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Abstract
We develop a mathematical model of pancreatic cancer that includes pancreatic
cancer cells, pancreatic stellate cells, effector cells and tumor-promoting and tumor-
suppressing cytokines to investigate the effects of immunotherapies on patient survival.
The model is first validated using the survival data of two clinical trials. Local sen-
sitivity analysis of the parameters indicates there exists a critical activation rate of
pro-tumor cytokines beyond which the cancer can be eradicated if four adoptive trans-
fers of immune cells are applied. Optimal control theory is explored as a potential tool
for searching the best adoptive cellular immunotherapies. Combined immunother-
apies between adoptive ex vivo expanded immune cells and TGF-β inhibition by
siRNA treatments are investigated. This study concludes that mono-immunotherapy
is unlikely to control the pancreatic cancer and combined immunotherapies between
anti-TGF-β and adoptive transfers of immune cells can prolong patient survival. We
show through numerical explorations that how these two types of immunotherapies
are scheduled is important to survival. Applying TGF-β inhibition first followed by
adoptive immune cell transfers can yield better survival outcomes.
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1 Introduction

The pancreas is a glandular organ behind the stomach that secretes several important
hormones and enzymes. When the organ loses homeostasis, uncontrolled prolifera-
tions occur and pancreatic cancer arises. There are several types of pancreatic cancer,
including pancreatic ductal adenocarcinoma (PDA), which is the most common type
of pancreatic cancer. In the USA, the one-year pancreatic cancer survival rate is about
25% and the five-year survival rate is <5% (Ellermeier et al. 2013; Hariharan et al.
2008; Louzoun et al. 2014). Treatments of pancreatic cancer consist of surgery, radio-
therapy, chemotherapy or a combination of these. The treatment options are largely
based on cancer stages, and currently, surgery is the only treatment that can cure local-
ized pancreatic cancer. For patients withmetastatic pancreatic cancer, the survival time
is only about 3–4 months. With gemcitabine, a common chemotherapy for pancreatic
cancer, the life of advanced pancreatic cancer patients may be extended for up to 6
months (Niu et al. 2013).

The immune system has the ability to detect cancer cells by the antigens expressed
on those cells. The tumor immunosurveillance hypothesis states that the immune sys-
tem is capable of inhibiting the growth of very small tumors and eliminating them
before they become clinically evident (Weinberg 2013). However, there are numerous
ways that cancer cells can escape immune surveillance. For example, cancer cells can
reduce the expression of tumor antigens on their surface, making it harder for the
immune system to detect them. Tumor cells may express proteins on their surface that
induce immune cell inactivation and may also induce cells in the tumor microenviron-
ment to release substances that suppress immune responses and promote tumor cell
proliferation and survival (Hanahan and Weinberg 2011; Weinberg 2013).

The cancer microenvironment is very complex and continuously changing. Math-
ematical modeling of cancer and the immune system therefore becomes a powerful
tool for developing improved treatment strategies and for predicting cancer prognosis.
One of the first mathematical models on tumor effector cells interactions is a two-
dimensional system of ordinary differential equations proposed by Kuznetsov et al.
(1994). Their stability and bifurcation analysis helps to determine critical parameters
that are important for tumor progression and eradication. A pioneer mathematical
model to investigate the role of cytokines, specifically IL-2, on tumor progression is
developed byKirschner and Panetta (1998). They study the effect of IL-2 and cytotoxic
T cells on tumor–immune dynamics and conclude that it is possible to eradicate tumor
cells by injection of IL-2 alone. In these two models (Kuznetsov et al. 1994; Kirschner
and Panetta 1998), cell populations and cytokines are assumed to be homogeneously
mixed in space. In addition, the tumor in the tumor–immune systems proposed is
assumed for generic cancer.

Pancreatic cancer is the fourth most common cause of cancer-related death world-
wide. It has extremely poor prognosis and is characterized by early metastasis and
resistance to chemotherapy and radiation (Ellermeier et al. 2013). It has been estimated
recently that by 2030, PDA will be the second most common cause of cancer-related
mortality, indicating the limited impact of cancer therapy research to date on the
clinical course of the disease (Maloney et al. 2017). In order to better understand
the pancreatic cancer prognosis and mechanisms behind cancer progression, several
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mathematical models have been developed recently. The pioneer work of Louzoun
et al. (2014) uses a mathematical model of nonlinear ordinary differential equations
to study the disease and provides a starting point for identifying optimal nodes for
intervention against the cancer. In thismodel, pro-inflammatorymacrophages and anti-
inflammatorymacrophages are explicitly built into the interaction inwhich the tumor is
able to induce polarization of pro-inflammatory macrophages into anti-inflammatory
macrophages that promotes expansion of myeloid-derived suppressor cells which
eventually block the killing of cancer cells by cytotoxic T cells. Treatments such
as TGF-β silencing and immune activation are applied by reducing several critical
parameter values in the model. Comparing the numerical results of the model of no
treatment with the model of various treatments, it is concluded that there is a window
of opportunity for successful treatments (Louzoun et al. 2014).

Using ordinary differential equations, Li and Xu (2016) propose a model of inter-
action between pancreatic cancer and immune system with pulsed immunotherapies.
The study confirms that immunotherapy offers a better prognosis for pancreatic cancer
patients than that of no immunotherapy. Recently, He and Xu (2017) extend the model
of Li and Xu (2016) by considering regulatory T cells (Tregs). It has been reported
that Tregs modulate the function of effector cells rendering them unable to perform
their cytotoxic activity effectively, leading to a weak or nonexisting immune response
to tumor cells (He and Xu 2017). Cyclophosphamide (CTX) is a Treg inhibitory ther-
apy, and it is known that low doses of CTX can boost anti-tumor activity by reducing
the number and activity of Tregs. Using numerical simulations, He and Xu (2017)
conclude that a combination of treatments of immunotherapy and CTX can increase
the overall survival of pancreatic cancer patients. More recently, Friedman and Hao
(2017) build a model of partial differential equations by incorporating exosomes in the
interaction. Their study shows that the size of the pancreatic cancer can be determined
by the measurement of specific miRs in exosomes.

The research by Louzoun et al. (2014), Li and Xu (2016) and He and Xu (2017) on
pancreatic cancer provides important insights on tumor evolution and possible control
mechanisms, where quasi-steady-state approximations are used in their investigations
and important biological conclusions are based on the reduced models. In particular,
cytokines productions are assumed to be linearly proportional to the appropriate cell
populations (Louzoun et al. 2014; Li and Xu 2016; He and Xu 2017). This assumption
is a very rough estimate since communication between cells via cytokines is very
complex. In thiswork,weadoptMichaelis–Mentenkinetics as inKirschner andPanetta
(1998), Arciero et al. (2004) and Eftimie et al. (2010) to model cytokine productions.
Wegroup effector cells ofCD8+ Tcells andnatural killer cells as a single compartment.
The cytokines are separated into two groups, one that is tumor promoting and the other
that is tumor suppressing. The role of TGF-β on promoting tumor growth by inhibiting
anti-tumor activity of effector cells and deactivating proliferations of these cells is well
established (Ellermeier et al. 2013; Gold 1999; Nam et al. 2008). Cytokines such as IL-
6 can also reduce the ability of effector cells (Xue et al. 2016). Further, cytokines such
as IFN-γ and IL-2 can help effector cells combat cancer cells by activating effector
cells. These cytokines can increase effector cell production and inhibit communication
between pancreatic cancer cells and their microenvironment (Louzoun et al. 2014).
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The resulting model is a five-dimensional system of nonlinear ordinary differential
equations, and we investigate the system directly without using quasi-steady-state
approximations. To validate the proposed system, we first numerically simulate the
model without any immunotherapies using three different immune strengths. We then
apply pulsed treatments of immunotherapy to patients with various immune levels.
Our numerical results agree with the clinical data given by Niu et al. (2013) in terms
of survival time, where the median overall survival in Niu et al. is 7 and 13 months for
those patients who underwent cryotherapy and cryo-immunotherapy, respectively. We
then compute the maximal percentage of change that each parameter can be varied
for which the survival time is within the range of the data set described by Niu et
al. In addition, we apply our baseline parameter values with randomly chosen tumor
growth rates to 100 numerically generated patients to simulate and validate the model
with respect to the percentage survival data of Chung et al. (2014). Once the model
is validated, we apply siRNA treatments to reduce TGF-β production and compare
anti-TGF-β treatments with injections of effector cells. We use optimal control theory
as a potential tool for searching the best treatment strategy with adoptive transfers of
immune cells. In silico experiments using baseline parameter values are performed to
explore different combined strategies of anti-TGF-β and adoptive transfers of immune
cells for better survival outcomes.

