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Abstract
We present a computational method for performing structural translation, which has
been studied recently in the context of analyzing the steady states and dynamical
behavior of mass-action systems derived from biochemical reaction networks. Our
procedure involves solving a binary linear programming problem where the decision
variables correspond to interactions between the reactions of the original network.
We call the resulting network a reaction-to-reaction graph and formalize how such
a construction relates to the original reaction network and the structural translation.
We demonstrate the efficacy and efficiency of the algorithm by running it on 508
networks from the European Bioinformatics Institutes’ BioModels database. We also
summarize how this work can be incorporated into recently proposed algorithms for
establishing mono- and multistationarity in biochemical reaction systems.

Keywords Biochemical reactions · Deficiency · Multistationarity · Binary
programming

Mathematics Subject Classification 92C42 · 90C10

1 Introduction

A chemical reaction network (CRN) is given by a directed graph where the vertices
are complexes (i.e., linear combinations of the interacting species) and the edges are
reactions (i.e., interactions between species). Under appropriate physical assumptions,
such as spatial homogeneity and abundant molecularity, the system is often modeled
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by an autonomous system of ordinary differential equations in the concentrations of
the chemical species. The use of such dynamical models is widespread in systems
biology (Alon 2007; Ingalls 2013).

The relationship between the structural properties of a CRN and the dynamical
and steady-state behavior of the resulting dynamical systems has been studied from a
variety of perspectives, includingfluxbalance analysis (Orth et al. 2010), extremepath-
way analysis (Wiback and Palsson 2002), and stoichiometric network analysis (Clarke
1980, 1988). Recent study has focused on a structural parameter known as the defi-
ciency. It was shown by Feinberg (1972, 1972) that, if a mass-action system is weakly
reversible and has a deficiency of zero, then it necessarily has complex-balanced
steady states (deficiency zero theorem). Complex balancing guarantees uniqueness
and stability of steady states for all parameter values and initial conditions and also
affords a simple monomial parametrization of the steady-state set (Horn and Jackson
1972; Craciun et al. 2009). Further connections between the deficiency and the steady
states of mass-action systems have also been established (Feinberg 1987, 1988, 1989,
1995a, b; Craciun et al. 2009; Dickenstein and Pérez Millán 2011).

The study of the deficiency was recently initiated in generalized chemical reaction
networks (GCRNs) by Müller and Regensburger (2012, 2014). In a GCRN, each ver-
tex in the reaction graph is associated with two potentially distinct complexes, one
for the stoichiometry and one for the kinetic rate of the reaction. Surprisingly, for
weakly reversible generalized mass-action systems which have a stoichiometric and
kinetic-order deficiency of zero, we still obtain a simple monomial parametrization of
the steady-state set. A process for relating CRNs and GCRNs, called network trans-
lation, was furthermore established by Johnston (2014). Network translation consists
of restructuring a given CRN in such a way that the resulting network (a GCRN) can
be used to guarantee dynamical and steady-state properties of the original CRN. The
process has been utilized to establish connections between chemical reaction network
theory (Feinberg 1979), the algebraic study of toric varieties (Craciun et al. 2009;
Pérez Millán et al. 2012; Dickenstein and Pérez Millán 2018), and biochemical reac-
tion modeling (Conradi and Shiu 2015; Tonello and Johnston 2018). Recent work has
also established a deficiency-based method for constructing rational parametrizations
of steady-state sets for a broad class of mass-action systems (Johnston et al. 2018).

In this paper, we focus on computational methods for performing the structural
component of network translation, which we call structural translation. In general,
given a biochemical reaction network of realistic scale, it is challenging to determine
a suitable (e.g., weakly reversible, deficiency zero) structural translation. We extend
the recent computational work of Johnston (2015) and Tonello and Johnston (2018)
by introducing an elementary flux mode-based approach for performing structural
translation. To accomplish this, we introduce a directed graph (called a reaction-
to-reaction graph) which treats the reactions of a network as vertices and uses the
elementary modes to form directed cycles. Under certain rules on the connections on
this graph, a weakly reversible and deficiency zero structural translation of the original
network can then be constructed. We formulate the construction of this reaction-to-
reaction graph as a binary linear programming problem. Such problems can be solved
in polynomial time in the number of constraints by Lenstra’s algorithm (1983).
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Chemical Reaction Network Reaction-to-Reaction Graph Structural Translation

(a) (b) (C)

Fig. 1 A chemical reaction network (a) corresponding to a histidine kinase network where X and Y are two
signaling proteins and p is a phosphate group (Conradi et al. 2017). This CRN has elementary flux modes
{r1, r2, r4} and {r2, r3} which correspond to the directed cycles in the reaction-to-reaction graph (b). The
structural translation c has the same elementary flux modes and stoichiometric vectors as the CRN, but the
elementary flux modes correspond to cycles

Consider the histidine kinase system given in Fig. 1a, which is modified from an
example by Conradi et al. (2017) and reproduced by Johnston et al. (2018). This
network has two elementary flux modes (sets of reactions which balance the net sto-
ichiometry change), namely, e1 = {r1, r2, r4} and e2 = {r2, r3}. Consistent with
these elementary flux modes, we can construct the reaction-to-reaction graph given in
Fig. 1b where the reactions are treated as vertices and there is a minimal cycle on each
elementary flux mode of the original network. From this reaction-to-reaction graph,
we can then construct the structural translation of the original network given in Fig. 1c.
Notably, the structural translation is weakly reversible and deficiency zero, while the
original network is neither.

The paper is organized as follows. In Sect. 2, we introduce the terminology and
background results relevant to chemical reaction networks and structural translation.
In Sect. 3, we introduce the notion of a reaction-to-reaction graph, demonstrate how it
is related to the structure of a chemical reaction network, and introduce a binary linear
programming framework for constructing them. In Sect. 4, we present the output of a
run of the algorithm on the European Bioinformatics’ BioModels database (Li et al.
2010) and detail a few biochemical examples. In Sect. 5, we summarize the results of
the paper. In “Appendix A,” we demonstrate how the results of our algorithm may be
utilized to construct steady-state parametrizations of mass-action systems according
to Lemma 12 and Theorem 14 of Johnston et al. (2018) and, when possible, establish
mono- or multistationarity according to Corollary 2 of Conradi et al. (2017).

We use the following notation throughout:

– R
n
>0 = {(x1, . . . , xn) | xi > 0, i = 1, . . . , n}

– R
n≥0 = {(x1, . . . , xn) | xi ≥ 0, i = 1, . . . , n}

– 0m×n is the m × n matrix with 0i, j = 0 for all i = 1, . . . ,m and j = 1, . . . , n
– Im×m is the m-dimensional identity matrix
– For an indexed set X ⊆ {X1, . . . , Xn}, supp(X ) = {i ∈ {1, . . . , n} | Xi ∈ X }.
– For a vector v ∈ R

n≥0, supp(v) = {i ∈ {1, . . . , n} | vi > 0}

2 Background

In this section, we present the terminology relevant to chemical reaction networks,
structural translation, and elementary flux modes. Note that we only introduce the
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terminology required to establish the computational program presented in Sect. 3.3. In
particular, we do not use the full generality of generalized chemical reaction networks
as given by Müller and Regensburger (2012, 2014).

2.1 Chemical Reaction Networks

We define a species set S = {X1, . . . , Xm} and a complex set C = {y1, . . . , yn}whose
elements (complexes) are linear combinations of the species, i.e.,

yi =
m∑

j=1

yi j X j , i = 1, . . . , n.

The coefficients yi j ∈ Z≥0 are called stoichiometric coefficients. Allowing a slight
abuse of notation, we let yi denote both the complex itself and the correspond-
ing complex vector yi = (yi1, . . . , yim) ∈ Z

m≥0. The reaction set is given by
R = {r1, . . . , rr } ⊆ C × C where we represent individual reactions as either ordered
pairs of complexes (i.e., rk = (yi , y j )) or directed edges (i.e., rk = yi → y j ). It will
occasionally be convenient to use mappings s, p : supp(R) �→ supp(C) such that s
(respectively, p) maps the source (respectively, product) of each reaction to the cor-
responding complex, i.e., rk = ys(k) → yp(k). A chemical reaction network (CRN) is
given by the triple (S, C,R).

The reaction graph of a CRN is the directed graph G = (V , E) where the vertices
are the complexes (i.e., V = C) and the edges are the reactions (i.e., E = R). The
connected components of the reaction graph of a CRN are called linkage classes,
while the strongly connected components are called strong linkage classes. We will
let � denote the number of linkage classes in a CRN. A CRN is said to be weakly
reversible if its linkage classes and strong linkage classes coincide. To each reaction
rk = ys(k) → yp(k) ∈ R we may associate a reaction vector yp(k) − ys(k) ∈ Z

m .
The stoichiometric matrix of a CRN is given by the matrix Γ ∈ Z

m×r with columns
defined by Γ·,k = yp(k) − ys(k). The stoichiometric subspace of a CRN is given by
S = im(Γ ).

Consider a time-dependent vector of nonnegative chemical concentrations x(t) =
(x1(t), . . . , xm(t)) ∈ R

m≥0. Assuming sufficient molecularity of chemical species and
mass-action kinetics, it is common to assign each reaction ri ∈ R a rate constant
ki ∈ R>0 and model the evolution of x(t) via the mass-action system

dx
dt

= Γ R(x) (1)

where R(x) ∈ R
r≥0 has entries Ri (x) = ∏m

j=1 x
[ys(i)] j
j (Guldberg and Waage 1864).

