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Abstract
Mathematical theory has predicted that populations diffusing in heterogeneous envi-
ronments can reach larger total size thanwhen not diffusing. This predictionwas tested
in a recent experiment, which leads to extension of the previous theory to consumer-
resource systems with external resource input. This paper studies a two-patch model
with diffusion that characterizes the experiment. Solutions of the model are shown to
be nonnegative and bounded, and global dynamics of the subsystems are completely
exhibited. It is shown that there exist stable positive equilibria as the diffusion rate is
large, and the equilibria converge to a unique positive point as the diffusion tends to
infinity. Rigorous analysis on the model demonstrates that homogeneously distributed
resources support larger carrying capacity than heterogeneously distributed resources
with or without diffusion, which coincides with experimental observations but refutes
previous theory. It is shown that spatial diffusion increases total equilibrium popula-
tion abundance in heterogeneous environments, which coincides with real data and
previous theory while a new insight is exhibited. A novel prediction of this work is
that these results hold even with source–sink populations and increasing diffusion rate
of consumer could change its persistence to extinction in the same-resource environ-
ments.
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1 Introduction

Carrying capacity of a homogeneous environment is defined as the steady-state upper
limit on a population’s abundance. It is determined by resources in the environment
such as light, water, nutrient. However, carrying capacity of a heterogeneous envi-
ronment is ambiguous for populations in diffusion. Mathematical theory predicts that
populations diffusing in a heterogeneous environment can approach larger total size
than when not diffusing and can approach even larger size than in the corresponding
homogeneous environment.

Freedman and Waltman (1977) studied a two-patch model with Pearl–Verhulst
logistic growth dxi/dt = ri xi (1 − xi

Ki
) with diffusion, i = 1, 2. It is shown that if

there is a positive relationship between growth rate and carrying capacity, i.e.,

K1 > K2,
r1
K1

>
r2
K2

, (1)

the population’s abundance with high diffusion rate can approach larger size than with
no diffusion (i.e., x∗

1 + x∗
2 > K1 + K2 ) and can approach even larger size than in

the corresponding homogeneous environment (i.e., r̄i = r1+r2
2 , K̄i = K1+K2

2 ). Holt
(1985) exhibited that this result also holds in source–sink systems, in which the sink
patch is not self-sustaining (e.g, r2 ≤ 0 and K2 = 0). Lou (2006) demonstrated that
this result even holds in continuous spatial systems by applying a reaction-diffusion
model. For additional relevant works, we refer to Hutson et al. (2005), He and Ni
(2013a, b), Zhang et al. (2015), DeAngelis et al. (2016a, b), Wang and DeAngelis
(2018), etc.

The theoretical result is tested by Zhang et al. (2017) in laboratory experiments.
In the experiments, the population is the heterotrophic budding yeast, Saccharomyces
cerevesiae, and the resource is the amino acid tryptophan which is the single exploited
and renewable nutrient. The yeast population is spatially distributed in a 96-well
microtitre plate, and the wells are linearly arrayed and linked by nearest neighbor
diffusion. In heterogeneous distribution of resource, the wells with even number have
the same high nutrient input, while those with odd number have the same low nutrient
input. Thus the wells can be regarded as two types of patches, which corresponds to
a two-patch system. In homogeneous distribution, all wells have the same nutrient
input, which is the average of the high and low inputs in the heterogeneous distribu-
tion. The experimental process was repeated over 9days. First, the initial yeast had
24-h growth, followed by diffusion from the original plate (plate 1) to a new empty
plate (plate 2), in which 3% volume in each well was transferred to the well on the
left in plate 2 and another 3% to the right well of the plate. Then the remaining 94%
volume was transferred to the same well in plate 2. After the diffusion and trans-
fer, old media in plate 2 were removed and fresh media were added, and the yeast
population underwent another 24-h growth. Experimental observations displayed that
(i) populations diffusing in heterogeneous environments can reach higher total size
than if non-diffusing, in which the “extra individuals” were observed to reside in the
low nutrient patches. (ii) The higher size in a heterogeneous environment with diffu-
sion is associated with a positive relationship of growth rate and carrying capacity.
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(iii) Homogeneously distributed resources support higher total carrying capacity than
heterogeneously distributed resources, evenwith species diffusion.Meanwhile, homo-
geneously distributed resources support the same carrying capacity with or without
species diffusion.

In order to study mechanism by which the empirical observations occur, Zhang
et al. (2017) proposed a pair of new equations to model the diffusion system. By
assuming existence of stable positive equilibria in the equations, they confirmed the
three observations by considering two special cases of the model. However, their
confirmation on the second case is not a theoretically proof (see Remarks 4.2). Thus,
it is necessary to study the equations in general cases, give a theoretical proof for the
three observations, and provide new predictions.

In this paper, we consider the general two-patch model with diffusion that char-
acterizes the experiment. Rigorous analysis on the model exhibits that solutions of
the equations are nonnegative and bounded, and there exist stable positive equilib-
ria. It is proven that homogeneously distributed resources support larger carrying
capacity than heterogeneously distributed resources with or without diffusion, which
coincides with experimental observations but refutes previous theory. It is also shown
that spatial diffusion increases total equilibrium population abundance in heteroge-
neous environments, which coincides with real data and previous theory while a new
insight is exhibited. A novel prediction of this work is that these results hold even with
source–sink populations, while increasing diffusion rate of consumer could change its
persistence to extinction in the same-resource environments.

The paper is organized as follows. In the next section, we characterize the equations
in general cases with two patches, demonstrate nonnegativeness and boundedness of
the solutions, and exhibit global dynamics of one-patch subsystems. Section 3 displays
existence of stable positive equilibria, while proof of experimental observations and
new predictions are exhibited in Sect. 4. Discussion is in Sect. 5.

2 Mechanistic Model

In this section, we describe the mechanistic model established by Zhang et al. (2017),
which characterizes a population diffusing between two patcheswith external resource
inputs. Thenwe exhibit nonnegativeness and boundedness of the solutions and demon-
strate global dynamics of the subsystems.

The equations for diffusion systems with external resource input are (Zhang et al.
2017)

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ r(x)n(x, t)u(x, t)

k + n(x, t)
− m(x)u(x, t) − g(x)u(x, t)2

dn(x, t)

dt
= Ninput(x) − n(x, t) − r(x)n(x, t)u(x, t)

γ (k + n(x, t))

where u(x, t) is the consumer population abundance, n(x, t) is the nutrient concentra-
tion, r(x) is the growth rate under infinite resources, k is the half saturation coefficient,
m(x) is the mortality rate, g(x) is the density-dependent loss rate, γ is the yield, or
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fraction of nutrient per unit biomass, D is the diffusion rate, and Ninput(x) is the
nutrient input.

