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Abstract
Under mass-action kinetics, biochemical reaction networks give rise to polynomial
autonomous dynamical systems whose parameters are often difficult to estimate. We
deal in this paper with the problem of identifying the kinetic parameters of a class of
biochemical networks which are abundant, such as multisite phosphorylation systems
and phosphorylation cascades (for example, MAPK cascades). For any system of
this class, we explicitly exhibit a single species for each connected component of
the associated digraph such that the successive total derivatives of its concentration
allow us to identify all the parameters occurring in the component. The number of
derivatives needed is bounded essentially by the length of the corresponding connected
component of the digraph. Moreover, in the particular case of the cascades, we show
that the parameters can be identified from a bounded number of successive derivatives
of the last product of the last layer. This theoretical result induces also a heuristic
interpolation-based identifiability procedure to recover the values of the rate constants
from exact measurements.
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1 Introduction

Parameter identifiability in a system of ordinary differential equations mainly
addresses the question of deciding whether the system parameters can be uniquely
determined from data (see for instance Walter and Pronzato 1997; DiStefano 2014,
Chapter 10). Since the pioneering paper (Bellman and Åström 1970), this problem has
been broadly studied for general systems under different perspectives, including Tay-
lor series and generating series approaches and differential algebra-based approaches.
More details can be found in Pohjanpalo (1978), Ollivier (1990), Ljung and Glad
(1994), Sedoglavic (2002), Xia andMoog (2003), Saccomani et al. (2003), Bellu et al.
(2007), Meshkat et al. (2009), Chis et al. (2011a), Raue et al. (2014) and Hong et al.
(2018a). Also, a variety of software tools for identifiability have been developed that
work for general classes of models (e.g., polynomial or rational), such as DAISY
(Bellu et al. 2007), COMBOS (Meshkat et al. 2014), GenSSI (Ligon et al. 2017) and
SIAN (Hong et al. 2018b).

In this paper, we address the identifiability problem for a specific infinite class
of models. Our aim is to obtain general statements about all the models in the class
(see Walch and Eisenberg 2016; Brouwer et al. 2017 for prior results of this sort
but for different classes of models). More precisely, we consider a particular class of
systems of equations arising from biochemical reaction networks under mass-action
kinetics, which induces polynomial autonomous systems of differential equations. In
this framework, in Craciun and Pantea (2008), the authors describe necessary and
sufficient conditions for the unique identifiability of the reaction rate constants (the
parameters) of a chemical reaction network. Following their approach, we provide
in this work sufficient conditions for uniquely identifying all the rate constants of a
certain family of biochemical reaction networks from a reduced set of variables (see
Definition 3). Unlike other authors (Anguelova et al. 2012), we do not consider all
the possible minimal sets of variables allowing parameter identifiability, but we only
focus on certain biologically relevant sets.

The family of networks we deal with is abundant in the literature. One example
is the multisite phosphorylation system which describes the phosphorylation of a
protein in L sites by a kinase(Y )/phosphatase(Ỹ ) pair in a sequential and distributive
mechanism (Deshaies and Ferrell 2001). The substrate Si is the phosphoform obtained
from the unphosphorylated substrate S0 by attaching i phosphate groups to it. Each
phosphoform can accept (via an enzymatic reaction involving Y ) or lose (via a reaction
involving the phosphatase Ỹ ) at most one phosphate (the mechanism is “distributive”),
and there is a specific order to be followed for attaching and removing the phosphate
groups (the phosphorylation is “sequential”).

Example 1 The reactions in the L-site sequential phosphorylation/dephosphorylation
network are represented by the following labeled digraph:

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

. . .
aL
�
bL

UL
cL→ Y + SL

Ỹ + SL
ãL
�
b̃L

VL
c̃L→ . . .

c̃2→ Ỹ + S1
ã1
�
b̃1

V1
c̃1→ Ỹ + S0,
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Identifiability from a Few Species for a Class of… 2135

whereU1, . . . ,UL , V1, . . . , VL are intermediate enzyme-substrate species. The mass-
action dynamical system for this network is [see identity (1) in Sect. 2.1]:

ṡ0 = −a1ys0 + b1u1 + c̃1v1,
ṡL = cLuL − ãL ỹsL + b̃LvL ,

u̇i = ai ysi−1 − (bi + ci )ui , 1 ≤ i ≤ L,

v̇i = ãi ỹsi − (b̃i + c̃i )vi , 1 ≤ i ≤ L,

ẏ = i = 1
L∑ − ai ysi−1 + (bi + ci )ui ,

˙̃y = i = 1
L∑ − ãi ỹsi + (b̃i + c̃i )vi ,

ṡi = ciui − ai+1ysi + bi+1ui+1 + c̃i+1vi+1 − ãi ỹsi + b̃ivi , 1 ≤ i ≤ L − 1,

where lower-case letters represent the time-varying concentration of the corresponding
chemical species. Here, the derivative with respect to time is represented with a dot
over the corresponding variable.

As a consequence of Theorem 1 proved below, all the constants in the first connected
component can be identified, in the sense of Definition 3, from the successive total
derivatives of sL up to order max{2, 2L − 1} and all the constants in the second
connected component can be identified from the successive total derivatives of s0
up to the same order. Moreover, as proved in Proposition 3, all the constants in the
whole network can be identified from the successive total derivatives of sL up to order
max{2, 2L − 1}.

Another example of major biological importance is phosphorylation cascades, such
as the mitogen-activated protein kinase (MAPK) cascade (Catozzi et al. 2016; Huang
and Ferrell 1996; Kholodenko 2000; Shaul and Seger 2007). This cascade plays an
essential role in signal transduction by modulating gene transcription in response
to changes in the cellular environment. MAPK cascades participate in a number of
diseases including chronic inflammation and cancer (Davis 2000; Kyriakis andAvruch
2001; Pearson et al. 2001; Schaeffer and Weber 1999; Zarubin and Han 2005) as they
control key cellular functions (Hornberg et al. 2005; Pearson et al. 2001; Widmann
et al. 1999). We depict in the following example the two-layer signaling cascade.

Example 2 Consider the graph associated with the two-layer simple phosphorylation
cascade where the simplified diagram and the corresponding reactions are, respec-
tively:
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2136 G. Jeronimo et al.

S2,0 S2,1

F2

S1,0 S1,1

F1

E

E + S1,0
a1
�
b1

U1
c1→ E + S1,1

F1 + S1,1
ã1
�
b̃1

V1
c̃1→ F1 + S1,0

S1,1 + S2,0
a2
�
b2

U2
c2→ S1,1 + S2,1

F2 + S2,1
ã2
�
b̃2

V2
c̃2→ F2 + S2,0.

The corresponding mass-action dynamical system is [see (1)]:

ṡ1,0 = −a1es1,0 + b1u1 + c̃1v1,

ṡ1,1 = c1u1 − ã1 f1s1,1 + b̃1v1 − a2s1,1s2,0 + (b2 + c2)u2,

ė = −u̇1 = −a1es1,0 + (b1 + c1)u1,

ḟ1 = −v̇1 = −ã1 f1s1,1 + (b̃1 + c̃1)v1,

ṡ2,0 = −a2s1,1s2,0 + b2u2 + c̃2v2,

ṡ2,1 = c2u2 − ã2 f2s2,1 + b̃2v2,

u̇2 = a2s1,1s2,0 − (b2 + c2)u2,

ḟ2 = −v̇2 = −ã2 f2s2,1 + (b̃2 + c̃2)v2.

We prove in Theorem 2 that all the parameters in a signaling cascade system can be
identified from a single variable: the last product of the last layer (S2,1 in the cascade
presented in Example 2). This species is usually an output of interest for this type of
cascades (Aoki et al. 2011; Chen et al. 2009; Hagen et al. 2013; Lin et al. 2009).

The organization of the paper is as follows. The next section provides introductory
material on chemical reaction networks, mass-action kinetics equations and identi-
fiability. Section 3 deals with the general assumptions required by the biochemical
reaction networks we consider along the paper. In Sects. 4 and 5 we analyze the
identifiability for sequential phosphorylation/dephosphorylation networks and phos-
phorylation cascades, respectively. We illustrate these results in Sect. 5.2 with a
procedure to determine, from (noise-free) data, the 30 rate constants in the three-
layer MAPK cascade, which relies on a heuristic to choose points to specialize the
variables and solve for the rate constants. Finally, we include a section “Appendix”
with the complete proofs of the results stated in the paper.

2 Preliminaries and Basic Notions

2.1 Chemical Reaction Systems

We briefly recall the basic setup of chemical reaction networks and how they give rise
to autonomous dynamical systems under mass-action kinetics.
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Identifiability from a Few Species for a Class of… 2137

Given a set of s chemical species (denoted by capital letters), a chemical reaction
network on this set of species is a finite directed graph whose vertices are indicated by
complexes (non negative integer linear combinations of the species) and whose edges
are labeled by parameters (positive reaction rate constants). The labeled digraph is
denoted G = (V,R,k), with vertex set V , edge set R and edge labels k ∈ R

#R
>0 .

If (y, y′) ∈ R, we note y → y′. The complexes determine vectors in Z
s≥0 (the

coefficients of the linear combinations) according to the stoichiometry of the species
they consist of. We identify each complex with its corresponding vector and also with
the formal linear combination of species specified by its coordinates.

We present a basic example that illustrates how a chemical reaction network
gives rise to a dynamical system. This example represents a classical mechanism
of enzymatic reactions, usually known as the futile cycle (Huang and Ferrell 1996;
Kholodenko 2000; Wang and Sontag 2008):

Example 3 Consider the following graph

E + S0
a
�
b
U

c→ E + S1 F + S1
ã
�
b̃

V
c̃→ F + S0.

The s = 6 variables U , V , S0, S1, E , F denote the chemical species. The source
and the product of each reaction (i.e. the vertices) are the complexes (non negative
linear combinations of the species). Finally, the edge labels in k = (a, b, c, ã, b̃, c̃)
are the reaction rate constants describing how concentrations of the six species change
in time as the reactions occur.

The first three complexes give rise to the vectors (0, 0, 1, 0, 1, 0), (1, 0, 0, 0, 0, 0)
and (0, 0, 0, 1, 1, 0), while those in the second ones are (0, 0, 0, 1, 0, 1), (0, 1, 0, 0,
0, 0), and (0, 0, 1, 0, 0, 1).

A chemical reaction network G as above under the assumption of mass-action
kinetics induces a polynomial dynamical system in the followingway. Suppose that the
species are X1, . . . , Xs and their respective concentrations are denoted by x1, . . . , xs
(denoted by small letters). We write kyy′ for the reaction rate of each reaction y → y′
inR. We introduce the following chemical reaction dynamical system:

ẋ =
(
dx1
dt

,
dx2
dt

, . . . ,
dxs
dt

)

=
∑

y→y′
kyy′ xy (y′ − y), (1)

where x := (x1, . . . , xs) and xy := x y11 · · · x yss if y = (y1, . . . , ys). The right-hand
side of each differential equation ẋi is a polynomial fi (x,k), in the variables x1, . . . , xs
with coefficients depending on the parameters k := (kyy′)(y,y′)∈R.
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2138 G. Jeronimo et al.

For instance, in Example 3 this induced dynamical system is:

u̇ = aes0 − (b + c)u,

v̇ = ã f s1 − (b̃ + c̃)v,

ṡ0 = −aes0 + bu + c̃v,

ṡ1 = −ã f s1 + b̃v + cu,

ė = −aes0 + (b + c)u,

ḟ = −ã f s1 + (b̃ + c̃)v.

(2)

2.2 Identifiability in Chemical Reaction Systems

Among all the different (not always equivalent) notions of identifiability in differen-
tial equations and control theory, we have chosen to work from the one introduced
in Craciun and Pantea (2008) since it seems specially well suited to the dynamical
biochemical systems we consider here (see, for instance, Chis et al. 2011a; Raue et al.
2014 for a survey on the state of the art).

One of themain differences in the various approaches to identifiability is an assump-
tion on the number of experiments that can be conducted with the same parameter
values but different initial conditions: a single-experiment approach assumes the exper-
iment is performed only once with some (often generic) initial condition (see, for
example, DiStefano 2014, Chapter 10), whereas the multi-experiment approach we
adopt in this paper assumes that it is allowed to perform as many experiments as
needed with the same parameter values but different initial conditions.

Definition 1 Let G = (V,R,k) be a chemical reaction network with s species. Its
associated reaction system (1) is called identifiable if the map Φ : R#R

>0 → R[x]s ,

Φ(k) =
∑

y→y′
kyy′xy(y′ − y),

is injective (here k = (kyy′)(y,y′)∈R and R[x] is the polynomial ring in the variables
x1, . . . , xs).

Example 4 In Example 3 [see the corresponding differential equation system (2)], the
domain of themapΦ isR6

>0, the target space isR[u, v, s0, s1, e, f ]6 and the coordinate
functions are the right-hand sides of the differential equations in (2). It is clear that Φ
is injective and therefore, the reaction system is identifiable: the right-hand sides of
ṡ0 and ṡ1 determine the six constants k = (a, b, c, ã, b̃, c̃).

Example 5 (see Craciun and Pantea 2008, Section 2, Fig. 1) Consider the following
graph
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2X2
k1

k4

2X1
k6

k2

X1 + X2

k3

k5

.

Here s = 2, #R = 6 and the associated dynamical system is

ẋ1 = (2k1 + k4)x22 − (k2 + 2k6)x21 + (k5 − k3)x1x2
ẋ2 = −(2k1 + k4)x22 + (k2 + 2k6)x21 + (k3 − k5)x1x2

. (3)

Clearly, the map Φ is not injective: parameters k ∈ R
6
>0 define the same polynomials

under Φ if and only if the linear forms 2k1 + k4, k2 + 2k6 and k5 − k3 take the same
values when evaluated at k. For instance, Φ(1, 1, 1, 1, 1, 1) = Φ(1, 1, 2, 1, 2, 1) =
(3x22 − 3x21 ,−3x22 + 3x21 ). Therefore, the system (3) is not identifiable.

