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Abstract
Here, we present a theoretical investigation with potential insights on developmen-
tal mechanisms. Three biological factors, consisting of two diffusing factors and a
cell-autonomous immobile transcription factor are combined with different feedback
mechanisms. This results in four different situations or fur patterns. Two of them
reproduce classical Turing patterns: (1) regularly spaced spots, (2) labyrinth patterns
or straight lines with an initial slope in the activation of the transcription factor. The
third situation does not lead to patterns, but results in different homogeneous color
tones. Finally, the fourth one sheds new light on the possible mechanisms leading to
the formation of piebald patterns exemplified by the random patterns on the fur of
some cows’ strains and Dalmatian dogs. Piebaldism is usually manifested as white
areas of fur, hair, or skin due to the absence of pigment-producing cells in those
regions. The distribution of the white and colored zones does not reflect the classical
Turing patterns. We demonstrate that these piebald patterns are of transient nature,
developing from random initial conditions and relying on a system’s bistability. We
show numerically that the presence of a cell-autonomous factor not only expands the
range of reaction diffusion parameters in which a pattern may arise, but also extends
the pattern-forming abilities of the reaction–diffusion equations.
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1 Introduction

The various patterns on the surface of animals (fur, skin, feathers) have always been
intriguing because of their diversity and presumed functions. The coloration of mam-
mals is due to melanin pigments that are produced by melanocytes. Melanocytes
are located in the stratum basale layer of the skin’s epidermis and in hair folli-
cles; melanocytes secrete mature melanosomes to surrounding keratinocytes (Lin
and Fisher 2007). They differentiate from undifferentiated precursor cells, called
melanoblasts (Hirobe 2011). The localized changes in the homogeneous distribu-
tion of melanocytes (or in the pigment synthesis pathway) result in different patterns
(Mills and Patterson 2009). The various presumed biological functions of these pat-
terns include a role in camouflage or mimicry, rather than for communication or other
physiological functions (Allen et al. 2011). Zebra stripes most probably serve as a daz-
zle pattern. Unlike other forms of camouflage, the intention of a dazzle pattern is not
to conceal, but to make it difficult to estimate a target’s range, speed, and the direction
of motion (How and Zanker 2014). Zebra stripes not only confuse big predators like
lions, but also make zebra fur less attractive for flies (Egri et al. 2012).

The pattern formation mechanisms have been largely debated since the pioneering
work of Alan Turing, who proposed a reaction–diffusion model to explain how very
distinctive patterns may arise autonomously (Turing 1952). Almost all natural occur-
ring patterns can be recapitulated by this model; the seminal idea has served many
different purposes (Murray 1989; Salsa et al. 2013).However, reaction–diffusion equa-
tions have not been used to explain piebald patterns, one example being the fur pattern
of Dalmatian dogs. These so-called piebald patterns show randomly distributed dots
of different sizes. The pigmented spots are the result of the stochastic migration of pri-
mordial pigment cells (melanoblasts) from the neural crest to their final locations in the
skin of the early embryo (Li et al. 2011; Mort et al. 2016). However, the mathematical
model considering only the randommovement ofmelanoblasts does not produce sharp
edges between the colored and the melanocyte-free regions (Mort et al. 2016). The
spots on Dalmatian dogs appear after their birth with increasing sizes and contrasts,
indicating that other additional mechanisms are involved in their formation. For exam-
ple, melanoblasts are unable to differentiate into melanocytes or to survive in white
patches, most probably due to a lack of diffusion factors originating from neighboring
cells present in the skin. Melanocyte proliferation, distribution, differentiation, and
melanogenesis are under the control of factors secreted by surrounding keratinocytes
(Cichorek et al. 2013). Moreover, dermal fibroblasts act on melanocytes directly and
indirectly by secreting a large number of cytokines and factors. These factors bind to
the corresponding receptors present in melanocytes and modulate intracellular signal-
ing cascades related to melanocyte functions (Wang et al. 2017). Consequently, the
observed patterns in melanocyte activity and distribution should be already visible
in the spatial differences of diffusion factor concentrations released by keratinocytes
and dermal fibroblasts. Previous studies have revealed that white parts of the piebald
patterns resulted from the absence of melanocytes in this area (Spritz 1994). On the
other hand, the white stripes of the African striped mice (Rhabdomys pumilio) and the
Eastern chipmunks (Tamias striatus) are actually the result of impaired melanocyte
differentiation processes (Mallarino et al. 2016).
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Although patterning in a variety of biological contexts can be described in mathe-
matical terms to be operating via Local Activation coupled with Long-range Inhibition
(LALI), it has always been recognized that cells must translate the diffusion factor-
encoded information into a biological signal. The importance of transcription factors
(TFs)—as cell-autonomous factors—in the pattern formation is highlighted by micro-
biological experiments with synthetic gene circuits. The experiments revealed very
versatile pattern-forming abilities of the genetically engineered organisms including
the programmed bull’s eye pattern (Basu et al. 2005), synchronized oscillations and
traveling waves among cells (Danino et al. 2010), sequentially developing stripes (Liu
et al. 2011) or rings (Cao et al. 2016). Cell-autonomous/transcription factor(s) have
been considered in some mathematical studies (Marcon et al. 2016; Raspopovic et al.
2014). These models produce the classical Turing patterns with an expanding range
of reaction–diffusion parameters.