The equations in a spatially discrete, or patch version, along one dimension are
(Zhang et al. 2017)

dUi

dt
= Ui

(
ri Ni

k + Ni
− mi − giUi

)
+ D

(
1

2
Ui−1 + 1

2
Ui+1 −Ui

)

dNi

dt
= N0i − Ni − ri NiUi

γ (k + Ni )

where N0i (= Ninput,i) represents the nutrient input in patch i, 1 ≤ i ≤ n, i = i mod n.
Let

Ui := Ui

kγ
, Ni := Ni

k
, gi := gi kγ, N0i := N0i

k

then the above equations for two patches become

dU1

dt
= U1

(
r1N1

1 + N1
− m1 − g1U1

)
+ D (U2 −U1)

dN1

dt
= N0i − N1 − r1N1U1

1 + N1

dU2

dt
= U2

(
r2N2

1 + N2
− m2 − g2U2

)
+ D (U1 −U2)

dN2

dt
= N0i − N2 − r2N2U2

1 + N2
.

(2)

We consider solutions of system (2) with nonnegative initial values, i.e., Ui (0) ≥
0, Ni (0) ≥ 0, i = 1, 2.

Proposition 2.1 All solutions of system (2) are nonnegative and bounded with
lim supt→∞

∑2
i=1(Ui (t) + Ni (t)) ≤ (N01 + N02)/q, q = min{m1,m2, 1}.

Proof On the boundary N1 = 0, from the second equation of (2) we have dN1/dt =
N01 > 0. Then N1(t) > 0 if t > 0. Similarly, N2(t) > 0 if t > 0.

On the boundary U1 = 0, from the first equation of (2) we have dU1/dt = DU2.
WhenU2 > 0, then dU1/dt > 0,which implies thatU1(t) is nonnegative if t increases.
Assume U2 = 0. Since U1 = 0 is an invariant set of system (2) if U2 = 0, no orbit
could pass through the invariant set, which implies that U1(t) is nonnegative. Thus
U1(t) ≥ 0 if t > 0. Similarly, U2(t) ≥ 0 if t > 0.

Boundedness of the solutions is shown as follows. From (2), we have

d(U1 + N1 +U2 + N2)

dt
= N01 + N02 − (N1 + N2) − (m1U1 + m2U2 + g1U

2
1 + g2U

2
2 )

≤ N01 + N02 − q(U1 + N1 +U2 + N2).

From the comparison theorem (Hale 1969), we obtain lim supt→∞
∑2

i=1(Ui (t) +
Ni (t)) ≤ (N01 + N02)/q. Thus there are δ0 > 0 and T > 0 such that when t > T , we
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haveUi (t) ≤ (N01 + N02)/q + δ0, Ni (t) ≤ (N01 + N02)/q + δ0, i = 1, 2. Therefore,
solutions of (2) are bounded. ��

When there is no diffusion, system (2) becomes two independent subsystems. We
consider subsystem 1, while a similar discussion can be given for subsystem 2. Now
model (2) becomes

dU1

dt
= U1

(
r1N1

1 + N1
− m1 − g1U1

)

dN1

dt
= N01 − N1 − r1N1U1

1 + N1
.

(3)

Then solutions of system (3) are nonnegative and bounded by Proposition 2.1.
If r1 ≤ m1, then dU1/dt < 0, which implies that U1 → 0, N1 → N01. Thus we

assume r1 > m1 in the following discussion. Since U1 = 0 is a solution of (3), the
N1-axis is an invariant set of (3).

Proposition 2.2 There is no periodic solution in system (3).

Proof Let F1 and F2 be the right-hand side of (3). Let B = 1/U1. Then

∂(BF1)

∂U1
+ ∂(BF2)

∂N1
= − r1

(1 + N1)2
− g1 − 1

U1
< 0.

By the Dulac’s Criterion, there is no periodic solution in (3). ��
Equilibria of (3) are considered as follows. Denote H1 = 1/(1 + N1). Then the

Jacobian matrix of (3) is

J =
(
r1N1H1 − m1 − 2g1U1 r1U1H2

1−r1N1H1 −1 − r1U1H2
1

)
.

There is one-boundary equilibrium of (3), namely, E1(0, N01). E1 has eigenvalues
μ

(1)
1 = −1, μ

(2)
1 = r1N01

1+N01
− m1.

There is at most one positive equilibrium of (3). Indeed, system (3) has two iso-
clines:

L1 : (r1 − m1 − g1U1)(1 + N1) = r1

L2 : U1 = f2(N1) = 1

r1
(N01 − N1)(1 + 1

N1
).

Then

f2(N01) = 0, lim
N1→0+ f2(N1) = ∞,

d f2
dN1

= − 1

r1

(
1 + N01

N 2
1

)
< 0.

Thus isocline L2 is monotonically decreasing and (0, N01) ∈ L2, as shown in Fig. 1.
Isocline L1 is a hyperbola with asymptotes U1 = (r1 − m1)/g1, N1 = −1 and
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Fig. 1 Phase-plane diagram of system (3). Stable and unstable equilibria are identified by solid and open
circles, respectively. Vector fields are shown by gray arrows. Isoclines of U1, N1 are represented by blue
and red lines, respectively. Let r1 = 2,m1 = g1 = 1, N01 = 1.5. All positive solutions of (3) converge to
a positive equilibrium (Color figure online)

(0,m1/(r1 − m1)), (−m1/g1, 0) ∈ L1. Thus system (3) has a positive equilibrium
E+(U+

1 , N+
1 ) if and only if N01 > m1/(r1 − m1), i.e., μ

(2)
1 > 0.

The Jacobian matrix of (3) at E+ is

J+ =
(−g1U1 r1U1H2

1−r1N1H1 −1 − r1U1H2
1

)
.

Then trJ+ = −g1U1 − 1 − r1U1H2
1 < 0 and det J+ = (1 + r1U1H2

1 )g1U1 +
r21 N1U1H3

1 > 0. Thus E+ is asymptotically stable. By Proposition 2.2, E+ is globally

asymptotically stable. When μ
(2)
1 ≤ 0, there is no positive equilibrium in (3) and E1

is globally asymptotically stable.
Therefore, global dynamics of system (3) are concluded as follows.

Theorem 2.3 (i) Assume r1 > m1 and N01 > m1/(r1−m1). System (3) has a unique
positive equilibrium E+(U+

1 , N+
1 ), which is globally asymptotically stable in

intR2+ as shown in Fig. 1.
(ii) Assume r1 ≤ m1, or r1 > m1, N01 ≤ m1/(r1 − m1). Equilibrium E1(0, N01) is

globally asymptotically stable in intR2+ in (3).

3 The Positive Equilibrium

Since the carrying capacity of system (2) is defined by stable positive equilibria, we
demonstrate existence of the equilibria in this section by showing uniform persistence
of the system. Denote
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D̄ =
2∏

i=1

(
ri N0i

1 + N0i
− mi

)
/

2∑
i=1

(
ri N0i

1 + N0i
− mi

)
.