Definition 2 For a chemical reaction network G, we introduce the total derivative
(or Lie derivative) associated to the induced differential equations system as follows:
given a differentiable function ϕ : Rs → R, its total derivative ϕ̇ is defined as

ϕ̇ :=
s∑

i=1

∂ϕ

∂xi

dxi
dt

=
s∑

i=1

∂ϕ

∂xi

∑

y→y′
kyy′xy(y′

i − yi ),

where each partial derivative
dxi
dt

is replaced according to system (1). For an integer

� ≥ 1, we denote by ϕ(�) the �th iteration of the total derivative of ϕ (in particular
ϕ(1) = ϕ̇).

For instance, for the network given in Example 3, its associated dynamical system
(2) and the function ϕ = u4 + v, we have

ϕ̇ = 4u3(aes0 − (b + c)u) + ã f s1 − (b̃ + c̃)v.

Note that for a differentiable function ϕ : Rs → R, the total derivative ϕ(�) can be
regarded as a function depending on the (s + #R)-variables x,k.

Definition 3 Let G = (V,R,k) be a chemical reaction network with s species. We
say its associated reaction system (1) is identifiable from the variables xi1 , . . . , xit if
there exists a positive integer D such that the following injectivity condition holds: if
k∗,k∗∗ ∈ R

#R
>0 verify

x (�)
i j

(x,k∗) = x (�)
i j

(x,k∗∗),

for all 1 ≤ � ≤ D, 1 ≤ j ≤ t , then k∗ = k∗∗.
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The introduction of the Lie derivative in identifiability is a usual and quite natu-
ral approach suitable adapted to our purposes (see, for instance, Chis et al. 2011a).
Among other works following this approach, Sedoglavic (2002), Chiş et al. (2011b)
and Anguelova et al. (2012) also include a discussion about the number of derivatives
needed for the proposed identifiability analysis.

Definitions 1 and 3 are related in the obvious way:

Proposition 1 A chemical reaction system in the variables x = x1, . . . , xs is iden-
tifiable in the sense of Definition 1 if and only it is identifiable from the variables
x1, . . . , xs in the sense of Definition 3.

Proof First we observe that the identity Φ = ẋ1 × ẋ2 × · · · × ẋs holds as functions
of the argument k. Thus, if Φ is injective, the condition of Definition 3 is satisfied
for the variables x1, . . . , xs and the integer D = 1. Conversely, suppose that the
chemical reaction system is identifiable from the variables x1, . . . , xs using a certain
number D of successive total derivatives. Then the function Φ is necessarily injective
in the arguments k: if it is not the case, there exist k∗ �= k∗∗ such that ẋi (x,k∗) =
ẋi (x,k∗∗) as functions of the variables x for all i = 1, . . . , s. Since the values of
k∗,k∗∗ are constants with respect to the total derivative we conclude that x (�)

i (x,k∗) =
x (�)
i (x,k∗∗) for all � ∈ N and all 1 ≤ i ≤ s, arriving at a contradiction. 	

Example 6 Consider the graph

X1 + X2
k1−→ X3

k2−→ X4.

and its associated system

ẋ1 = −k1x1x2, ẋ2 = −k1x1x2, ẋ3 = k1x1x2 − k2x3, ẋ4 = k2x3.

The system is identifiable in the sense of Definition 1. Following Definition 3, the
system is identifiable from the single variable x3 with one derivative (i.e. in this case
D = 1 inDefinition 3). It is also identifiable from the variable x4, but its total derivative
of second order is needed in order to determine all the parameters (i.e. D = 2 for this
variable). On the other hand, the system is not identifiable from the set of variables
{x1, x2}, since the constant k2 does not appear in any of the successive total derivatives
of x1 nor x2.

For technical reasons, we need to slightly generalize the notion of identifiability
introduced in Definition 3. The following definition is related to the notion of identi-
fiability of parameter combinations (Boulier 2007; Meshkat et al. 2009):

Definition 4 Let G = (V,R,k) be a chemical reaction network. Let p ∈ N and
ψ : R#R

>0 → R
p be a map from the space of parameters in an affine space Rp. We say

that the map ψ is identifiable from the variables xi1 , . . . , xit if there exists a positive
integer D such that the following injectivity condition holds: if k∗,k∗∗ ∈ R

#R
>0 verify

x (�)
i j

(x,k∗) = x (�)
i j

(x,k∗∗),
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Identifiability from a Few Species for a Class of… 2141

for all 1 ≤ � ≤ D, 1 ≤ j ≤ t , then ψ(k∗) = ψ(k∗∗).

Roughly speaking, Definition 4 says that the value of the function ψ is uniquely
determined by the values of the successive derivatives x (�)

i j
.

Observe that the notion of identifiability of a system from the variables xi1 , . . . , xit
as it is defined in Definition 3 can be translated in the sense of Definition 4 as the
identifiability of the function ψ : R#R

>0 → R
#R, ψ(k) = k.

For instance, in the (non identifiable) Example 5, the function ψ : R6
>0 → R

3,
defined asψ(k) := (2k1+k4, k2+2k6, k5−k3), is identifiable from x1 (or x2, or both
variables). In this case we say simply that the constants 2k1 + k4, k2 + 2k6, k5 − k3
can be identified from x1.

This notion will be useful along the paper. We will typically consider very simple
functions ψ whose coordinates are either the rate constants or the sum of all the rate
constants leaving from one complex.

3 Assumptions on the Biochemical Reaction Networks

We will analyze the identifiability problem for a specific kind of chemical reaction
networks. We start by describing the assumptions on the networks we will consider in
the sequel.

First, we assume that the “building blocks” of the network have the following shape:

X1 + X2
a
�
b
U

c→ X1 + X3,

whereU is a species that only participates in those three reactions along all the network.
WecallU an intermediate species, andwe say that species X1 acts as an enzyme, species
X2 acts as a substrate and species X3 acts as a product.

Definition 5 We say an intermediate speciesU reacts to the non-intermediate species
X1 if there exists another non-intermediate species X2 such that the reaction U →
X1 + X2 exists. We say the non-intermediate species X1 reacts with the non-
intermediate species X2 if there exists an intermediate speciesU such that the reaction
X1 + X2 → U exists.

Example 7 (Example 2 continued) SpeciesU1, V1,U2, V2 are the intermediate species.
E and F act as enzymes. S1,0 acts as a substrate in the first connected component and
as a product in the second one. Species S2,0 and S2,1 also act as both substrates and
products (in the third and fourth connected components). Finally, S1,1 acts as a product
in the first connected component, as a substrate in the second one, and as an enzyme
in the third one.

We make the following assumption concerning the structure of the network:

123
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Assumption 1

1. Each connected component of the graph is of the following form:

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ . . . Y + SL−1

aL
�
bL

UL
cL→ Y + SL ,

where there is a unique enzyme Y acting on all the reactions of the connected
component.

2. The intermediate species Uj appearing in the entire network are all different.
3. The non-intermediate species S j in each connected component are all different,

but they may also appear in other connected components.
4. Each complex lies in a unique connected component of the network.

Although the above assumption seems restrictive, it is satisfied by many networks
such as the multisite phosphorylation system described in Example 1, the phosphory-
lation cascades as the one described in Example 2 and also the network in Example 3.
As we observed before, in Examples 1 and 3 each species plays a unique role but
in Example 2 the species S1,1 acts alternatively as a product (in the first connected
component), as a substrate (in the second one) and as an enzyme (in the third one).

For an intermediate species U , we call

SU = {S : S acts as a substrate or a product in the

connected component determined by U }.

For instance, in Example 2 we haveSU1 = SV1 = {S1,0, S1,1} andSU2 = SV2 =
{S2,0, S2,1}.

Wefinish our assumptions on the kindof graphswe considerwith a slightly technical
condition.

Assumption 2 There is a partition of the species of the graph, that is, a decomposition
into nonempty disjoint subsets:

S = S (0)
⊔

S (1)
⊔

· · ·
⊔

S (M),

where M ≥ 2, 
 denotes the disjoint union, S (0) is the set of intermediate species
and given an intermediate speciesU with Y acting as an enzyme in the corresponding
connected component, there exists α ≥ 1 withSU ⊆ S (α) and Y /∈ S (α).

Remark 1 Under Assumption 1, the new condition imposed on the graph by Assump-
tion 2 implies the following fact: if X1 reacts with X2, then there exists α �= β such
that X1 ∈ S (α) and X2 ∈ S (β). In particular, if Si and S j are two substrates or
products in the same connected component, the complex Si + S j is not present in the
network.

Example 8 In Example 2 we can consider the following partitionS (0) = {U1, V1,U2,

V2}, S (1) = {S1,0, S1,1}, S (2) = {S2,0, S2,1}, S (3) = {E}, S (4) = {F1}, S (5) =
{F2}.
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However it is not the unique possible partition: for instance, another choice could
beS (0),S (1) andS (2) as before, butS (3),S (4) andS (5) are replaced by the single
set {E, F1, F2}.

4 Identifiability in Connected Components

This section is devoted to dealingwith the identifiability problem for chemical reaction
networks satisfying the assumptions stated in Sect. 3. Our aim is to show that all
reaction constants of the network can be identified from the successive derivatives of
the variables in a certain family of non-intermediates.

In order to do this, we choose a suitable subset of variables and estimate the maxi-
mum number of successive derivatives of them that we need to identify all the reaction
constants. Namely, we choose variables xi1 , . . . , xit and determine a number Dj of
successive derivatives of xi j , for 1 ≤ j ≤ t , so that the injectivity condition in Defi-
nition 3 holds for D = max{Dj }.

Since the derivatives x (�)
i j

(x,k) are polynomials in the variables x with coefficients
that are polynomials in the reaction rate constants k, showing that the parameters k are
identifiable from x (�)

i j
(x,k) for 1 ≤ � ≤ Dj , 1 ≤ j ≤ t , is the same as showing that

they are uniquely determined by the coefficients of the polynomials x (�)
i j

(x,k). Thus,
our strategy to proving identifiability will be to locate suitable subsets of monomials in
the derivatives x (�)

i j
that enable us to prove that the values of all the reaction constants

can be uniquely determined from their corresponding coefficients.

4.1 Identifying the Constants in One Connected Component fromOneVariable

The aim of this section is to show that all the reaction constants in a connected com-
ponent

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ . . . Y + SL−1

aL
�
bL

UL
cL→ Y + SL (4)

of a network satisfying the assumptions stated in Sect. 3 are identifiable from a limited
number of successive derivatives of the variable sL representing the concentration of
the last product.

We start by showing that all the constants cL , aL , bL , and, for 1 ≤ j ≤ L − 1, a j

and b j + c j can be identified (in the sense of Definition 4) simply from the first three
derivatives of this variable. Then, we proceed to identify recursively all the constants
c j (and consequently, also the constants b j ) for j = L − 1, . . . , 1, from higher-order
derivatives of sL . The main result of this section is the following:

Proposition 2 All the constants in a connected component

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ . . . Y + SL−1

aL
�
bL

UL
cL→ Y + SL
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Table 1 The constants in the connected component (4) can be identified from sL

Derivative Monomial Coefficient (up to sign) Identified constant

ṡL uL cL cL

s̈L ysL−1 cLaL aL
uL cL (bL + cL ) bL

s(3)L ys j−1sL−1 cLaLa j a j (1 ≤ j ≤ L − 1)

u j sL−1 cLaL (b j + c j ) b j + c j (1 ≤ j ≤ L − 1)

s(2k+1)
L ykuL−k cL−k

∏k−1
j=0 cL− j aL− j cL−k , bL−k (1 ≤ k ≤ L − 1)

This table shows the monomials to be considered (column 2) in each of the successive derivatives of sL
(column 1). For each monomial, taking into account the constants already identified, the corresponding
coefficient (column 3) enables us to identify the constant appearing in the last column

of a network satisfying the assumptions in Sect. 3 can be identified from s(�)
L with

1 ≤ � ≤ max{2, 2L − 1}.
The strategy in the proof of this result consists in the exact computation of the

coefficients of certain distinguished monomials in the successive derivatives of sL .
This explicit computation enables us to achieve the identifiability of all the constants
of the connected component by means of a recursive procedure that we summarize in
Table 1. For a complete proof, see Proposition 4 in “Appendix A.”

We illustrate the procedure underlying the proof of the previous statement with a
simple example.

Example 9 Consider the network

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ Y + S2

Z + S2
ã1
�
b̃1

W
c̃1→ Z + S3

According to Proposition 2, all the constants in the first connected component can be
identified from s(�)

2 with 1 ≤ � ≤ 3. In fact, if we call K1 = b1 + c1, K2 = b2 + c2
and K̃1 = b̃1 + c̃1,

ṡ2 = − ã1s2z + c2 u2 + b̃1w,

s̈2 = − ã1[ṡ2z + s2(−ã1s2z + K̃1w︸ ︷︷ ︸
ż

)] + c2[ a2 s1y − K2 u2
︸ ︷︷ ︸

u̇2

] + b̃1[ã1s2z − K̃1w︸ ︷︷ ︸
ẇ

],

s(3)
2 = − ã1[s̈2z + 2ṡ2 ż + s2(−ã1(ṡ2z + s2 ż) + K̃1ẇ)]

+ c2[a2((−a2s1y + c1 u1 + b2u2
︸ ︷︷ ︸

)

ṡ1

y + s1(− a1 s0y + K1 u1 − a2s2y + K2u2
︸ ︷︷ ︸

)

ẏ

) − K2u̇2]

+ b̃1[ã1(ṡ2z + s2 ż) − K̃1ẇ],
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where the constants c2, a2, K2 (thus, also b2 = K2 − c2), a1, K1 and c1 (thus, also
b1 = K1 − c1) are identified in Table 1.