Other widely used kinetic choices for R(x) include Michaelis–Menten and Hill kinet-
ics (Hill 1910; Michaelis and Menten 1913). Note that dx/dt ∈ S for all t ≥ 0
and consequently solutions are restricted to stoichiometric compatibility classes, i.e.,
x(t) ∈ (S + x0) ∩ R

m≥0 for t ≥ 0. The analysis we perform in this paper will focus
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largely on the structural aspects of CRNs rather than dynamical equations (1). That
is, we focus on Γ rather than R(x).

Wemay further factor the stoichiometric matrix Γ by introducing a complex matrix
Y ∈ Z

m×n
≥0 with columns Y·,i = yi and an incidence matrix Ia ∈ {−1, 0, 1}n×r with

entries [Ia]ik = −1 if s(k) = i , [Ia]ik = 1 if p(k) = i , and [Ia]ik = 0 otherwise.
It can be easily verified that Γ = Y Ia . The deficiency of a CRN is a nonnegative
parameter defined by δ = dim(ker(Y ) ∩ im(Ia)). Alternatively, the deficiency can be
computed by the formula δ = n − � − dim(S) (Johnston 2014). The deficiency was
first introduced by Feinberg (1979, 1972) and has been used extensively since in the
context of steady states of mass-action systems (Feinberg 1987, 1988, 1989, 1995a, b;
Müller and Regensburger 2012; Müller et al. 2014; Johnston 2014).

Consider the following example.

Example 1 Reconsider the histidine kinase network from Fig. 1a.
We have the following sets:

S = {X , X p,Y ,Yp}
C = {X , X p, X p + Y , X + Yp,Yp,Y }
R = {X → X p, X p + Y → X + Yp, X + Yp → X p + Y ,Yp → Y }. (2)

The network has six complexes (n = 6) and three linkage classes (� = 3). The second
linkage class is strongly connected, while the first and third are not. It follows that the
network is not weakly reversible. Using the ordering of species and reactions given
above, we can compute that the network has the following structural matrices

Γ =

⎡

⎢⎢⎣

− 1 1 − 1 0
1 − 1 1 0
0 − 1 1 1
0 1 − 1 − 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 0 1 0 0
0 1 1 0 0 0
0 0 1 0 0 1
0 0 0 1 1 0

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

− 1 0 0 0
1 0 0 0
0 − 1 1 0
0 1 − 1 0
0 0 0 − 1
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
= Y Ia . (3)

We have that dim(S) = 2 so that the deficiency is δ = n−�−dim(S) = 6−3−2 = 1.
Alternatively, we can compute that δ = dim(ker(Y ) ∩ im(Ia)) = 1.

2.2 Structural Translation

We introduce the following structural notion of network translation, which is weaker
than those presented by Johnston (2014, 2015), Tonello and Johnston (2018), and
Johnston et al. (2018).

Definition 1 Consider two CRNs (S, C,R) and (S, C′,R′) with corresponding com-
plex, incidence, and stoichiometric matrices Y , Ia , Γ , Y ′, I ′

a , and Γ ′ as defined in
Sect. 2.1. We say that (S, C,R) and (S, C′,R′) are structural translations of one
another if Γ = Y Ia = Y ′ I ′

a = Γ ′.
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Intuitively, two CRNs are structural translations of one another if, despite potentially
different complexes and reactions (i.e., the Y and Ia), they have the same reaction
vectors (i.e., columns of Γ ). In practice, we will typically have a CRN (S, C,R)

given to us and want to construct a CRN (S, C′,R′) which has specific structure
properties. Consequently, we will typically refer to (S, C,R) as the original network
and (S, C′,R′) as the structural translation.

Network translation can be visualized by the operation of adding or subtracting
linear combinations of species, known as translation complexes, from individual
reactions. The summation of the original network’s complexes and corresponding
translation complexes then produces the translated network’s complexes. Formally, we
let Λ = {α1, . . . , αr } where αi ∈ R

m , i = 1, . . . , r , denote a set of translation com-
plexes. We represent the operation of translating the reaction rk = ys(k) → yp(k) ∈ R
by the translation complex αk as

ys(k) yp(k) (+αk)
rk

for k = 1, . . . , r . This operation produces the translated reactions ys(k) + αk →
yp(k) + αk ∈ R′ and translated complexes ys(k) + αk, yp(k) + αk ∈ C′. Note that this
may produce repeated complexes and therefore new connections in the corresponding
reaction graph. Since the net stoichiometric change across each reaction is unaltered
by this operation (i.e., yp(k) − ys(k) = (yp(k) + αk) − (ys(k) + αk) = y′

p(k) − y′
s(k))

we have that Γ = Γ ′ and the networks are structural translations of one another.
Consider the following example.

Example 2 Reconsider the histidine kinase network from Fig. 1a taken with the fol-
lowing translation scheme

X X p (+Y )

X p + Y X + Yp (+∅)

Yp Y (+X)

r1

r2

r3

r4

(4)

That is, we translate r1 by α1 = Y , translate r2 and r3 by α2 = α3 = ∅, and translate
r4 by α4 = X . This produces the structural translation in Fig. 1c.

Notably, the stoichiometric changes across each reaction in the two networks are
identical. Formally, for the network in Fig. 1c, we have the sets

S = {X , X p,Y ,Yp}
C = {X + Y , X p + Y , X + Yp}.
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Using this ordering of species and complexes, we can determine the following struc-
tural matrices:

Γ ′ =

⎡

⎢⎢⎣

− 1 1 − 1 0
1 − 1 1 0
0 − 1 1 1
0 1 − 1 − 1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 1
0 1 0
1 1 0
0 0 1

⎤

⎥⎥⎦

⎡

⎣
− 1 0 0 1
1 − 1 1 0
0 1 − 1 − 1

⎤

⎦ = Y ′ I ′
a (5)

SinceΓ = Γ ′ whereΓ is from (3), we have that the networks in Fig. 1a, c are structural
translations of one another by Definition 1.

It is notable that the CRN in Fig. 1c is weakly reversible and deficiency zero, while
the original CRN in Fig. 1a is not weakly reversible and has a deficiency of one. The
structure of the CRN in Fig. 1c can be used to establish properties about the steady-
state set of mass-action system (1) corresponding to the network in Fig. 1a by the
results of Johnston et al. (2018) and Conradi et al. (2017). We outline some of these
methods in “Appendix A.”

2.3 Elementary Flux Modes

The following structural property of CRNs will factor significantly in our construction
of structural translations in Sect. 3.

Definition 2 Consider a CRN (S, C,R) with stoichiometric matrix Γ and incidence
matrix Ia . Then:

1. A vector ei ∈ R
r≥0 is an elementary flux mode of the CRN if ei ∈ ker(Γ ) and

ei is not a convex combination of any other e j , ek ∈ ker(Γ ) ∩ R
r≥0. The set of

elementary flux modes of a CRN will be denoted E = {e1, . . . , ep}.
2. The elementary flux cone is defined as cone(E) = ker(Γ ) ∩ R

r≥0.
3. An elementary flux mode ei ∈ E is called a cyclic generator of the CRN if

ei ∈ ker(Ia).
4. An elementary flux mode ei ∈ E is called a stoichiometric generator of the CRN

if ei /∈ ker(Ia).
5. The set of elementary flux modes E is unitary if every entry of every ei ∈ E is a

one or a zero.
6. The set of elementaryfluxmodesE covers the reaction setR if cone(E) ∩R

r
>0 
= ∅.

Note that the set of elementary modes E = {e1, . . . , ep} consists of the extremal
generators of the elementary flux cone, cone(E).

In this paper, we only consider networks whose elementary flux modes are all
unitary. In such cases, we have that ei is completely determined by supp(ei ) and,
consequently, we will allow ei to correspond to both the elementary flux mode and its
support, e.g., we will use ei = (1, 0, 1, 1, . . .) and ei = {r1, r3, r4, . . .} interchange-
ably. We may interpret unitary elementary flux modes as sets of reactions which, if
taken in any order, would result in no net gain or loss of any species. A cyclic gen-
erator furthermore has the property that this sequence of reactions corresponds to a
directed cycle in the reaction graph of the CRN. Elementary flux modes have played
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a significant role recently in metabolic engineering, although efficient computation of
the set E remains challenging (Zanghellini et al. 2013).

Consider the following example.

Example 3 Reconsider the histidine kinase example given in Fig. 1a and the structural
translation given in Fig. 1c. Also consider the corresponding matrices Y and Ia given
in (3) and Y ′ and I ′

a given in (5). Since Γ = Γ ′, we have that the elementary modes of
the two CRNs coincide. We can compute that e1 = (1, 1, 0, 1) and e2 = (0, 1, 1, 0).
Since e1 and e2 only consist of zeros and ones, we have that the CRNs have unitary
elementarymodes.We thereforewrite e1 = {r1, r2, r4} and e2 = {r2, r3}. Furthermore,
since ker(Γ ) ∩ R

r
>0 
= ∅, we have that E covers R.

For the CRN in Fig. 1a e1 does not correspond to a cycle but e2 does so that
e1 is a stoichiometric generator of the CRN, while e2 is a cyclic generator. For the
CRN in Fig. 1c, we have that both e1 and e2 correspond to cycles so that e1 and
e2 are both cyclic generators of the CRN. Structural translation scheme (4) therefore
converted the stoichiometric generator e1 into a cyclic generator. The primary objective
of the methods presented in Sect. 3 will be to use structural translation to convert
stoichiometric generators into a cyclic generator. Notably, if all of the stoichiometric
generators are converted into cyclic generators, then the deficiency of the resulting
network is zero.