The remainder of this manuscript is organized as follows. In Sect. 2, we develop and
validate the proposedmodel. In Sect. 3, the model with TGF-β inhibition using siRNA
treatments is introduced and optimal control theory is applied to provide best treatment
strategies in terms of doses and schedules of the adoptive transfers of immune cells.
Numerical explorations with combined immunotherapies are also given in Sect. 3. The
final section provides conclusions and directions for possible future work.

2 The ProposedModel andModel Validation

The most prevalent type of pancreatic cancer is pancreatic ductal adenocarcinoma
(PDA), which is investigated by Louzoun et al. (2014), Li and Xu (2016) and He and
Xu (2017) and is the subject of this study as well. Pancreatic cancer cells (PCCs) of
the pancreatic ductal adenocarcinoma are epithelial cells, and pancreatic stellate cells
(PSCs) are fibroblast cells representing a major component of the tumor stroma. It is
widely recognized that pancreatic stellate cells play important roles in the evolution
of pancreatic cancers (Bachem et al. 2008; Mace et al. 2013). In particular, PSCs can
act to enhance the growth and metastatic properties of PCCs and have been suggested
as having an immune modulatory potential (Louzoun et al. 2014). PSCs also produce
cytokines including TGF-β and IL-6 which in turn promote an immunosuppressive
microenvironment (Ellermeier et al. 2013; Gaspar et al. 2007; Louzoun et al. 2014;
Mace et al. 2013).

We first briefly describe the assumptions made in the two models proposed by
Louzoun et al. (2014) and Li andXu (2016). The unit of cells and cytokines in Louzoun
et al. are number of cells per ml and mM, respectively, while their units in Li and Xu
(2016) are number of cells and ng per ml, respectively. In Louzoun et al. (2014), pro-
duction of effector cells is constantly proportional to the tumor-suppressing cytokines
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but is inhibited by tumor-promoting cytokines. In particular, a single compartment is
used to include all types of effector cells. In Li and Xu (2016), the immune system
consists of three compartments, namely the CD8+ T cells, natural killer (NK) cells
and helper T cells, where both CD8+ T cells and NK cells are able to kill tumor
cells. Moreover, the production of each of these immune cells is simulated by tumor-
suppressing cytokines and is modeled by the Michaelis–Menten form, but there is no
inhibition on tumor killing by pro-tumor cytokines. The killing rate of CD8+ T cells
on PCCs in Li and Xu (2016) is modeled by a form adopted from de Pillis et al. (2008)
while the killing of NK cells on PCCs follows a mass action. The killing of tumor
by effector cells in Louzoun et al. (2014) is modeled by a mass action, and the rate
is inhibited by tumor-supporting cytokines. The systems studied by Louzoun et al.
(2014), Li and Xu (2016) and He and Xu (2017) have the same growth rate for PSCs,
while the growth rates for PCCs are different. The PCCs follow a logistic growth in
Li and Xu (2016) and He and Xu (2017), and a universal law is used in Louzoun et al.
(2014).

In the next subsection, we develop the proposed model. The selection of parameter
values is discussed in Sect. 2.2. The proposed model is validated in Sect. 2.3 using
numerical simulations by comparing patients’ survival time with the clinical data
presented in Niu et al. (2013) and in Chung et al. (2014).

2.1 Model Development

The state variables consist of PSCs, PCCs, effector cells and two types of cytokines
and are summarized as follows:

• x : pancreatic cancer cell (PCC) population
• y: pancreatic stellate cell (PSC) population
• z: effector cells, including CD8+ T cells and NK cells
• w: concentration of tumor-promoting cytokines, including TGF-β and IL-6
• v: concentration of tumor-suppressing cytokines, including IFN-γ and IL-2.

The time unit is a day, the unit of cell populations is the number of cells, and
the concentration of cytokines is pg ml−1. Similar to the research carried out by
Louzoun et al. (2014), Li and Xu (2016) and He and Xu (2017), we assume that cell
populations and cytokines are distributed homogeneously in space. In the absence of
the immune system, PCCs grow logistically with intrinsic growth rate r1 and carrying
capacity 1/b1. This logistic growth assumption is assumed in many cancer models
(Kuznetsov et al. 1994; Kirschner and Panetta 1998; Arciero et al. 2004; de Pillis et al.
2005; Anderson et al. 2015; Li and Xu 2016; He and Xu 2017; Hu and Jang 2018a).
In addition, PSCs promote proliferation of PCCs with a constant rate β1 and PCCs
are killed by effector cells with the killing rate being inhibited by tumor-promoting
cytokines. Therefore, the rate of change in PCCs is given by

x ′ = (r1 + β1y)x(1 − b1x) − δ1xz

m1 + w
, (1)
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where δ1 is the maximum tumor killing rate and m1 determines the concentration of
tumor-promoting cytokines at which their inhibition becomes important.

As in Louzoun et al. (2014), Li and Xu (2016) and He and Xu (2017), PSCs grow
logistically with intrinsic growth rate r2, carrying capacity 1/b2 and natural death rate
μ2. Further, tumor-promoting cytokines stimulate PSC proliferationswith amaximum
rate β2 and a half-saturation constant k2. That is, the equation for PSCs is given as

y′ =
(
r2 + β2w

k2 + w

)
y(1 − b2y) − μ2y. (2)

Effector cells are produced naturally with a rate r3 and die at a constant rateμ3. Due
to cancer cells, the production of effector cells is also activated by the communication
between effector cells and tumor-suppressing cytokines. This additional production
has a maximum rate β3 and a half-saturation constant k3. However, tumor-promoting
cytokines are able to inhibit this proliferation with a constantm3 that determines when
the concentration of tumor-promoting cytokines becomes important. This inhibition
is not incorporated in the models studied by Li and Xu (2016) and He and Xu (2017).
The corresponding equation for effector cells is

z′ = β3zv

(k3 + v)(m3 + w)
− μ3z + r3. (3)

The production of tumor-promoting cytokines comes from the interaction between
cancer cells and effector cells and is modeled by a Michaelis–Menten form to account
for the self-limiting production of the cytokines. This particular form is used in several
cancer–immune system studies such as Kirschner and Panetta (1998), Arciero et al.
(2004) and Eftimie et al. (2010). The decay rate is denoted by μ4, and the production
of tumor-promoting cytokines is augmented through communication between PCCs
and the tumor stromal PSCs with a maximum rate r4 (Kozono et al. 2013). This extra
proliferation is inhibited by the tumor-suppressing cytokines with a constant m4, and
the equation for w is

w′ = β4xz

k4 + x
− μ4w + r4xy

m4 + v
. (4)

The last expression in the equation of pro-tumor cytokines is not modeled in
Louzoun et al. (2014), Li and Xu (2016) or He and Xu (2017). The equation for
tumor-suppressing cytokines is similar to the tumor-promoting cytokines without the
augmentation term and is given by

v′ = β5xz

k5 + x
− μ5v, (5)

where β5 is the maximum production rate, k5 is the half-saturation constant and μ5 is
the decay rate.
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Putting all of these together, the interaction between PCCs, PSCs and the immune
system is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′ = (r1 + β1y)x(1 − b1x) − δ1xz

m1 + w

y′ = (r2 + β2w

k2 + w
)y(1 − b2y) − μ2y

z′ = β3zv

(k3 + v)(m3 + w)
− μ3z + r3

w′ = β4xz

k4 + x
− μ4w + r4xy

m4 + v

v′ = β5xz

k5 + x
− μ5v

x(0) > 0, y(0) > 0, z(0) ≥ 0, w(0) ≥ 0, v(0) ≥ 0.

(6)

In the following,we study system (6)without using quasi-steady-state approximations.
It is clear that solutions of (6) exist and remain nonnegative on [0,∞). Moreover,

the solution is unique if an initial condition is specified. The parameters and their
biological interpretations are summarized in Table 1.

Once the model is constructed, we proceed to study the tumor–immune interaction
numerically. The model (6) has 23 parameters and many nonlinear reaction terms. In
the next subsection, we discuss how the parameter values will be selected.