A direct consequence of Proposition 2 is the following theorem:

Theorem 1 If a chemical reaction network satisfying the assumptions in Sect. 3 con-
sists of N connected components

Y1 + S1,0
a1,1
�
b1,1

U1,1
c1,1→ Y1 + S1,1

a1,2
�
b1,2

U1,2
c1,2→ . . .

. . . Y1 + S1,L1−1

a1,L1
�
b1,L1

U1,L1

c1,L1→ Y1 + S1,L1

...

YN + SN ,0

aN ,1

�
bN ,1

UN ,1
cN ,1→ YN + SN ,1

aN ,2

�
bN ,2

UN ,2
cN ,2→ . . .

. . . YN + SN ,LN−1

aN ,LN
�

bN ,LN

UN ,LN

cN ,LN→ YN + SN ,LN ,

then the associated system is identifiable from the variables s1,L1 , . . . , sN ,LN corre-
sponding to the last products of each connected component of the network. Moreover,
for every 1 ≤ i ≤ N, the order of derivation needed for the variable si,Li is at most
max{2, 2Li − 1}.

4.2 Identifying the Constants in Two Connected Components fromOneVariable

In this subsection, we analyze the identifiability problem for a subclass of the networks
we have been considering. More precisely, we consider networks containing pairs of
connected components of the following type:

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ . . . Y + SL−1

aL
�
bL

UL
cL→ Y + SL ,

Ỹ + SL
ãL
�
b̃L

VL
c̃L→ Ỹ + SL−1

ãL−1

�
b̃L−1

VL−1
c̃L−1→ . . . Ỹ + S1

ã1
�
b̃1

V1
c̃1→ Ỹ + S0.

(5)

As before, we work under the assumptions made in Sect. 3.
By Proposition 2, we know that all the constants in the first connected component

in (5) can be identified from a certain number of successive derivatives of sL . Using
the specific structure of the second component, we can prove that the same derivatives
also enable the identification of the reaction rate constants of that component.

We first prove that the constants ãL , b̃L , c̃L , and, for 1 ≤ j ≤ L−1, ã j and b̃ j + c̃ j
can be identified from ṡL and s̈L and, then, bymeans of a recursive explicit computation
of coefficients of a family of distinguished monomials in higher-order derivatives of
sL , we show how to successively identify the constants b̃ j for j = L − 1, . . . , 1, and,
consequently, also the constants c̃ j . In this way, we deduce:
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Table 2 The constants in the two connected components in (5) can be identified from sL

Derivative Monomial Coefficient (up to sign) Identified constant

ṡL uL cL cL
ỹsL ãL ãL

vL b̃L b̃L

s̈L ysL−1 cLaL aL
uL cL (bL + cL ) bL

vL b̃L (b̃L + c̃L ) c̃L
ỹs j sL ãL ã j ã j (1 ≤ j ≤ L − 1)

v j sL ãL (b̃ j + c̃ j ) b̃ j + c̃ j (1 ≤ j ≤ L − 1)

s(3)L ys j−1sL−1 cLaLa j a j (1 ≤ j ≤ L − 1)

u j sL−1 cLaL (b j + c j ) b j + c j (1 ≤ j ≤ L − 1)

s(2k+1)
L ykuL−k cL−k

∏k−1
j=0 cL− j aL− j cL−k , bL−k

k = 1, . . . , L − 1 ykvL−k b̃L−k
∏k−1

j=0 cL− j aL− j b̃L−k , c̃L−k

This table shows the monomials to be considered (column 2) in each of the successive derivatives of sL
(column 1). For each monomial, taking into account the constants already identified, the corresponding
coefficient (column 3) enables us to identify the constant appearing in the last column

Proposition 3 Given a chemical reaction network satisfying the assumptions in Sect. 3,
all the constants in two connected components of the type

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ . . . Y + SL−1

aL
�
bL

UL
cL→ Y + SL ,

Ỹ + SL
ãL
�
b̃L

VL
c̃L→ Ỹ + SL−1

ãL−1

�
b̃L−1

VL−1
c̃L−1→ . . . Ỹ + S1

ã1
�
b̃1

V1
c̃1→ Ỹ + S0

can be identified from s(�)
L with 1 ≤ � ≤ max{2, 2L − 1}.

We summarize the identifiability procedure underlying the proof of the previous
proposition in Table 2, and we also illustrate the result in Example 10. For a complete
proof, see Proposition 5 in “Appendix A.”

Example 10 Consider the network

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ Y + S2

Ỹ + S2
ã2
�
b̃2

V2
c̃2→ Ỹ + S1

ã1
�
b̃1

V1
c̃1→ Ỹ + S0

According to Proposition 3, all the constants in the two connected components can
be identified from s(�)

2 with 1 ≤ � ≤ 3. In fact, if we call K1 = b1 + c1, K2 = b2 + c2,
K̃1 = b̃1 + c̃1 and K̃2 = b̃2 + c̃2:
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ṡ2 = − ã2 s2 ỹ + c2 u2 + b̃2 v2,

s̈2 = −ã2[ṡ2 ỹ + s2(− ã1 s1 ỹ + K̃1 v1 − ã2s2 ỹ + K̃2 v2
︸ ︷︷ ︸

˙̃y

)]

+ c2[ a2 s1y − K2 u2
︸ ︷︷ ︸

u̇2

] + b̃2[ã2s2 ỹ − K̃2v2︸ ︷︷ ︸
v̇2

],

s(3)
2 = −ã2[s̈2 ỹ + 2ṡ2 ˙̃y + s2(−ã1(ṡ1 ỹ + s1 ˙̃y)

+K̃1(ã1s1 ỹ − K̃1v1) − ã2(ṡ2 ỹ + s2 ˙̃y) + K̃2v̇2)]
+ c2[a2((−a2s1y − ã1s1 ỹ + c1 u1 + b2u2 + c̃2v2 + b̃1 v1

︸ ︷︷ ︸
ṡ1

)y

+ s1(− a1 s0y + K1 u1 − a2s2y + K2u2
︸ ︷︷ ︸

ẏ

)) − K2u̇2]

+ b̃2[ã2(ṡ2 ỹ + s2 ˙̃y) − K̃2v̇2].

Here, the constants c2, ã2, b̃2, a2, K2 (then, b2), c̃2, ã1, K̃1, a1, K1, c1 (then, b1)
and b̃1 (then, c̃1) are identified in Table 2.

A direct consequence of Proposition 3 is the following corollary:

Corollary 1 If a chemical reaction network satisfying the assumptions in Sect. 3 con-
sists of 2N connected components of the shape

Y1 + S1,0
a1,1
�
b1,1

U1,1
c1,1→ Y1 + S1,1

a1,2
�
b1,2

U1,2
c1,2→ . . .

. . . Y1 + S1,L1−1

a1,L1
�
b1,L1

U1,L1

c1,L1→ Y1 + S1,L1

Ỹ1 + S1,L1

ã1,L1
�
b̃1,L1

V1,L1

c̃1,L1→ Ỹ1 + S1,L1−1

ã1,L1−1

�
b̃1,L1−1

V1,L1−1
c̃1,L1−1→ . . .

. . . Ỹ1 + S1,1
ã1,1
�
b̃1,1

V1,1
c̃1,1→ Ỹ1 + S1,0

...

YN + SN ,0

aN ,1

�
bN ,1

UN ,1
cN ,1→ YN + SN ,1

aN ,2

�
bN ,2

UN ,2
cN ,2→ . . .

. . . YN + SN ,LN−1

aN ,LN
�

bN ,LN

UN ,LN

cN ,LN→ YN + SN ,LN
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ỸN + SN ,LN

ãN ,LN
�

b̃N ,LN

VN ,LN

c̃N ,LN→ ỸN + SN ,LN−1

ãN ,LN−1

�
b̃N ,LN−1

VN ,LN−1
c̃N ,LN−1→ . . .

. . . ỸN + SN ,1

ãN ,1

�
b̃N ,1

VN ,1
c̃N ,1→ ỸN + SN ,0

then the associated system is identifiable from the variables s1,L1 , . . . , sN ,LN . More-
over, for every 1 ≤ i ≤ N, the order of derivation needed for the variable si,Li is at
most max{2, 2Li − 1}.

5 Identifying the Cascade

We will consider in this section networks that are called cascades. Signaling cas-
cades are biochemical networks of major biological importance as they participate
in a number of several diseases and also control key cellular functions (Davis 2000;
Kyriakis and Avruch 2001; Pearson et al. 2001; Schaeffer and Weber 1999; Widmann
et al. 1999; Zarubin and Han 2005). The mitogen-activated protein kinase (MAPK)
cascade is a network present in all eukaryotic cells and one of the most extensively
modeled signaling systems (Hornberg et al. 2005; Huang and Ferrell 1996; Qiao et al.
2007). A schematic representation of the network is the following

S1,0

E

S1,1

F1

S2,0

S1,1

S2,1

S1,1

F2

S2,2

F2

S3,0

S2,2

S3,1

S2,2

F3

S3,2

F3

where S1,0 represents the kinase MAPKKK, and S1,1 represents the activated form
MAPKKK∗. S2,0, S2,1 and S2,2 stand for MAPKK, MAPKK-P and MAPKK-PP, respectively.
And finally, S3,0, S3,1 and S3,2 stand for MAPK, MAPK-P and MAPK-PP, respectively.
F1 represents the enzyme that deactivates MAPKKK∗, and F2 and F3 represent the
corresponding phosphatase of each layer.

More generally, cascades consist of N ≥ 1 layers and are represented by the
following scheme:
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S1,0

E

S1,1

E

F1

. . .

E

F1

S1,L1

F1

S2,0

S1,L1

S2,1

S1,L1

F2

. . .

S1,L1

F2

S2,L2

F2

. . .

SN ,0

SN−1,LN−1

SN ,1

SN−1,LN−1

FN

. . .

SN−1,LN−1

FN

SN ,LN

FN

One important feature of cascades is that the enzyme on the first connected component
of a certain layer is the last product of the first component of the previous layer. For
instance, S1,L1 is the enzymeon the second layer and so on. The corresponding reaction
network for the N -layer cascade is the following

E + S1,0
a1,1
�
b1,1

U1,1
c1,1→ E + S1,1

a1,2
�
b1,2

U1,2
c1,2→ . . .

. . . E + S1,L1−1

a1,L1
�
b1,L1

U1,L1

c1,L1→ E + S1,L1

F1 + S1,L1

ã1,L1
�
b̃1,L1

V1,L1

c̃1,L1→ F1 + S1,L1−1

ã1,L1−1

�
b̃1,L1−1

V1,L1−1
c̃1,L1−1→ . . .

. . . F1 + S1,1
ã1,1
�
b̃1,1

V1,1
c̃1,1→F1 + S1,0

S1,L1 + S2,0
a2,1
�
b2,1

U2,1
c2,1→ S1,L1 + S2,1

a2,2
�
b2,2

U2,2
c2,2→ . . .

. . . S1,L1 + S2,L2−1

a2,L2
�
b2,L2

U2,L2

c2,L2→ S1,L1 + S2,L2

F2 + S2,L2

ã2,L2
�
b̃2,L2

V2,L2

c̃2,L2→ F2 + S2,L2−1

ã2,L2−1

�
b̃2,L2−1

V2,L2−1
c̃2,L2−1→ . . .
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. . . F2 + S2,1
ã2,1
�
b̃2,1

V2,1
c̃2,1→F2 + S2,0

...

SN−1,LN−1 + SN ,0

aN ,1

�
bN ,1

UN ,1
cN ,1→ . . .

. . . SN−1,LN−1 + SN ,LN−1

aN ,LN
�

bN ,LN

UN ,LN

cn,Ln→ SN−1,LN−1 + SN ,LN

FN + SN ,LN

ãN ,LN
�

b̃N ,LN

VN ,LN

c̃N ,LN→ FN + SN ,LN−1

ãN ,LN−1

�
b̃N ,LN−1

VN ,LN−1
c̃N ,LN−1→ . . .

. . . FN + SN ,1

ãN ,1

�
b̃N ,1

VN ,1
c̃N ,1→ FN + SN ,0. (6)

We will assume Fi �= Fj if i �= j and consider the following partition of the non-
intermediate species, which satisfies Assumption 2:

S = S (1)
⊔

S (2)
⊔

· · ·
⊔

S (2N+1),

with S (m) = {Sm,0, . . . , Sm,Lm } and S (N+m) = {Fm}, for 1 ≤ m ≤ N , and
S (2N+1) = {E}.

As our running example for this section, we will consider the two-layer cascade
with 18 reactions.

Example 11

E + S1,0
a1,1
�
b1,1

U1,1
c1,1→ E + S1,1

F1 + S1,1
ã1,1
�
b̃1,1

V1,1
c̃1,1→ F1 + S1,0

S1,1 + S2,0
a2,1
�
b2,1

U2,1
c2,1→ S1,1 + S2,1

a2,2
�
b2,2

U2,2
c2,2→ S1,1 + S2,2

F2 + S2,2
ã2,2
�
b̃2,2

V2,2
c̃2,2→ F2 + S2,1

ã2,1
�
b̃2,1

V2,1
c̃2,1→ F2 + S2,0.