Theorem 3.1 (i) Let ri > mi , N01 > m1
r1−m1

, N02 ≤ m2
r2−m2

, i = 1, 2. When∑2
i=1(

ri N0i
1+N0i

−mi ) > 0, system (2) is uniformly persistent. When
∑2

i=1(
ri N0i
1+N0i

−
mi ) < 0, system (2) is uniformly persistent if 0 < D < D̄ and is not persistent if
D > D̄.

(ii) Let ri > mi , N0i >
mi

ri−mi
, i = 1, 2. Then system (2) is uniformly persistent.

(iii) Let r1 > m1, r2 ≤ m2.When
∑2

i=1(
ri N0i
1+N0i

−mi ) > 0, system (2) is uniformly per-

sistent. When N01 > m1
r1−m1

and
∑2

i=1(
ri N0i
1+N0i

−mi ) < 0, system (2) is uniformly

persistent if 0 < D < D̄ and is not persistent if D > D̄.
(iv) Let ri > mi , N0i <

mi
ri−mi

, i = 1, 2, or ri ≤ mi , i = 1, 2. Then system (2) is not
persistent, and equilibrium P1(0, N01, 0, N02) is globally asymptotically stable
in intR4+.

Proof (i) On the boundary Ni = 0 for i = 1, 2, we have dNi/dt = N0i > 0, which
implies that no positive solutions of (2) would approach the boundary Ni = 0.

On the boundaryU1 = 0, we have dU1/dt = DU2 ≥ 0. IfU2 > 0, then dU1/dt >

0,which implies that no positive solutions of (2)would approach the boundaryU1 = 0.
AssumeU2 = 0. On the (N1, N2)-plane, it is obvious that all solutions of (2) converge
to equilibrium P1(0, N01, 0, N02). P1 has no stable manifold in intR4+, which is shown
as follows. Let Hi = 1/(1 + Ni ), i = 1, 2. The Jacobian matrix of (2) at P1 is

J =

⎛
⎜⎜⎝

J11 0 D 0
J21 −1 0 0
D 0 J33 0
0 0 J43 −1

⎞
⎟⎟⎠

where J11 = r1N1H1 −m1 − D, J21 = −r1N1H1, J33 = r2N2H2 −m2 − D, J43 =
−r2N2H2. The characteristic equation of J is (μ + 1)2[μ2 + aμ + b] = 0 with

a = 2D −
2∑

i=1

(
ri N0i

1 + N0i
− mi

)
, b =

2∏
i=1

(
ri N0i

1 + N0i
− mi

)
− D

2∑
i=1

(
ri N0i

1 + N0i
− mi

)
.

(4)
If

∑2
i=1

( ri N0i
1+N0i

− mi
)

> 0, then b < 0 and P1 is a saddle point. The matrix J

has eigenvalues μ1,2 = −1, which have eigenvectors v1 = (0, 1, 0, 0) and v2 =
(0, 0, 0, 1), respectively. Its other eigenvalues and corresponding eigenvectors are

μ3,4 = 1

2

[
J11 + J33 ±

√
(J11 + J33)2 − 4(J11 J33 − D2)

]
with μ4 < 0

v3 = (−D, 0, J11 − μ3, 0), v4 = (−D, 0, J11 − μ4, 0)

Since J11−μ4 = [J11− J33 +√
(J11 + J33)2 − 4(J11 J33 − D2)]/2 > 0, v4 does not

direct toward intR4+, which implies that P1 has no stable manifold in intR4+. Therefore,
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nopositive solutions of (2)would approach the boundaryU1 = 0. Similarly, nopositive
solutions of (2) would approach the boundaryU2 = 0. Since P1 is the unique boundary
equilibrium and cannot be in a heteroclinic cycle in R4+, we obtain uniform persistence
of system (2) by the Acyclicity Theorem of Butler et al. (1986).

If
∑2

i=1

( ri N0i
1+N0i

− mi
)

< 0 and 0 < D < D̄, then b < 0 and P1 is a saddle point.

By a proof similar to the above one, we obtain that system (2) is uniformly persistent.

If
∑2

i=1

( ri N0i
1+N0i

−mi
)

< 0 and D > D̄, then a > 0, b > 0 and P1 is asymptotically

stable. Thus system (2) is not persistent.
(ii) Denote V = U1 +U2 and

N̄0i = 1

2

(
N0i + mi

ri − mi

)
, δi = 1

2

(
N0i − mi

ri − mi

)
, σi = 1

gi

(
ri N̄0i

1 + N̄0i
− mi

)

� = {P (U1, N1,U2, N2) : 0 < Ui < σi , 0 < |Ni − N0i | < δi }, i = 1, 2.

Then � is an open neighborhood of equilibrium P1(0, N01, 0, N02) in intR4+. When
P ∈ �, we have

dV

dt
|(2) =

2∑
i=1

Ui

(
ri Ni

1 + Ni
− mi − giUi

)
> 0

which implies that P1 has no stable manifold in intR4+ by the Liapunov Theorem
(Hofbauer and Sigmund 1998). Since P1 is the unique boundary equilibrium of (2),
P1 cannot be in a heteroclinic cycle in R4+. Thus, we obtain uniform persistence of
system (2) by the Acyclicity Theorem of Butler et al. (1986).

(iii) The proof is similar to that of (i).
(iv) We consider the case ri > mi , N0i <

mi
ri−mi

, i = 1, 2, while a similar proof
can be given for ri ≤ mi , i = 1, 2.

From the second and fourth equations of (2), we have lim supt→∞ Ni (t) ≤ N0i , i =
1, 2. Let δ0 = 1

2 mini=1,2{mi/(ri − mi ) − N0i }. Then for a positive solution of (2),
there exists T > 0 such that when t > T , we have 0 < Ni (t) ≤ N0i + δ0, i = 1, 2.
Denote V = U1 +U2. Then when t > T , we have ri Ni (t)

1+Ni (t)
− mi < 0 and

dV

dt
|(2) = U1

(
r1N1

1 + N1
− m1 − g1U1

)
+U2

(
r2N2

1 + N2
− m2 − g2U2

)
≤ 0

which implies that P1 is globally asymptotically stable in intR4+ by the Liapunov
Theorem. ��
Theorem3.1(i)(iii) exhibits the role of diffusion rates in persistence of consumer.When
the growth rates are intermediate such that r1N01

1+N01
−m1 > 0 and

∑2
i=1(

ri N0i
1+N0i

−mi ) <

0, the consumer survives in two patches when the diffusion rate is small (0 < D <

D̄). However, it would go to extinction when the rate is large (D > D̄) because
P1(0, N01, 0, N02) is asymptotically stable. The underlying reason is displayed in

123



Asymptotic State of a Two-Patch System with… 1673

Sect. 5. Since the consumer persists in system (2) when 0 ≤ D < D̄, it is the large
diffusion rate that results in the extinction.

By Theorem 3.1, we conclude the following result.

Corollary 3.2 If
∑2

i=1(
ri N0i
1+N0i

− mi ) > 0, system (2) is uniformly persistent for D ∈
(0,∞).