2.2 Parameter Values and Their Sources

The cancer–immune system is a very complicated biological network involving numer-
ous positive and negative feedbacks between various receptors, ligands and cells.
Several of the cytokines can also change their functions during different stages of
cancer progression. In addition to these, different patients of the same cancer type are
likely to have different immune response, tumor load, aggressiveness of tumor and
various cytokine levels. There are insufficient data available to parameterize model
(6), and therefore, parameter values are taken from multiple sources.

Several of the numerical values are taken from Li and Xu (2016) directly since
they also model pancreatic cancer. In particular, the values of r1, β1 and b1 are from
Li and Xu (2016) where their values of r1 and b1 are due to de Pillis et al. (2008)
with some variants to account for the aggression of the pancreatic cancer. The tumor
growth rate r1 and carrying capacity 1/b1 in de Pillis et al. (2008) were estimated
from the data in Diefenbach et al. (2001) using least squares goodness of fit. The
value of β1 in Li and Xu (2016) comes from Louzoun et al. (2014) for studying PDA
patients survival, where the value in Louzoun et al. (2014) is estimated to fit with the
survival percentage of Ellermeier et al. (2013) for an orthotopic Panc02 mouse model
of pancreatic cancer. The tumor killing rate δ1 is 5 in de Pillis et al. (2008) and 1 in
Kirschner and Panetta (1998). We use the value 0.96 and it is 5 × 10−3 in Li and Xu
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Table 1 Parameters and their biological meanings

Parameter Description

r1 Intrinsic growth rate of PCC

b1 Reciprocal of carrying capacity of PCC

β1 Maximum activation rate of PCC due to PSC

m1 Concentration of tumor-promoting cytokines at half-maximum for inhibition

δ1 Maximum killing rate of PCC by effector cells

r2 Intrinsic growth rate of PSC

β2 Maximum activation rate of PSC due to tumor-promoting cytokines

k2 Half-saturation constant of PSC activation rate

b2 Reciprocal of carrying capacity of PSC

μ2 Natural death rate of PSC

β3 Maximum production rate of effector cells

k3 Half-saturation constant of production rate of effector cells

m3 Concentration of tumor-promoting cytokines at half-maximum for inhibition

r3 Natural proliferation rate of effector cells

μ3 Apoptosis rate of effector cells

β4 Maximum production rate of tumor-promoting cytokines

k4 Half-saturation constant of maximum production rate of pro-tumor cytokines

μ4 Decay rate of tumor-promoting cytokines

r4 Maximum production rate of tumor-promoting cytokines due to PSC

m4 Concentration of tumor-suppressing cytokines at half-maximum for inhibition

β5 Maximum production rate of tumor-suppressing cytokines

k5 Half-saturation constant of maximum production rate of anti-tumor cytokines

μ5 Decay rate of tumor-suppressing cytokines

(2016). The δ1 value chosen here is larger than Li and Xu (2016) since inhibition of
tumor killing by pro-tumor cytokines is not considered in Li and Xu (2016). There
are no data available for m1 for the cancer type, and we adopt 108 from Eftimie et al.
(2010) for a mouse melanoma model. One can see from Sect. 2.3 that increasing m1
by up to 3000% or decreasing it by up to 90% from the baseline value the survival
time remains consistent with the clinic data given in Niu et al. (2013).

Since the equation of PSCs is unchanged from the previous three pancreatic cancer
models (Louzoun et al. 2014; Li and Xu 2016; He and Xu 2017), the parameter values
r2, β2, k2, b2 and μ2 for the equation of PSCs are based on Li and Xu (2016), while
their values are estimated from Louzoun et al. (2014) and the values in Louzoun et al.
(2014) are stated as estimated to fit in the survival percentage of a Panc02 mouse
model. For the effector cell equation, both r3 and μ3 values follow from Li and Xu
(2016). The loss rate μ3 of effector cells used in Li and Xu (2016) is adopted from de
Pillis et al. (2008), while the value of de Pillis et al. (2008) is taken from Kuznetsov
et al. (1994) using a nonlinear least squares fitting to mice data given by Siu et al.
(1986). The value of r3 in Li and Xu (2016) is stated as estimated to fit in the survival
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data of Niu et al. (2013). The value of β3 is adopted fromKirschner and Panetta (1998),
while k3 and m3 are from Eftimie et al. (2010).

Parameter values involving cytokines are largely taken from a mouse melanoma
model of Eftimie et al. (2010)where the decay ratesμi in Eftimie et al. (2010), i = 4, 5,
are calculated using the half-life of cytokines. The production rates βi , i = 4, 5, of
cytokines are estimated from Eftimie et al. (2010) where they are stated as “guess” in
Eftimie et al. (2010) and our values are larger than theirs but of the same order. There is
an augmented term in the equation for pro-tumor cytokines that models the stimulation
from cross talk between PSCs and PCCs, which is not modeled in the previous studies
Li and Xu (2016); Xu and Wang (2015); Louzoun et al. (2014). Therefore, the two
parameters r4 and m4 in this expression are chosen to fit with the survival data of Niu
et al. (2013).

Baseline parameter values are presented in Table 2, which will be used to validate
model (6). In summary, if a reference is cited for a particular parameter, itmeans that the
value is taken from the cited reference directly without any modification. In contrast,
“estimated” means that we cannot find those values in the existing literature and we
select the values to match with the clinical survival data given by Niu et al. (2013).
When “estimated from” a reference is specified for a parameter value, it indicates
that the original parameter value is available but may not be suitable for the model of
pancreatic cancer and variation is taken.

2.3 Model Validation

In this section, we validate model (6) using two clinical survival data of pancreatic
cancer patients based on the parameter values given in Table 2. The survival data of
Niu et al. (2013) are used in Sect. 2.3.1, and the data of Chung et al. (2014) are applied
to validate model (6) in Sect. 2.3.2. In addition, we vary each individual parameter in
“Appendix” to obtain the maximum percentage that a parameter can be varied from
the baseline value for which the clinical survival data in Niu et al. (2013) are matched.

2.3.1 Validation Through the Survival Data of Niu et al.

The study of Niu et al. (2013) is to assess retrospectively the effect of different treat-
mentmethods, including cryotherapy (31 patients), cryo-immunotherapy (36 patients),
immunotherapy (17 patients) and chemotherapy (22 patients) on patient’s survival.
According to Niu et al. (2013), the overall survival for the patients in the cryo-
immunotherapy group is better than for the patients in the cryotherapy group and
cryotherapy is safe to perform.

Cryotherapy is the use of extreme cold produced by liquid nitrogen or argon gas to
destroy abnormal tissue (Luo et al. 2016), and cryo-immunotherapy is the treatment
by performing cryotherapy first followed by immunotherapy. It is stated in Niu et al.
(2013) that the advantage of cryotherapy is the cryo-immunologic response, which
is an anti-tumor immune response triggered by the natural absorption of the malig-
nant tissue. In addition, cryotherapy is considered as a palliative therapy. Therefore,
cryotherapy is not explicitly modeled in (6), but we apply the data of patients who
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Table 2 Baseline parameter values and their sources

Parameter Value Reference

r1 1.95 × 10−2 day−1 Li and Xu (2016)

b1 1.02 × 10−11 cell−1 Li and Xu (2016)

β1 1.95 × 1.7857 × 10−12 (cell · day)−1 Li and Xu (2016)

m1 108 pg · ml−1 Eftimie et al. (2010)

δ1 0.96 pg · ml−1 · cell−1 · day−1 Estimated from Kirschner and
Panetta (1998)

r2 1.95 × 10−3 day−1 Li and Xu (2016)

β2 0.125 day−1 Li and Xu (2016)

k2 5.6 × 1010 pg · ml−1 Li and Xu (2016)

b2 1.7857 × 10−9 cell−1 Li and Xu (2016)

μ2 0.015 day−1 Li and Xu (2016)

β3 1.245 × 102 pg · ml−1 · day−1 Kirschner and Panetta (1998)

k3 2 × 1010 pg · ml−1 Eftimie et al. (2010)

m3 106 pg · ml−1 Eftimie et al. (2010)

r3 3.5 × 103 cell · day−1 Li and Xu (2016)

μ3 2 × 10−2 day−1 Li and Xu (2016)

β4 5.85 pg · ml−1 · cell−1 · day−1 Estimated from Eftimie et al. (2010)

k4 106 cell Eftimie et al. (2010)

μ4 3.4 × 10−2 day−1 Eftimie et al. (2010)

r4 1.25 × 104 pg2 · ml−2 · cell−2 · day−1 Estimated

m4 8.9 × 1010 pg · ml−1 Estimated

β5 7.3 pg · ml−1 · cell−1 · day−1 Estimated from Eftimie et al. (2010)

k5 106 cell Eftimie et al. (2010)

μ5 3.4 × 10−2 day−1 Eftimie et al. (2010)

underwent cryo-immunotherapy with immunologic results collected after cryotherapy
and prior to immunotherapy to simulate model (6). We validate model (6) with respect
to the survival times of two groups of patients, namely those with cryotherapy only
versus those with cryo-immunotherapy. It is stated in Niu et al. (2013) that the median
overall survival times of these two groups of patients are 7 and 13months, respectively.