The first layer consists of two connected components. The first component consists
of one modification performed by the enzyme E on the substrate S1,0, which is trans-
formed into the product S1,1. On the second connected component, the enzyme F1
performs the reversemodification on the substrate S1,1. The second layer is similar. For
this network we have S (1) = {S1,0, S1,1}, S (2) = {S2,0, S2,1, S2,2}, S (3) = {F1},
S (4) = {F2} and S (5) = {E}.
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5.1 Identifiability of Constants in a General Cascade

The aim of this section is to show that all the constants in the cascades introduced in
(6) can be identified from successive derivatives of the variable corresponding to the
last product of the last layer, SN ,LN . In order to prove this, we relate the derivatives of
the last product of a given layer of the cascade with the derivatives of the last product
of the layer immediately above.

To shorten notation, we will denote Km, j = bm, j + cm, j and K̃m, j = b̃m, j + c̃m, j

for every 1 ≤ m ≤ N , 1 ≤ j ≤ Lm . Also, for unifying purposes, we set S0,L0 := E .
For 1 ≤ n ≤ N , consider the variable sn,Ln corresponding to the last product of the

nth layer of the cascade. We have that

ṡn,Ln = cn,Lnun,Ln − ãn,Ln sn,Ln fn + b̃n,Lnvn,Ln

−
Ln+1∑

j=1

an+1, j sn,Ln sn+1, j−1 +
Ln+1∑

j=1

Kn+1, j un+1, j

and, for n = N , only the three first terms appear in the derivative, i.e. aN+1, j = 0,
KN+1, j = 0 for all j . The second derivative of sn,Ln is

s̈n,Ln = cn,Ln (an,Ln sn−1,Ln−1 sn,Ln−1 − Kn,Ln un,Ln ) − ãn,Ln (ṡn,Ln fn + sn,Ln ḟn)

+ b̃n,Ln (ãn,Ln sn,Ln fn − K̃n,Lnvn,Ln ) −
Ln+1∑

j=1

an+1, j (ṡn,Ln sn+1, j−1 + sn,Ln ṡn+1, j−1)

+
Ln+1∑

j=1

Kn+1, j (an+1, j sn,Ln sn+1, j−1 − Kn+1, j un+1, j ).

We can see that the variable sn−1,Ln−1 corresponding to the last product of the
(n−1)th layer appears in the second derivative of sn,Ln .More precisely, from the above
expression, it follows easily that it only appears in the term cn,Lnan,Ln sn−1,Ln−1sn,Ln−1,
since Sn−1,Ln−1 does not react with or to Fn or Sn+1, j for any j . Thus, two differentia-
tion steps enable us to “jump” from one layer of the cascade to the layer immediately
above. Inductively, the idea is that, for m < n, by taking 2(n − m) derivatives of
sn,Ln we will reach the mth layer; that is, the variable sm,Lm will appear and so, the
successive derivatives of sm,Lm will appear in higher-order derivatives of sn,Ln .

Now, by the results in Sect. 4.2 for the case of two connected components of the
form (5), we can identify all constants in the mth layer of the cascade by looking
at the coefficients of certain monomials of the derivatives of sm,Lm . Then, our previ-
ous considerations will imply that those constants can be identified from successive
derivatives of sn,Ln as well. In order to ensure that this can be achieved, we prove
that certain monomials effectively appear in the derivatives of sn,Ln and compute their
coefficients (see Proposition 6 in “Appendix A” for a precise statement and its proof).
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When considering the last product of the last layer of the cascade, we obtain our
main result:

Theorem 2 All the constants in the network (6) can be identified from s(�)
N ,LN

with
1 ≤ � ≤ max{2N ; 2(N − m + Lm) − 1, 1 ≤ m ≤ N }.

Wenowsummarize the identifiability procedurewhich proves the previous theorem.
Theprocedure obtains recursively, form = N , N−1, . . . , 1, the values of the constants
am, j , ãm, j , bm, j , b̃m, j , cm, j and c̃m, j , for 1 ≤ j ≤ Lm , from the successive derivatives
of sN ,LN , according to Table 3.

In order to shorten notation, let PN := 1, CN := 1, KN := 0 and, for 1 ≤ m ≤
N − 1, Pm := ∏N

i=m+1 si,Li−1, Cm := ∏N
i=m+1 ci,Li ai,Li and Km := ∑N

i=m+1 Ki,Li .

Example 12 (Example 11 continued) Here we find the monomials relevant for iden-
tifiability in the two-layer cascade. We highlight with blue boxes the constants that
we are identifying in each derivative. We moreover highlight with green boxes the
monomials that we used to identify b1,1 and c̃1,1 from K1,1 and K̃1,1, respectively (see
rows 5 and 6 in Table 3).

ṡ2,2 = − ã2,2 f2s2,2 + b̃2,2 v2,2 + c2,2 u2,2

s̈2,2 = −ã2,2[(−ã2,2 f2s2,2 + K̃2,2v2,2 − ã2,1 f2s2,1 + K̃2,1 v2,1)s2,2 + f2ṡ2,2]

+ b̃2,2(ã2,2 f2s2,2 − K̃2,2 v2,2) + c2,2( a2,2 s1,1s2,1 − K2,2 u2,2)

s(3)
2,2 =

∑

h+i≤2

β f2,h,i f (h)
2 s(i)

2,2 + δv2,2v2,2 + c2,2(a2,2[( c1,1 u1,1 − ã1,1 f1s1,1

+ b̃1,1 v1,1 − a2,1 s1,1s2,0 + K2,1 u2,1 − a2,2s1,1s2,1 + K2,2u2,2)s2,1

+ s1,1( c2,1 u2,1 − a2,2s1,1s2,1 + b2,2u2,2 + c̃2,2v2,2 − ã2,1 f2s2,1 + b̃2,1 v2,1)]
− K2,2(a2,2s1,1s2,1 − K2,2u2,2))

s(4)
2,2 =

∑

h+i≤3

β f2,h,i f (h)
2 s(i)

2,2 + δv2,2v2,2 + c2,2(a2,2[(c1,1( a1,1 es1,0 − K1,1 u1,1 )

− ã1,1( ḟ1s1,1 + f1ṡ1,1) + b̃1,1(ã1,1 f1s1,1 − K̃1,1 v1,1 ) − a2,1(ṡ1,1s2,0 + s1,1ṡ2,0)

+ K2,1u̇2,1 − a2,2(ṡ1,1s2,1 + s1,1ṡ2,1) + K2,2u̇2,2)s2,1 + 2ṡ1,1ṡ2,1 + s1,1s̈2,1]
− K2,2(a2,2[(c1,1 u1,1 − ã1,1 f1s1,1 + b̃1,1 v1,1 − a2,1s1,1s2,0 + K2,1u2,1

− a2,2s1,1s2,1 + K2,2u2,2)s2,1 + s1,1ṡ2,1] − K2,2u̇2,2)

5.2 An Example of How to Obtain the Rate Constants from Data

Here, we will illustrate our previous theoretical identifiability results in a specific
example, showing how they can be used as a guidance in experimental design for
practical parameter identification from observable data.
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The three-layer cascade with L1 = 1, L2 = L3 = 2 represents the well-known
MAPK signaling cascade with s3,2 representing the concentration of the doubly
phosphorylatedkinaseMAPK-PP (Catozzi et al. 2016;Huang andFerrell 1996;Kholo-
denko 2000; Shaul and Seger 2007). Consider, then, the cascade (6) for N = 3 and
L1 = 1, L2 = L3 = 2, whose schematic representation is introduced at the beginning
of Sect. 5. In this case, we have 22 species concentrations x and 30 rate constants k
which can be identified from s(�)

3,2, 1 ≤ � ≤ 6, by Theorem2.According toDefinition 3,
this means that if we consider the polynomial system

s(�)
3,2(x,k) = p�(x,k) (7)

for the corresponding polynomials p� obtained from (1) by computing the successive
total derivatives of s3,2, the function that maps the vector of rate constants k to the
coefficients of the polynomials p�’s (considered as polynomials in the species con-
centrations x) is injective. This means that all the rate constants can be recovered from
noise-free data by a suitable interpolation procedure: if we evaluate these polynomi-
als at “sufficiently many” points x ∈ R

22, we may reconstruct the coefficients and,
consequently, determine uniquely the values of the rate constants.

However, it is not clear which x ∈ R
22 are suitable for identifying the parameters

of the system, nor how many of them are enough for this purpose. We give here a
heuristic to choose a list of x ∈ R

22 based on the monomials in the second column of
Table 4, which is the adapted version of Table 3 for this particular case. This heuristic
can be used as an aid to design experiments to obtain the rate constants values. Each
initial state x ∈ R

22 is in correspondence with a different experiment.
In order to recover the value of the 30 rate constants in this case, we propose the

following algorithm:

Step 1. Consider x1, x2, . . . , x30 ∈ R
22 defined as follows: for the i th monomial in

Table 4, consider xi ∈ R
22 where all the coordinates are 0 except for those

coordinates corresponding to variables that divide the monomial, which are
equal to 1. For example, for the monomial u1,1s2,1s3,1, all the coordinates
of the associated point are equal to 0, except for the three coordinates corre-
sponding to u1,1, s2,1 and s3,1 that are equal to 1.

Step 2. For each i ∈ {1, . . . , 30}, obtain the value s(�)
3,2(xi ,k) for the order � that

corresponds to the i th monomial in Table 4. Ideally, these values should be
obtained experimentally, for instance considering xi the initial state at time
t = 0.

Step 3. Construct a (nonlinear) polynomial equation system from (7), of 30 equations
in the 30 unknowns k, by evaluating the right-hand sides at x1, . . . , x30 and
replacing the left-hand sides with the values obtained in the previous step.

Step 4. Solve the polynomial system in the unknowns k.

A vague explanation of why this heuristic works is that each monomial in Table 4
incorporates a new variable that comes paired with the new rate constant to be identi-
fied. Further research is needed to find a rigorous proof for this conjecture.

We implemented the algorithm above by reconstructing the values of the left-hand
sides of (7) with the rate constants in the third column of Table S2 in the Supporting
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Information of Qiao et al. (2007). We used Maple (2014) to solve the system of
equations and successfully obtained the following values (in a few seconds using a
standard desktop computer).

a1,1 = 337.2299998, a2,1 = 1226.000001, a2,2 = 3383.7,

a3,1= 229.5699981, a3,2 = 3388.7, ã1,1= 1841.000002, ã2,1=2960.300016,

ã2,2 = 1956.8, ã3,1 = 297.0, ã3,2 = 974.7,

b1,1 = 261.1000013, b2,1 = 623.1700002, b2,2 = 605.3100002,

b3,1 = 694.13, b3,2 = 485.3499999, b̃1,1 = 198.47, b̃2,1 = 163.0,

b̃2,2 = 48.804, b̃3,1 = 301.09, b̃3,2 = 587.45,

c1,1 = 146.07, c2,1 = 420.0000001, c2,2 = 214.65, c3,1 = 43.658,

c3,2 = 65.732, c̃1,1 = 338.4400021, c̃2,1 = 668.2000111,

c̃2,2 = 67.97000003, c̃3,1 = 31.743, c̃3,2 = 175.91.

The same three-layer cascade may be completely identified also by means of the
result stated in Theorem 1: in this case the rate constants in each connected component
can be identified from s(�1)

1,1 , s(�2)
1,0 , s(�3)

2,2 , s(�4)
2,0 , s(�5)

3,2 , and s(�6)
3,0 , respectively, for 1 ≤

�1, �2 ≤ 2 and 1 ≤ �3, �4, �5, �6 ≤ 3. By Corollary 1 we can also identify the
constants from s(�1)

1,1 , s(�3)
2,2 and s(�5)

3,2 , for 1 ≤ �1 ≤ 2 and 1 ≤ �3, �5 ≤ 3. We adapted
the procedure above and implemented it in Maple, and we obtained the same rate
constants as before.

Throughout the article, we assume that one can use noise-free data in order to
recover the rate constants values. Nevertheless, there are certain numerical errors that
appear at Step 4, when the polynomial system in the unknowns k is solved. If we
moreover implement the algorithm with numerical approximations of the total deriva-
tives, more numerical errors are bound to occur. The major drawback of considering
the last two approaches, based on Theorem 1 or Corollary 1, is that more species have
to be measured. However, the value that has to be numerically estimated corresponds
to a derivative of order at most three, which can be approximated more accurately and
with fewer time measurements than those values of higher-order derivatives.

The Maple code for both procedures can be found at http://cms.dm.uba.ar/
Members/mpmillan/identifiability.

6 Discussion and Further Work

The main contribution of this paper has been to prove that all the rate constants in
several well-known chemical reaction networks that are abundant in the literature can
be identified from a reduced set of kinetic variables. The work here extends previous
results byCraciun andPantea (2008) and avoids computationally expensive procedures
such as differential elimination and Gröbner basis (Bellu et al. 2007; Boulier 2007;
Meshkat et al. 2009).