When system (2) is uniformly persistent, its dissipativity by Proposition 2.1 guar-
antees that it has a positive equilibrium P∗ (Butler et al. 1986).

Theorem 3.3 Assume that P∗ is a positive equilibrium of system (2). Then P∗ is
asymptotically stable when D is large.

Proof Denote Hi = 1/(1 + Ni ), i = 1, 2. The Jacobian matrix of (2) at P∗ is

J̄ ∗ =

⎛
⎜⎜⎝

J̄11 J̄12 D 0
J̄21 −1 − J̄12 0 0
D 0 J̄33 J̄34
0 0 J̄43 −1 − J̄34

⎞
⎟⎟⎠

where

J̄11 = −D
U2

U1
− g1U1 < 0, J̄12 = r1U1H

2
1 > 0, J̄21 = −r1N1H1 < 0,

J̄33 = −D
U1

U2
− g2U2 < 0, J̄34 = r2U2H

2
2 > 0, J̄43 = −r2N2H2 < 0.

Then the characteristic equation of J̄ ∗ is μ4 + ā1μ3 + ā2μ2 + ā3μ + ā4 = 0. When
D → ∞, we have

ā1 = 2 + J̄12 + J̄34 − J̄11 − J̄33 ∝ D

(
U1

U2
+ U2

U1

)
> 0

ā2 = −D2 − J̄11(1 + J̄12) − J̄21 J̄12 − J̄33(1 + J̄34) − J̄43 J̄34 + (1 + J̄12 − J̄11)(1 + J̄34 − J̄33)

∝ D(2 + J̄12 + J̄34)

(
U1

U2
+ U2

U1

)
+ D� > 0

ā3 = [− J̄11(1 + J̄12) − J̄21 J̄12](1 + J̄34 − J̄33) + [− J̄33(1 + J̄34) − J̄43 J̄34](1 + J̄12 − J̄11)

− D2(2 + J̄12 + J̄34)

∝ D

{
U2

U1

[
(1 + J̄12)(1 + J̄34) − J̄43 J̄34

] + U1

U2

[
(1 + J̄12)(1 + J̄34) − J̄21 J̄12

]}

+ D�(2 + J̄12 + J̄34) > 0

ā4 = [− J̄11(1 + J̄12) − J̄21 J̄12][− J̄33(1 + J̄34) − J̄43 J̄34] − D2(1 + J̄12)(1 + J̄34)

∝ −D

[
U2

U1
(1 + J̄12) J̄43 J̄34 + U1

U2
(1 + J̄34) J̄21 J̄12

]
+ D�(1 + J̄12)(1 + J̄34) > 0

where � = g1U 2
1 /U2 + g2U 2

2 /U1 > 0. Then we have
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∣∣∣∣ ā1 1
ā3 ā2

∣∣∣∣ ∝ D2(2 + J̄12 + J̄34)

(
U1

U2
+ U2

U1

)2

+ D2�

(
U1

U2
+ U2

U1

)
> 0,

∣∣∣∣∣∣
ā1 1 0
ā3 ā2 ā1
0 ā4 ā3

∣∣∣∣∣∣ ∝ D3
(
U1

U2
+ U2

U1

)2 [(
U1

U2
+ U2

U1

) (
2 + J̄12 + J̄34

)
(1 + J̄12)(1 + J̄34)

− U2

U1
(1 + J̄34) J̄43 J̄34 − U1

U2
(1 + J̄12) J̄21 J̄12

]
+ D3�2ā3

(
U1

U2
+ U2

U1

)

+ D3�

(
U1

U2
+ U2

U1

)2 [
(1 + J̄12)

2 + (1 + J̄12)(1 + J̄34) + (1 + J̄34)
2] > 0.

By the Hurwitz Criterion, P∗ is asymptotically stable when D is large. ��

When there is diffusion and the diffusion rate approaches very large values (i.e.,
D → ∞), that is, D � Ui (

ri Ni
1+Ni

− mi − giUi ), the stable positive equilibrium

P∗(U1, N1,U2, N2), in this limit, satisfies U1 − U2 → 0. This must be true because

Ui (
ri Ni
1+Ni

−mi − giUi ) is bounded to finite values by Proposition 2.1. That is, equilib-

rium P∗(U1, N1,U2, N2) of (2) satisfiesU1 ≈ U2 ≈ Z . By Proposition 2.1, equilibria
P∗ are bounded if D → ∞. Thus the sequence {P∗ : D ∈ (0,∞)} has convergent
subsequences, whose limit points can be written as P̄(Z , N1, Z , N2).

By summing the first and third equations of (2) and by the second and fourth equa-
tions of (2), we obtain the following equations that the limit point P̄(Z , N1, Z , N2)

satisfies:
r1N1

1 + N1
− m1 − g1Z + r2N2

1 + N2
− m2 − g2Z = 0

N01 − N1 − r1N1Z

1 + N1
= 0, N02 − N2 − r2N2Z

1 + N2
= 0.

(5)

Therefore, we conclude the following result.

Theorem 3.4 Assume
∑2

i=1(
ri N0i
1+N0i

− mi ) > 0. Then Eq. (5) has a unique positive

solution P̄.

Proof The point P̄ is positive if
∑2

i=1(
ri N0i
1+N0i

− mi ) > 0. Indeed, suppose Z = 0.

Then Ui → 0 if D → ∞. From (2), we have Ni → N0i if D → ∞, which implies

that
∑2

i=1Ui (
ri N0i
1+N0i

− mi − giUi ) > 0 if D → ∞. However, from (2), we always

have
∑2

i=1Ui (
ri Ni
1+Ni

− mi − giUi ) = 0 as D ∈ (0,∞), which forms a contradiction.

Suppose N1 = 0. From the second equation of (2), we have dN1/dt → N0i > 0 if
D → ∞, which contradicts with N1 = 0. Thus N1 > 0. Similarly, we have N2 > 0.
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The positive point P̄ is unique. Indeed, let Fi = Fi (�,U1, N1,U2, N2) be the left
hand of (5), where � = {N0 j , r j ,m j , g j , j = 1, 2}, i = 1, 2, 3. The Jacobian matrix
of Fi at P̄ satisfies

det
D(F1, F2, F3)

D(Z , N1, N2)
|P̄ = det

⎛
⎝−(g1 + g2) r1H2

1 r2H2
2−r1N1H1 −1 − r1H2

1 Z 0
−r2N2H2 0 −1 − r2H2

2 Z

⎞
⎠

= −(g1 + g2)
2∏

i=1

(1 + ri H
2
i Z) − r22 N2H

3
2 (1 + r1H

2
1 Z) − r21 N1H

3
1 (1 + r2H

2
2 Z) < 0.

