum partition conductance
can be used in general for evaluating quality of theoretical genetic codes which encode
different number of amino acids. In this context, we found a formula for the lower
boundary of the maximum conductance for graph partitions with a given number
of classes corresponding to amino acids. We also compared it to a large number of
randomly generated partitions. It should be noted that, taking a single BDA, none of
the dichotomic partitions obtained has the minimal conductance; however, applying
overlappings ofBDA-partitions, i.e. BDA-generatedmodels,we can reach theminimal
possible conductance values, i.e. create themost robust against pointmutationsmodels
of the genetic code. Moreover, the BDA-models have a substantially better quality in
comparison with randomly generated partitions. This result indicates that the quality
of models generated by BDA-algorithms can not easily be overcome by just a random
process of amino acids’ assignment to codons. The results obtained can, for instance,
be useful for understanding the evolution of the genetic code.
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