In this study, we present a theoretical investigation with potential insights on devel-
opmental mechanisms by considering explicitly a non-diffusing transcription factor
(TF) together with two diffusion factors. This allows the generation of regular (stripes,
dots) and irregular (piebald) patterns. This model aims at expanding the range of
pattern-forming abilities of the reaction–diffusion equations and provides a useful
tool for understanding the formation of piebald patterns. Additionally, we highlight
that these piebald patterns are of transient nature. However, scaling the activation lev-
els of TFs permits regulating the speed of the pattern formation; if this value is close
to zero, we show numerically that the pattern formation dynamics is halted and the
pattern does not change significantly over time.

2 Methods

2.1 Concept

Diffusion factors are mobile compounds; they move rather freely in the extracellular
space or between cells via gap junctions (e.g., microRNAs). Many modeling frame-
works consider two diffusing agents and the relationships between them: a (self)
activator (A) and a (self) inhibitor (I). Aligning with this, we call one diffusion fac-
tor A (activator) and the other one I (inhibitor), whose denomination corresponds to
the classical situation of interest. However, the purpose of this study is to go beyond
these relationships. Thus, we prefer to consider A and I as being simply two diffusion
factors and define their precise roles via particular feedback functions. Activation and
inhibition are thus encoded within particular feedback functions. The diffusion factors
bind to their corresponding receptors usually localized on the surface of a cell. This
induces a signaling cascade that leads to the shuttling of the TF between the cytosol
and the nucleus (Cai et al. 2008; Nakayama et al. 2008; Nelson et al. 2004). TFs are
proteins that bind to DNA regulatory sequences (enhancers and silencers) to modulate
the rate of gene transcription. This may result in increased or decreased gene transcrip-
tion and protein synthesis (Adcock and Caramori 2009). We suppose that if a given
TF is retained in the nucleus for a sufficiently long period of time, then it stimulates
the translation of the “color gene,” whose product acts as an attractant or activator
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Fig. 1 Schematic representation of the model: a The two-component model uses a mathematical concept
operating via local activation coupled with long-range inhibition with a diffusible activator (A) and inhibitor
(I). b–e Themodel of the current study, a three-component model assumes that cells must translate the diffu-
sion factor-encoded information into a biological signal. Diffusion factors A and I bind to the corresponding
receptors (blue and red rectangles) activating or inhibiting the transcription factor (TF). The activated TF
translocates to the nucleus and (I) stimulates the translation of the “color gene” acting as an attractant and
(II) moreover leads to the synthesis or the inhibition of the activator A and the inhibitor I. This defines four
different feedback loops (Color figure online)

for melanoblasts/melanocytes (MA), and TFs either inhibit or induce the synthesis
of diffusion factors. This results in the following four situations: (I) Activating: The
activated TF stimulates the production of the activator (A) and the inhibitor (I); (II)
Inhibiting: The activated TF inhibits the production of the activator and the inhibitor;
(III)Mixed I: The activated TF promotes the production of the activator, but blocks the
production of the inhibitor; (IV)Mixed II: The activated TF hinders the production of
the activator, but triggers the production of the inhibitor. Activation and inhibition are
thus encoded within particular feedback functions of the TFs leading to four specific
situations. A schematic representation is depicted in Fig. 1.

We assume that S, the activity levels of TFs present in the nucleus, can be consid-
ered as a proxy measure for the expression level of the melanocyte activator/attractant
(MA)within the system. To coordinate these activities, oftenwith great spatiotemporal
and tissue-specific precision as required for developmental programs, several types of
cellular posttranslational modifications of TFsmay occur. These include phosphoryla-
tion, sumoylation, ubiquitination, acetylation, glycosylation, and methylation among
others (Filtz et al. 2014). These long-term modifications influence the sensitivity of
TFs to external signals, slowing down the velocity of developing patterns. This effect
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is taken into consideration in our model using a novel parameter, called “reaction
velocity.”

We consider that the pre-pattern develops in the layer of embryonic keratinocytes
or in dermal fibroblasts and that the melanocyte differentiation/distribution follows
this pre-pattern. Similar mechanisms have been described for the spacing of skin
appendages (hairs, glands). In this case, WNT acting as a short-range activator and
its inhibitor DKK acting as a long-range inhibitor have been identified as primary
determinants of murine hair follicles spacing. Both factors are derived from the mes-
enchymal/dermal fibroblast cell layer (Sick et al. 2006).