(6)

Let �0 = {N0 j = N0, r j = r ,m j = m, g j = g, j = 1, 2}. By symmetry in (5)
and Theorem 2.2, Eq. (5) has a unique positive solution P̄0. By (6) and the Implicit
Function Theorem, there is a small neighborhood of �0 in which equation (5) has
a unique positive solution P̄ . Since (6) holds for all � and positive solution P̄ , the
Implicit Function Theorem implies that the unique positive solution P̄ derived from
P̄0 can be extended to all � with

∑2
i=1

( ri N0i
1+N0i

− mi
)

> 0. This completes the proof.
��

4 Asymptotic State

Total realized asymptotic population abundance (abbreviated TRAPA by Arditi et al.
2015) varies in heterogeneous/homogeneous resource distributions with/without con-
sumer diffusion. For convenience, denote

T0 = TRAPAheterogeneous, no diffusion, T1 = TRAPAheterogeneous, diffusion

T2 = TRAPAhomogeneous, no diffusion, T3 = TRAPAhomogeneous,diffusion

in which T1 = TRAPAheterogeneous, diffusion denotes TRAPA at equilibrium in hetero-
geneous environments with infinite diffusion, and similar explanations can be given
for the others.

4.1 Source–Source Populations

This subsection considers source–source populations in which the species can persist
in each patch without diffusion. We exhibit T1 > T0 under conditions and show
T3 = T2 > T1. Let

N01 = N0 + ε, N02 = N0 − ε, ri = r > m, mi = m, gi = g, i = 1, 2 (7)

where N0 > m
r−m , |ε| < ε̄, ε̄ = N0 − m

r−m . Then resource inputs in two patches are
homogeneous if ε = 0.
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Theorem 4.1 Let (7) hold. Then

(i) T3 = T2 > T1.
(ii) T2 > T0.

Proof (i) When there is no diffusion (i.e., D = 0), the positive equilibrium
P(u1, n1, u2, n2) of (2) satisfies

rn1
1 + n1

− m − gu1 = 0,
rn2

1 + n2
− m − gu2 = 0

N0 + ε − n1 − rn1u1
1 + n1

= 0, N0 − ε − n2 − rn2u2
1 + n2

= 0
(8)

where T0 = u1(ε) + u2(ε), T2 = u1(0) + u2(0). By differentiating each side of (8)
on ε, we obtain

dn1
dε

= g

rh21

du1
dε

,
du1
dε

=
[
rn1h1 + (1 + rh21u1)

g

rh21

]−1

> 0, h1= 1

1 + n1
. (9)

When there is diffusion (i.e., D > 0), it follows fromCorollary 3.2 and Theorem3.3
that system (2) has a stable positive equilibrium P∗ if the diffusion rate D is large,
and their accumulation point P̄ is positive.

Assume ε = 0. Then T3 = 2Z where Z is defined by (5). From the symmetry in
(5) and (8), we obtain T3 = T2 since the root is unique by Theorem 2.3.

Assume ε > 0. Then T1 = 2Z(ε) where Z is defined by (5). From the analyticity
of (5), components of P̄(N1, Z , N2, Z) are differentiable on ε. Denote Hi = 1/(1 +
Ni ), i = 1, 2.By subtracting the second and third equations of (5), we have N1−N2 =

2ε
1+r Z H1H2

> 0. By differentiating each side of (5) on ε, we obtain

r H2
1
dN1

dε
+ r H2

2
dN2

dε
− 2g

dZ

dε
= 0

1 − dN1

dε
− r H2

1
dN1

dε
Z − r N1H1

dZ

dε
= 0

− 1 − dN2

dε
− r H2

2
dN2

dε
Z − r N2H2

dZ

dε
= 0.

From N1 > N2, we have

dZ

dε
= a

b
, a = r H2

1

1 + r H2
1 Z

− r H2
2

1 + r H2
2 Z

, b = 2g + r2N1H3
1

1 + r H2
1 Z

+ r2N2H3
2

1 + r H2
2 Z

> 0.

Thus dZ
dε < 0 if ε > 0, which means T2 > T1 because T3 = T2 = T1(0). A similar

discussion could show that dZ
dε > 0 if ε < 0. Thus T2 > T1.

(ii) By Theorem 2.3, there is a unique positive solution P(u1, n1, u2, n2) of (8),
and ui = ui (ε), ni = ni (ε) are differentiable on ε by the analyticity of (8). By
differentiating each side of (8) on ε, we obtain
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dni
dε

= g

rh2i

dui
dε

,
dui
dε

= (−1)i+1[(1 + rh2i ui )
g

rh2i
+ rni hi ]−1

d(u1 + u2)

dε
=

[
(1 + rh21u1)

g

rh21
+ rn1h1

]−1

−
[
(1 + rh22u2)

g

rh22
+ rn2h2

]−1

.

We focus on ε > 0, while a similar discussion can be given for ε < 0. Then we
have dn1

dε > 0, du1
dε > 0 and n1 > n2, u1 > u2, which implies d(u1+u2)

dε < 0. Thus,
d(T2−T0)

dε > 0 and T2 > T0. ��
Remark 4.2 (i) Theorem 4.1 demonstrates that T3 = T2 > T1 and T3 = T2 > T0

for general heterogeneous/homogeneous distributions of resources. Indeed, for
any nutrient inputs with N01 > N02 > m

r−m , we can rewrite them as N01 =
N0 + ε, N02 = N0 − ε with N0 = (N01 + N02)/2, ε = (N01 − N02)/2.

(ii) Zhang et al. (2017) displayed T2 > T1 in (2) if gi = 0, in which T1 is obtained by
letting Ni = mi

ri−mi
(see (D19), Supporting Information Appendix D, Zhang et al.

2017). This is not appropriate because N1 > N2 as shown in the above proof.

Next we exhibit T1 > T0 under conditions. Let

N01 = N0 + δε, N02 = N0 − δε, r1 = r + ε, r2 = r − ε, mi = m, gi = g, i = 1, 2
(10)

where r > m, N0i > m
r−m , δ ≥ 0.

When there is no diffusion (i.e., D = 0), the positive equilibrium P(u1, n1, u2, n2)
of (2) satisfies

(r + ε)n1
1 + n1

− m − gu1 = 0,
(r − ε)n2
1 + n2

− m − gu2 = 0

N0 + δε − n1 − (r + ε)n1u1
1 + n1

= 0, N0 − δε − n2 − (r − ε)n2u2
1 + n2

= 0
(11)

where ui = ui (ε), ni = ni (ε), i = 1, 2. Then T0 = u1(ε) + u2(ε).
When there is diffusion (i.e., D → ∞), the positive solution P(Z , N1, Z , N2) of

(5) satisfies

(r + ε)N1

1 + N1
+ (r − ε)N2

1 + N2
− 2m − 2gZ = 0

N0 + δε − N1 − (r + ε)N1Z

1 + N1
= 0, N0 − δε − N2 − (r − ε)N2Z

1 + N2
= 0

(12)

where Ni = Ni (ε), Z = Z(ε), i = 1, 2. Then T1 = 2Z(ε).
If ε = 0, symmetry of equations (11)–(12) implies

ui (0) = Z(0), ni (0) = Ni (0), i = 1, 2. (13)
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Theorem 4.3 Let (10) hold. Let δ < δ0 = N+
1 U+