To validate model (6), we first simulate the model with no immunotherapy by
applying the baseline parameter values given in Table 2 with three different initial
immune strengths, namely 1.3 × 108, 1.9 × 108 and 2.56 × 108 for z(0), which are
denoted as the low, median and high immunities, respectively, for simulations. These
values are close to those given in Niu et al. (2013) and are of the same order of 108

for the low and median immunities. The high immunity used here is smaller than
the data given in Niu et al. (2013) in order to capture the median overall survival
time. The initial tumor loads of PCC and PSC are 109 and 5.6 × 106, respectively,
which are exactly the same as those used by Li and Xu (2016). We next determine
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initial conditions for tumor-promoting and suppressing cytokines. According to the
data provided in Niu et al. (2013), the concentration of tumor-suppressing cytokines
including IFN-γ and IL-2 ranges from 6.91 to 11.89 pg per ml. We use the average
value of 9.4 pg per ml, i.e., v(0) = 9.4 for all simulations. There are no data available
for TGF-β in Niu et al. (2013). We adopt the approximated median value of TGF-β1
given by Bellone et al (2006) for w(0), where the authors compare various cytokine
levels between 65 advanced pancreatic cancer patients with a control group. Thew(0)
value is 5×104 for all simulations. These initial conditions are summarized in Table 3.

Recall that in Louzoun et al. (2014), Li and Xu (2016) and He and Xu (2017), the
rates of changes in cytokines are linearly proportional to the appropriate cell popu-
lations and quasi- steady-state approximation is used in their analysis and numerical
simulations. For our system (6), the productions of cytokines related to cell popula-
tions are modeled with more sophistication, and we use the original system to study
tumor progression since quasi-steady-state approximations can lead to a loss of many
features of the original system as illustrated by Korobeinikov et al. (2016).

Similar to Louzoun et al. (2014), Li and Xu (2016) and He and Xu (2017), the
number of cancer cells a human body may withstand is 2.8 × 1010. When there is
no immunotherapy, the survival times as given in the second column of Table 4 are
similar to the data provided in Niu et al. (2013). In particular, the survival times for
low, median and high immunity are 208, 215 and 220 days, respectively. The survival
time is about 1 to 2weeks longer if a patient has a stronger immune system, and each
of these survival times is close to the median overall survival of 7 months given in Niu
et al. (2013).

To validate model (6) further, we apply immunotherapy to patients who have
received cryotherapy. As described in Niu et al. (2013), the immunotherapy is applied
for four times with a 28-day administration period and 3.36 × 109 number of cells
per injection. Therefore, a dose of 3.36 × 109 cells is adopted here that begins on
day one with a 28-day administration period for either three or four times to validate

Table 3 Initial conditions for simulations

Initial conditions x(0) y(0) z(0) w(0) v(0)

Low 109 5.6 × 106 1.3 × 108 5 × 104 9.4

Median 109 5.6 × 106 1.9 × 108 5 × 104 9.4

High 109 5.6 × 106 2.56 × 108 5 × 104 9.4

Table 4 Simulated survival times (number of days) of cryotherapy and cryo-immunotherapy

Immune strength No immunotherapy Immunotherapy

3 times 4 times

Low 208 351 385

Median 215 358 387

High 220 363 391

The corresponding survival times for Niu et al. clinical data are 7 and 13 months, respectively
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the proposed model. There are three scenarios considered, namely patients with low,
median and high immune strengths as described earlier. The corresponding survival
times are presented in Table 4. Notice that these survival times are consistent with
the clinical data given by Niu et al. (2013) in terms of the median overall survival. In
particular, immunotherapy can prolong a patent’s life from 7months with cryotherapy
to approximately 13 months with cryo-immunotherapies.

Although the survival data simulated using the baseline parameter values are com-
parable to the clinical data of Niu et al. (2013) with respect to the median overall
survival, the baseline parameter values as described in Sect. 2.2 are taken from dif-
ferent research including different types of cancer. We perform sensitivity analysis by
determining the maximum percentage of changes an individual parameter can vary
for which the survival time agrees with the clinical data of Niu et al. (2013). The result
is given in “Appendix.”

2.3.2 Validation Through the Survival Data of Chung et al.

There is another set of clinical survival data using ex vivo expanded immune cells
as a treatment that results from a phase II trial carried out by Chung et al. in Korea
(Chung et al. 2014). The trial consists of a small number of 16 patients who have
previously undergone gemcitabine-based chemotherapy and refractory. The median
overall survival for these 16 patients is 26.6weeks inwhich four patients completed ten
immunotherapies, four received eight immunotherapies and the rest of the patients took
seven immunotherapies (Chung et al. 2014). These patients receive one immunother-
apy every week for 5weeks and then one immunotherapy every other week for up to
five additional immunotherapies with 6.73 × 109 adoptive cells per therapy. Similar
to the study of Louzoun et al. (2014), where 50 patients are simulated using differ-
ent tumor killing rates based on a geometric sequence between two values to validate
their model bymatching the survival percentage of an orthotopic Panc02mousemodel
of pancreatic cancer of 17 mice, we use 100 simulated patients with different tumor
growth rates to compare our numerical results with the clinical data of Chung et al.
(2014). We validate model (6) by providing percentage survival of 100 simulated
patients that is qualitatively similar to Fig. 2b of Chung et al. (2014).

Recall that the baseline parameter value of tumor growth rate r1 is taken from
Li and Xu (2016) while their value of 1.95 × 10−2 is larger than the one given by
de Pillis et al. (2008) of 2 × 10−3. Since these 16 patients of Chung et al. (2014)
are chemotherapy refractory, some of them should have much larger tumor growth
rate than the baseline value, while others are smaller. We randomly select 25 tumor
growth rates from the interval [1.02 × 10−2, 7.08 × 10−2] to generate survival times
for 25 computer-simulated patients of low immunity who take ten immunotherapies.
Each dose of the immunotherapy is 6.73 × 109 cells with the same scheduling as
in Chung et al. (2014) outlined above. The low immunity is used for all simulations
since these patients have been treated with chemotherapy and refractory so that their
immune system is weaker. Implicitly, we assume each simulated patient is identical
except the aggressiveness of the pancreatic cancer is different. We repeat the same
procedure for another 25 computer-generated patients who take eight immunothera-
pies and another 50 simulated patients who receive seven immunotherapies so that the
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Fig. 1 Percentage of survival against time for 100 simulated patients of low immunity based on the baseline
parameter values of Table 2 with randomly selected tumor growth rates in the range of [1.02×10−2, 7.08×
10−2] is presented. Here, 25 patients receive ten immunotherapies, 25 patients undergo eight therapies,
and the remaining 50 patients receive seven immunotherapies. The number of adoptive cells per therapy is
6.73 × 109

proportions of patients who undergo seven, eight and ten treatments are the same as in
Chung et al. (2014). It is possible that some patients may skip the treatment during the
first 5weeks. For simplicity, we assume the missing of the treatments occurs during
the later 10-week period. We then calculate the percentage of survival time of these
100 computer-simulated patients, and the result is presented in Fig. 1. The figure is
comparable to Fig. 2b given in Chung et al. (2014). In addition, the median survival of
these 100 patients is 27.3 weeks which is close to 26.6 weeks of Chung et al. (2014).

In viewing the above results comparing with two sets of clinical survival data, we
can conclude that the proposed model is validated. It is critical to observe that the
activation rate β4 of pro-tumor cytokines plays an important role in the outcome of the
immunotherapy as indicated in Table 6 where the number of tumor cells is below one
if the parameter value is reduced further. This observation will be used to implement
treatment strategies discussed in the following section.