We should point out that we assumed that there is a special partition of the set of
chemical species and that every connected component of the chemical reaction network
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Table 4 The constants in the three-layer cascade with 30 constants can be identified from s3,2

Derivative Monomial Coefficient (up to sign) Constant

ṡ3,2 u3,2 c3,2 c3,2
f3s3,2 ã3,2 ã3,2

v3,2 b̃3,2 b̃3,2
s̈3,2 s2,2s3,1 c3,2a3,2 a3,2

u3,2 c3,2K3,2 b3,2

v3,2 b̃3,2 K̃3,2 c̃3,2
f3s3,1s3,2 ã3,1ã3,2 ã3,1

v3,1s3,2 K̃3,1ã3,2 K̃3,1

s(3)3,2 s2,2s3,0s3,1 c3,2a3,2a3,1 a3,1

u3,1s3,1 c3,2a3,2K3,1 K3,1

s2,2u3,1 c3,1c3,2a3,2 c3,1, b3,1

v3,1s2,2 b̃3,1c3,2a3,2 b̃3,1, c̃3,1
u2,2s3,1 c2,2c3,2a3,2 c2,2
f2s2,2s3,1 ã2,2c3,2a3,2 ã2,2

v2,2s3,1 b̃2,2c3,2a3,2 b̃2,2

s(4)3,2 s1,1s2,1s3,1 c2,2a2,2c3,2a3,2 a2,2

u2,2s3,1 c2,2(K2,2 + K3,2)C2 b2,2

v2,2s3,1 b̃2,2(K̃2,2 + K3,2)C2 c̃2,2
f2s2,1s2,2s3,1 ã2,1ã2,2C2 ã2,1

v2,1s2,2s3,1 K̃2,1ã2,2C2 K̃2,1

s(5)3,2 u1,1s2,1s3,1 c1,1C1 c1,1

f1s1,1s2,1s3,1 ã1,1C1 ã1,1

v1,1s2,1s3,1 b̃1,1C1 b̃1,1
s1,1s2,0s2,1s3,1 c2,2a2,2a2,1C2 a2,1
u2,1s2,1s3,1 c2,2a2,2K2,1C2 K2,1

s1,1u2,1s3,1 c2,1c2,2a2,2a3,2c3,2 c2,1, b2,1

s1,1v2,1s3,1 b̃2,1C1 b̃2,1,c̃2,1

s(6)3,2 es1,0s2,1s3,1 c1,1a1,1C1 a1,1

u1,1s2,1s3,1 c1,1(K1,1 + K2,2 + K3,2)C1 b1,1

v1,1s2,1s3,1 b̃1,1(K̃1,1 + K2,2 + K3,2)C1 c̃1,1

This table shows the monomials to be considered (column 2) in each of the successive derivatives of s3,2
(column 1). For each monomial, taking into account the constants already identified, the corresponding
coefficient (column 3) enables us to identify the constant appearing in the last column. Here, we consider
C1 = c2,2a2,2c3,2a3,2 and C2 = c3,2a3,2
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has a particular shape (see Sect. 3). Both assumptions are natural when modeling
multisite phosphorylation systems and signaling cascades (Wang and Sontag 2008;
Huang and Ferrell 1996). We have then shown, in Sect. 4, how to identify the rate
constants in every connected component, or two related connected components, from
a single species. In Sect. 5 we have moreover proved that all the rate constants in
signaling cascade networks can be identified from only one species: the last product
of the first component of the last layer. Additionally, we have presented in Sect. 5.2 an
example showing how to compute the values of the rate constants from noise-free data
according to our theoretical results in the previous sections. The procedure is based
on a heuristic to choose the right input data; it would be of great interest to find a
formal proof for establishing a good set of sufficient data for any network of the class
considered in this paper.

We expect that the techniques used in this paper could be applied for identifiability
from a few variables to a number of modifications of the networks we have considered
here. For instance, it would be interesting to introduce more intermediate complexes
within different reactions. Another potential adaptation is relaxing the assumption
Fi �= Fj for i �= j in the cascade network, and allowing for repetition of these
enzymes. Bothmodifications are natural extensions of the networks we have analyzed,
andwe conjecture that similar results can be obtained.Wemoreoverwould like to apply
our techniques to more general but hence well structured networks such as MESSI
networks (Pérez Millán and Dickenstein 2018). Another future research direction is
to characterize which other variables can be considered to identify the rate constants
of either a whole connected component or the entire biochemical network.

Acknowledgements The authors wish to thank the anonymous referees for their thoughtful comments
which helped to improve the manuscript.

A Proofs

Throughout this “Appendix,” we maintain the notation and assumptions introduced in
Sects. 2 and 3.

Before stating and proving our results, we introduce some further notation and
formulas we will use in our analysis. We consider an autonomous dynamical system

ẋ =
∑

y→y′
kyy′ xy (y′ − y), (8)

arising from a chemical reaction network satisfying the assumptions stated in Sect. 3.
For a non-intermediate species X , let

ZX = {Z : Z reacts with X} and WX = {W : W reacts to X}. (9)
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By the shape of the networks we consider,ZX is a set of non-intermediate species and
WX is a set of intermediate species. From (8), we then have that

ẋ = −
∑

Z∈ZX

μz xz +
∑

W∈WX

ηww, (10)

for suitable non negative real numbers μz and ηw. For � ≥ 2, Leibniz rule implies
that

x (�) = −
∑

Z∈ZX

μz

∑

h+i=�−1

(
� − 1

h

)

x (h)z(i) +
∑

W∈WX

ηww(�−1). (11)

If W ∈ WX is involved in a block of reactions

Zw,1 + Zw,2
aw

�
bw

W
cw→ Zw,3 + X ,

then, according to (8), the differential equation ẇ = awzw,1zw,2 − Kww, with Kw =
bw + cw, is satisfied, and

w(�−1) =
∑

h+i≤�−2

(−Kw)�−2−h−i aw

(
h + i

h

)

z(h)
w,1z

(i)
w,2 + (−Kw)�−1w. (12)

By separating the cases where X ∈ {Zw,1, Zw,2} and X /∈ {Zw,1, Zw,2}, we can
simplify:

x (�) =
∑

Z∈Z X

∑

h+i≤�−1

βz,h,i x
(h)z(i) +

∑

W∈WX
X /∈{Zw,1,Zw,2}

∑

h+i≤�−2

γw,h,i z
(h)
w,1z

(i)
w,2 +

∑

w∈WX

δw w, (13)

for suitable real numbers βz,h,i , γw,h,i and δw that depend on � and the reaction rate
constants.

From the previous formulas interpreted as polynomials in the variables x, z, w, we
deduce straightforwardly.

Lemma 1 For a reaction network satisfying the assumptions of Sect. 3, we have:

1. The constant monomial does not appear in any derivative of any species.
2. The only monomials of degree 1 appearing in a derivative x (�), � ≥ 1, for a non-

intermediate species X, are the monomials w corresponding to W ∈ WX , that is,
those that appear in ẋ .
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A.1 Proofs of Sect. 4.1: Identifying the Constants in One Connected Component
fromOneVariable

Here we give the proofs of our identifiability result for a connected component of the
type:

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ . . . Y + SL−1

aL
�
bL

UL
cL→ Y + SL (14)

We maintain the hypotheses and notations introduced in Sect. 3 and previously in this
“Appendix.”

Lemma 2 Given a connected component as in (14), the constants aL , bL and cL can
be identified from ṡL and s̈L , and, if L > 1, the constants a j and K j := b j + c j , for

1 ≤ j ≤ L − 1, can be identified from ṡL , s̈L and s(3)
L .

Proof Following (10), we have

ṡL = −
∑

Z∈ZL

μzsL z +
∑

W∈WL

ηww (15)

where, using the notation in (9),ZL := ZSL andWL := WSL . By separating the term
corresponding to UL ∈ WL , we obtain

ṡL = −
∑

Z∈ZL

μzsL z + cLuL +
∑

W∈W ∗
L

ηww

where W ∗
L := WL\{UL}. Then, we can identify cL from ṡL as the coefficient of the

monomial uL .
Consider now

s̈L = −
∑

Z∈Z L

μz[ṡL z + sL ż] + cL (aL ysL−1 − KLuL ) +
∑

W∈W ∗
L

ηw[awzw,1zw,2 − Kww].

From this expression, since cL �= 0, we can identify aL and KL from the coefficients
of the monomials ysL−1 and uL (which only appear in s̈L from the derivative u̇L ) and,
as we know cL , we can also identify bL . If L = 1 we have identified all the constants.

If L > 1, consider the third derivative

s(3)
L =

∑

Z∈Z L

∑

h+i≤2

βz,h,i s
(h)
L z(i) + cLaL [ẏsL−1 + yṡL−1] − cL KL(aL ysL−1 − KLuL)

+
∑

W∈W ∗
L

SL /∈{Zw,1,Zw,2}

γw,1[żw,1zw,2 + zw,1 żw,2] + γw,0zw,1zw,2 + δww. (16)
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The constants a j and K j , for 1 ≤ j ≤ L −1, appear in ẏ = ∑
1≤ j≤L(−a j ys j−1 +

K ju j ) + · · · as the coefficients (up to sign) of the monomials ys j−1 and u j , respec-
tively. Then, they appear in the expression (16) from the product ẏsL−1 in the
coefficients of the monomials ys j−1sL−1 and u j sL−1, for 1 ≤ j ≤ L − 1. We will
now look for these monomials in the whole expression (16) and show that they come
only from the product ẏsL−1.

As Y /∈ ZL and, for every Z ∈ ZL , by Assumption 2, we have Z �= Sl for all
0 ≤ l ≤ L − 1, the monomials ys j−1sL−1 and u j sL−1, for 1 ≤ j ≤ L − 1, do not

appear in s(h)
L z, for 0 ≤ h ≤ 2. Also, it is clear that they do not appear in sL z(i), for

0 ≤ i ≤ 2. On the other hand, every monomial of degree 3 that appears in a product
of two derivatives of order 1 is a multiple of an intermediate; so, ys j−1sL−1 does not
appear in ṡL ż and, by Lemma 1, u j sL−1 does not appear either since no derivative
contains a constant term or the degree one monomial sL−1.

Now, considerW ∈ W ∗
L such that SL /∈ {Zw,1, Zw,2}, and the corresponding block

of reactions Zw,1 + Zw,2 � W → Zw,3 + SL . Since Uj /∈ W ∗
L for every 1 ≤ j ≤ L ,

then Zw,1 + Zw,2 �= Y + S j−1. Also, by Assumption 2, Zw,1 + Zw,2 �= Sl + SL−1
for every 0 ≤ l ≤ L . Every monomial in żw,1zw,2 is either of the form w0zw,2 for an
intermediate W0 that reacts to Zw,1 or of the form z0zw,1zw,2 for a non-intermediate
Z0 that reacts with Zw,1. If z0zw,1zw,2 = ys j−1sL−1, it follows that Zw,1 + Zw,2 ∈
{Y + S j−1,Y + SL−1, S j−1 + SL−1}, leading to a contradiction. If w0zw,2 = u j sL−1,
then Zw,2 = SL−1 and Uj reacts to Zw,1, meaning that Zw,1 ∈ {Y , S j−1, S j }, which
is not possible.

Finally, the monomial ys j−1sL−1 does not appear in yṡL−1 since, by Assumption 2,
S j−1 does not react with SL−1 for every j .

We conclude that, for 1 ≤ j ≤ L − 1, the coefficients in s(3)
L of the monomials

ys j−1sL−1 and u j sL−1 are −cLaLa j and cLaL K j , respectively. As we have already
identified cL and aL , these coefficients enable us to identify a j and K j = b j + c j , for
1 ≤ j ≤ L − 1. 	


We show now some auxiliary results concerning the behavior of monomials appear-
ing in the successive derivatives of some variables and their relations with the reaction
network. They will allow us to prove Lemma 5, the key recursive tool to show the
identifiability results of Sect. 4.1.

Lemma 3 If
∏m

i=1zi , with m ≥ 2, is a monomial of x (�) where Zi is a non-intermediate
species for every i , then there exist 1 ≤ i1 < i2 ≤ m such that Zi1 reacts with Zi2 .

Proof If � = 1, this is true. Assume � ≥ 2. Recalling that x (�) = ∑
v

∂x (�−1)

∂v
v̇

(where the sum runs over all variables v representing non-intermediates or intermediate

species), it follows that
∏m

i=1zi is a monomial in ∂x (�−1)

∂v
v̇ for some variable v. Since

every monomial appearing in v̇ is either a single intermediate or a product of two
non-intermediate species that react together, the result follows. 	

Corollary 2 If X is a non-intermediate species, no derivative x (�) for � ≥ 1 contains
a monomial which is a pure power of degree m ≥ 2 of a variable corresponding to a
non-intermediate species.
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Lemma 4 Given an intermediate species U and non-intermediate species X and Y
such that Y �= X, if a monomial yru, r ≥ 0, appears in x (�) for some � ≥ 1, then
either U reacts to X or � ≥ 2, the network contains a block of reactions

Y + Zw � W → Z̃w + X , (17)

where Zw �= X, and a monomial ytu with t < r appears in z(i)w for some i ≤ � − 2.
If, in addition, Y acts as an enzyme in all the reactions of the connected component
determined by U, then X ∈ SU and the block of reactions in (17) is Y + Zw � W →
Y + X, and it is contained in the connected component determined by U.

Moreover, ifU does not react to X and � is the smallest integer such that amonomial
yr u appears in x (�), then r ≥ 1, � ≥ 2, and the monomial yr−1u appears in z(i)w for
some i ≤ � − 2.

Proof We prove the first part by induction on r . If r = 0, then u appears in x (�) for
some � ≥ 1; by Lemma 1 (2), this is equivalent to the fact that U reacts to X . In
particular, if Y �= X acts as an enzyme in the connected component determined byU ,
then X ∈ SU .

Now, if r ≥ 1, since nomonomial yru with r ≥ 1 appears in ẋ , it follows that � ≥ 2.
Then, by identity (13), the monomial yru can only appear in a product of derivatives
of two species, and by Lemma 1 and Corollary 2, one of these species must be Y and
the corresponding order of derivation must be zero.

If yru appears in a product x (h)z(i) for some Z ∈ ZX and h+ i ≤ �−1, as X �= Y ,
then Z = Y and yr−1u appears in x (h); then, the result follows by the inductive
hypothesis.

Finally, if yru appears in a product z(h)
w,1z

(i)
w,2 with h + i ≤ � − 2 for someW ∈ WX

such that X /∈ {Zw,1, Zw,2}, again by Lemma 1 and Corollary 2, we may assume that
Y = Zw,1 and yr−1u appears in z(i)w,2. Since X �= Zw,2 and W reacts to X , we must
have Y + Zw,2 � W → Z̃w + X for some species Z̃w, that is, a block of reactions
as in (17). By the induction hypothesis applied to the non-intermediate Zw,2 �= Y ,
if Y acts as an enzyme in the connected component determined by U , it follows that
Zw,2 ∈ SU . Then, Y + Zw,2 is a complex in the connected component determined
by U , where Y acts as an enzyme. As X �= Y , necessarily Z̃w = Y and X ∈ SU .