2.2 Mathematical Model

Let A(t, x) denote the concentration of the activator at time t and position x , I the
inhibitor concentration, and S the activity level of TFs present in the nucleus. TFs can
also be viewed as a proxy for the expression level of themelanocyte activator/attractant
(MA) within the system. We use the following reaction–diffusion equations for the
activators and inhibitors:

∂A(t, x)

∂t
� ba f (S(t, x)) − da A(t, x) + Da∇2A(t, x) + A(t, x) ∗ ξa (1)

∂ I (t, x)

∂t
� bi g(S(t, x)) − di I (t, x) + Di∇2 I (t, x) + I (t, x) ∗ ξi (2)

where ba is the production rate, da is the degradation rate, and Da is the diffusion
coefficient of the activator,whilebi ,di , and Di are the production rate, degradation rate,
and diffusion coefficient of the inhibitor, respectively. The random variables ξa and ξi
are distributed normally ξa ∼ N (

0, σ 2
a

)
and ξi ∼ N (

0, σ 2
i

)
, in line with the study of

Zheng et al. (2017). We use a multiplicative white noise in the stochastic differential
equation; the absolute value of such a noise is larger at higher concentrations of A
and I . This is in agreement with the experimental finding that the noise, defined
as the ratio between variance and mean, increases significantly when the translation
efficiency, i.e., the production rate, increases (Thattai and van Oudenaarden 2001). If
not mentioned explicitly, σ 2

a � σ 2
i � 0, i.e., there is no stochasticity in the dynamics

of the system. The functions f and g permit distinguishing between the different
situations of interest, i.e., (1) in the Activating situation, f (s) � s and g(s) � s, (2)
in the Inhibiting situation f (s) � 1/s and g(s) � 1/s, (3) in theMixed I situation, f
(s) � s and g(s) � 1/s, and (4) in the Mixed II situation, f (s) � 1/s and g(s) � s.
The dynamics of the TFs is implemented by the following differential equation:

dS(t, x)

dt
� rv(t) ·

(

bs
(A/I )2

K + (A/I )2
− ds S(t, x) + rp

)

, (3)
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where bs is the transport rate of activated TFs to the nucleus, ds is the removal rate of
TFs from nucleus; rp is a small constant transport rate of the activated TFs into the
nucleus. Thus, the quantity S can be regarded as the degree of activation of TFs, if
A � I , S ≈ (bs + rp)/ds and if I � A, S ≈ rp/ds . The function rv(t) is the reaction
velocity. It represents the effectiveness of the system to translate local differences in
the diffusion factors into the degree of activation of TFs. If not specified, we will
consider rv(t) ≡ 1. Otherwise, we will assume that the reaction velocity decreases
with time with the maximal value of 1 at time t � 0. In our simulations, we take a
Hill-type function,

rv(t) �
{
1, t < t0

kη
v

kη
v+(t−t0)η

, t ≥ t0
, (4)

where t0 is the time at which the reaction velocity begins to decrease, η ≥ 1 the Hill
coefficient and kv > 0 the half-saturation constant.

We take the initial conditions (t � 0) for A, I , and S to be random and uniformly
distributed in the interval Jini � [0.5, 1.5].We also test an initial tendency slope in the
TFs’ number (linear vertical gradient, from Smax to Smin). These choices are intended
to enable the apparition of all patterns of interest without investigating particular initial
condition as will be shown in the following section and specified in the Supplementary
Material.

The domain of integration is a square in R
2, and Eqs. (1) and (2) are treated with

no-flux boundary conditions. All simulations were performed in Matlab R2012b.
(Mathworks Inc., MA) using finite differences. Parameters used in our simulations
are shown in Table 1, otherwise they are specified in the figure legends. We set the
time-step �t � 0.01. The reference spatial domain [a, b] × [a, b] was discretized,
such that �x � �y � b−a

M , where the parameters are a � −1, b � 1, and M � 100.
We used the forward Euler method to compute the solution in time, and a second-order
central finite differences approximation was used to evaluate the diffusion term. In all
cases, the number of time steps chosen was small enough to observe no discernible
change in the solution; in particular, when we used smaller discretization time steps
(�t � 0.001), the solution did not change significantly. The differential equations
were simulated with no-flux boundary conditions. All our simulations were stopped
at the indicated runtime Te, The Matlab code for Turing pattern generation presented
by Schneider (2012) has been used as an initial framework for our program. The units
are as follows: ba , bi , bs ,da , di , ds : time−1; Da , Di : length2/time; ∇2 length−2; A, I ,
and S: molecules/length3; �t , Te: time; rp: molecules•length−3 time−1; kv: time,rv ,
η, M : without units; a, b, �x , �y: length. We used arbitrary parameter values for our
simulations, since juvenile or adult mammals have already developed patterns (e.g.,
zebras) and there are no exact data of stripes development during embryonic life-
times. Nevertheless, adjustment of our model to potential future real data is possible.
This has been demonstrated by fitting the parameters of Turing equations to the stripes
development on the skin of themarine angelfishPomacanthus (Kondo andAsai 1995).
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Table 1 Parameters used in our simulations, otherwise they are specified in the figure legends

Reaction (production and degradation rate) Diffusion Other parameters

S bs � 1.0
ds � 0.1

No diffusion K � 50
rp � 0.001

A ba � 1.1
da � 0.1

Da � 0.00008

I bi � 0.3
di � 0.1

Di � 0.005

Concerning reaction velocities rv(t) ≡ 1, otherwise rv(t) has the Hill form of equation, the Hill coefficient
η � 3, and the half-saturation constant kv � 100