1
1+N+

1
, where (U+

1 , N+
1 ) is the positive

equilibrium of the corresponding subsystem (3) with ε = 0. Then there exists ε0 > 0
such that if 0 < |ε| < ε0, then T1(ε) > T0(ε), and T1(ε) − T0(ε) is a monotonically
increasing function of |ε|.
Proof Let f (ε) = T1(ε) − T0(ε) = 2Z(ε) − u1(ε) − u2(ε). From (13), we have
f (0) = 0.
We show d f

dε (0) = 0 as follows. Denote hi = 1/(1 + ni ), i = 1, 2. From the
analyticity of (11) and (14), ui (ε), ni (ε),Ui (ε) and Ni (ε) are differentiable on ε if ε

is small. By differentiating each side of (11) on ε, we obtain

δ − dn1
dε

− n1h1u1 − (r + ε)h21u1
dn1
dε

− (r + ε)n1h1
du1
dε

= 0

− δ − dn2
dε

+ n2h2u2 − (r − ε)h22u2
dn2
dε

− (r − ε)n2h2
du2
dε

= 0

n1h1 + (r + ε)h21
dn1
dε

− g
du1
dε

= 0

− n2h2 + (r − ε)h22
dn2
dε

− g
du2
dε

= 0.

(14)

By summing the first two and last two equations of (14) and letting ε = 0, we have

(
dn1
dε

+ dn2
dε

)
|ε=0 = − rn1h1

1 + rh21u1

(
du1
dε

+ du2
dε

)
|ε=0

(
rn1h1

1 + rh21u1
+ g

rh21

)(
du1
dε

+ du2
dε

)
|ε=0 = 0

which implies (
dn1
dε

+ dn2
dε

)
|ε=0 =

(
du1
dε

+ du2
dε

)
|ε=0 = 0. (15)

Denote Hi = 1/(1 + Ni ), i = 1, 2. By differentiating each side of (12) on ε, we
obtain

N1H1 + (r + ε)H2
1
dN1

dε
− 2g

dZ

dε
− N2H2 + (r − ε)H2

2
dN2

dε
= 0.

δ − dN1

dε
− N1H1Z − (r + ε)H2

1 Z
dN1

dε
− (r + ε)N1H1

dZ

dε
= 0

− δ − dN2

dε
+ N2H2Z − (r − ε)H2

2 Z
dN2

dε
− (r − ε)N2H2

dZ

dε
= 0.

(16)

Let ε = 0. From the first equation of (16), we obtain

dN1

dε
+ dN2

dε
= 2g

r H2
1

dZ

dε
.
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By summing the second and third equations of (16), we have

[
2r N1H1 + 2g(1 + r H2

1 Z)

r H2
1

]
dZ

dε
= 0

which implies that

dZ

dε
(0) = 0,

dN1

dε
(0) + dN2

dε
(0) = 0.

Thus d f
dε (0) = 0.

We show d2 f
dε2

(0) > 0 as follows. By differentiating each side of (14) on ε and
letting ε = 0, we obtain

− d2n1
dε2

− 2h21u1
dn1
dε

− 2n1h1
du1
dε

+ 2rh31u1

(
dn1
dε

)2

− rh21u1
d2n1
dε2

= 2rh21
dn1
dε

du1
dε

+ rn1h1
d2u1
dε2

− d2n2
dε2

+ 2h22u2
dn2
dε

+ 2n2h2
du2
dε

+ 2rh32u2

(
dn2
dε

)2

− rh22u2
d2n2
dε2

= 2rh22
dn2
dε

du2
dε

+ rn2h2
d2u2
dε2

2h21
dn1
dε

− 2rh31

(
dn1
dε

)2

+ rh21
d2n1
dε2

= g
d2u1
dε2

− 2h22
dn2
dε

− 2rh32

(
dn2
dε

)2

+ rh22
d2n2
dε2

= g
d2u2
dε2

.

(17)

By summing the first two and last two equations of (17) respectively, we have

(
d2n1
dε2

+ d2n2
dε2

) (
1 + rh21u1

)
+

(
d2u1
dε2

+ d2u2
dε2

)
rn1h1

= −4h21u1
dn1
dε

− 4h1n1
du1
dε

+ 4rh31u1

(
dn1
dε

)2

− 4rh21
dn1
dε

du1
dε

d2n1
dε2

+ d2n2
dε2

= g

rh21

(
d2u1
dε2

+ d2u2
dε2

)
− 4

r

(
1 − rh1

dn1
dε

)
dn1
dε

(18)

which implies

d2u1
dε2

+ d2u2
dε2

= 1

k0

[
−4h1

(
dn1
dε

)2

+ 4

r

dn1
dε

− 4h1

(
n1 + rh1

dn1
dε

)
du1
dε

]

k0 = g

rh21
(1 + rh21u1) + rh1n1 > 0.

(19)
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By differentiating each side of (15) on ε and letting ε = 0, we obtain

d2N1

dε2
+ d2N2

dε2
= 2g

r H2
1

d2Z

dε2
+ +4H1

(
dN1

dε

)2

− 4

r

dN1

dε

− d2N1

dε2

(
1 + r H2

1 Z
)

− 2H2
1 Z

dN1

dε
+ 2r H3

1 Z

(
dN1

dε

)2

− r H1N1
d2Z

dε2
= 0

− d2N2

dε2

(
1 + r H2

2 Z
)

+ 2H2
2 Z

dN2

dε
+ 2r H3

2 Z

(
dN2

dε

)2

− r H2N2
d2Z

dε2
= 0.

(20)
By summing the second and third equations of (20), we obtain

−
(
d2N1

dε2
+ d2N2

dε2

) (
1 + r H2

1 Z
)

− 4H2
1 Z

dN1

dε
+ 4r H3

1 Z

(
dN1

dε

)2

− 2r H1N1
d2Z

dε2
= 0.

(21)

From the first equation of (20) and (21), we obtain

d2(2Z)

dε2
= 1

k0

[
−4H1

(
dN1

dε

)2

+ 4

r

dN1

dε

]
. (22)

Let ε = 0. From (14), we have

du1
dε

= δ + n1/(rh1)

rn1h1 + (1 + rh21u1)g/(rh
2
1)

> 0, n1 + rh1
dn1
dε

= g

h1

du1
dε

> 0.

From (14) and (16), we have

dn1
dε

= δ − n1h1u1 − rn1h1
du1
dε

1 + rh21u1
< 0,

dN1

dε
= δ − N1H1Z

1 + r H2
1 Z

< 0

which means dn1/dε < dN1/dε < 0 by (13). Thus, from (13), (19) and (22), we
obtain

d2(2Z)

dε2
>

d2u1
dε2

+ d2u2
dε2

which implies d2 f
dε2

(0) > 0.