3 Main Results

In general, given a CRN (S, C,R), a structural translation (S, C′,R′) with desirable
properties (e.g., weak reversibility, deficiency zero) is not known and therefore must
be constructed. For biochemical reaction networks of realistic size, computational
implementation is necessary.

Computational algorithms using mixed-integer linear programming (MILP) have
been explored recently by Johnston (2015) and Tonello and Johnston (2018). Johnston
(2015) presented a MILP program for performing network translation by reconstruct-
ing the reaction graph of the original network. The method, however, depended upon
the translated network’s complexes and the network’s rate constants, both of which are
typically not a priori known. The method introduced by Tonello and Johnston (2018),
by contrast, relies only upon knowledge of the network’s elementary flux modes and
attempts to convert the network’s stoichiometric generators into cyclic generators.
The method, however, requires a large number of decision variables and relies sen-
sitively on the ordering of the reactions. For example, using the method presented
in this paper, entry biomd0000000653 in the European Bioinformatics Institute’s
BioModels database, which has 124 reactions, computes in 4 minutes and 37 seconds
on the primary author’s professional use laptop but would not load using the method
of Tonello and Johnston (2018).

In this section, we present a novel computational method by which to compute
structural translations. Our method depends upon a new CRN object which we call a
reaction-to-reaction graph.We showhow this object relates to the underlyingCRNand
then introduce a binary linear programming (BLP) problem on this graph which can
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be used to establish structural translations. This represents a significant improvement
over existing methods since BLP problems can be solved in polynomial time in the
number of constraints by Lenstra’s algorithm (1983).

3.1 Reaction-to-Reaction Graph

We introduce the following.

Definition 3 A directed graph GR = (VR, ER) is a reaction-to-reaction graph of a
CRN (S, C,R) if VR = R and ER ⊂ R × R. Furthermore, we say that (S, C,R)

and GR are:

1. product-to-source compatible (PS-compatible) if, for any ri = ys(i) → yp(i) and
r j = ys( j) → yp( j), (ri , r j ) ∈ ER if and only if yp(i) = ys( j).

2. common source compatible (CS-compatible) if ys(i) = ys( j) and (rk, ri ) ∈ ER

implies (rk, r j ) ∈ ER, i.e., if ri and r j have a common source complex, then every
reaction rk with an edge to ri has an edge to r j .

3. elementary flux mode compatible (EM-compatible) if every elementary flux mode
of the CRN corresponds to the vertices of a minimal directed cycle in GR, and
vice versa.

A reaction-to-reaction graph treats the reactions of a network as its vertices, while
the edges enforce additional conditions on the relationship with the underlying CRN
(PS-, CS-, or EM-compatibility). The condition of PS-compatibility makes a cor-
respondence between edges (ri , r j ) ∈ ER in the reaction-to-reaction graph and
junctions of the following form in the reaction graph of the CRN:

· · · ri−→ y
r j−→ · · ·

The condition of CS-compatibility joins reactions from common source complexes,
e.g.,

· · · rk−→ y
ri

r j

↗
↘

forces (rk, ri ) ∈ ER iff (rk, r j ) ∈ ER. Note that a reaction-to-reaction graph is
trivially CS-compatible with a CRN if there are no reactions with a common source
(see Fig. 2a). The condition of EM-compatibility forces a correspondence between
elementary flux modes in the CRN and directed cycles in the reaction-to-reaction
graph.

Our goal is to construct reaction-to-reaction graphs which are CS- and EM-
compatiblewith a givenCRN (S, C,R) and then enforce PS-compatibility to construct
a network translation (S, C′,R′). Consider the following examples.

Example 4 Reconsider the histidine network given in Fig. 1a. We can construct a
reaction-to-reaction graph which is PS- and CS-compatible, but not EM-compatible,
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1622 M. D. Johnston, E. Burton

Fig. 2 Two reaction-to-reaction graphs of four reactions, labeled {r1, r2, r3, r4}. The reaction-to-reaction
graph on the left is PS- and CS-compatible with the CRN in Fig. 1a, while the reaction-to-reaction graph
on the right is EM- and CS-compatible with the CRN in Fig. 1a and PS-, CS-, and EM-compatible with the
CRN in Fig. 1c.

with this CRNby selecting the edges ER = {(r2, r3), (r3, r2)}. This gives the reaction-
to-reaction graph in Fig. 2a. Note that we do not include any interactions involving r1
and r4 since these reactions do not connect with any others in the reaction graph of
the CRN.

Alternatively, we may construct a reaction-to-reaction graph which is EM- and
CS-compatible but not PS-compatible to the CRN in Fig. 1a. We select edges such
that there are minimal cycles on e1 = {r1, r2, r4} and e2 = {r2, r3}. Selecting ER =
{(r1, r2), (r2, r4), (r4, r1), (r2, r3), (r3, r2)} gives the reaction-to-reaction graph given
in Fig. 2b. It can be checked exhaustively that there is no reaction-to-reaction graph
which is all of PS-, CS-, and EM-compatible with this CRN.

Example 5 Consider theCRN inFig. 1a.Wemay construct a reaction-to-reaction graph
which is PS-, CS-, and EM-compatible with the CRN in Fig. 1c by taking ER =
{(r1, r2), (r2, r4), (r4, r1), (r2, r3), (r3, r2)}. Notably, this edge set coincides with the
edge set for the reaction-to-reaction graph which was CS- and EM-compatible to the
CRN in Fig. 1a.

Remark 1 Notice that there are no implications of the reaction-to-reaction graph on the
source complexes of the corresponding CRN. In particular, a single vertex (reaction)
may have multiple source complexes. For example, consider the reaction-to-reaction
graph in Fig. 2b as it relates to the CRN in Fig. 1a. We have that (r1, r2) ∈ ER and
(r3, r2) ∈ ER; however, we have ys(1) = X 
= X + Yp = ys(3).

3.2 Main Theory

In order to state our objectives in Sect. 3.3, we need to further understand the relation-
ship between CRNs and PS-, CS-, and/or EM-compatibility of reaction-to-reaction
graphs.

We have the following results.

Lemma 1 Consider a CRN (S, C,R) and a reaction-to-reaction graph GR =
(VR, ER) which is PS-compatible with (S, C,R). Then GR is CS-compatible with
(S, C,R).
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Proof Consider a CRN (S, C,R) and let GR = (VR, ER) be a reaction-to-reaction
graph which is PS-compatible with (S, C,R). Suppose that (rk, ri ) ∈ ER and ys(i) =
ys( j) for some r j ∈ R. Since GR is PS-compatible with (S, C,R), we have yp(k) =
ys(i) = ys( j). It follows from PS-compatibility that (rk, r j ) ∈ ER and therefore
CS-compatibility is attained. ��

Lemma 2 Consider a CRN (S, C,R) and a reaction-to-reaction graph GR =
(VR, ER) which is PS-compatible with (S, C,R). Suppose (S, C,R) has a set of
elementary modes E = {e1, . . . , ep} which is unitary and coversR. Then GR is EM-
compatible with (S, C,R) if and only if (S, C,R) is weakly reversible and deficiency
zero.

Proof Consider a CRN (S, C,R) and let GR = (VR, ER) be a reaction-to-reaction
graph which is PS-compatible with (S, C,R) and note that PS-compatibility implies
CS-compatibility by Lemma 1. We prove the forward and backward implications
separately.

(�⇒) Suppose GR is EM-compatible with (S, C,R). Since the elementary modes of
(S, C,R) cover R, we have by EM-compatibility that every reaction (vertex) in GR

is a part of a cycle. It follows immediately that (S, C,R) is weakly reversible.
Now suppose that (S, C,R) is not deficiency zero. It follows that δ = dim(ker(Y )∩

im(Ia)) > 0 so that there is a vector v ∈ R
r such that Iav 
= 0, but Y Iav = 0. If

v ∈ R
r≥0, since Γ v = 0, we have that v ∈ cone(E), i.e., v is in the elementary flux

cone. Since the elementary modes are unitary and the reaction-to-reaction graph and
CRN are PS- and EM-compatible, we have that v corresponds to a summation of
cycles in (S, C,R) so that Iav = 0, which is a contradiction.

Now suppose that v /∈ R
r≥0, i.e., at least two components have opposite signs.

Then, since E covers R, we have that there are λi ≥ 0, i = 1, . . . , p, such that
w = v + ∑p

i=1 λi ei ∈ R
r≥0. Furthermore, we have Γw = Γ v + ∑p

i=1 λiΓ ei = 0
so that w ∈ cone(E). Since the elementary flux modes are unitary, it follows that w
corresponds to a summation of weighted cycles in (S, C,R) so that Iaw = 0. Note
that Iav = Iaw − ∑r

i=1 λi Iaei = 0. This contradicts our assumptions and completes
the forward direction of the proof.

(⇐�) Now suppose that (S, C,R) is weakly reversible and deficiency zero. It follows
from δ = 0 that Γ v = 0 implies Iav = 0, i.e., if v ∈ cone(E), then v is a cyclic
generator of the CRN. It follows from PS-compatibility that every elementary flux
mode is a cycle in the reaction graph of the CRN and therefore a cycle in GR. It
follows that GR is EM-compatible, and we are done. ��

Wenowwant to relate the properties of PS-, CS-, andEM-compatibility to structural
translation (Definition 1). We have the following result.