3 Results

3.1 The Four Situations

The situation defined as “Activating” leads to the generation of prototypical Turing
patterns. As shown in previous systems, changing one parameter produces regularly
spaced black or white dots in a background of the opposite color (Fig. 2a, c, respec-
tively) and labyrinth patterns in between (Miyazawa et al. 2010). To achieve such
labyrinth patterns, the inhibitor needs to diffuse faster than the activator (Fig. 2b).
The usage of concentration gradients has already been proposed and was shown to
play a role in stripes formation (Hiscock and Megason 2015; Quininao et al. 2015).
If one uses a linear gradient for the activation level of TF, the system forms regular
stripes and the slope of this gradient determines the two poles (Fig. 2d). The positive
pole is at the top of the slope (highest initial activity), while the negative pole is at its
bottom (lowest initial activity). When starting the simulation, the first stripe appears
extremely fast and close to the negative pole and the stripe generation starts from both
poles. After some time, it ends in the middle of the domain, even if the negative pole
is more effective, i.e., faster, in the stripe generation.

In the Supplementary Material S1 Text, all mathematical details are provided to
show that this case leads to similar conditions as the ones Turing found for diffusion-
driven instability: The system’s steady-state is always stable in the absence of diffusion,
and the condition for diffusion-driven instability is illustrated in Fig. S1A.

The Inhibiting situation also generates regularly distributed dots as well as
labyrinths. However, the diffusion coefficient of the activator needs to be higher than
the one for the inhibitor, as illustrated in Fig. 2e–g. The structure of this model is
similar to the model proposed by Raspopovic (Raspopovic et al. 2014).

Amathematical analysis shows similar results as the ones provided in the activating
situation (see SupplementaryMaterial and Fig. S1). In both situations, the steady states
are of the same nature (linearly stable without diffusion). The roles of the substances
A and I are reversed and similarly are the conditions leading to diffusion-driven
instability.

The Mixed I situation generates the “classical” piebald patterns as observed in
Dalmatian dogs (Canis lupus familiaris) (Fig. 3a–c). As in the activating case, modi-
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Fig. 2 Simulations. Initial conditions are set uniformly and randomly on Jini � [0.5, 1.5], for A, I , and S
for all x . In all figures, S was plotted. Activating situation: “Turing patterns,” i.e., regular dots and labyrinth
patterns, can be generated with ds � da � di � 0.1, bs � 1, bi � 0.3, Da � 0.00008, Di � 0.005,
K � 50, rp � 0.001, Te � 8000, and a ba � 0.5, b ba � 1.1, and c ba � 1.5. In d, a linear slope for the
initial conditions of S is used. Regular stripes begin to form at the negative pole (where there is less initially
activated TF). They remain regular only when close to the poles. The previous parameters are used with
ba � 1.1 and initial conditions for S set linearly along the y axis between [0.5, 8]. Inhibiting situation:
Regular dots and labyrinths are obtained. Parameters are similar to the previous situation (b), but ba � 0.9
is fixed, Da � 0.005, Di � 0.00008, and bi varies such that e bi � 0.5, f bi � 2, and g bi � 2.85.
Mixed I situation: Transient piebald patterns are generated. They strongly depend on the initial conditions.
Here, we use a large dispersal for the initial values of A and I (Jini � [0.5, 100.5]) that enables both
stable equilibria to be transiently attained with low diffusion. The parameters are similar to the previous
situation, but ba � 1, Da � 0.00006, Di � 0.00001, and bi varies such that h bi � 0.11, i bi � 0.125,
and j bi � 0.15. In k, we used a linear initial gradient along the y-axis for S with values between [0.4, 1.6]
and bi � 0.125. The simulation was stopped at Te � 100. Mixed II situation: Gray tones are obtained.
Parameters are ds � da � di � 0.1, bs � 1, bi � 0.01, Da � 0.0001, Di � 0.003, and l ba � 0.01,
m ba � 1, and n ba � 10. The simulation was stopped at Te � 100

fying one parameter in themodel (e.g., the production rate of the so-called inhibitor bi )
results in variations of the patterns. It varies from randomly distributed and inhomoge-
neous white spots (Fig. 2h) to inhomogeneous black spots (Fig. 2j). In the intermediate
situation, black andwhite spots are relatively well dispersed (Fig. 2i). A gradient of the
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Fig. 3 Developing patterns on the fur of Dalmatian dogs. Newborn Dalmatian dogs have no or very small
black dots (a). The same dog at the age of 10 weeks (b) and 6 years (c). Newly developed dots are marked
with yellow arrows. Some dots show an increase in their relative size (red arrowheads). Dalmatians were
photographed by Nina Hedvig Eriksen (Color figure online)