Since f (0) = 0, d f
dε (0) = 0 and d2 f

dε2
(0) > 0, the function f = f (ε) is convex

downward at ε = 0. Thus there exists ε0 > 0 such that f (ε) = T1(ε) − T0(ε) > 0 if
0 < |ε| < ε0 and T1(ε) − T0(ε) is a monotonically increasing function of |ε|. ��

Theorem 4.3 makes sense biologically. The result that T1(ε) − T0(ε) is a mono-
tonically increasing function of |ε| means that the larger the difference between the
growth rates, the higher the difference between T1 and T0, which is clearly observed
in experiments (see Fig. 4 in Zhang et al. 2017).
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4.2 Source–Sink Populations

This subsection considers source–sink populations in which the species cannot persist
in one patch (the sink) without diffusion. We exhibit T1 > T0 under conditions and
show T3 = T2 > T1. Let

ri = r , mi = m, gi = g,
2∑

i=1

(
r N0i

1 + N0i
− m

)
> 0. (23)

Then a direct computation shows N01+N02
2 > m

r−m . By Corollary 3.2 and a proof
similar to that of Theorem 4.1 and Remark 4.2(i), we conclude the following result.

Theorem 4.4 Let (23) holds. Then T3 = T2 > T1 and T2 > T0 in system (2) with
source–sink populations.

Next we exhibit T1 > T0 in source–sink populations. First, we demonstrate a
threshold for T1 > T0 under conditions (e.g., N02 = m

r−m ). Let

N01 = N0 + cε, N02 = N0, r1 = r + ε, r2 = r , mi = m, gi = g, i = 1, 2 (24)

where c > 0, ε ≥ 0, N0 = m
r−m .

Note that N01 > m
r1−m , N02 = m

r2−m . Assume D = 0. By Theorem 2.3, patch 2 is

a sink and patch 1 is a source with a steady-state E+(U+
1 , N+

1 ) which satisfies

N0 + cε − n1 − (r + ε)n1u1
1 + n1

= 0,
(r + ε)n1
1 + n1

− m − gu1 = 0 (25)

where n1 = n1(ε), u1 = u1(ε).
Note that

∑2
i=1(

ri N0i
1+N0i

−mi ) > 0. By Corollary 3.2 and Theorems 3.3–3.4, system

(2) has a stable positive equilibrium P(U1, N1,U2, N2), and the accumulation point
P̄(Z , N1, Z , N2) of the equilibria satisfies

N0 + cε − N1 − (r + ε)N1Z

1 + N1
= 0, N0 − N2 − r N2Z

1 + N2
= 0

(r + ε)N1

1 + N1
+ r N2

1 + N2
− 2m − 2gZ = 0

(26)

where Ni = Ni (ε), Z = Z(ε) are differentiable on ε by the analyticity of (26),
i = 1, 2. Then T1 = 2Z(ε).

If ε = 0, symmetry in Eqs. (25)–(26) implies

ni (0) = Ni (0) = N0, ui (0) = Z(0) = 0, i = 1, 2. (27)
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If ε < 0, then N0 + cε < m/(r + ε − m), which implies that ni (ε) = Ni (ε) =
N0, ui (ε) = Z(ε) = 0, i = 1, 2. Denote

c0 = N1(g + r2N1H3
1 + r2N 2

1 H
3
1 )

r N1H1(2g + r2N1H3
1 )

|N1=N0 .

Theorem 4.5 Let (24) hold. Then there exists ε0 > 0 such that when 0 < ε < ε0, we
have T1 > T0 if 0 < c < c0, and T1 < T0 if c > c0.

Proof Let f (ε) = T1(ε) − T0(ε) = 2Z(ε) − u1(ε). From (27), we have f (0) = 0.
We show d f

dε (0) = 0 as follows.Denotehi = 1/(1+ni ), i = 1, 2.Bydifferentiating
each side of (25) on ε, we obtain

c − dn1
dε

− n1h1u1 − (r + ε)h21u1
dn1
dε

− (r + ε)n1h1
du1
dε

= 0

n1h1 + (r + ε)h21
dn1
dε

− g
du1
dε

= 0
(28)

which implies

dn1
dε

(0) = c − rn1h1
du1
dε

(0),
du1
dε

(0) = crh21 + h1n1
g + r2n1h31

|ε=0 > 0. (29)

Denote Hi = 1/(1 + Ni ), i = 1, 2. By differentiating each side of (26) on ε, we
obtain

c − dN1

dε
− N1H1U1 − (r + ε)H2

1U1
dN1

dε
− (r + ε)N1H1

dZ

dε
= 0

− dN2

dε
− r H2

2U2
dN2

dε
− r N2H2

dZ

dε
= 0

N1H1 + (r + ε)H2
1
dN1

dε
+ r H2

2
dN2

dε
− 2g

dZ

dε
= 0.

(30)

Let ε = 0 in (30). Then we have

dN1

dε
(0) = c − r N1H1

dZ

dε
(0),

dN2

dε
(0) = −r N1H1

dZ

dε
(0)

d(2Z)

dε
(0) = du1

dε
(0)

(31)

which implies d f
dε (0) = 0.
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We show d2 f
dε2

(0+) > 0 as follows. By differentiating each side of (25) on ε and
letting ε = 0, we obtain u1(0) = 0 and

− d2n1
dε2

− 2n1h1
du1
dε

− 2rh21
dn1
dε

du1
dε

− rn1h1
d2u1
dε2

= 0

2h21
dn1
dε

− 2rh31

(
dn1
dε

)2

+ rh21
d2n1
dε2

− g
d2u1
dε2

= 0

so that

d2n1
dε2

= −2n1h1
du1
dε

− 2rh21
dn1
dε

du1
dε

− rn1h1
d2u1
dε2

d2u1
dε2

= 1

C

[
2h21

dn1
dε

− 2rh31

(
dn1
dε

)2

− 2rh31

(
n1 + rh1

dn1
dε

)
du1
dε

]

where C = g + r2n1h31.
By differentiating each side of (26) on ε and letting ε = 0, we obtain

− d2N1

dε2
− 2N1H1

dZ

dε
− 2r H2

1
dN1

dε

dZ

dε
− r N1H1

d2Z

dε2
= 0

− d2N2

dε2
− 2r H2

2
dN2

dε

dZ

dε
− r N2H2

d2Z

dε2
= 0

2H2
1
dN1

dε
− 2r H3

1

[(
dN1

dε

)2

+
(
dN2

dε

)2
]

+ r H2
1

[
d2N1

dε2
+ d2N2

dε2

]
− 2g

d2Z

dε2
= 0

(32)
so that

d2N1

dε2
+ d2N2

dε2
= −2r N1H1

d2Z

dε2
− 2N1H1

dZ

dε
− 2r H2

1
dZ

dε

(
dN1

dε
+ dN2

dε

)

d2 (2Z)

dε2
= 1

C

{
2H2

1
dN1

dε
− 2r H3

1

[(
dN1

dε

)2

+
(
dN2

dε

)2
]

− 2r H3
1

[
N1 + r H1

(
dN1

dε
+ dN2

dε

)]
dZ

dε

}
.