Theorem 1 Consider a CRN (S, C,R) with a set of elementary flux modes E =
{e1, . . . , ep} which is unitary and covers R. If there is a reaction-to-reaction graph
GR = (VR, ER) which is CS- and EM-compatible to (S, C,R), then there is a CRN
(S, C′,R′) which is PS-, CS-, and EM-compatible with GR. Furthermore, (S, C′,R′)
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is a weakly reversible, zero deficiency structural translation of (S, C,R). In partic-
ular, the translation complexes αi ∈ R

m≥0, i = 1, . . . , r , required to produce such a
translation satisfy the following linear system, which is necessarily consistent:

αi − α j = ys( j) − yp(i), (ri , r j ) ∈ ER. (6)

Proof Consider a reaction-to-reaction graph GR = (VR, ER)which is CS- and EM-
compatible with (S, C,R). We show that it is possible to construct a CRN (S, C′,R′)
which is EM-, CS-, and PS-compatible toGR by setting up and solving corresponding
linear system (6) in the translation complexes Λ = {α1, . . . , αr }.

In order for (S, C′,R′) to be PS-compatible to GR, we require that

y′
p(i) = y′

s( j), for (ri , r j ) ∈ ER. (7)

Note that we can satisfy this set of equations if there is a set of translation complexes
Λ = {α1, . . . , αr } where αi ∈ R

m , i = 1, . . . , r , such that y′
p(i) = yp(i) + αi and

y′
s( j) = ys( j) + α j , i.e., each complex in C′ results from translating a complex in C by
the corresponding translation complex αi ∈ Λ. From (7), this gives the system

yp(i) + αi = ys( j) + α j , (ri , r j ) ∈ ER (8)

which can be rearranged to give (6) in the unknown vectors αi ∈ R
m , i = 1, . . . , r .

We now show that, since GR is CS- and EM-compatible with (S, C,R), that (6) is
necessarily consistent.

For ease of notation, we let q = |ER| and suppose the edges (ri , r j ) ∈ ER are
ordered 1, . . . , q, i.e., ER = {v1, . . . , vq} ⊆ R × R where vk = (ri , r j ). We can
then write (6) as the linear system Aα = b where α = (α1, . . . , αr ) ∈ R

mr is a vector
of unknowns, b = (b1, . . . , bq) ∈ R

mq has entries bk = (ys( j) − yp(i)) ∈ R
m if

vk = (ri , r j ) ∈ ER, and A ∈ R
mq×mr has the block structure

A =

⎡

⎢⎢⎢⎣

A11 A12 · · · A1r
A21 A22 · · · A2r
...

...
. . .

...

Aq1 Aq2 · · · Aqr

⎤

⎥⎥⎥⎦ (9)

where, given vk = (ri , r j ) ∈ ER, we set Aki = Im×m , Akj = −Im×m , and Akl =
0m×m for all l 
= i or l 
= j .

In order to show the linear system Aα = b is consistent, it is sufficient to show
that c ∈ ker(AT) implies that cTb = 0. To characterize ker(AT), notice that the block
structure of AT corresponds to the incidence matrix of GR (interpreting the identity
blocks Im×m as 1 and the 0m×m blocks as 0). It follows that ker(AT) has support on
the minimal cycles of GR which correspond by EM-compatibility to the elementary
modes E = {e1, . . . , ep} of (S, C,R). We can extend this to the block structure of AT

in the followingway: to each elementarymode ek ∈ E , we introduce an arbitrary vector
β̄k ∈ R

m and define βk = (βk
1 , . . . , β

k
q ) ∈ R

mq such that, if {vμ(1), . . . , vμ(l)} the
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minimal cycle in GR corresponding to the elementary mode ek , we have βk
μ(i) = β̄k

for all i = 1, . . . , l. We have that {β1, . . . , β p} ⊆ R
mq forms a basis of ker(AT).

Furthermore, it follows that for k ∈ {1, . . . , p},

(βk)Tb = β̄T
k

l∑

i=1

(ys(μ(i)) − yp(μ( j))) = −β̄T
k

l∑

i=1

(yp(μ(i)) − ys(μ(i))) = 0

since ek = {rμ(1), . . . , rμ(l)} is an elementary flux mode of (S, C,R).
It follows that the system Aα = b is consistent so that we may solve system

(6) for the translation complexes Λ = {α1, . . . , αr }. By construction, the resulting
network (S, C′,R′) is PS-, CS-, and EM-compatible with GR. Furthermore, we have
Γ = Γ ′ so that (S, C,R) and (S, C′,R′) are structural translations of one another,
and (S, C′,R′) is weakly reversible and deficiency zero by Lemma 2, and we are
done. ��
Example 6 Reconsider the reaction-to-reaction graph in Fig. 2b. This graph is both CS-
and EM-compatible with the CRN in Fig. 1a. It follows from Theorem 1 that there
is a CRN (S, C′,R′) which is PS-, CS-, and EM-compatible with the reaction-to-
reaction graph in Fig. 2b. Furthermore, this CRN is aweakly reversible, deficiency zero
structural translation of the original CRN. We can quickly verify that these properties
are satisfied by the CRN in Fig. 1c.

Remark 2 Note that having a structural translation with a deficiency of zero corre-
sponds to a stoichiometric deficiencyof zero in the correspondinggeneralized chemical
reaction network (Müller and Regensburger 2012, 2014). It is still possible, however,
that the kinetic-order deficiency is nonzero (see “Appendix A.4”).

3.3 Computing Structural Translations

Theorem 1 and the networks in Fig. 1 suggest a process bywhich to construct structural
translations. We perform the following steps:

1. From the given CRN (S, C,R), we compute the set of elementary flux modes
E = {e1, . . . , ep} and the set of sets of reactions with shared source complexes,
i.e., F = { f1, . . . , fq} where ri , r j ∈ fk , i 
= j , for some k if ys(i) = ys( j).

2. From the sets E and F , we determine a reaction-to-reaction graph GR =
(VR, ER) which is CS- and EM-compatible with (S, C,R).

3. From this reaction-to-reaction graph GR, we construct a CRN (S, C′,R′) which
is PS-, CS-, and EM-compatible with GR by solving (6).

Note that, if successful, this algorithm produces a weakly reversible, deficiency zero
structural translation of (S, C,R) by Theorem 1. In what follows we describe the
approaches taken to these three steps.

Step 1: Computing Elementary Flux Modes
Consider a CRN (S, C,R). To determine the set of elementary flux modes E of

(S, C,R), we use the crnpy Python package developed by Tonello (2016). In accor-
dance with Theorem 1, we do not consider the network if the set E is not unitary (i.e.,
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some elementary flux modes ei ∈ E with entries other than zeros and ones) or does
not cover R (i.e., there is a reaction which does not have support on any elementary
mode ei ∈ E).

We also collect sets of reactions with shared source complexes into a set F =
{ f1, . . . , fq} where q is the number of source complexes which are the source for at
least two reactions. This set can be constructed by direct analysis of the incidence
matrix Ia of the CRN.

Throughout this section, we consider elementary flux modes according to their
supports, i.e., ei ⊆ R.

Step 2: Computing the Reaction-to-Reaction Graph
Recall that a binary linear programming (BLP) problem can be stated in the general

form
maximize cTx
subject to Ax ≤ b

(10)

where A ∈ R
n×m , b ∈ R

n , and c ∈ R
m are matrices and vectors of parameters, and

x ∈ {0, 1}m is a vector of binary decision variables.
We formulate the problem of determining a reaction-to-reaction graph GR =

(VR, ER) which is CS- and EM-compatible with (S, C,R) as a BLP problem. We
introduce binary decision variables xi j ∈ {0, 1}, i, j = 1, . . . , r , i 
= j , with the
following logical requirement:

xi j = 1 ⇐⇒ (ri , r j ) ∈ ER

where ER is the edge set of our reaction-to-reaction graph GR = (VR, ER). We
now seek to set up constraints sufficient to guarantee the reaction-to-reaction graph
GR is CS- and EM-compatible with (S, C,R). For this purpose, it is sufficient to
consider the sets E and F determined in Step 1.

Elimination of unnecessary edges: It is often apparent from the structure of E and F
that the reactions may be partitioned into nonintersecting sets of reactions. We define
the binary relation ‘≡’ to be the transitive closure of the following properties:

1. ei ≡ e j if ei ∩ e j 
= ∅, and
2. ei ≡ e j if there are rk ∈ ei and rl ∈ e j such that rk, rl ∈ fu for some fu ∈ F .

That is, two elementarymodes are connected by the relation ‘≡’ if they share a reaction
(condition 1) or possess reactions which have a common source complex (condition
2). We then impose the following partition rule:

xi j = 0, if ri ∈ ek and r j ∈ el where ek 
≡ el . (Par)

CS-compatibility: To guarantee GR = (VR, ER) is CS-compatible with (S, C,R),
we impose that, if ri , r j ∈ fl for some fl ∈ F , then

xki − xk j = 0, k = 1, . . . , r . (CS)
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The constraint set (CS) guarantees that either (rk, ri ) ∈ ER and (rk, r j ) ∈ ER, or
(rk, ri ) /∈ ER and (rk, r j ) /∈ ER.

EM-compatibility: Consider an elementary flux mode ek ∈ E . We introduce the fol-
lowing constraint set:

{∑
ri∈ek xi j = 1, r j ∈ ek∑
r j∈ek xi j = 1, ri ∈ ek .

(EM1)

The first constraint set in (EM1) guarantees that the number of edges on a component
corresponding to the support of an elementary flux mode contains exactly the number
of edges contained in the elementary flux mode. The second constraint set in (EM1)
guarantees that each vertex of the component has exactly one outgoing edge, while the
third constraint set guarantees that each such vertex has exactly one incoming edge.