initial activity of the immobile TF leads to a concentration of the white spots at the bot-
tomof the rectangular domain (negative pole), while the remaining surface (upper part)
is uniformly black (Fig. 2k). Such particular patterns are commonly observed on the
coat of Landseer Newfoundland dogs (Canis lupus familiaris) and Holstein–Friesian
cattle (Bos taurus) (Pape 1990). One of the differences between theMixed I case and
the two previous ones is the system’s steady state, when considering Da � Di � 0.
Here, the mechanism leading to the pattern formation is slightly different from the
original analysis of Turing; the system with Da � Di � 0 is bistable, see Supple-
mentary Material. As such, in this case, the initial conditions determine the long-term
behavior of S(t, x), which may attain two different states (e.g., black and white) as
time increases. The random arrangement of the obtained patches results thus directly
from the noisy initial conditions; Fig. S2B in the Supplementary Material illustrates
the two basins of attraction for such a system. The choice of our initial conditions Jini
was selected to makemodel frameworks comparisons easier. In this case, the spread of
this interval is sufficiently large to attain both steady states for certain parameter ranges
of other kinds, as bi or ba (see Fig. S2 in the S1 Text). This spread is thus a requirement
for piebald patterns to be expressed within our model. The pigmented spots are the
result of the stochastic migration of primordial pigment cells (melanoblasts) from the
neural crest to their final locations in the skin of the early embryo (Li et al. 2011;
Mort et al. 2016). Although the mathematical model considering only the random
movement of melanoblasts does not produce sharp edges between the colored and
the melanocyte-free regions (Mort et al. 2016), the initial noisy random condition,
the pre-requirement of our model, can be explained by a model incorporating random
melanoblast migration with proliferation in the skin of the developing embryo (Mort
et al. 2016). Adding diffusion to the modeling smoothens and destabilizes the long-
term behavior of S(t, x), with visible transient patterns appearing, if parameters Da

and Di are sufficiently small. The numerical analysis performed in the Supplemen-
tary Material led to the bifurcation diagram of Fig. S2A. This illustrates the system’s
bistability and diffusion-driven instability. The spots on Dalmatian dogs appear after
their birth with increasing sizes and contrasts, indicating that a reaction–diffusion
mechanism may also be involved in their formation (Fig. 3a–c).

In the Mixed II situation, differences in diffusion rates do not play a role. This
mechanism generates different levels of S, but does not produce patterns in the long-
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term behavior of S(t, x) (Fig. 2l–n). A numerical analysis of the situation shows
mono-stability in the absence of diffusion and no diffusion-driven instability, which
leads to simple color tones, see S1 Text.

3.2 The Effect of Initial and Dynamical Noise on the Pattern

We distinguish initial noise (uniform distribution on a support denoted by Jini in the
concentrations of diffusion factors and TFs, which essentially leads to different initial
conditions and dynamical noise involved in the process.

We found that the initial noisy conditions have a particularly strong effect deter-
mining the final pattern, as explained in the Mixed I situation. Similarly, the initial
noisy conditions almost entirely determine the precise expression of the Turing pat-
terns in Activating and Inhibiting situations as shown in Fig. 4 (upper row) versus
Fig. 4 (middle row), if there is only moderate noise during the process.

However, strong noise influences the resulting pattern outcomes (see Fig. 4 (upper
row) versus Fig. 4 (lower row)). Overall, the model proposed here is thus particularly
robust to small stochastic variations that may occur during chemical reactions and
relies mostly on the interacting structures between the diffusing agents and the TFs,
encoded in our functions f and g as well as in the initial conditions.

Time series of changes in S at the position of x are presented in the Activating
situation (Fig. 4b, c). A periodogram of the time series of Activating situation at the
highest dynamical noise σa � σi � 0.1 is presented in Fig. 4d using fast Fourier
transformation. The periodogram shows a steep increase at the lower frequencies.

3.3 Pattern“Freezing”

We can regulate the speed of the pattern formation using the parameter rv seen as a
scaling for the activation levels of TFs, due to posttranslational modifications (Filtz
et al. 2014). If this value is close to zero, the pattern formation dynamics is halted
(“frozen”) and the pattern will not change significantly over time (Fig. 5). Thus,
assuming such a mechanism, a transient pattern such as the piebald pattern may last
in a given form on the animal coat for a very long period. A detailed analysis of
the pattern-freezing phenomenon in the Activating situation has been performed in
another study (Dougoud et al., under review).

3.4 AModel Extension for Describing Overlapping Patterns

Interesting situations can also occur when multiple diffusion factors are involved in
the system, e.g., two activators and two inhibitors. Two mechanisms need thus to be
considered at the same time. For this purpose, let A1(t, x) be the concentration of the
first activator at place x and time t A2(t, x) the concentration of the second activator at
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Fig. 4 Robustness to noise. a The four situations are represented in each case with identical (fixed) initial
conditions. In the top row, σa � σi � 0, and there is no extrinsic noise in the system. In the middle
row, σa � σi � 0.01; thus, ξa and ξb are uniformly distributed random variables. In the lower row,
σa � σi � 0.1. First column Activating situation, with parameters as in Fig. 2b. Second column Inhibiting
situation, with parameters as in Fig. 2F. Third column Mixed I situation, with the parameters as in Fig. 2I.
Fourth column Mixed II situation, with parameters as in Fig. 2M. b, c Development of S activation at
a given position (blue spot) x in the case of an Activating situation. Red line: σa � σi � 0; green line:
σa � σi � 0.01; blue line: σa � σi � 0.1. d Periodogram of the blue line using fast Fourier transformation
(dB � decibel, rad � radian) (Color figure online)

place x and time t and similarly for I1 I2S1, and S2. All these quantities follow these
differential equations:

∂Ak(t, x)

∂t
� ba,k fk(Sk(t, x)) − da,k Ak(t, x) + Da,k∇2Ak(t, x) (5)

∂ Ik(t, x)

∂t
� bi,kgk(Sk(t, x)) − di,k Ik(t, x) + Di,k∇2 Ik(t, x) (6)
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Fig. 5 Freezing of the piebald pattern. Top row: The simulation is based on Mixed I situations with the
parameters as in Fig. 2I, middle row) The pattern develops as in the top row and is frozen with kv �
100patches, we consider, η � 3, and tv � 300. Bottom row: The pattern develops as in the top row and is
frozen with kv � 100, η � 3, and tv � 0

dSk(t, x)

dt
� rv(t) ·

⎛

⎜
⎝bs,k

(
Ak
Ik

)2

K +
(
Ak
Ik

)2 − ds,k Sk(t, x) + rp.k

⎞

⎟
⎠ (7)

With k � 1, 2 and where fk and gk are functions similar to the functions f and g
defined according to the situations of interest. All other parameters are defined simi-
larly as before. The substances Sk are constructed in an analogousway as before. Then,
the substance of interest S, i.e., the concentration of themelanocyte attractant/activator,
is a combination of S1 and S2, i.e., within this framework, we track

S(t, x) � α1S1(t, x) + α2S2(t, x), (8)

where α1, α2 are positive constants that we choose such that α1 +α2 � 1. For example,
to produce the patterns shown in Fig. 6a, with regular stripes and irregular patches,
we consider the Mixed I situation with

f1(s) � s, g1(s) � 1

s

and the Activating situation
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Fig. 6 Overlapping patterns. a Cats contain both set of genes required for piebald patterns and Turing-
based stripe formation. (photographed by Viktoria Szabolcsi). b In a zebra–horse hybrid animal, the stripes
generated by a Turing mechanism appear only on the dark part of the piebald pattern (photographed by
Yannik Willing). c, d In the overlapping model, there are two sets of components: activating diffusion
factors (A1, A2) and inhibiting diffusion factors (I1, I2) and transcription factors (S1, S2) for the piebald
pattern and Turing pattern generation, respectively. The S1 (melanocyte attractant) and (S2) (melanocyte
stimulant) interacting with each other, as described in Sect. 2. c Parameters are the same as in Fig. 5 (middle
row) for piebald patterns and as in Fig. 2a for Turing patterns, except that ba � 0.7. d Parameters are the
same as shown in Fig. 5 (middle row) for piebald patterns and as in Fig. 2d for Turing patterns (color figure
online)

f2(s) � s, g2(s) � s,

while the substances S are such that

S(t, x) �
{
S1(t, x), S1(t, x) � rp/ds
α1S1(t, x) + α2S2(t, x), S1(t, x) > rp/ds

This denotes that since in the region of white patches, regular stripes cannot develop
(there is no melanocyte in this region S1(t, x) ≈ 0), melanocyte differentiation can
only occur in the areas with black patches. We assume that although the S2-related
diffusion factor produced by keratinocytes and dermal fibroblasts (acting as an activa-
tor for melanocyte differentiation) is produced in the white patches as well, it cannot
exert its effect. Indeed, in such regions, there are no melanocytes, on which an effect
could be exerted.
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3.5 Overlap of Regular and Irregular Piebald Patterns

Performing a “genetic cross” of animals using Turing pattern and piebald pattern
generating processes for their fur coat patterns reveals a spatial overlap of the two
patterns, as exemplified by the fur patterns of a zebra–horse hybrid (Equus zebra ~X
Equus caballus|) (Fig. 6a) or a cat (Felis catus) (Fig. 6b). In both of these examples,
the pattern does not appear on the white region of the piebald patches. It is also worth
noting that the background of the stripes on the hybrid animal is darker compared to the
regular white–black stripes present on a zebra fur. This indicates that the two pattern-
forming situations tend to overlap. The presented simulations (Fig. 6c, d) reveal a very
similar pattern formation highly reminiscent of the pattern seen on the photographs of
the cat and horse hybrid.

4 Discussion

A third non-diffusing factor has already been considered in some previous mathemati-
cal works (Klika et al. 2012;Marcon et al. 2016; Raspopovic et al. 2014), investigating
the effect of cell-autonomous factor(s) on the parameter range of reaction–diffusion
equations producing Turing-type patterns. The third non-moving component is con-
sidered to be a cell membrane receptor (Marciniak-Czochra 2003), an extracellular
matrix molecule reversibly binding to diffusion factors (Korvasova et al. 2015) or
a transcription factor (Raspopovic et al. 2014). Mathematical analysis of three- and
multi-component systems revealed that in the presence of a non-moving component
the pattern may be formed within a wider range of the diffusion parameters; patterns
may be formed with equal diffusivities of activator and inhibitor (Marcon et al. 2016),
with two activators (Korvasova et al. 2015) or even with only one diffusive compo-
nent (Anma et al. 2012; Marcon et al. 2016). Here, we showed that the presence of a
cell-autonomous factor not only expands the range of reaction–diffusion parameters
in which the pattern may be formed, but also extends pattern-forming abilities of the
reaction–diffusion equations. The SupplementaryMaterial S1 Text provides a detailed
mathematical and numerical analysis of the former. It also sheds light on its impor-
tance compared to a two-factor reduction of the model in producing piebald patterns
(Fig. S5).