3 Results on Immunotherapies

Once the model is validated, we proceed to study treatment options that can pro-
long patients’ survival time. We first present the time evolution of PCCs with no
immunotherapy, three immunotherapies and four immunotherapies in Fig. 2a using
the median strength of immunity and the baseline parameter values of Table 2, where
the size of PCCs is rescaled by a common logarithm and the number 3.36 × 109 of
adopted cells in Niu et al. (2013) is implemented. We see that the first immunotherapy
on day one reduces the tumor size drastically. However, successive treatments for an
additional two or three times cannot stop the tumor from growing. The PCCs can only
be killed by effector cells, while pro-tumor cytokines can inhibit this tumor killing
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Fig. 2 Comparing different treatment strategies on tumor size over time using the baseline parameter values
in Table 2 and the median immunity in Table 3. All of the red solid lines represent no immunotherapy. a
Three (blue dotted line) or four (black dashed line) injections of effector cells are applied. b Three injections
of effector cells (blue dotted line) or one injection of effector cells followed by two siRNA treatments (black
dashed line) is applied. c A continuous siRNA treatment (magenta dashed line) along with those strategies
considered in (b). The parameter values of siRNA treatment are given in (8), and the number of each
adoptive cell transfer is 3.36 × 109 cells. The break between each successive treatment is 28 days. The
PCCs are scaled by a common logarithm, and the top horizontal line is the scaled line of 2.8× 1010 (Color
figure online)

and deactivate production of effector cells. For the first immunotherapy, there are a
large number of effector cells at the tumor site which can kill cancer cells and acti-
vate pro-tumor cytokines directly. However, there is a delay between activation and
production of the tumor-promoting cytokines, and therefore, the first immunother-
apy is able to reduce the tumor loads. After the first therapy, there is a period of no
treatment. During this period, the tumor grows slowly and the concentration of pro-
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tumor cytokines becomes large owing to the effector cells received from the therapy.
Therefore, at the subsequent doses of adoptive cells, although the tumor microenvi-
ronment is infiltrated with the effector cells, it also contains a large concentration of
pro-tumor cytokines so that the effector cells are dysfunctional. As a consequence,
only the first immunotherapy is effective in reducing the tumor burden as demonstrated
in Fig. 2a.

Tumor-promoting cytokines such as TGF-β play a pivotal role in the proliferation
of pancreatic cancer cells. Built on model (6), we use siRNA treatments to reduce
TGF-β production in Sect. 3.1. We apply optimal control theory as a potential tool
to devise a best strategy of adoptive cell transfers in terms of dosage and scheduling
in Sect. 3.2. As observed earlier that the activation rate of pro-tumor cytokines is
important to patients’ survival when immunotherapies are applied, we perform in
silico experiments with different combinations of treatment strategies in Sect. 3.3 to
search for better survival outcomes.

3.1 siRNATreatments

From Fig. 2a, we see that immunotherapy of effector cells on day one has a very good
treatment outcome. However, additional injections of effector cells for 2 or 3 more
times cannot prevent PCCs from growing. As elaborated earlier, TGF-β promotes
pancreatic cancer growth and provides a potent immunosuppressive network (Eller-
meier et al. 2013). We now consider a different strategy by using siRNA treatments
to suppress TGF-β production.

RNA interference (RNAi) was first discovered in plants and was not widely noted
in animals until Fire et al. (1998) demonstrated that double-stranded RNA (dsRNA)
can cause greater suppression of gene expression than single-stranded RNA (ssRNA)
in Caenorhabditis elegans (Xu and Wang 2015). Small (or short) interfering RNA
(siRNA) is the most commonly used RNA interference (RNAi) tool for inducing
short-term silencing of protein-coding genes (Xu and Wang 2015). The siRNA treat-
ment involves initial delivery of double-stranded RNA (dsRNA) into tumor cells. The
enzyme Dicer then cuts the dsRNA into small segments known as siRNAs. These
siRNAs once bounded to the RNA-induced silencing complex (RISC) target TGF-β
mRNA to prevent TGF-β protein frombeing produced (Lipardi et al. 2001;Holen et al.
2001; Arciero et al. 2004). It is expected that the siRNA treatment should provide a
reasonable means of blocking the creation of TGF-β gene product and is illustrated
in the study by Arciero et al. (2004).

The goal is to incorporate siRNA treatment into model (6) and compare its effects
on patients’ survival with the method of pulsed immunotherapy explored earlier. We
are now ready to describe the model with siRNA treatments. Let R denote the state
variable of total free and bound strands of siRNA. The parameter p is the propor-
tion of total strands of siRNA that is bound, while k is the inhibition constant of
siRNA. Let D0 be the constant dose of free siRNA injected to patient per day, and
let μ6 be the decay rate of siRNA. The model with the treatment by siRNA is given
as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′ = (r1 + β1y)x(1 − b1x) − δ1xz

m1 + w

y′ = (r2 + β2w

k2 + w
)y(1 − b2y) − μ2y

z′ = β3zv

(k3 + v)(m3 + w)
− μ3z + r3

w′ = β4xz

k4 + pR

k
x

− μ4w + r4xy

m4 + v

v′ = β5xz

k5 + x
− μ5v

R′ = D0 − μ6R
x(0) > 0, y(0) > 0, z(0) ≥ 0, w(0) ≥ 0, v(0) ≥ 0, R(0) ≥ 0.

(7)

In (7), the equations for PCC, PSC, effectors cells and tumor-suppressing cytokines
remain the same as in the corresponding equations of (6). The production of tumor-
promoting cytokines is reduced due to bound siRNA that inhibits TGF-β production.
Model (7) will be studied numerically. This modeling aspect of siRNA treatment is
similar to the one used by Arciero et al. (2004), where siRNA treatment can control
oscillatory behavior of their model. Louzoun et al. (2014) also discuss anti-TGF-β
treatment in their study by directly reducing several parameter values involved.

As in Arciero et al. (2004), we adopt the following parameter values

D0 = 5 × 1010 pg · ml−1 per day, p = 0.9, k = 1 and μ6 = 0.66. (8)

Further, a treatment period of 11 days is used in their numerical investigations (Arciero
et al. 2004). Figure 2b presents the size of PCCs over time based on a log 10 scale.
The new treatment strategy is as follows. Since the first immunotherapy of 3.36×109

effector cells on day one is promising, we apply this therapy on day one followed
by 28 days of no treatment. On day 30, a constant rate of siRNA is injected for
11 days followed by no treatment for 28 days. A second siRNA treatment is then
applied for 11 days afterward. From Fig. 2b, one can see that applying immunotherapy
of effector cells thrice performs better than applying it once and with the siRNA
treatment twice. This conclusion remains true if the inhibition constant k is reduced to
k = 0.001. A continuous siRNA treatment started on day one is presented in Fig. 2c
which shows that injection of 3.36 × 109 effector cells on day one is more effective.
Although our modeling methodology of (7) is similar to that of Arciero et al. (2004),
our result indicates that injection of effector cells directly is better than blockingTGF-β
production indirectly.

3.2 Optimal Strategy of Adoptive Cell Transfer

As observed from Fig. 2, applying immunotherapies by injecting effector cells three or
four times can slow down but cannot stop the tumor from growing. Further, blocking
TGF-β production after injections of effector cells is not better. In this subsection, we
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apply optimal control theory to provide best strategies for treating pancreatic cancer
using effector cells.

The optimal control theory has been applied to study cancer immunotherapy by
many researchers such as Burden et al. (2004); Castiglione and Piccoli (2007); Kha-
janchi andGhosh (2015) andMinelli et al. (2011). In these studies, objective functional
may be defined differently depending on the goal of the therapy outcomes. To the best
of our knowledge, however, this is the first study applying optimal control theory to
investigate immunotherapy for pancreatic cancer.

We first briefly review the research of optimal control of immunotherapy in treating
cancer. Burden et al. (2004) propose a model of cancer cells T (t), effector cells E(t)
and cytokinesC(t)with optimal control. The control is added to the equationof effector
cells using the term su(t), where s denotes strength and u is the controlwith 0 ≤ u ≤ 1.

Their objective functional is given by J (u) = ∫ t f
0

(
E(t)−T (t)+C(t)− 1

2
Bu2(t)

)
dt ,

B > 0, and they seek tomaximize J subject to the state equations.Minelli et al. (2011)
study a five-dimensional system of ordinary differential equations including effector
cells E , helper cells H , dendritic cells D, tumor cells T and cytokinesC with a control
term u(t) added to the equation of dendritic cells. The objective functional is given

by J (u) = ρT ( f f ) + 1

2

∫ t f
0 u2(t)dt , where ρ is a weighted factor and their goal is to

minimize J subject to the state equations. Notice the term t f that appears in the integral
of both models denotes the final time. That is, the control is applied over the fixed
finite time span [0, t f ]. More recently, Engelhart et al. (2011) apply optimal control
to several published models of tumor–immune interactions. We refer the reader to the
studies by Burden et al. (2004), Engelhart et al. (2011), Minelli et al. (2011) and their
references for optimal control of immunotherapies on cancer treatments.