The constraint set (EM1) guarantees that every vertex (reaction) belonging to an
elementary mode is a part of exactly one cycle on the support of that elementary mode.
It does not, however, guarantee that these cycles aremaximalwith respect to the support
of the elementary mode. For example, an elementary mode consisting of 6 reactions
may be split into a 2-cycle and a 4-cycle, or two 3-cycles. We furthermore impose
that elementary flux modes may not be decomposed into subcycles. We guarantee this
by imposing that, for every elementary mode ek ∈ E with l(k) = |ek | ≥ 4, every
combination e′

k = {rμ(1), . . . , rμ(l(k′))} ⊂ ek with 2 ≤ |e′
k | ≤ � |ek |

2 � satisfies:
⎧
⎨

⎩
∑

ri ,r j∈e′
k

xi j ≤ |ek′ | − 1 (EM2)

Since a cycle on a component of size |ek′ | is required to have |ek′ | edges, the constraint
set (EM2) guarantees that no subcycles exist on the support of an elementaryfluxmode.
Notice that we do not need to apply this condition for components |ek′ | > � |ek |

2 � since
a subcycle of such size necessitates a subcycle of size |ek′ | ≤ � |ek |

2 � by (EM1).

Objective function: We impose the following objective function

minimize
r∑

i, j=1
i 
= j

xi j . (Obj)

That is, we minimize the number of edges in (ri , r j ) ∈ ER. This prohibits the proce-
dure from adding unnecessary edges (ri , r j ) ∈ ER.We produce a reaction-to-reaction
graph by optimizing (Obj) over the constraint sets (Par), (EM1), (EM2), and (CS).

Remark 3 Although (EM2) guarantees that there are no subcycles on a given ele-
mentary flux mode, it is possible that the optimization procedure will create cycles
which do not correspond to minimal elementary flux modes (for example, consider
entry biomd0000000008 in the European Bioinformatics Institute’s BioModels
database). The resulting reaction-to-reaction graph will then fail to be EM-compatible
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with (S, C,R). Rather than implementing further constraints like (EM2) to elimi-
nate this possibility, we note that such a network will fail to have consistent system
(6). Consistency of a linear system Ax = b is simple to check computationally by
checking rank(A) = rank(B) where B is the augmented matrix B = [A | b]. If
rank(A) 
= rank(B), we do not proceed to Step 3.

Step 3: Construct Structural Translation (S, C′,R′)
To construct a structural translation (S, C′,R′) from the reaction-to-reaction graph

produced in Step 2, we need to solve linear system (6). As a preprocessing step, we
checkwhether (6) is consistent by computing the rank of the associatedmatrices. If the
system is not consistent, the network does not admit a structural translation by Lemma
2. If the system is consistent, we may construct a structural translation (S, C′,R′) by
solving (6) for the set of translation complexes Λ = {α1, . . . , αr }.

Rather than solving (6) directly, we use the observation that, for a known αi , we
have

α j = yp(i) − ys( j) + αi

for every r j ∈ R such that (ri , r j ) ∈ ER. Consequently, we may use the following
algorithm to solve (6):

1. Initialize the sets P = R, P ′ = ∅, and P ′′ = ∅.
2. Select an arbitrary ri ∈ P and then:

(a) set αi = 0 and
(b) set P ′ = {ri } and P = P \ {ri }.

3. Choose a r j ∈ P such that ri ∈ P ′ and (ri , r j ) ∈ ER, and then do the following:

(a) set α j = yp(i) − ys( j) + αi and
(b) set P ′′ = (P ′′ ∪ {r j }) \ P ′.

4. If P ′′ 
= ∅, then:
(a) set P ′ = P ′′, P = P \ P ′, and P ′′ = ∅ and
(b) repeat from step 3.

1. If P ′′ = ∅ and P 
= ∅ then repeat from step 2.
2. If P ′′ = ∅ and P = ∅, we are done.
This algorithm solves for each translation complex in (6) successively and can in
general be solved more efficiently than the corresponding system in matrix form.
We subsequently adjust translation complexes so that the resulting complexes are
nonnegative by adding nonnegative complexes to entire linkage classes where needed.

4 Examples

In this section,we apply the algorithmpresented inSect. 3.3 to 508 curatedmodels from
the European Bioinformatics’ BioModels database and summarize the output.We also
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expand upon two models the algorithm determined to have a weakly reversible, zero
deficiency structural translation: a zigzag model of plant–pathogen interactions (Jones
and Dangl 2006; Pritchard and Birch 2014) and a MAPK cascade model (Markevich
et al. 2004). In “Appendix A,” we outline how the outcome of the algorithm in Sect. 3.3
can be utilized to construct steady-state parametrizations according to the results of
Johnston et al. (2018) and establish mono- or multistationarity within stoichiometric
compatibility classes according to the results of Conradi et al. (2017).

4.1 BioModels Database

We implemented the algorithm outlined in Sect. 3.3 in Python and tested it on 508
curated networks from the European Bioinformatics Institute’s BioModels database
(Li et al. 2010). We imposed a twenty-minute timeout per model. The algorithm found
176models which permitted a weakly reversible, deficiency zero structural translation
to be computed. Of those models, 34 were not originally weakly reversible, deficiency
zero networks.

Of themodels for which the program did not succeed in finding a weakly reversible,
deficiency zero structural translation, 239 failedbecause thenetworkhad an elementary
flux mode set E which either was not unitary or did not cover R, 60 failed because a
EM- and CS-compatible reaction-to-reaction graph could not be constructed, and 27
failed due to computational time out. The mean size of the networks which failed to
compute due to computational timeout was 387 reactions, and the median was 144
reactions.

4.2 Example: ZigzagModel

Consider the following network of the zigzag model of plant–pathogen interactions
(Jones and Dangl 2006; Pritchard and Birch 2014) which corresponds to network
biomd0000000563 in the BioModels database (Li et al. 2010):

X1 + X2 X3 X9 X1 + X9 X7 + X9 X7

X3 X3 + X4 X9 X10 + X9 X4 + X9 X4

X4 ∅ X1 ∅ X10 + X11 X12

X4 + X5 X5 X5 ∅ X12 X5 + X11

X5 + X6 X7 X9 ∅ X4 + X11 X13

X8 X8 + X9 X10 ∅

r1

r2

r9 r15

r3 r10 r16

r4 r11 r17

r18

r5 r12 r19

r6

r7

r13 r20

r21

r8 r14

(11)

where X1 = PAMP, X2 = PRR, X3 = PRR∗, X4 = Callose, X5 = Eint, X6 = R,
X7 = R∗, X8 = Pathogenbulk, X9 = Pathogen, X10 = E, X11 = F, X12 = EF, and
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X13 = FCallose. All interactions given by Pritchard and Birch (2014) are assumed
to be mass-action except for X10 → X5 which is inhibited by X4 according to the
competitive inhibition reaction rate

Vmaxx10
Km
Ki

x4 + x10 + Km
(12)

where Vmax, Ki , Km > 0 are parameters. We have replaced the reaction X10 → X5
with the reaction set r17 through r21 in (11) to reflect the activity of an unseen activator
(X11 = F) and inhibition of X11 by X4. The quasi-steady-state approximation for the
production of X5 is given by (12) with Vmax = k20(x11(0) + x12(0)), Ki = k23

k22
,

and Km = k19+k20
k18

(Ingalls 2013). Consequently, the steady states of the mass-action
system we use and the original system of ordinary differential equations studied by
Pritchard and Birch (2014) coincide.

The program outlined in Sect. 3.3 Step 2 constructs the reaction-to-reaction graph
given in Fig. 3a, which is CS- and EM-compatible with (11). The process outlined
in Sect. 3.3 Step 3 yields the following network, which is a weakly reversible, defi-
ciency zero structural translation of (11), and is PS-, CS-, and EM-compatible with
the reaction-to-reaction graph in Fig. 3a:

X1 + X2 X3 X3 + X4

X5 + X6 X7

X9 + X10 + X11 X9 + X11 X11

X9 + X12 X5 + X9 + X11 X1 + X9 + X11

X4 + X11 X13

r1

r2

r3

r4 & r5

r6

r7

r17

r14

r9

r13 & r15 & r16

r10 r8

r18

r19

r12
r11

r20

r21

(13)

In “Appendix A.3,” we show how structural translation (13) can be used to construct
a steady-state parametrization of corresponding mass-action system (1).

4.3 Example: MAPKModel

Consider the following model of a mitogen-activated protein kinase (MAPK) cycle
studied by Markevich et al. (2004), which corresponds to biomd0000000026 in
the BioModels database (Li et al. 2010):
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Reaction-to-reaction graph correspond-
ing to (11) and (13).

Reaction-to-reaction graph corre-
sponding to (14) and (15).

(a) (b)

Fig. 3 Two reaction-to-reaction graphs determined by the BLP outlined in Sect. 3.3. In a, the reaction-to-
reaction graph is CS- and EM-compatible with (11) and PS-, CS-, and EM-compatible with (13). In b, the
reaction-to-reaction graph is CS- and EM-compatible with (14) and PS-, CS-, and EM-compatible with
(15)

X + K XK X p + K X pK X pp + K

X pp + M XppM X pM X p + M

Xp + M X∗
pM XM X + M

r1

r2

r3 r4

r5

r6

r7

r8

r9 r10

r11

r12

r13

r14 r15

r16

(14)

The programoutlined inSect. 3.3 Step 2 constructs the reaction-to-reaction graphgiven
in Fig. 3b. The following weakly reversible, deficiency zero structural translation can
then be constructed by the procedure outlined in Sect. 3.3 Step 3:

X + K + M XK + M Xp + K + M XpK + M Xpp + K + M

XM + K X∗
pM + K X pM + K X ppM + K

r16

r1

r2

r3

r11r12

r4

r5

r6

r7r15
r13

r14

r10
r8

r9

(15)

In “Appendix A.4,” we show how structural translation (13) can be used to construct a
steady-state parametrization of corresponding mass-action system (1) and guarantee
the capacity for multistationarity according to Corollary 2 of Conradi et al. (2017).