Searching for the precise molecular identity of the model’s components (A, I , TF,
and MA) is a challenging task for experimental work, but analyzing the existing lit-
erature allows to select some candidates. In the Activating and Inhibiting situations,
our model produces Turing-type patterns. This type of pattern has been experimen-
tally investigated in felids. In these, pigment-type switching controlled by Asip and
Edn3, both factors acting in a paracrine way, is the major determinant of color patterns
(Kaelin et al. 2012). These factors originate from the dermal papilla of hair follicles
and influence the pigment synthesis pathway leading to the production of either eume-
lanin (brown–black) or pheomelanin (yellow–red) (Mills and Patterson 2009). The
production of Asip is promoted by the morphogen BMP4 (Abdel-Malek and Swope
2011). The latter is assumed to work as an inhibitory molecule in several Turing-type
developmental processes (Miura 2007). The activatory molecule is assumed to be
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the bFGF diffusion factor produced by fibroblasts in the dermis. The factor bFGF and
other Ras/MAPK pathway activators inhibit BMP signaling throughMAPK-mediated
phosphorylation of SMAD transcription factors (Sapkota et al. 2007). Besides that,
the secreted protein Wnt acting via the Wnt/β-catenin signaling pathway also inhibits
BMP4 production (Baker et al. 1999). Wnt and BMP4 have been already proposed
serving as a Turing pair in digit development (Raspopovic et al. 2014). Theoretically,
noggin, another secreted protein, also operates together with BMP4 as a Turing pair,
because noggin (i) extracellularly binds BMP4, (ii) inhibits the effect of BMP4, and
(iii) modulates its diffusion parameters forming a noggin/BMP4 pair (McMahon et al.
1998). Molecular analysis also revealed that a transmembrane aminopeptidase, tab-
ulin, is playing a role in the blotched tabby cat and king cheetah pattern formation
(Kaelin et al. 2012). Most probably, this protein interferes with the movement of diffu-
sion factors. A recent finding shows that in African striped mice (Rhabdomys pumilio)
and in Eastern chipmunks (Tamias striatus), the periodic dorsal stripes are the result
of differences in melanocyte differentiation and that the transcription factor ALX3 is
a regulator of this process (Mallarino et al. 2016).

The localized absence of the pigment-producing melanocytes results in irregular
patches of white (piebald pattern) coloration on an animal skin. Although children
born with piebaldism had been displayed in circuses as “The Zebra People” (Huang
and Glick 2016), one needs to reconcile that the piebald patterns and zebra stripes
are the result of different processes. Piebald patterns are not restricted to animals
such as horses, dogs, birds, cats, pigs, and cattle, but are also observable on human
skin. Usually piebaldism does not change with time; however, the “colorless” areas
occasionally shrink or in some cases may spontaneously disappear (“heal”) (Frances
et al. 2015). In line with our model, this indicates that generally a piebald pattern is
a transient pattern. One can also observe that the relative sizes of irregular patches
of piebald patterns are increasing with time. If we suppose that the pattern-freezing
phenomenon occurs at different developmental stages of piebald pattern formation,
this will lead to smaller or bigger patches on animals coat. To give an example from
the animal kingdom, one can compare the patterns of Appaloosa (small irregular
patches) and Tobiano (big irregular patches) horses (Equus caballus) or the patterns
of Dalmatian and Landseer Newfoundland dogs (Canis lupus familiaris).

The molecular background of the piebald pattern is the altered melanocyte distribu-
tion. The diffusion factor SCF and its receptor KIT on melanocytes were identified as
factors for melanocyte survival and distribution. The clinical features and phenotypic
severity of piebaldism clearly correlate with the site and the type of mutations in the
KIT gene encoding the KIT receptor (Oiso et al. 2013; Spritz 1994). Its ligand, the
diffusion factor SCF, produced by keratinocytes and dermal fibroblasts, also serves
as a chemoattractant for melanocytes. Besides that, mutations in the diffusion factor
endothelin 3 (ET3) and its receptor, EDNRB, have been implicated in theWaardenburg
syndrome type 4, a disease characterized by piebaldism (Attie et al. 1995). Interest-
ingly, although in the normal skin, the uniform melanocyte distribution is maintained
and is restored after temporal destruction of melanocytes due to UV-light overexpo-
sure or moderate wound infliction (Griffiths et al. 2016), the zone with the piebald
pattern does not heal as well. According to our model, this may be due to the presence
of a yet unidentified inhibitor present in the non-pigmented region (Fig. 1d).
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In conclusion, we demonstrated in our modeling framework that noisy initial con-
ditions coupled with well-defined feedback loops of the interacting factors determine
which patterns are generated. As such, piebald patterns are produced when TFs trigger
the production of activators, while at the same time block the production of inhibitor.
Although the model parameters have not been adjusted to a specific pattern in this
study, our model allows to easily reproduce current Turing patterns. At the same time,
our framework sheds new light on phenomena such as piebaldism.