We now set up the optimal control problem. Let s > 0 denote the strength of
immunotherapy and u(t) be the bounded control with 0 ≤ u(t) ≤ 1 for 0 ≤ t ≤ T ,
where [0, T ] is the fixed time span for treatment. Using the same notation for the state
variables as in model (6), the state equations are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′ = (r1 + β1y)x(1 − b1x) − δ1xz

m1 + w

y′ = (r2 + β2w

k2 + w
)y(1 − b2y) − μ2y

z′ = β3zv

(k3 + v)(m3 + w)
− μ3z + r3 + su(t)

w′ = β4xz

k4 + x
− μ4w + r4xy

m4 + v

v′ = β5xz

k5 + x
− μ5v.

(9)
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The admissible control class is given as

U = {u : u(t) is piecewise continuous and 0 ≤ u(t) ≤ 1 on [0, T ]}. (10)

The goal of the treatment is to minimize pancreatic cancer cells at the final time and
also minimize the pancreatic cancer and pancreatic stellate cells along with the cost or
the patient’s tolerance associated with the treatment over the whole treatment period
[0, T ]. Therefore, the objective functional is given by

J (u) = x(T ) +
∫ T

0

(
x(t) + y(t) + 1

2
Au2(t)

)
dt, (11)

where A > 0 is a weighted constant denoting either the cost or the patient’s tolerance
associated with the treatment. The optimal control problem consists of

minu∈U J (u) (12)

subject to the state equations (9). In the objective functional J (u) given in (11), it
is required to minimize PSCs over the treatment period, as PSCs promote growth
of PCCs. In addition, we assume identical weights for PCCs and PSCs in J (u). We
anticipate that decreasing the PSCs can help control the cancer progression.

Clearly the class of all initial conditions with a control u ∈ U for the state equations
being satisfied on the finite time interval [0, T ] is nonempty. Moreover, solutions of
(9) remain nonnegative on [0, T ]. The set of the admissible controls U is closed and
convex and the right-hand side of each of the state equations is continuous, bounded
above by the sum of the control, and the state can be written as a linear function of
u. Further, for fixed x and y, the integrand of J (u) is convex on U . The integrand
of J (u) is convex in u and is bounded below by −C2 + C1uγ for some C1 > 0 and
γ = 2 > 1. It follows from Fleming and Rishel (1975) that there exists an optimal
control for the problem (9)–(12).

Once the existence of an optimal control is shown, we shall solve the optimal
control problem (9)–(12) numerically. The problem may be solved either indirectly or
directly. The indirect method applies the Pontryagin’s maximum principle (Lenhart
and Workman 2007) to derive necessary conditions and cast the optimal problem
as a two-point boundary value problem. This technique is used in an earlier study by
Burden et al. (2004) and Hu and Jang (2018b). However, due to the high nonlinearities
associated in the model, we apply the direct collocation method to solve the nonlinear
optimal control problem.

In the direct collocation method, the control and the state functions on a time
grid are discretized to obtain a nonlinear constrained optimization problem. The time
interval is divided into a mesh and the control and/or states are approximated using
polynomial approximations or piecewise constant parameterizations in each mesh
interval. The cost function formed as an integral term is solved using the method of
numerical quadrature integration process. Therefore, the coefficients of the function
approximations are treated as optimization variables and the problem is reformulated
as a nonlinear programming optimization problem (NLP) which is easier to solve than
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the boundary value problem due to the sparsity of the NLP and the many well-known
software packages that can be used to solve the problem. In the following simulations,
we use the GPOPS-II software, which is integrated with IPOPT NLP solver to handle
our optimal control problem (Patterson and Rao 2014). GPOPS-II is a general-purpose
MATLABsoftware for solving continuous optimal control problems using hp-adaptive
Gaussian quadrature collocation method.

Fix T = 500. We use the default parameter values given in Table 2 and the initial
conditions of Table 3 for simulations. The dose of immunotherapy in Fig. 3 follows
that of Niu et al. (2013) with s = 3.36 × 109 cells. The results of the three different
immunities are given in plots (a)–(c), respectively. The final tumor sizes for these
three immunities are 2.742× 1010, 2.733× 1010 and 2.731× 1010 cells, respectively,
slightly smaller than the critical tumor size of 2.8 × 1010. The figure shows that the
patients with high immunity would need smaller treatment doses. In addition, one sees
that a full dose of effector cells is required in the beginning of the treatment and the
tumor size is reduced. There is a break of no immunotherapy roughly between 30 and
50 days in which the tumor size increases. The tumor remains increasing when much
smaller numbers of effector cells are applied at a later time period. In general, if there
is an extra payoff term outside the integral such as x(T ) in the objective functional
(3.5), then x(t) usually decreases at t = T when x comes from the left. This is not
the case for our model. Although these patients survive for over 500 days, the optimal
strategy of the immunotherapy does not seem to be able to control the tumor from
growing as in the previous treatment strategies where three or four immunotherapies
are applied. We obtain similar numerical results if we change the strength s of the
dose or A the cost or patient’s tolerance of the treatment. These simulations are not
presented.

In addition to the optimal solutions, Fig. 3 also shows the plot of tumor cells against
time simulated from the clinical implementations of Niu et al. (2013) in which pulsed
immunotherapies are carried out on days 1, 30, 59 and 88 only. The protocol derived
from the optimal control suggests a continuous administration of immune cells over
the first several days. From the figure, we see that the protocol from the optimal control
gives a better survival outcome than the pulsed injections of immune cells for four
times. However, the total number of immune cells administered using the optimal
control is clearly larger than that of the corresponding pulsed treatments.

From this part of the study, we conclude that mono-immunotherapy is not suf-
ficient to control or stabilize pancreatic cancer since the best scheduling and doses
of immunotherapies cannot prevent cancer from growing. This particular finding
deduced from the optimal control theory is aligned with the current knowledge of
PDA described by Martinez-Bosch et al. (2018) and Morrison et al. (2018) in which
mono-immunotherapy is not sufficient to control or eradicate pancreatic cancer. This
further motivates us to consider combined immunotherapies of anti-TGF-β treatments
and adoptive cell transfers in the following subsection.
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Fig. 3 Numerical solutions of the optimal immunotherapy and the corresponding tumor size for equations
(9)–(12) are plotted (blue solid line) using A = 150 and s = 3.36×109 for low,median and high immunities
given in (a)–(c), respectively. The solid magenta line denotes tumor evolution resulting from four pulsed
immunotherapies, and the top horizontal line is the line of 2.8 × 1010 (Color figure online)

3.3 Combined Immunotherapies In Silico

Figure 2 shows that injecting 3.36 × 109 effector cells on day one followed by two
siRNA treatments or a continuous siRNA treatment starting on day one cannot extend
patients’ survival compared with four doses of effector cells. This raises the question
of the effectiveness of anti-TGF-β treatments. Indeed, there is one phase I/II clinical
trial of 37 patients using mono-immunotherapy of anti-TGF-β, showing no improved
survival outcomes except for one patient (Hilmi et al. 2018), who survived for over two
years andmay be considered as an outlier. However, our sensitivity analysis performed
in “Appendix” does reveal that reducing activation rate of pro-tumor cytokines before
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applying immunotherapies can kill cancer cells completely. In this subsection, we
study different combinations of therapies using numerical simulations.

Since deactivating pro-tumor cytokines prior to adoptive cell transfers seems criti-
cal, an siRNA treatment is now applied on day one for 11 days followed by 28 days
of no treatment. Then, three injections of 3.36 × 109 effector cells are applied with
28 days of no immunotherapy in between. The result is given in Fig. 4a. After the
first 11 days of siRNA treatment, we see that the tumor grows slightly larger than the
continuous siRNA treatment over the period of first 28 days of no treatment. How-
ever, as the effector cells are applied on day 40, the tumor size is slightly smaller than
for the immunotherapies applied on day one and on day 30. The tumor size remains
smaller than the three immunotherapies of adoptive transfer of immune cells, which
may be due to the extra siRNA treatment received. We apply a similar strategy with
four applications of 3.36 × 109 ex vivo expanded immune cells and obtain a similar
numerical result with respect to tumor size as shown in Fig. 4b. We next change the
strategy by using one more siRNA treatment instead of adoptive cells and are able
to reduce the tumor size more substantially as shown in Fig. 4c. Here, the siRNA
treatment is applied on day one followed by two injections of effector cells and then
one more siRNA treatment. Each of the siRNA treatment lasts for 11 days, and there
are 28 days of no treatment between any of the successive therapies. We see that this
later combination of treatments gives a better survival outcome.