To see that the last statement of the lemma holds, note that if U does not react to
X and a monomial yru appears in a derivative x (�), then r ≥ 1 and � ≥ 2 and, by
assuming � minimal, the only possibility in the above reasoning is the last one. 	


Now, we are able to prove the key lemma for the proof of our main result on the
identifiability of constants in a single connected component. We keep our previous
notation and assumptions.

For technical reasons, we define the empty product of factors αi as
∏−1

i=0αi = 1.

Lemma 5 Given a connected component as in (14), with L ≥ 1, let 1 ≤ n ≤ L and
0 ≤ k ≤ n − 1 be fixed. If � is minimum such that yr un−k is a monomial of s(�)

n for
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some r ≥ 0, then � = 2k + 1, r = k and the coefficient of ykun−k in s
(2k+1)
n is

cn−k

k−1∏

j=0

an− j cn− j .

Proof For k = 0, first notice that, for all 1 ≤ n ≤ L , as Un reacts to Sn , then un
appears in ṡn and so, � = 1, r = 0, and the coefficient of un is cn , as we wanted to
prove.

We follow the proof by induction on n.
If n = 1, the only possibility is k = 0, which we have already proven.
Assume now n ≥ 2, and let k ≥ 1. If a monomial yrun−k appears in s(�)

n and
considering �minimal, asUn−k does not react to Sn , byLemma4 applied toU := Un−k

and X := Sn , the network contains a block of reactions Y + Zw � W → Y + Sn, and
the monomial yr−1un−k appears in z(i)w for some i ≤ � − 2. This block of reactions
is necessarily Y + Sn−1 � Un → Y + Sn and so, yr−1un−k appears in s(i)

n−1 for
some i ≤ � − 2. Moreover, by formula (13) applied to x = sn , the only terms
contributing to the monomial yrun−k come from products ys(i)

n−1 with i ≤ �−2. Since
yr−1un−k = yr−1u(n−1)−(k−1), by the induction hypothesis, i ≥ 2(k−1)+1 = 2k−1;
then, � − 2 ≥ 2k − 1 or, equivalently, � ≥ 2k + 1.

Consider now formula (13) for s(2k+1)
n . The only product of derivatives where a

monomial yrun−k may appear is ys(2k−1)
n−1 , since i ≤ 2k − 1 for all derivatives s(i)

n−1

involved. Then, the coefficient of yrun−k in s
(2k+1)
n equals γun ,0,2k−1 multiplied by the

coefficient of yr−1un−k in s
(2k−1)
n−1 . By the induction hypothesis, a monomial yr−1un−k

appears with nonzero coefficient in s(2k−1)
n−1 if and only if r − 1 = k − 1, that is r = k,

and the corresponding coefficient is cn−1−(k−1)
∏k−2

j=0 an−1− j cn−1− j . To determine

γun ,0,2k−1 note that, by formula (12) applied to un , the product ys(2k−1)
n−1 appears in

u(2k)
n multiplied by an and, by formula (11), u(2k)

n appears in s(2k+1)
n multiplied by cn ;

then, γun ,0,2k−1 = cnan .
Summarizing, the monomial ykun−k appears with nonzero coefficient in s(2k+1)

n ;
hence, � = 2k + 1. Moreover, it is the only monomial of the form yrun−k effec-
tively appearing in s(2k+1)

n , and its corresponding coefficient is cnancn−k
∏k−2

j=0 an−1− j

cn−1− j = cn−k
∏k−1

j=0 an− j cn− j . 	

Remark 2 An interesting fact is that the previous lemmas also hold for networks where
not all the reactions are enzymatic. By this we mean that the blocks of reactions are
of the form:

X1 + X2
a
�
b
U

c→ X3 + X4,

with X1 �= X2, X3 �= X4 but not necessarily {X1, X2} ∩ {X3, X4} �= ∅.
Combining Lemmas 2 and 5, wemay now prove themain result of Sect. 4.1 (Propo-

sition 2 in the main text):

123



Identifiability from a Few Species for a Class of… 2163

Proposition 4 All the constants in a connected component as (14) of a network satisfy-
ing the assumptions in Sect. 3 can be identified from s(�)

L with 1 ≤ � ≤ max{2, 2L−1}.

Proof By Lemma 2, we can identify aL , bL and cL from ṡL and s̈L , which implies the
statement of the proposition for L = 1.

For L ≥ 2, again by Lemma 2, we can also identify a j and K j = b j + c j , for

1 ≤ j ≤ L − 1, from s(3)
L . In order to identify all the constants, we need to “separate”

b j from c j for 1 ≤ j ≤ L−1.We do this by identifying the constants cL−k recursively,
for k = 1, . . . , L − 1, from the successive derivatives of sL .

Let k ≥ 1 and assume cL− j has been identified, for 0 ≤ j < k. By Lemma 5, the

coefficient of the monomial ykuL−k in s
(2k+1)
L is cL−k

∏k−1
j=0 aL− j cL− j . As aL− j and

cL− j for 0 ≤ j ≤ L − 1 are known, from this coefficient we identify cL−k . 	


A.2 Proofs of Sect. 4.2: Identifying the Constants in Two Connected Components
fromOneVariable

The case of two connected components of the type

Y + S0
a1
�
b1

U1
c1→ Y + S1

a2
�
b2

U2
c2→ . . . Y + SL−1

aL
�
bL

UL
cL→ Y + SL ,

Ỹ + SL
ãL
�
b̃L

VL
c̃L→ Ỹ + SL−1

ãL−1

�
b̃L−1

VL−1
c̃L−1→ . . . Ỹ + S1

ã1
�
b̃1

V1
c̃1→ Ỹ + S0

(18)

considered in the paper runs in a similar way than the one connected component case.
The first result concerning this class of networks is in the spirit of Lemma 2.

Lemma 6 Given two connected components as in (18), the constants ãL , b̃L , c̃L , and
ã j , K̃ j := b̃ j + c̃ j , for 1 ≤ j ≤ L − 1, can be identified from ṡL and s̈L .

Proof Consider the formula for ṡL given in (15). Separating the terms corresponding
to Ỹ ∈ ZL and VL ∈ WL , and writing Z ×

L := ZL\{Ỹ } and W ×
L := WL\{VL}, we

obtain

ṡL = −
∑

Z∈Z ×
L

μzsL z +
∑

W∈W ×
L

ηww − ãL ỹsL + b̃LvL .

Then, we can identify ãL and b̃L as the coefficients (up to sign) of the monomials ỹsL
and vL in ṡL .

Consider now

s̈L = −
∑

Z∈Z ×
L

μz[ṡL z + sL ż] +
∑

W∈W ×
L

ηw[awzw,1zw,2 − Kww]

− ãL [ ˙̃ysL + ỹṡL ] + b̃L [ãL ỹsL − K̃LvL ]. (19)
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From the coefficient of vL in s̈L , we can identify K̃L and, therefore, c̃L , since we have
already identified b̃L . The constants ã j and K̃ j , for 1 ≤ j ≤ L − 1, appear in the
derivative

˙̃y =
∑

1≤ j≤L

(−ã j ỹs j + K̃ jv j ) + · · · ,

then, they appear in the expression (19) from the product ˙̃ysL in the coefficients of
the monomials ỹs j sL and v j sL , respectively. By Assumption 2, S j /∈ ZL for every
1 ≤ j ≤ L − 1; hence, the monomials ỹs j sL do not come from any other term in
(19). Also, it is immediate that the monomials v j sL only come from ˙̃ysL . Then, the
coefficients of ỹs j sL and v j sL in s̈L are ãL ã j and −ãL K̃ j , respectively, and enable us
to identify ã j and K̃ j , for 1 ≤ j ≤ L − 1, since ãL �= 0. 	


In order to establish a statement extending Lemma 5 to this new setting, we need a
previous technical lemma (a suitable analogue of Lemma 4):

Lemma 7 Given an intermediate species V and a non-intermediate species Y that
acts as an enzyme in a connected component where the set of substrates and products
is SV , if X is a non-intermediate species such that X ∈ S (α) for some α ≥ 1 and
Y , Ỹ /∈ S (α), where Ỹ is the enzyme in the connected component determined by V ,
and the monomial yrv appears in x (�) for some r ≥ 0 and � ≥ 1, then X ∈ SV .

Moreover, either V reacts to X or r ≥ 1, � ≥ 2 and a monomial ytv with t < r
appears in z(i)w , for some i ≤ � − 2, for a species Zw involved in a block of reactions
Y + Zw � W → Y + X . If r ≥ 1 and � is minimal, then t = r − 1.

Proof First, note that X �= Y and X �= Ỹ , because of the assumption that X ∈ S (α)

and Y , Ỹ /∈ S (α). We proceed by induction on r ∈ N0.
If r = 0, by Lemma 1 (2), V reacts to X . As X is not the enzyme Ỹ , then X ∈ SV .
For r ≥ 1, since X �= Y , Lemma 4 states that either V reacts to X (which we

have already considered) or the network contains a block of reactions Y + Zw �
W → Z̃w + X , where Zw �= X , and a monomial ytv with t < r appears in z(i)w for
some i ≤ � − 2 (furthermore, t = r − 1 if � is minimal). In the latter case, Z̃w acts
as an enzyme in the connected component determined by W and X ∈ SW , which
implies that SW ⊂ S (α). If Z̃w = Zw, then Y ∈ SW , contradicting the assumption
that Y /∈ S (α); therefore, Z̃w = Y , and Zw ∈ S (α). By the induction hypothesis,
Zw ∈ SV . As SV is the set of substrates and products in a connected component
where Y acts as an enzyme, the complex Y + Zw lies in that component, and so,
X ∈ SV . 	


We are now able to prove the result that will play the key role in order to give a
recursive argument to identify all the constants in suitable pairs of connected compo-
nents:

Lemma 8 Given two connected components as in (18) with L ≥ 1, let 1 ≤ n ≤ L and
0 ≤ k ≤ n − 1 be fixed. If � is minimum such that yrvn−k is a monomial of s(�)

n for
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some r ≥ 0, then � = 2k + 1, r = k and the coefficient of ykvn−k in s
(2k+1)
n is

b̃n−k

k−1∏

j=0

an− j cn− j .

Proof For k = 0, and all 1 ≤ n ≤ L , vn appears in ṡn (since Vn reacts to Sn) with
coefficient b̃n and so, r = 0 and � = 1. We now proceed by induction on n.

If n = 1, the only possibility is k = 0, which has already been considered.
For n ≥ 2, let k ≥ 1. By Assumption 2, there exists α ≥ 1 such that S j ∈ S (α) for

every 0 ≤ j ≤ L , and Y , Ỹ /∈ S (α). If the monomial yrvn−k appears in a derivative
of sn and � is the minimum derivation order where it appears, as Vn−k does not react
to Sn , by Lemma 7, r ≥ 1, � ≥ 2 and the monomial yr−1vn−k appears in z(i)w , for
some i ≤ � − 2, for a species Zw in a block of reactions Y + Zw � W → Y + Sn .
Then, W = Un and Zw = Sn−1; so, yr−1vn−k appears in s(i)

n−1 for some i ≤ � − 2.
By the induction hypothesis, we have that i ≥ 2k − 1; therefore, � ≥ 2k + 1.

Now, following mutatis mutandis the proof of Lemma 5, we deduce that the coeffi-
cient of the monomial ykvn−k in s

(2k+1)
n is equal to cnan multiplied by the coefficient

of yk−1vn−k in s
(2k−1)
n−1 , and we conclude by applying the induction hypothesis. 	


Similarly as in the previous subsection, from Lemmas 6 and 8 we deduce the
following identifiability result for two connected components that extends Proposition
4 and constitutes the main result in Sect. 4.2 (Proposition 3 in the main text):

Proposition 5 Given a chemical reaction network satisfying the assumptions in Sect. 3,
all the constants in two connected components as in (18) can be identified from s(�)

L
with 1 ≤ � ≤ max{2, 2L − 1}.
Proof The result holds for L = 1, since by Lemmas 2 and 6, we can identify
aL , bL , cL , ãL , b̃L and c̃L from ṡL and s̈L .

Assume now L ≥ 2. By Proposition 4, all the constants a j , b j and c j , for 1 ≤ j ≤
L , can be identified from s(�)

L with 1 ≤ � ≤ max{2, 2L − 1}. It remains to show that
we can also identify ã j , b̃ j and c̃ j , for 1 ≤ j ≤ L .

By Lemma 6, the constants ãL , b̃L , c̃L and ã j and K̃ j = b̃ j + c̃ j , for 1 ≤ j ≤
L − 1, are identifiable from ṡL and s̈L . We just need to “separate” b̃ j and c̃ j for
1 ≤ j ≤ L − 1. Due to Lemma 8, this can be done by identifying b̃L−k recursively,
for k = 1, . . . , L − 1, from the coefficients of the monomials ykvL−k in s

(2k+1)
L . 	


A.3 Proofs of Sect. 5: Identifying the Cascade

The following two auxiliary technical lemmas will be used in subsequent arguments
concerning the identifiability in the cascade.

Lemma 9 If
∏M

j=1z j , with Z j non-intermediate species for all j , is a monomial of x (�)

for a non-intermediate species X ∈ S (α) and � ≥ 1, then there exists 1 ≤ j1, j2 ≤ M
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such that Z j1 ∈ S (α) and Z j2 ∈ S (β) for some β such that the network contains a
complex X + Z with Z ∈ S (β).