5 Conclusions

We have presented a procedure for constructing structural translations which are
weakly reversible and deficiency zero. The backbone of the algorithm is binary linear
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programming (BLP) problem for determining a suitable reaction-to-reaction graph.
This graph treats the reactions of the given CRN as vertices in a new graph. We
show that constructing a reaction-to-reaction graph satisfying two conditions on the
edges (CS- and EM-compatibility) guarantees that a weakly reversible, deficiency
zero structural translation may be constructed by imposing one further condition on
the reaction-to-reaction graph (PS-compatibility). Crucially, BLP problems can be
solved in polynomial time in the number of constraints by Lenstra’s algorithm (1983)
so that this represents a significant improvement in scalability compared to existing
methods for constructing weakly reversible, deficiency zero translations.

This work presents several avenues for future work.

1. The procedure outlined in Sect. 3.3 is only able to produce weakly reversible,
deficiency zero structural translations, which corresponds to translating all stoi-
chiometric generators in the set of elementary flux modes into cyclic generators.
Applications exist, however, for translations which are not necessarily weakly
reversible or deficiency zero (e.g., absolute concentration robustness as studied by
Shinar and Feinberg 2010; Tonello and Johnston 2018). Future work will focus
on adapting the procedure outlined in Sect. 3.3 to account for CRNs where some
stoichiometric generators are not translated into cyclic generators.

2. Recent results of Johnston et al. (2018) give sufficient conditions for the
parametrization of the steady-state set of a generalized chemical reaction net-
work which is weakly reversible and has a structural deficiency of zero [this
is called the effective deficiency by Johnston et al. (2018)]. Results have also
recently been established regarding mono- and multistationarity within stoichio-
metric compatibility classes by Conradi et al. (2017). Integrating the structural
translation procedure introduced in Sect. 3.3 into a unified program for applying
these results is ongoing. In “Appendix A,” we outline the steps involved in this
approach on the examples contained in Sects. 4.2 and 4.3.

A: Appendix—ParametrizationMethod

While two structural translations have the same stoichiometricmatricesΓ andΓ ′, they
may nevertheless have different mass-action systems (1) due to differences in R(x).
In this Appendix, we outline the method by which a steady-state parametrization
may be constructed from a structural parametrization as constructed by the algorithm
presented in Sect. 3.3.

For ease of notation and continuity, rather than repeating the technical definitions
and Theorems introduced by Müller and Regensberger (2012, 2014) and Johnston et
al. (2018), we outline the parametrization procedure through examples.
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A.1: Histidine Kinase Model

We use the histidine kinase network in Fig. 1a as a motivating example. Through
application of the algorithm presented in Sect. 3.3, we were able to correspond the
following CRN (left) with the indicated structural translation (right):

N
et
w
or
k
1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X X p

X p + Y X + Yp

Yp Y

r1

r2

r3

r4

⇐⇒

N
et
w
or
k
2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X + Y X p + Y

X + Yp

r1

r2

r3
r4

Although these two networks have the same reaction vectors (i.e., Γ = Γ ′), the
governing system of differential equations (1) does not coincide due to differences in
R(x). Specifically, the source complex of r1 and r4 differs in Network 1 fromNetwork
2. To accommodate this difference, we map the source complexes from Network 1
into a secondary set of complexes known as kinetic-order complexes in Network 2.
We can represent this with the following network:

�

�

�

�

1
∣∣∣∣
X + Y
(X)

�

�

�

�

2
∣∣∣∣
X p + Y

(X p + Y )

�

�

�

�

4
†

∣∣∣∣
X + Yp

(Yp)

�

�

�

�

3
†

∣∣∣∣
X + Yp

(X + Yp)

r1

r2r4 r3 (16)

Network (16) is an example of a generalized chemical reaction network (GCRN)
(Müller and Regensburger 2012, 2014). In a GCRN, each vertex is assigned two
complexes: a stoichiometric complex (unbracketed) and a kinetic-order complex
(bracketed). In the corresponding generalized mass-action system

dx
dt

= Γ R̃(x) (17)

the reaction vectors forming Γ are determined by the differences of the stoichiometric
complexes, while the monomials in R̃(x) are determined by the kinetic-order com-
plexes. Denote the i th kinetic-order complex by ỹi , we have that R̃(x) has entries

R̃i (x) = ∏m
j=1 x

[ỹs(i)] j
j . For example, the term in R̃(x) corresponding to r1 in (16)

is k1x rather than k1xy. It can be easily checked that dynamical equations (17) cor-
responding to (16) coincide with dynamical equations (1) corresponding to Network
1.
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Note that when converting from Network 2 to (16), we split the vertex X + Yp.
Consequently, the stoichiometric complex X + Yp is repeated at vertices 3 and 4 in
(16) (indicted with †). This is allowed by Johnston et al. (2018) and, in fact, required
since r3 and r4 would otherwise have multiple kinetic-order complexes at a single ver-
tex [although, with some supplemental conditions, this is allowed by Johnston (2015)
and Tonello and Johnston (2018)]. In order to regain weak reversibility, Johnston et
al. (2018) introduce a new set of edges (called “phantom reactions") which connect
stoichiometrically identical complexes. Notice that introducing such reactions intro-
duces zero columns in Γ and therefore does not alter the corresponding system of
differential equations (17).

For technical reasons, Johnston et al. (2018) imposed further rules upon the splitting
of stoichiometric complexes and the introduction of phantom reactions. They define
equivalence classes of stoichiometrically identical complexes and select from within
each such class a distinguished vertex (indicatedwith a 	). The set of phantom reactions
is then introduced such that:

1. All “true reactions” (i.e., from the set R) which have their product at any vertex
in this equivalence class have the distinguished vertex as its product.

2. The phantom reactions between vertices on this equivalence class consist only of
reactionswith the distinguished complex as its source and the remaining complexes
as the product.

Wemay interpret the distinguished vertices as hubs throughwhich are all paths through
an equivalence class of stoichiometrically identical complexes must pass. Such a con-
struction produces a V 	-directed GCRN which is important in the construction of
positive parametrizations.

For network (16), we select vertex 3 as the distinguish vertex (indicated with 	) and
label the phantom edge with a free parameter σ :

�

�

�

�

1
∣∣∣∣
X + Y
(X)

�

�

�

�

2
∣∣∣∣
X p + Y

(X p + Y )

�

�

�

�

4
†

∣∣∣∣
X + Yp

(Yp)

�

�

�

�

3	
†

∣∣∣∣
X + Yp

(X + Yp)

r1

r2r4 r3

σ

(18)

Notice that only r2 has a product in the equivalence class of vertices {3, 4} and its prod-
uct is the distinguished complex 3 (condition 1), and the only reaction on vertices {3, 4}
goes from the distinguished vertex 3 to the remaining vertex 4 (condition 2). GCRN
(18) is therefore V 	-directed. Notice that the rate constant σ corresponding to the
phantom edge 3 → 4 joins stoichiometrically identical complexes and consequently
does not appear in the system of differential equations (1).

Johnston et al. (2018) showed that, if the deficiency of the structural translation
(called the effective deficiency) is zero and the corresponding GCRN is V 	-directed,
then the positive steady-state set of original dynamical system (1) can be characterized
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by the complex-balanced steady states of dynamical system (17), namely, the equation

Ak R̃(x) = 0 (19)

where Ak ∈ R
n×n is the Laplacian of the reaction graph of the GCRN. For network

(18), this corresponds to the system:

⎡

⎢⎢⎣

−k1 0 0 k4
k1 −k2 k3 0
0 k2 −k3 − σ 0
0 0 σ −k4

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x
xp y
xyp
yp

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦

Relationships between ker(Ak) and the steady-state set of mass-action systems have
been studied extensively in recent years. It is known that, for weakly reversible net-
works, ker(Ak) can be characterized by algebraic combinations of the rate constants
of a network known as “tree constants” (Johnston 2014; Johnston et al. 2018) which
we summarize in “Appendix A.2.” For this network, we can directly compute that
ker(Ak) = span{(K1, K2, K3, K4)} where

K1 = k2k4σ, K2 = k1(k3 + σ)k4, K3 = k1k2k4, K4 = k1k2σ

are the tree constants. The steady-state condition (x, xp y, xyp, yp) ∈ ker(Ak) gives
the implicit equations

x

k2k4σ
= xp y

k1(k3 + σ)k4
= xyp

k1k2k4
= yp

k1k2σ
.

Taking pairwise differences, this gives the following log-linear system of equations:

⎡

⎣
− 1 1 1 0
0 0 0 1

− 1 0 0 1

⎤

⎦

⎡

⎢⎢⎣

ln(x)
ln(xp)
ln(y)
ln(yp)

⎤

⎥⎥⎦ =
⎡

⎢⎣

k1(k3+σ)
k2σ
k1
σ
k1
k4

⎤

⎥⎦ (20)

Surprisingly, the solvability of system (20) depends on the deficiency of network (18)
taken with only the kinetic-order complexes:

X X p + Y

Yp X + Yp

r1

r2r4 r3

σ

(21)

The deficiency of network (21) is known as the kinetic-order deficiency (Müller and
Regensburger 2012, 2014). We can compute that the deficiency of (21) is zero so
that the kinetic-order deficiency of (18) is zero. Consequently, log-linear system (20)
is guaranteed to be consistent and therefore have a solution for all values of rate
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constants (including σ ) Johnston et al. (2018). For this example, (20) can be solved
for the log concentrations, which can then be exponentiated to give the following
parametrization:

⎧
⎪⎪⎨

⎪⎪⎩

x = k4
σ

, y = τ,

xp = k1(k3 + σ)k4
k2σ 2τ

, yp = k1
σ

,

where σ, τ > 0 are positive parameters. Notice that the parameter τ has arisen from
parametrizing the null space of the coefficient matrix in (20), which is the span of the
vector (0,− 1, 1, 0).