Recall from an earlier discussion that the immunotherapies applied to patients by
Niu et al. (2013) are more conservative than those by Chung et al. (2014). In fact, the
dosage of the effector cells in Niu et al. (2013) is 3.36×109 cells, while it is 6.73×109

cells in Chung et al. (2014). In addition, only four immunotherapies are applied in Niu
et al. (2013) while the patients of Chung et al. (2014) receive either seven, eight or
ten doses of immune cells and the break between treatments in Chung et al. (2014) is
much shorter than that in Niu et al. (2013). Although the patients of Niu et al. received
cryotherapy prior to immunotherapy, these patients in Chung et al. also underwent
chemotherapy before immunotherapy. The strategy of Niu et al. (2013) is adopted in
Figs. 2 and 4, where the number of effects cells is 3.36 × 109 and there is a 28-day
break between treatment. Further, at most four doses of effector cells are applied.

We now apply the clinical practice of Chung et al. (2014) with doses of 6.73× 109

cells and a one-week break between any two consecutive treatments to study patient
survival. In order to comparewith these strategies inFigs. 2 and4, themedian immunity
is used for Figs. 5 and 6. First, we apply two siRNA treatments and four injections of
ex vivo expanded immune cells. Each siRNA treatment lasts for only a week instead
of 11 days, and each injection of immune cells is within a day. These results are
presented in Fig. 5 with three different combinations. The red dash-dot line adopts
the strategy of applying siRNA treatment in the first week followed by injection of
effector cells three times. Then, one more siRNA treatment is applied followed by one
more injection of effector cells. The black dotted line represents siRNA treatment for
the first week followed by one injection of effector cells. Then, an siRNA treatment is
applied followed by three injections of effector cells. The blue dashed line denotes that
two consecutive siRNA treatments are applied first followed by injections of effector
cells four times. Figure 5b shows the plot of tumor size of these three strategies for
the first 60 days. One can see that applying siRNA treatment first followed by one
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Fig. 4 Baseline parameter values in Table 2 and themedian immunity in Table 3 are used for the simulations.
Each of the red solid lines represents no immunotherapy, while continuous siRNA treatment is plotted by
blue dashed lines. a Three injections of effector cells (magenta dotted line) or first anti-TGF-β followed by
three injections of effector cells (black dashed line). b Four injections of effector cells (magenta dotted line)
or first anti-TGF-β followed by four injections of effector cells (black dashed line). c Four injections of
effector cells (magenta dotted line) or first anti-TGF-β followed by two additional injections of effector cells
and one more anti-TGF-β treatment (black dashed line). There is a 28-day break between any successive
treatments. The parameter values of siRNA treatment are given in (8), and the number of each adoptive cell
transfer consists of 3.36 × 109 cells. The PCCs are scaled by a common logarithm, and the top horizontal
line is the scaled line of 2.8 × 1010 (Color figure online)

injection of effector cells and then an anti-TGF-β is better than the other two options.
However, its benefit becomes smaller after 100 days since the treatment period only
lasts for about 50 days.
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Fig. 5 Baseline parameter values in Table 2 and the median immunity in Table 3 are used. The parameter
values of siRNA treatment are given in (8), and the number of each injection of effector cells is 6.73× 109.
The break between any two consecutive treatments is one week. a Three different treatment strategies are
shown. Red dash-dot line: first week of siRNA treatment followed by injection of effector cells three times.
Then, one more siRNA treatment is applied followed by one more injection of effector cells. Black dotted
line: first week of siRNA treatment followed by one injection of effector cells. Then, an siRNA treatment is
applied followed by three injections of effector cells. Blue dashed line: two consecutive siRNA treatments
that are applied first followed by injections of effector cells four times. b A closer look of plot (a) for the
first 60 days. The PCCs are scaled by a common logarithm and the top horizontal line is the scaled line of
2.8 × 1010 (Color figure online)

In Fig. 6, we apply siRNA treatment first followed by immunotherapy of effector
cells. We repeat this strategy for three times followed by two additional immunother-
apies, denoted by the red dash-dot line. Totally there are three siRNA treatments and
five times of adoptive cell transfers. The treatment of the blue dotted line is similar
to the red dash-dot line but replaces the second last injection of effector cells by an
siRNA treatment. Therefore, there are four siRNA treatments and four adoptive cell
transfers. Figure 6b shows that the first treatment strategy is doing better during the
time interval of about 65 to 80 days. However, the second treatment strategy can extend
patients’ life at the end as shown in plot (c).

4 Summary and Conclusions

Pancreatic ductal adenocarcinoma (PDA) is a deadly disease with the lowest 5-year
patient survival rate of any tumor type. The incidence of PDA is rising, and it is
projected to become the second leading cause of cancer death in the USA by 2025
(Winograd et al. 2015). In the last few decades, immunotherapy has become an impor-
tant tool for treating cancer of different types with varying degree of success. However,
this efficacy has not yet been translated to PDA (Morrison et al. 2018).

In this study, we develop a mathematical model of PDA that includes pancreatic
cancer cells (PCCs), pancreatic stellate cells (PSCs), effector cells, and anti-tumor
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Fig. 6 Baseline parameter values in Table 2 and the median immunity in Table 3 are used. The parameter
values of siRNA treatment are given in (8), and the number of each injection of effector cells is 6.73× 109.
The break between any two consecutive treatments is one week. a Two different treatment strategies are
shown. Red dash-dot line: first week of siRNA treatment followed by one injection of effector cells and
repeat this strategy for two additional times followed by two more injections of effector cells. Blue dotted
line: similar to the red dash-dot line except the last second treatment of effector cells is replaced by an
siRNA treatment. b Solutions of (a) when t ∈ [40, 80] days. c Solution of (a) when t ∈ [400, 450] days.
The PCCs are scaled by a common logarithm, and the top horizontal line is the scaled line of 2.8 × 1010

(Color figure online)

and pro-tumor cytokines to explore the effects of immunotherapies, including TGF-β
inhibition and adoptive immune cell transfers, on patients survival. One of the novelties
of the proposed model is that tumor-promoting and tumor-suppressing cytokines are
grouped into two compartments and their productions are modeled via the Michaelis–
Menten law. Further, as pro-tumor cytokines are not only triggered by the interaction
between PCCs and effector cells but are also activated by cross talk between cancer
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Fig. 7 Relative maximal percentage of changes in the baseline parameters to patient’s survival are plotted.
There is no immunotherapy in a and patients receive four adoptive transfers of 3.36 × 109 cells in b. The
median immunity in Table 3 is used for the simulations (Color figure online)

cells and stellate cells (Kozono et al. 2013), we model this positive feedback in the
present investigation aswell. These assumptions are different from the previousmodels
of pancreatic cancer (Louzoun et al. 2014; Li and Xu 2016; He and Xu 2017. In
addition, pro-tumor cytokines can deactivate effector cells and inhibit their ability to
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kill tumor cells, and these mechanisms are not modeled in Li and Xu (2016) and He
and Xu (2017).

The proposed model is first validated using two clinical data sets provided by Niu
et al. (2013) and Chung et al. (2014). Based on the survival data of Niu et al. (2013),
the maximum percentage that each individual parameter can deviate from the baseline
value is computed for both cases of no immunotherapy and of four immunotherapies.
From here, we learn that the activation rate of pro-tumor cytokines plays a critical role
in tumor eradication when adoptive transfers of immune cells are applied.

Louzoun et al. (2014) validate their mathematical model using the mouse survival
data ofEllermeier et al. (2013).Although anti-TGF-β in themousemodel ofEllermeier
et al. (2013) is through siRNA treatments, the siRNA treatment in Louzoun et al.
(2014) is not explicitly modeled but the TGF-β inhibition is done by reducing several
parameter values directly from their baseline values. In this investigation, we model
the siRNA treatment explicitly with a new state variable that is coupled with pro-
tumor cytokines. We are able to accomplish this, due to the fact that we do not take
the quasi-steady-state approximation approach as in Louzoun et al. (2014), Li and Xu
(2016) and He and Xu (2017). Moreover, since no model reduction is taken in this
study, we are able to investigate the effects of different combined therapies between
anti-TGF-β and adoptive transfers of immune cells on patient survival.