Proof For � = 1 the result is true, since the only products of non-intermediate species
appearing in ẋ are of the form xz for a species Z that reacts with X . Assume the lemma
holds for derivatives of order 1 ≤ h ≤ � − 1 of non-intermediate species.

By equation (13), if the monomial appears in x (h)z(i) for some h + i ≤ � − 1 and
h > 0, by Lemma 1(1), there is a monomial

∏M ′
l=1 z jl in x (h) with 1 ≤ h ≤ � − 1,

and the induction hypothesis gives the result. Assume now h = 0 and x = zM . If the
monomial appears in xz(i) with i ≤ � − 1, either i = 0, and the monomial is xz with
X and Z reacting together, which implies the statement, or 1 ≤ i ≤ � − 1 and the
monomial

∏M−1
j=1 z j appears in z(i). If the latter holds, Z j1 = X ∈ S (α) and, by the

induction hypothesis applied to Z ∈ S (β) for some β and 1 ≤ i ≤ � − 2, there exists
j2 such that Z j2 ∈ S (β).

If the product appears in z(h)
w,1z

(i)
w,2, for some h + i ≤ � − 2, coming from a block

of reactions Zw,1 + Zw,2 � W → Zw,3 + X with X /∈ {Zw,1, Zw,2}, then the
enzyme is Zw,3 and, assuming Zw,1 = Zw,3, it follows that Zw,2 and X lie in SW .
Since X ∈ S (α), then SW ⊂ S (α); in particular, Zw,2 ∈ S (α). On the other hand,
Zw,1 = Zw,3 ∈ S (β) for some β �= α. If i = 0, there exists 1 ≤ j1 ≤ M such that
Z j1 = Zw,2 ∈ S (α) and, if i ≥ 1, by the induction hypothesis applied to Zw,2 ∈ S (α)

and the factor of the monomial appearing in z(i)w,2, there exists j1 such that Z j1 ∈ S (α).

Similarly, if h = 0, there exists 1 ≤ j2 ≤ M such that Z j2 = Zw,1 ∈ S (β) and, if
h ≥ 1, by the induction hypothesis applied to Zw,1 ∈ S (β), there exists j2 such that
Z j2 ∈ S (β). 	

Lemma 10 If u

∏M
i=1 zi , with M ≥ 1, is a monomial of x (�) for U an intermediate

species and X , Zi non-intermediate species for all i , either there exist 1 ≤ i1 < i2 ≤
M such that Zi1 reacts with Zi2 or there exist 1 ≤ i0 ≤ M and a species V that reacts
with Zi0 such that U reacts to a complex containing V .

Proof Note that there are no monomials of this type in ẋ ; thus, � ≥ 2. For � = 2, the
only monomials in ẍ that are multiples of an intermediate and non-intermediates are:

– uz, for an intermediate species U that reacts to X and a non-intermediate Z that
reacts with X . In this case, the statement holds with V = X and Zi0 = Z ;

– ux , for an intermediate species U that reacts to a non-intermediate species Z
reacting with X . The statement holds with V = Z and Zi0 = X .

For � > 2, recalling that x (�) = ∑
v

∂x (�−1)

∂v
v̇ (where the sum runs over all variables

v representing non-intermediates or intermediate species), it follows that u
∏M

i=1 zi is

a monomial in ∂x (�−1)

∂v
v̇ for some variable v. Every monomial in v̇ is either a single

intermediate or a product of two non-intermediate species in a reaction. In the second

case, the result follows.Now, if
∏M

i=1 zi is amonomial of ∂x (�−1)

∂v
and u is amonomial of

v̇, we have that v
∏M

i=1 zi is amonomial of x (�−1) and one of the following possibilities
for V :

– V = U ; then,u
∏M

i=1 zi is amonomial of x (�−1) and the result followsby induction.
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– V is a non-intermediate species such thatU reacts to a complex containing V . By
Lemma 3, there are two variables in v

∏M
i=1 zi that react together. If none of these

variables is v, there exist 1 ≤ i1, i2 ≤ M such that Zi1 and Zi2 react together;
otherwise, there exists 1 ≤ i0 ≤ M such that V reacts with Zi0 . 	

We follow here the notations introduced in Sect. 5, more precisely, in the general

cascade (6). We also set S0,L0 := E .
For 1 ≤ n ≤ N , we have

ṡn,Ln = cn,Lnun,Ln − ãn,Ln sn,Ln fn + b̃n,Lnvn,Ln

−
Ln+1∑

j=1

an+1, j sn,Ln sn+1, j−1 +
Ln+1∑

j=1

Kn+1, j un+1, j

and, for n = N , only the three first terms appear in the derivative, i.e. aN+1, j = 0,
KN+1, j = 0 for all j .

For � ≥ 2, by Eq. (13):

s(�)
n,Ln

=
∑

h+i≤�−1

β fn ,h,i s
(h)
n,Ln

f (i)
n +

Ln+1∑

j=1

∑

h+i≤�−1

βsn+1, j−1,h,i s
(h)
n,Ln

s(i)
n+1, j−1

+
∑

h+i≤�−2

γun,Ln ,h,i s
(h)
n−1,Ln−1

s(i)
n,Ln−1 + δun,Ln

un,Ln + δvn,Ln
vn,Ln +

Ln+1∑

j=1

δun+1, j un+1, j

(20)

where

β fn ,h,i =
{

−(
�−1
h

)
ãn,Ln if h + i = � − 1

ãn,Ln b̃n,Ln

(h+i
h

)
(−K̃n,Ln )

�−2−h−i if h + i ≤ � − 2
,

βsn+1, j−1,h,i =
{

−(
�−1
h

)
an+1, j if h + i = � − 1

−(h+i
h

)
an+1, j (−Kn+1, j )

�−1−h−i if h + i ≤ � − 2
,

γun,Ln ,h,i = cn,Lnan,Ln

(
h + i

h

)

(−Kn,Ln )
�−2−h−i for 0 ≤ h + i ≤ � − 2,

δun,Ln
= cn,Ln (−Kn,Ln )

�−1, δvn,Ln
= b̃n,Ln (−K̃n,Ln )

�−1,

δun+1, j = (−1)�−1K �
n+1, j for 0 ≤ h + i ≤ � − 2

According to formula (20), everymonomial of s(�)
n,Ln

is either an intermediate species
that appears in ṡn,Ln , or it appears as a monomial in one of the products:

(a) s(h)
n,Ln

f (i)
n for h + i ≤ � − 1,

(b) s(h)
n,Ln

s(i)
n+1, j−1 (1 ≤ j ≤ Ln+1) for h + i ≤ � − 1,

(c) s(h)
n−1,Ln−1

s(i)
n,Ln−1 for h + i ≤ � − 2.

The following three technical lemmas describe how the coefficients of some dis-
tinguished monomials change recursively after differentiation. These results allow us
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to obtain Proposition 6 and hence, the identifiability result about the cascade stated in
Sect. 5 (Theorem 2 in the main text).

Lemma 11 LetM = ∏M
j=1 z j be a monomial of s

(�0)
n−1,Ln−1

which is not a monomial of
any derivative of sn−1,Ln−1 of lower order and only involves variables corresponding
to species inS (k), S (N+k), for 1 ≤ k ≤ n − 1, and S (2N+1). Assume that:

– M is square free and does not involve two disjoint pairs of variables corresponding
to species that react together;

– if sn−1,Ln−1 divides M, for every 1 ≤ j1, j2 ≤ M such that Z j1 and Z j2 react
together, Z j1 = sn−1,Ln−1 or Z j2 = sn−1,Ln−1 .

Then, M̂ := sn,Ln−1M is a monomial of s(�0+2)
n,Ln

and of no lower-order derivative of

sn,Ln . Moreover, if CM is the coefficient of M in s(�0)
n−1,Ln−1

, the coefficient of M̂ in

s(�0+2)
n,Ln

is cn,Lnan,LnCM.

Proof Assume M̂ is a monomial of s(�)
n,Ln

for some � ≥ 1. Then, it is a monomial of
one of the products in cases (a), (b) or (c) stated above. We will show that it can only
appear in case (c) with i = 0.

In cases (a) or (b), we must have i > 0, since the variables fn and sn+1, j−1 do not

divideM̂. Then, a factor ofM̂ is amonomial of a derivative f (i)
n or s(i)

n+1, j−1 of positive

order and, by Lemma 9, it contains a variable in S (N+n) or S (n+1), contradicting
the assumption on the variables involved inM. It follows that M̂ is a monomial in a
product in (c).

Assume that i ≥ 1. If h = 0, then sn−1,Ln−1 dividesM andM̃ := sn,Ln−1.
M

sn−1,Ln−1

is a monomial of s(i)
n,Ln−1. Due to Lemma 3, M̃ contains two variables corresponding

to species that react together. By the second assumption of the lemma and the fact that
Sn,Ln−1 only reacts with Sn−1,Ln−1 or Fn (and fn does not divide M̂), one of these
variables must be sn−1,Ln−1 ; but sn−1,Ln−1 does not divide M̃, since it is square free.

If h ≥ 1 and M̂ = M1 · M2, where M1 is a monomial in s(h)
n−1,Ln−1

and M2 is a

monomial in s(i)
n,Ln−1, by Lemma 3, each of the monomialsM1 andM2 contains two

variables corresponding to species that react together. One of these variables must be
sn,Ln−1, becauseM does not contain two pairs of variables corresponding to species
that react together. Since Sn,Ln−1 only reacts with Sn−1,Ln−1 or Fn , this is only possible
in the case where sn−1,Ln−1 divides M, but then sn−1,Ln−1 does not divide

M
sn−1,Ln−1

and it does not contain two variables corresponding to species that react together.
Then, necessarily i = 0 and M is a monomial of s(h)

n−1,Ln−1
for h ≤ � − 2. This

implies that � ≥ �0 + 2.
Finally, let us show thatM̂ effectively appears in s(�0+2)

n,Ln
and compute its coefficient.

Considering formula (20) for � = �0+2, by our previous arguments,wehave thatM̂ =
sn,Ln−1M can only arise from a product s(h)

n−1,Ln−1
sn,Ln−1 whenM is a monomial of

s(h)
n−1,Ln−1

and h ≤ �0. By the minimality of �0, the only possibility is that h = �0;

moreover, if CM is the coefficient ofM in s(�0)
n−1,Ln−1

, the coefficient of M̂ in s(�0+2)
n,Ln

is γun,Ln ,�0,0CM = cn,Lnan,LnCM. 	
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Lemma 12 Let uM be a monomial of s(�0)
n−1,Ln−1

which is not a monomial of any
derivative of sn−1,Ln−1 of lower order, where U is an intermediate species and M
only involves variables corresponding to species in S (k), for 1 ≤ k ≤ n − 1, and
S (2N+1). Assume that M does not involve two variables corresponding to species
that react together and sn−1,Ln−1 does not divide M.

Then, M̂ := sn,Ln−1uM is a monomial of s(�0+2)
n,Ln

and of no lower-order derivative

of sn,Ln . Moreover, if CM is the coefficient of uM in s(�0)
n−1,Ln−1

, the coefficient of M̂
in s(�0+2)

n,Ln
is cn,Lnan,LnCM. In addition, if C̃M is the coefficient of uM in s(�0+1)

n−1,Ln−1
,

the coefficient of M̂ in s(�0+3)
n,Ln

is cn,Lnan,Ln (C̃M − Kn,LnCM).

Proof Assume M̂ is a monomial of s(�)
n,Ln

and consider the three cases (a), (b) and (c)
listed above. We will show that it can only appear in case (c) with i = 0.

If M̂ appears from a product of type (a), (b), or (c) with h ≥ 1 and i ≥ 1, there is
a factor of M̂ not involving intermediate species which is a monomial of a derivative
of positive order of a non-intermediate species and, by Lemma 3, this factor involves
two variables of species that react together. But M does not contain two variables of
species reacting together; in addition, the only species in S (k), for 1 ≤ k ≤ n − 1,
that reacts with Sn,Ln−1 is Sn−1,Ln−1 , and sn−1,Ln−1 does not divide M.

On the other hand, M̂ cannot appear from cases (a) or (b) with h = 0 or i = 0,
since none of the variables sn,Ln , fn or sn+1, j−1, for 1 ≤ j ≤ Ln+1, divides M̂.
Finally, the assumption that sn−1,Ln−1 does not divide M implies that the monomial
cannot appear in case (c) with h = 0.

We conclude that M̂ only appears as a monomial in s(h)
n−1,Ln−1

sn,Ln−1 for 1 ≤ h ≤
� − 2, that is, when uM is a monomial of s(h)

n−1,Ln−1
. Then, � ≥ �0 + 2.

The computation of the coefficient ofM̂ in s(�0+2)
n,Ln

follows as in the proof of Lemma
11.

Finally, let us obtain the coefficient of M̂ in s(�0+3)
n,Ln

. As shown before, in formula

(20) the monomial M̂ may only appear from terms of the form (c) with i = 0 and
1 ≤ h ≤ �0 + 1 such that uM is a monomial of s(h)

n−1,Ln−1
. By the minimality of �0,

the only possible values of h are �0 and �0 + 1; thus, the corresponding coefficient is
γun ,Ln ,�0−1,0C̃M+γun ,Ln ,�0−2,0CM = cn,Lnan,Ln C̃M+cn,Lnan,Ln (−Kn,Ln )CM =
cn,Lnan,Ln (C̃M − Kn,LnCM). 	