A.2: General Procedure for Parametrizations

For a given GCRN, we let ỹi denote the kinetic-order complex at the vertex labeled
i and define T ⊆ R to be the set of all trees which span the linkage class containing
the vertex i and have vertex i as a unique sink. The tree constants Ki corresponding
to the vertex labeled i are given by

Ki =
∑

T∈T

∏

r j∈T
k j . (22)

By Lemma 12 of Johnston et al. (2018), if the GCRN has an effective deficiency of
zero, we have the following representations of the steady-state set of the corresponding
generalized mass-action system:

x ỹi

Ki
= x ỹ j

K j
⇐⇒ (ỹ j − ỹi )

T ln(x) = ln

(
K j

Ki

)
(23)

for all vertices i and j belonging to the same linkage class. We can use the log-linear
equation on the right of (23) to construct a linear system in the log concentrations.
We define a matrix M such columns M·,k = ỹ j − ỹi and a vector b with entries bk =
ln(K j/Ki ) where the pairs (i, j) are chosen to be a maximal set of colorredvertices
such that the resulting set spans the vertices of the underlying GCRN and does not
have any nontrivial cycles. This process produces the following log-linear system

MT ln(x) = b. (24)

An effective deficiency of zero guarantees all steady states can be found by solving
(24) (Lemma 12, Johnston et al. 2018). A kinetic-order deficiency of zero guarantees
the solvability of this system for all values of the rate constants (Theorem 14 part
1, Johnston et al. 2018). A GCRN with a nonzero kinetic-order deficiency, however,
may still produce solvable system (24) provided certain supplemental conditions on
the rate parameters are satisfied (Theorem 14 part 2, Johnston et al. 2018).
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The example in “Appendix A.1” suggests the following general procedure for deter-
mining a positive steady-state parametrization for mass-action systems (1):

Step 1: Construct a weakly reversible, deficiency zero structural translation by the
algorithm presented in Sect. 3.3.
Step 2: Transfer source complexes from the original CRN as kinetic-order com-
plexes in the network GCRN, splitting stoichiometric complexes as necessary.
Step 3: Within each equivalence class of stoichiometrically identical complexes,
select distinguished vertices and phantom edges so that the resulting GCRN is V 	-
directed. Note that the choice of distinguished vertices may be made arbitrarily.
Step 4: Compute the kinetic-order deficiency. (The deficiency of the network with
only the kinetic-order complexes from the V 	-directed network found in Step 3.)
If the kinetic-order deficiency is zero, skip to Step 5; otherwise proceed to Step
4*.
Step 4*: Determine a basis {c1, . . . , cδ̃} of ker(M) and for every vector ci attempt
to solve the system cTi b = 0 for the phantom edge parameters σ j according to
Theorem 15 of Johnston et al. (2018). If these conditions cannot be satisfied, the
procedure fails. Otherwise, substitute the solved parameters σ j into the GCRN
constructed in Step 3 and proceed to Step 5.
Step 5: Compute the “tree constants” at each vertex of this V 	-directed GCRN.
Step 6: Set up and solve log-linear system (24) for the concentrations.

A.3: ZigZagModel Example

Reconsider the zigzagmodel of plant–pathogen interactions (11).We now outline how
the steps described in “Appendix A.2” apply to this network.

Step 1: We were able to use the algorithm described in Sect. 3.3 to determine the
following structural translation:

X1 + X2 X3 X3 + X4

X5 + X6 X7

X9 + X10 + X11 X9 + X11 X11

X9 + X12 X5 + X9 + X11 X1 + X9 + X11

X4 + X11 X13

r1

r2

r3

r4 & r5

r6

r7

r17

r14

r9

r13 & r15 & r16

r10 r8

r18

r19

r12
r11

r20

r21

(25)
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As expected by the algorithm, this network is weakly reversible and deficiency zero.
It follows from Lemma 12 of Johnston et al. (2018) that all of the steady states can be
found by setting up and solving log-linear system (24).
Steps 2 & 3: Notice that the complexes X3 + X4, X9 + X10 + X11, and X9 + X11
have multiple source complexes which are translated to them from (11). We therefore
split these vertices in (25) when assigning kinetic-order complexes. We also need to
select distinguish complexes and add phantom edges to satisfy the conditions of being
V 	-directed given in “Appendix A.1.” This can be accomplished by the following
network, where the phantom edges are labeled with σi , i = 1, . . . , 4, the equivalence
classes of stoichiometrically identical complexes are indicated with the symbols §, †,
and ‡, and the distinguished vertices are indicated with 	.

�

�

�

	

1
∣∣∣∣
X1 + X2

(X1 + X2)

�

�

�

	

2
∣∣∣∣
X3

(X3)

�

�

�

	

3	
§

∣∣∣∣
X3 + X4

(X4)

�

�

�

	

5
∣∣∣∣
X5 + X6

(X5 + X6)

�

�

�

	

6
∣∣∣∣
X7

(X7)

�

�

�

	

4
§

∣∣∣∣
X3 + X4

(X4 + X5)

�

�

�

	

7
†

∣∣∣∣
X9 + X10 + X11

(X10)

�

�

�

	

8
‡

∣∣∣∣
X9 + X11
(X7 + X9)

�

�

�

	

9
‡

∣∣∣∣
X9 + X11
(X4 + X9)

�

�

�

	

10	
†

∣∣∣∣
X9 + X10 + X11

(X10 + X11)

�

�

�

	

11	
‡

∣∣∣∣
X9 + X11

(X9)

�

�

�

	

12
∣∣∣∣
X11
(X8)

�

�

�

	

13
∣∣∣∣
X9 + X12

(X12)

�

�

�

	

14
∣∣∣∣
X5 + X9 + X11

(X5)

�

�

�

	

15
∣∣∣∣
X1 + X9 + X11

(X1)

�

�

�

	

16
∣∣∣∣
X4 + X11

(X4 + X11)

�

�

�

	

17
∣∣∣∣
X13

(X13)

r1

r2

r3

r4

σ1

r6

r7

r5

r14 r15 r16σ2

r17

r10

σ3

r9

r13

σ4

r8

r18

r19

r12 r11

r20

r21

(26)

Step 4: The kinetic-order deficiency is the deficiency of the CRN produced by consid-
ering only the kinetic-order (bracketed) complexes in (26). It can be quickly computed
that the deficiency is δ = n − � − s = 17 − 4 − 13 = 0. It follows from Theorem 14
of Johnston et al. (2018) that the remainder of the steps may be performed to yield a
steady-state parametrization.
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Step 5: From (26), we compute the following tree constants:

K1 = k2k5(k4 + σ1) K10 = k8k10k11k12k14k15k16(k18 + k19)

K2 = k1(k4 + σ1)k5 K11 = k8k11k12k14k15k16(k17k19 + (k18 + k19)σ2)

K3 = k1k3k5 K12 = k11k12(σ3+σ4+k13)k14k15k16((σ2+k17)k19+k18σ2)

K4 = k1k3σ1 K13 = k8k10k11k12k14k15k16k17

K5 = k7 K14 = k8k10k11k14k15k16k17k19

K6 = k6 K15 = k8k9k12k14k15k16(k17k19 + (k18 + k19)σ2)

K7 = k8k10k11k12k15k16(k18 + k19)σ2 K16 = k21

K8 = k8k11k12k14k16((σ2 + k17)k19 + k18σ2)σ3 K17 = k20

K9 = k8k11k12k14k15((σ2 + k17)k19 + k18σ2)σ4

Step 6: Log-linear system (24) can be set up for any maximal set of pairs of vertices
lying in the same linkage class. We take the pairs

{1, 2}, {1, 3}, {1, 4}, {5, 6}, {7, 8}, {7, 9}, {7, 10}, {7, 11},
{7, 12}, {7, 13}, {7, 14}, {7, 15}, {16, 17}.