The model of Louzoun et al. (2014) includes macrophages, and, similar to the
anti-TGF-β modeling, the immune activation is also modeled through varying sev-
eral parameter values. Their study predicts that immunotherapy is effective when the
tumor killing rate by effector cells is within a narrow range, which is the window
of opportunity for combating PDA. While Li and Xu (2016) model the adoptive cell
transfers explicitly, they do not consider anti-TGF-β treatment. The study by Li and
Xu (2016) concludes that immunotherapy offers a better prognosis for pancreatic can-
cer patients since the therapy can prolong survival compared with no immunotherapy.
Their simulations also show a continuous growth of tumor size with treatments of
adoptive transfers of immune cells. In a more recent model proposed by He and Xu
(2017), regulatory T cells (Tregs) and anti-Tregs therapy are included. They predict
that the combined therapies of adoptive cell transfer and anti-Tregs simultaneously can
prolong patients’ survival. However, the growing pattern of pancreatic cancer cannot
be stopped or reversed even with the two therapies.

The immune activation in this work is modeled explicitly through intravenous
injections of immune cells. Combined immunotherapies between adoptive transfer
of immune cells and anti-TGF-β are also studied, but are not simultaneously imple-
mented as in He and Xu (2017) for the two agents. From numerical explorations
of this new model, we find that different combinations between the two types of
immunotherapies can yield different survival outcomes, indicating the importance of
treatment strategies. In addition, local sensitivity analysis of the parameters shows
that pro-tumor cytokines have a critical activation rate beyond which the PCCs can be
eradicated with only four adoptive transfers of immune cells. Applying anti-TGF-β
therapy first followed by adoptive transfer of immune cells can reduce the tumor load
better than if this combinationwere switched or if either of themono-immunotherapies
were applied. The microenvironment of PDA is very immunosuppressive. By deac-
tivating TGF-β production first followed by adoptive transfer of immune cells, the
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microenvironment is less hostile for the immune cells to be effective. We confirm
from optimal control theory that mono-immunotherapy of adoptive cell transfer is
unlikely to control PDA. This study further highlights the importance of combined
immunotherapies and their scheduling strategies in treating pancreatic cancer.

Blockade of immune checkpoints has recently been proven as a revolutionary strat-
egy in the fight against cancers. The success of these therapies has failed to improve
the survival outcome of patients in PDA (Martinez-Bosch et al. 2018; Morrison et al.
2018). According to Winograd et al. (2015), clinical trials using either single agent of
anti-CTLA-4 or combined agents of anti-CTLA-4 and anti-PD-1 show no improved
patient survival, while the two combined immunotherapies along with chemotherapy
have been shown to induce tumor rejection in a genetically engineered PDA murine
model. However, the success in murine models may not carry over to patients as illus-
trated in several experiments and clinical studies of PDA (Martinez-Bosch et al. 2018;
Morrison et al. 2018). Anti-PD-1 has recently been incorporated into a generic cancer
model of partial differential equations by Friedman and Hao (2017). We may extend
the present mathematical model (6) by adding compartments of CTLA-4 and PD-1
with their ligands and studying their blockades in addition to chemotherapy on patients
to explore their effects on patient survival.

Acknowledgements We thank both reviewers for their many valuable comments that improved the original
manuscript.

Appendix: Sensitivity Analysis Based on the Survival Data of Niu et al.

From Fig. 1a of Niu et al. (2013), there is one patient who survived for about 25
months with no immunotherapy and there is one patient who survived for about 30
months with four additional immunotherapies. For both groups of patients, there is
one patient who survived for only about three months. These survival times are not
outliers of the data sets, and there are no numerical values for the mean and standard
deviation given by Niu et al. (2013). If such information were provided, then change
in the parameter values based on a 90% or 95% confidence interval of the clinical data
would be performed instead. We therefore increase each individual parameter by up
to 3000% or until the survival time lies outside of (120, 750) days for cryotherapy
and (120, 900) days for cryo-immunotherapy. For both groups of patients, only the
median immunity is considered in our numerical investigation. We also decrease each
baseline parameter value until either up to 90% or the survival time falls outside of the
above time intervals. These results are summarized in Tables 5 and 6 for cryotherapy
and cryo-immunotherapy, respectively. In addition, the numbers of survival days for
the corresponding maximum percentage of changes are also provided.

From Table 5, one can see that parameters β3, k3, m3, r3, k4, k5 and μ5 can be
increased up to 3000% and decreased up to 90%without changing the survival time of
215 days from the baseline parameters when no immunotherapy is applied. It is quite
surprising to observe the lack of effect of parameter β3 since β3 is the tumor anti-
genicity. Increasing/decreasing tumor antigenicity cannot prolong/reduce a patient’s
survival time in the proposed model when there is no immunotherapy. For the tumor
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Table 5 Maximumpercentage of change frombaseline parameter valueswith no immunotherapy formedian
immune strength

Parameter Increase (%) Survival (days) Decrease (%) Survival (days)

r1 80 122 70 613

b1 250 568 90 201

β1 2000 140 90 225

m1 3000 195 90 230

δ1 400 529 90 182

r2 3000 206 90 216

β2 3000 195 90 232

k2 3000 233 90 207

b2 3000 227 90 174

μ2 3000 266 90 211

β3 3000 215 90 215

k3 3000 215 90 215

m3 3000 215 90 215

r3 3000 215 90 215

μ3 3000 196 90 221

β4 3000 178 90 302

k4 3000 216 90 215

μ4 1000 709 90 210

r4 3000 178 90 245

m4 3000 255 90 186

β5 3000 229 90 214

k5 3000 215 90 215

μ5 3000 214 90 216

The corresponding survival time for the baseline values is 215 days

killing rate δ1, it can be increased only up to 400% with the corresponding survival
time being 529 days. Increasing δ1 further would result in tumor eradication since the
number of cancer cell would be less than one. It is also clear that the survival time is
sensitive with respect to two other parameters r1 and b1 which are tumor dependent.
Increasing b1 or decreasing r1 beyond the percentage changes given in the table also
results in tumor eradication. Further, the survival time is sensitive to the parameterμ4,
the decay rate of the pro-tumor cytokines. Increasing this natural loss rate can clear
off the tumor.

With four immunotherapies, the survival time is 387 days for the baseline parameter
values with median immunity. Table 6 implies that the survival time is insensitive to
the parameters β3, k3,m3, r3,m4, β5, k5 and μ5 since increasing each of these up to
3000% or decreasing each up to 90% yields the same number 387 of survival days.
Comparing with the above discussion of Table 5 of no immunotherapies, there are two
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Table 6 Maximum percentage of change from baseline parameter values with four immunotherapies for
median immune strength

Parameter Increase (%) Survival (days) Decrease (%) Survival (days)

r1 200 124 55 835

b1 250 805 90 368

β1 3000 131 90 418

m1 3000 356 90 430

δ1 110 755 90 194

r2 3000 384 90 387

β2 3000 379 90 421

k2 3000 387 90 387

b2 3000 420 90 240

μ2 3000 422 90 382

β3 3000 387 90 387

k3 3000 387 90 387

m3 3000 387 90 387

r3 3000 387 90 387

μ3 3000 320 90 445

β4 3000 184 55 796

k4 3000 444 90 386

μ4 250 722 90 334

r4 3000 383 90 387

m4 3000 387 90 386

β5 3000 387 90 387

k5 3000 387 90 387

μ5 3000 387 90 387

The corresponding survival time for the baseline values is 387 days

new parameters m4 and β5 that appear here. However, their corresponding changes
in Table 5 are very small which can also be viewed as insensitive when there is no
immunotherapy. The survival time is sensitive to the parameters δ1, r1, b1, μ4 and β4.
The first four of these parameters are also sensitive to the survival time when there is
no immunotherapy. The additional parameter β4, the maximum activation rate of pro-
tumor cytokines, is sensitivewhen immunotherapy is applied. In particular, the number
of tumor cells is less than one and tumor eradication occurs when it is decreased 60%
from its baseline value.

Since bar charts provide better visualization of the effects on survival time, we also
summarize the two tables using graphs presented in Fig. 7a–b, respectively. However,
it is unclear how much each individual parameter can be varied from the bar graphs,
and hence, Tables 5 and 6 are also provided to reflect the maximum percentages of
changes and their corresponding survival times.
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