(33)

From (31), we have

dN1

dε
+ dN2

dε
= c − 2r N1H1

dZ

dε
= c − rn1h1

du1
dε

.
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A direct computation shows that

d2 f

dε2
(0+) = d2(2Z)

dε2
(0+) − d2u1

dε2
(0+)

= 2r2N1H4
1 (2g + r2N1H3

1 )

C
(c0 − c)

dZ

dε
|ε=0,

(34)

Since f (0) = 0, d f
dε (0) = 0 and d2 f

dε2
(0+) > 0 if c < c0, the function f = f (ε) is

convexdownward if ε ≥ 0.Thus there exists ε01 > 0 such that f (ε) = T1(ε)−T0(ε) >

0 if 0 < ε < ε01.
Similarly, there exists ε02 > 0 such that f (ε) = T1(ε) − T0(ε) < 0 if 0 <

ε < ε02, c > c0, which implies T1 < T0. Let ε0 = min{ε01, ε02}, then the proof is
completed. ��

Second, we exhibit T1 > T0 under conditions (e.g., N02 < m
r−m ). Let

N01 = N0 + cε, N02 = N0 − cε, r1 = r + ε, r2 = r − ε, mi = m, gi = g, i = 1, 2
(35)

where r > m, N0 = m
r−m , c ≥ 0.

Theorem 4.6 Let (35) hold. Let c < c̄0 = r N2
0 H

2
1

2g+r2N0H3
1
, H1 = 1

1+N0
. Then there exists

ε0 > 0 such that if 0 < |ε| < ε0, then T1(ε) > T0(ε), and T1(ε) − T0(ε) is a
monotonically increasing function of |ε|.
Proof When we regard c as δ in the proof of Theorem 4.3, we obtain the proof of
f (0) = d f

dε (0) = 0. Recall ui (0) = Z(0) = 0 if ε = 0. A direct computation shows

du1
dε

|ε=0 = rcH2
1 + N0H1

g + r2N0H3
1

.

Then from c < c̄0, we obtain
d2 f
dε2

(0) > 0 by a proof similar to that of Theorem 4.3. ��

5 Discussion

In this paper, we demonstrate existence of stable positive equilibria in a two-patch sys-
tem with diffusion. Limit of the equilibrium exhibits that homogeneously distributed
resources support higher carrying capacity (T3 and T2) than in heterogeneously dis-
tributed resources with diffusion (T1), which can support higher carrying capacity than
heterogeneously distributed resources without diffusion (T0). These results coincide
with experimental observations by Zhang et al. (2017) and extend previous theory to
consumer-resource systems with external resource input.

The biological reason for T3 = T2 is homogeneous environments. Indeed, in homo-
geneously distributed resources, there is no difference between the two patches, which
implies that there is no difference between diffusion and non-diffusion, such that
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T3 = T2 as shown in Theorem 4.1(i). The reason for T2 > T1 in Theorem 4.1(i)
is resource-wasting. Recall N01 = N0 + ε, N02 = N0 − ε, r1 = r2 with ε > 0.
Assume that the consumer approaches carrying capacities U+

i in each patch without
diffusion. From (9), we have U+

2 < U+
1 . Then assume that diffusion D occurs: DU+

2
(resp. DU+

1 ) individuals are transferred to patch 1 (resp. patch 2) with DU+
2 < DU+

1 .
Because r1 = r2, the larger resource N01 in patch 1 is wasted since DU+

2 < DU+
1 ,

such that T1 < T2. Similar discussions can be given for T2 > T0 in Theorem 4.1(ii)
and T3 = T2 > T0 in Corollary 4.4.

The result of T1 > T0 in Theorem 4.5 holds if

N01 > N02,
r1 − r2

N01 − N02
>

1

c0
(36)

which means that for one increased unit of nutrient input in patch 1 (i.e., N01 −
N02 = 1), the increased growth rate in the patch should be larger than a certain
value (i.e., r1 − r2 > 1/c0). Thus, condition (36) exhibits that there should be a
positive relationship between nutrient input, N0, and growth rate, r , for T1 > T0,
which provides an insight different from that in (1) and may be useful in testing
systems with resources.

If r1 − r2 < 1/c0, then T1 < T0 by Theorem 4.5. On the other hand, the condition
given by Freedman and Waltman (1977) can be written as

K1 > K2,
r1 − r2
K1 − K2

>
1

c̄0
(37)

where c̄0 = K2/r2. Thus, both of (36) and (37) mean that the larger the nutrient input
(resp. the carrying capacity) in a patch, the higher the growth rate should be. That is,
there is a positive relationship between resource input and growth rate since carrying
capacity in a homogeneous environment is determined by resource. However, since
condition in (36) is different from (37) and is more testable, it provides new insight.
The biological reason for T1 > T0 in Theorem 4.5 is explained as follows. Recall
N01 = N0 + cε, N02 = N0, r1 = r + ε, r2 = r with ε > 0, c > 0, N0 = m/(r −m).
Assume that the consumer approaches the carrying capacityU+

i in each patch without
diffusion. From Theorem 2.3, we have 0 = U+

2 < U+
1 . Then assume that diffusion

D occurs: DU+
2 (resp. DU+

1 ) individuals are transferred to patch 1 (resp. patch 2)
with 0 = DU+

2 < DU+
1 . Since r1 is high, subpopulation 1 rebounds quickly to

diffusion losses and subpopulation 2 remains “overfilled,” such that T1 > T0. This
is confirmed by experimental observations that the “extra individuals” reside in the
low nutrient wells. However, when r1 is not high, the increase of DU+

2 (< DU+
1 )

in patch 1 cannot compensate the loss of DU+
1 in patch 2 where r2 is low, such that

T1 < T0. Similar discussions can be given for T1 > T0 (resp. T1 < T0) in source–sink
populations in Theorem 4.3 and the extinction of consumer because of diffusion in
Theorem 3.1(i)(iii).

Theorem 3.1 displays new prediction that increasing diffusion rate of consumer
could change its persistence to extinction in the same-resource environment. As shown
in Theorem 3.1(i)(iii), the consumer cannot persist in patch 2 with non-diffusing. If
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the growth rates are intermediate such that ri > mi and
∑2

i=1(
ri N0i
1+N0i

− mi ) < 0, the

consumer persists in both patches when the diffusion rate is small (i.e., 0 < D < D̄),
while it goes to extinction when the diffusion is large (i.e., D > D̄). The reason is
that when the diffusion rate is small, subpopulation 1 has sufficient time to rebound
to diffusion losses, which results in the persistence. When the diffusion rate is large,
the consumer goes to extinction because of the sink patch 2.

It is worth mentioning that the analysis method in this paper can be applied to the
multiple-patch model though our analysis uses the simplest two-patch system. The
comparison of carrying capacities in the n-patch model is left to be studied in the
future.
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