This gives the following linear system in log concentrations (24):

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 − 1 1 0 0 0 0 0 0 0 0 0 0
− 1 − 1 0 1 0 0 0 0 0 0 0 0 0
− 1 − 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 − 1 − 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 − 1 0 0 0
0 0 0 1 0 0 0 0 1 − 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 − 1 0 0 0
0 0 0 0 0 0 0 1 0 − 1 0 0 0
0 0 0 0 0 0 0 0 0 − 1 0 1 0
0 0 0 0 1 0 0 0 0 − 1 0 0 0
1 0 0 0 0 0 0 0 0 − 1 0 0 0
0 0 0 − 1 0 0 0 0 0 0 − 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln(x1)
ln(x2)
ln(x3)
ln(x4)
ln(x5)
ln(x6)
ln(x7)
ln(x8)
ln(x9)
ln(x10)
ln(x11)
ln(x12)
ln(x13)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln (K2/K1)

ln (K3/K1)

ln (K4/K1)

ln (K6/K5)

ln (K8/K7)

ln (K9/K7)

ln (K10/K7)

ln (K11/K7)

ln (K12/K7)

ln (K13/K7)

ln (K14/K7)

ln (K15/K7)

ln (K17/K16)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since the kinetic-order deficiency is zero, this is a consistent system and therefore
guaranteed to have a solution for all rate constants (Theorem 14, Johnston et al. 2018).
Solving the system for ln(xi ) and then exponentiating gives the following solution,
which is a rational parametrization of the steady-state set of mass-action system (1)
corresponding to (11) in the parameters σ1, σ2, σ3, σ4 ∈ Ry>0:

123



1640 M. D. Johnston, E. Burton

x1 = k9k12(k17k19 + (k18 + k19)σ2)σ1
k5k8k10k17k19

x8 = k12(k13 + σ3 + σ4)((k17 + σ2)k19 + k18σ2)σ1
k5k10k11k17k19

x2 = k2(k4 + σ1)k5k10k11k17k19σ4
k1k3k9k12k16(k17k19 + (k18 + k19)σ2)σ1

x9 = k12(k17k19 + (k18 + k19)σ2)σ1
k5k10k17k19

x3 = (k4 + σ1)σ4

k3k16
x10 = k12(k18 + k19)σ1σ2

k5k14k17k19

x4 = σ4

k16
x11 = k14

σ2

x5 = σ1

k5
x12 = k12σ1

k5k19

x6 = k5k7σ3
k6k15σ1

x13 = k14k20σ4
k16k21σ2

x7 = σ3

k15
(27)

Notice that this parametrization does not guarantee that for a given initial condition
x(0) ∈ R

m≥0 the parametrization intersects the relevant compatibility class (x(0) +
S) ∩ R

m≥0. For this example, we can observe that x8 experiences no stoichiometric
change in any of the system’s interactions and therefore we have x8(t) = x8(0) for all
t ≥ 0. This requirement combined with (27) imposes further conditions on the rate
constants which must be satisfied for a positive steady state to exist.

A.4: MAPKModel Example

Reconsider MAPK model (14).
Step 1: We were able to use the algorithm described in Sect. 3.3 to determine the
following structural translation:

X + K + M XK + M Xp + K + M XpK + M Xpp + K + M

XM + K X∗
pM + K X pM + K X ppM + K

r16

r1

r2

r3

r11r12

r4

r5

r6

r7r15
r13

r14

r10
r8

r9

Steps 2 & 3: The complexes X + K + M and X p + K + M are both assigned multiple
kinetic complexes and therefore must be split. Setting 1 and 3 as the distinguished
complexes and introducing phantom edges gives the following V 	-directed GCRN:




�

�



1	
†

∣∣∣∣
X + K + M
(X + K )




�

�



2
∣∣∣∣
XK + M
(XK )




�

�



3	
‡

∣∣∣∣
X p + K + M
(X p + K )




�

�



4
∣∣∣∣
X pK + M
(X pK )




�

�



5
∣∣∣∣
X pp + K + M
(X pp + M)




�

�



11
†

∣∣∣∣
X + K + M
(X + M)




�

�



10
∣∣∣∣
XM + K
(XM)

�

�

�

	

9
∣∣∣∣
X∗
pM + K
(X∗

pM)




�

�



8
‡

∣∣∣∣
X p + K + M
(X p + M)




�

�



7
∣∣∣∣
X pM + K
(X pM)




�

�



6
∣∣∣∣
X ppM + K
(X ppM)

r1

σ1

r2

r3 r4

σ2

r6
r5

r7

r16

r15

r13

r14 r12 r11

r10 r8

r9

(28)

where σ1 and σ2 indicate the phantom edges, † and ‡ indicate equivalence classes of
stoichiometrically identical complexes, and 	 indicates the distinguished vertex within
each class.
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Step 4: We can compute that the kinetic-order deficiency is one. We therefore have
one condition of the form cTb = 0 where c ∈ ker(M) to satisfy on the rate constants
in order to apply the method prescribed by Theorem 14 of Johnston et al. (2018). We
suspend discussion of the construction of the matrix M to Step 6, but note that the
required condition is

(k11 + k12)σ2
k16σ1

= 1 �⇒ σ2 = k11 + k12
k16

σ1. (29)

That is, we eliminate one of our free parameters to satisfy the condition. Since this
result is positive, we may proceed.
Step 5: After substituting (29) into (28), we can compute the following tree constants

K1 = (k2 + k3)(k5 + k6)k7k9k10(k11 + k12)k12k14k15σ1
K2 = k1(k5 + k6)k7k9k10(k11 + k12)k12k14k15σ1
K3 = k1k3(k5 + k6)k7k9k10(k11 + k12)(k13 + k14)k15k16
K4 = k1k3k4k7k9k10(k11k13 + k11k14 + k12k13 + k12k14)k15k16
K5 = k1k3k4k6(k8 + k9)k10(k11k13 + k11k14 + k12k13 + k12k14)k15k16
K6 = k1k3k4k6k7k10(k11k13 + k11k14 + k12k13 + k12k14)k15k16
K7 = k1k3(σ1(k5 + k6)k11 + k16k4k6)k7k9(k11 + k12)(k13 + k14)k15
K8 = k1k3(k5 + k6)k7k9k10(k11 + k12)(k13 + k14)k15σ1
K9 = k1k3(k5 + k6)k7k9k10(k11 + k12)k12k15σ1
K10 = (k2σ1 + k3σ1 + k1k3)(k5 + k6)k7k9k10(k11 + k12)k12k14σ1

K11 = (k2k5 + k2k6 + k3k5 + k3k6)k7k9k10(k11 + k12)k12k14k15σ
2
1 /k16

Step 6: Log-linear system (24) can be set up for any maximal set of pairs of vertices
lying in the same linkage class. We take the pairs

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}, {1, 10}, {1, 11}.

This gives the following log-linear system (24):

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 0 0 0 − 1 1 0 0 0 0 0
− 1 1 0 0 0 0 0 0 0 0 0
− 1 0 0 0 − 1 0 1 0 0 0 0
− 1 0 1 1 − 1 0 0 0 0 0 0
− 1 0 0 0 − 1 0 0 1 0 0 0
− 1 0 0 0 − 1 0 0 0 1 0 0
− 1 1 0 1 − 1 0 0 0 0 0 0
− 1 0 0 0 − 1 0 0 0 0 1 0
− 1 0 0 0 − 1 0 0 0 0 0 1
0 0 0 1 − 1 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln(X)

ln(X p)

ln(X pp)

ln(M)

ln(K )

ln(XK )

ln(X pK )

ln(X ppM)

ln(X pM)

ln(X∗
pM)

ln(XM)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln (K2/K1)

ln (K3/K1)

ln (K4/K1)

ln (K5/K1)

ln (K6/K1)

ln (K7/K1)

ln (K8/K1)

ln (K9/K1)

ln (K10/K1)

ln (K11/K1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)
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Note that, in Step 4, we used the left kernel vector c = (0, 1, 0, 0, 0, 0,− 1, 0, 0, 1)
of the coefficient matrix MT of (30). Since we have satisfied the condition cTb = 0
with (29), this is a consistent system. We can solve this system and exponentiate to
obtain the following steady-state parametrization:

X = (k2 + k3)k15τ1
(k2 + k3)σ1 + k1k3

X pK = k1k3k4(k13 + k14)k15k16τ1τ2
((k2 + k3)σ1 + k1k3)(k5 + k6)k12k14σ1

X p = k1k3(k13 + k14)k15k16τ1
((k2 + k3)σ1 + k1k3)k12k14σ1

X ppK = k1k3k4k6(k13 + k14)k15k16τ1τ2
((k2 + k3)σ1 + k1k3)(k5 + k6)k9k12k14σ1

X pp = k1k3k4k6(k8 + k9)(k13 + k14)k15k
2
16τ1

((k2 + k3)σ1 + k1k3)(k5 + k6)k7k9k12k14σ
2
1

X pM = k1k3(σ1(k5 + k6)k11 + k4k6k16)(k13 + k14)k15τ1τ2
((k2 + k3)σ1 + k1k3)(k5 + k6)k10k12k14σ1

M = σ1τ2
k16

X∗
pM = k1k3k15τ1τ2

((k2 + k3)σ1 + k1k3)k14

K = τ2 XM = τ1τ2

XK = k1k15τ1τ2
(k2 + k3)σ1 + k1k3

(31)
in the parameters σ1, τ1, τ2 ∈ R>0.

Parametrization (31) is quite useful in the context of determining the capacity
for mono- and multistationarity within stoichiometric compatibility classes of mass-
action system (1) corresponding to MAPK network (14). The steady states are not
toric so that the results of Pérez Millán et al. (2012) and Müller et al. (2016) cannot
be applied. We can, however, apply the computational procedure of Corollary 2 of
Conradi et al. (2017). To satisfy the assumptions, we note that the network has the
following conservation laws and is therefore dissipative:

X tot = X + X p + X pp + XK + X pK + XM + X pM + X∗
pM + X ppM

Ktot = K + XK + X pK

Mtot = M + XM + X pM + X∗
pM + X ppM .

It also has no critical siphons so that there are no boundary equilibria Angeli et al.
(2007). Computing the determinant of the Jacobian a(x̂) evaluated along parametriza-
tion (31) yields a rational function in the three parameters σ1, τ1, and τ2 with a strictly
positive denominator. It can be checked that, in the numerator of a(x̂), τ 21 τ 22 and
σ 2
1 τ1τ

3
2 are extremal with respect to the corresponding Newton polytope and that the

coefficients have mixed sign in a(x̂). It follows that the mechanism exhibits multista-
tionarity for some choices of rate constants and initial conditions. It should be noted
that parametrization (31) reduces the dimension of the system from 11 variables to 3
which allows significantly faster computation and analysis of a(x̂).
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