Lemma 13 For 1 ≤ l ≤ Lm − 1,

Mn,sm,l = sm,l fm sm,Lm

n∏

i=m+1

si,Li−1 and Mn,vm,l = vm,l sm,Lm

n∏

i=m+1

si,Li−1

are monomials of s(2(n−m+1))
n,Ln

for every n ≥ m+1, and they are not monomials of any
derivative of sn,Ln of lower order. The corresponding coefficients are, respectively,

ãm,l ãm,Lm

n∏

i=m+1

ci,Li ai,Li and K̃m,l ãm,Lm

n∏

i=m+1

ci,Li ai,Li .
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Proof For n = m + 1, we must show that, for every 1 ≤ l ≤ Lm − 1,

Mm+1,sm,l = sm,l fmsm,Lm sm+1,Lm+1−1 and Mm+1,vm,l = vm,l sm,Lm sm+1,Lm+1−1

are monomials of s(4)
m+1,Lm+1

and of no lower-order derivative of sm+1,Lm+1 .
It is easy to see that none of the required monomials appears in ṡm+1,Lm+1 or

s̈m+1,Lm+1 , because these derivatives do not contain monomials of degree 4 and the
monomials that are multiples of intermediates have degree at most 2 (see the proof of
Lemma 10).

Consider now the expression of s(�)
m+1,Lm+1

following (20), with � ≥ 3.
The monomials Mm+1,sm,l and Mm+1,vm,l do not arise from products of type (a)

or (b) with h = 0 or i = 0, since they are not multiples of sm+1,Lm+1 , fm+1 or
sm+2, j−1. Taking into account that every monomial in a first-order derivative of a
non-intermediate is either a multiple of the non-intermediate or an intermediate that
reacts to it, we have that the monomials do not appear either from products of type (a)
or (b) with h = 1 or i = 1. As h + i ≤ � − 1 in products of type (a) or (b), we deduce
that Mm+1,sm,l and Mm+1,vm,l do not appear in these products for � = 3 nor � = 4.

In products of type (c), if h + i ≤ 1, there are no monomials of degree 4, and those
that are multiples of an intermediate have degree at most 2.

We conclude that Mm+1,sm,l and Mm+1,vm,l are not monomials of s(3)
m+1,Lm+1

and

that they may only appear in s(4)
m+1,Lm+1

from products of type (c) with h + i = 2.

– h = 0, i = 2. By looking at the expansion of s(2)
m+1,Lm+1−1, we deduce that

sm,l fmsm+1,Lm+1−1 and vm,l sm+1,Lm+1−1, for l < Lm , are not monomials of this
derivative.

– h = i = 1: The monomials Mm+1,sm,l do not appear in this product because the
only variable involved that reacts with Sm+1,Lm+1−1 is Sm,Lm and the monomials
sm,l fm do not appear in ṡm,Lm for l < Lm . The monomials Mm+1,vm,l do not
appear since vm,l does not react to sm,Lm or sm+1,Lm+1−1 for l < Lm .

– h = 2, i = 0: As in the proof of Lemma 6, it follows that sm,l fmsm,Lm

and vm,l sm,Lm are monomials of s(2)
m,Lm

with respective coefficients ãm,l ãLm and

K̃m,l ãm,Lm .

Therefore,Mm+1,sm,l andMm+1,vm,l effectively appear in s
(4)
m+1,Lm+1

; more precisely,

they arise from the product γum+1,Lm+1,2,0s
(2)
m,Lm

sm+1,Lm+1−1. The corresponding coef-
ficients can be obtained from the fact that γum+1,Lm+1,2,0 = cm+1,Lm+1 .am+1,Lm+1 .

Let n > m + 1 and assume the monomials Mn−1,sm,l and Mn−1,vm,l appear in

s(2(n−m))
n−1,Ln−1

and in no derivative of sn−1,Ln−1 of a lower order.
Let 1 ≤ l ≤ Lm−1.Consider firstMn,sm,l , which is a product of non-intermediates.

If it appears in a derivative s(�)
n,Ln

, it arises from a product in case (a), (b) or (c) listed
previously.

SinceMn,sm,l does not contain anyvariable corresponding to a species inS
(N+n) =

{Fn} orS (n+1) = {Sn+1, j , 0 ≤ j ≤ Ln+1}, by Lemma 9, it cannot appear from cases

(a) or (b). Then, it is a monomial in a product s(h)
n−1,Ln−1

s(i)
n,Ln−1 for h + i ≤ � − 2. If
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i > 0, the factor M1 of Mn,sm,l which is a monomial in s(i)
n,Ln−1 contains a variable

in S (n), namely sn,Ln−1, and another variable in a set S (k) that contains a species
reacting with Sn,Ln−1. Since the only species that react with Sn,Ln−1 are Sn−1,Ln−1 and
Fn , it follows thatM1 contains a variable inS (n−1). Now,Mn,sm,l /M1 is amonomial

in s(h)
n−1,Ln−1−1; therefore, it also contains a variable inS

(n−1). But, since n > m + 1,

the only factor of Mn,sm,l in S (n−1) is sn−1,Ln−1−1, leading to a contradiction. We

conclude that i = 0 and Mn,sm,l appears as a monomial in s(h)
n−1,Ln−1

sn,Ln−1, namely

Mn,sm,l = Mn−1,sm,l sn,Ln−1 withMn−1,sm,l a monomial in s(h)
n−1,Ln−1

for h ≤ � − 2.
Then � ≥ 2(n − m + 1).

Now, consider Mn,vm,l and assume it is a monomial of s(�)
n,Ln

. As, for n > m + 1,
none of the variables sn,Ln , sn+1, j−1, fn or sn−1,Ln−1 dividesMn,vm,l , this monomial
cannot arise from cases (a) or (b) with either i = 0 or h = 0, nor from (c) with h = 0. If
it arises from cases (a), (b) or (c) with h ≥ 1 and i ≥ 1, thenMn,vm,l = M1M2 with
M1 andM2 monomials appearing in derivatives of positive order of non-intermediate
species. Assume vm,l divides M1. Then, M2 is a product of non-intermediates; by
Lemma 3, it contains the only two variables of Mn,vm,l , sm,Lm and sm+1,Lm+1−1,
corresponding to species that react together. On the other hand,M1 = vm,lM, where
M is not constant since Vm,l does not react to Sn,Ln , Fn , Sn+1, j−1, Sn−1,Ln−1 nor
Sn,Ln−1 (so, vm,l is not a monomial in a derivative of sn,Ln , fn , sn+1, j−1, sn−1,Ln−1 nor
sn,Ln−1). By Lemma 10, taking into account that Vm,l is only involved in the reactions
Fm + Sm,l � Vm,l → Fm + Sm,l−1, we have that M contains either two variables
corresponding to species that react together or it contains one variable that reacts with
Fm , Sm,l−1 or Sm,l . But none of these possibilities happen.

We conclude that Mn,vm,l arises from (c) with i = 0 and it appears in

s(h)
n−1,Ln−1

sn,Ln−1 for h ≤ � − 2, that is, Mn−1,vm,l is a monomial of s(h)
n−1,Ln−1

for
h ≤ � − 2. Then � ≥ 2(n − m + 1).

The fact that the monomials effectively appear in s2(n−m+1)
n,Ln

and the computation
of their coefficients follow similarly as in the proof of Lemma 11. 	


From the previous lemmas and the results for the case of a single layer proved
in Proposition 3, we obtain the following proposition that leads to our identifiability
result for the cascade (see Table 3). The highlighted constant in each case is the one
we will identify from the corresponding coefficient.

Proposition 6 For network (6), for every n ≥ m, the following monomialsM appear
in s(�)

n,Ln
with coefficient ±CM for the stated value �, and they do not appear in any

derivative of sn,Ln of lower order:

1. M = fm sm,Lm

∏n
i=m+1 si,Li−1, CM = ãm,Lm

∏n
i=m+1 ci,Li ai,Li , � = 2(n −

m) + 1;
2. for 0 ≤ k ≤ Lm − 1, M = skm−1,Lm−1

um,Lm−k
∏n

i=m+1 si,Li−1, CM =
cm,Lm−k

(∏k−1
j=0 am,Lm− j cm,Lm− j

)( ∏n
i=m+1 ci,Li ai,Li

)
, � = 2(n−m)+2k+1;

3. for 0 ≤ k ≤ Lm − 1, M = skm−1,Lm−1
vm,Lm−k

∏n
i=m+1 si,Li−1, CM =

b̃m,Lm−k

(∏k−1
j=0 am,Lm− j cm,Lm− j

)( ∏n
i=m+1 ci,Li ai,Li

)
, � = 2(n−m)+2k+1;
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4. M = sm−1,Lm−1

∏n
i=m si,Li−1, CM = cm,Lm am,Lm

∏n
i=m+1 ci,Li ai,Li , � =

2(n − m) + 2;
5. for 1 ≤ j ≤ Lm − 1, M = sm, j fm sm,Lm

∏n
i=m+1 si,Li−1, CM =

ãm, j ãm,Lm

∏n
i=m+1 ci,Li ai,Li , � = 2(n − m) + 2;

6. for 1 ≤ j ≤ Lm − 1, M = vm, j sm,Lm

∏n
i=m+1 si,Li−1, CM = K̃m, j ãm,Lm∏n

i=m+1 ci,Li ai,Li , � = 2(n − m) + 2;
7. for 1 ≤ j ≤ Lm − 1, M = sm, j−1sm−1,Lm−1

∏n
i=m si,Li−1, CM =

am, j
∏n

i=m ci,Li ai,Li , � = 2(n − m) + 3;

8. for 1 ≤ j ≤ Lm − 1, M = um, j
∏n

i=m si,Li−1, CM = Km, j
∏n

i=m ci,Li ai,Li ,

� = 2(n − m) + 3.

Furthermore, the monomials um,Lm

∏n
i=m+1 si,Li−1 and vm,Lm

∏n
i=m+1 si,Li−1 ( c.f.

items 2 and 3 with k = 0) appear in s(2(n−m)+2)
n,Ln

with coefficients −
(
Km,Lm +

∑n
i=m+1 Ki,Li

)
cm,Lm

( ∏n
i=m+1 ci,Li ai,Li

)
and −

(
K̃m,Lm +∑n

i=m+1 Ki,Li

)
b̃m,Lm

( ∏n
i=m+1 ci,Li ai,Li

)
, respectively.

Proof Fix m with 1 ≤ m ≤ N . We prove the proposition inductively for n ≥ m.
The case n = m is considered in Sect. 4.2.
Let n ≥ m+1. Items 5 and 6 are proved inLemma13. For the remainingmonomials,

assuming the statement holds for n−1, we deduce that it is also true for n by applying
Lemma 11 (for items 1, 4 and 7) and Lemma 12 (for items 2, 3, 8 and the last statement
of the proposition).

We present a complete proof in the first two cases. The induction step for the
monomials of the remaining items follows similarly.

1. Consider M1 = fm sm,Lm

∏n−1
i=m+1 si,Li−1. By the inductive assumption, this

monomial appears in s(2(n−1−m)+1)
n−1,Ln−1

with coefficient CM1 = ãm,Lm

∏n−1
i=m+1 ci,Li

ai,Li , and in no derivative of sn−1,Ln−1 of a lower order. Let us show that M1
satisfies the assumptions of Lemma 11. First, note thatM1 is square free and only
involves variables corresponding to species in S (k), for m ≤ k ≤ n − 1, and
S (N+m). In addition, since two species Si,Li−1, S j,L j−1, for m ≤ i, j ≤ n − 1,
do not react together and Fm does not react with Si,Li−1 for m + 1 ≤ i ≤ n − 1,
then M1 does not contain two disjoint pairs of variables corresponding to
species that react together. Finally, we have that sn−1,Ln−1 divides M1 only
when n = m + 1, and in this case, M1 = fn−1sn−1,Ln−1 , which clearly satis-
fies the assumptions of the lemma. Therefore, by Lemma 11, we conclude that
sn,Ln−1M1 = fm sm,Lm

∏n
i=m+1 si,Li−1 is a monomial of s(2(n−1−m)+1+2)

n,Ln
=

s(2(n−m)+1)
n,Ln

and of no lower-order derivative of sn,Ln , and its corresponding coef-
ficient is cn,Lnan,LnCM1 = ãm,Lm

∏n
i=m+1 ci,Li ai,Li .

2. For a fixed k, with 0 ≤ k ≤ Lm − 1, the monomial M can be written as
M = sn,Ln−1uM2, where u := um,Lm−k is a variable corresponding to an
intermediate species and M2 := skm−1,Lm−1

∏n−1
i=m+1 si,Li−1. By the induction

assumption, we have that uM2 is a monomial of s(2(n−1−m)+2k+1)
n−1,Ln−1

, with coef-
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ficient CM2 = cm,Lm−k

( ∏k−1
j=0 am,Lm− j cm,Lm− j

)( ∏n−1
i=m+1 ci,Li ai,Li

)
, and it

does not appear in any lower-order derivative of sn−1,Ln−1 . Let us show that
M2 satisfies the assumptions of Lemma 12. It is clear that M2 only involves
variables in S (i) for i ≤ n − 1 and S (2N+1) and that sn−1,Ln−1 does not
divide M2, since n �= m. Also, since two species Si,Li−1 and S j,L j−1, for
m ≤ i, j ≤ n − 1, do not react together and Sm−1,Lm−1 does not react with
Si,Li−1 for i ≥ m + 1, it follows that M2 does not involve two variables
corresponding to species that react together. Then, by Lemma 12, we con-
clude that sn,Ln−1uM2 = skm−1,Lm−1

um,Lm−k
∏n

i=m+1 si,Li−1 is a monomial of

s(2(n−m)+2k+1)
n,Ln

and of no lower-order derivative of sn,Ln , and its coefficient is

cn,Lnan,LnCM2 = cm,Lm−k

(∏k−1
j=0 am,Lm− j cm,Lm− j

)(∏n
i=m+1 ci,Li ai,Li

)
. 	
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