Acknowledgements The authors wish to thank Yannik Willing, Nina Hedvig Eriksen, and Viktoria
Szabolcsi for providing the photographs.
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CichorekM,WachulskaM, Stasiewicz A, Tymińska A (2013) Skin melanocytes: biology and development.
Adv Dermatol Allergol 30:30–41

Danino T, Mondragon-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks.
Nature 463:326–330

Egri Á, Blahó M, Kriska G, Farkas R, Gyurkovszky M, Åkesson S, Horváth G (2012) Polarotactic tabanids
find striped patterns with brightness and/or polarization modulation least attractive: an advantage of
zebra stripes. J Exp Biol 215:736–745

Filtz TM, Vogel WK, Leid M (2014) Regulation of transcription factor activity by interconnected, post-
translational modifications. Trends Pharmacol Sci 35:76–85

Frances L, Betlloch I, Leiva-Salinas M, Silvestre JF (2015) Spontaneous repigmentation in an infant with
piebaldism. Int J Dermatol 54:e244–e246

Griffiths C, Barker J, Bleiker T, Chalmers R, Creamer D (2016) Rook’s textbook of dermatology, vol 4.
Wiley, Hoboken

Hirobe T (2011) How are proliferation and differentiation of melanocytes regulated? Pigment Cell
Melanoma Res 24:462–478

Hiscock TW, Megason SG (2015) Orientation of turing-like patterns by morphogen gradients and tissue
anisotropies. Cell Syst 1:408–416

How MJ, Zanker JM (2014) Motion camouflage induced by zebra stripes. Zoology 117:163–170
Huang A, Glick SA (2016) Piebaldism in history-”The Zebra People”. JAMA Dermatol 152:1261
Kaelin CB, Xu X, Hong LZ, David VA, McGowan KA, Schmidt-Kuntzel A, Roelke ME, Pino J, Pontius J,

Cooper GM et al (2012) Specifying and sustaining pigmentation patterns in domestic and wild cats.
Science 337:1536–1541

123



Extending the Mathematical Palette for Developmental… 1477

Klika V, Baker RE, Headon D, Gaffney EA (2012) The influence of receptor-mediated interactions on
reaction-diffusion mechanisms of cellular self-organisation. Bull Math Biol 74:935–957

Kondo S, Asai R (1995) A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus. Nature
376:765

Korvasova K, Gaffney EA, Maini PK, Ferreira MA, Klika V (2015) Investigating the Turing conditions for
diffusion-driven instability in the presence of a binding immobile substrate. J Theor Biol 367:286–295

Li A, Ma Y, Yu X, Mort RL, Lindsay CR, Stevenson D, Strathdee D, Insall RH, Chernoff J, Snapper
SB et al (2011) Rac1 drives melanoblast organization during mouse development by orchestrating
pseudopod-driven motility and cell-cycle progression. Dev Cell 21:722–734

Lin JY, Fisher DE (2007) Melanocyte biology and skin pigmentation. Nature 445:843–850
Liu C, Fu X, Liu L, Ren X, Chau CKL, Li S, Xiang L, Zeng H, Chen G, Tang L-H et al (2011) Sequential

establishment of stripe patterns in an expanding cell population. Science 334:238
Mallarino R, Henegar C, Mirasierra M, ManceauM, Schradin C, Vallejo M, Beronja S, Barsh GS, Hoekstra

HE (2016) Developmental mechanisms of stripe patterns in rodents. Nature 539:518–523
Marciniak-Czochra A (2003) Receptor-based models with diffusion-driven instability for pattern formation

in hydra. J Biol Syst 11:293–324
Marcon L, Diego X, Sharpe J, Müller P (2016) High-throughput mathematical analysis identifies Turing

networks for patterning with equally diffusing signals. eLife 5:e14022
McMahon JA, Takada S, Zimmerman LB, Fan C-M, Harland RM, McMahon AP (1998) Noggin-mediated

antagonism of BMP signaling is required for growth and patterning of the neural tube and somite.
Genes Dev 12:1438–1452

Mills MG, Patterson LB (2009) Not just black and white: pigment pattern development and evolution in
vertebrates. Semin Cell Dev Biol 20:72–81

Miura, T. (2007). Modulation of activator diffusion by extracellular matrix in Turing system (Workshops on
“Pattern Formation Problems in Dissipative Systems” and “Mathematical Modeling and Analysis for
Nonlinear Phenomena”).数理解析研究所講究録春冊 � RIMS Kokyuroku Bessatsu B3:165–176

Miyazawa S, Okamoto M, Kondo S (2010) Blending of animal colour patterns by hybridization. Nat
Commun 1:66

Mort RL, Ross RJ, Hainey KJ, Harrison OJ, Keighren MA, Landini G, Baker RE, Painter KJ, Jackson IJ,
Yates CA (2016) Reconciling diverse mammalian pigmentation patterns with a fundamental mathe-
matical model. Nat Commun 7:10288

Murray JD (1989) Biological waves: multi-species reaction diffusion models. In: Mathematical biology,
Springer, Berlin, pp 311–359

Nakayama K, Satoh T, Igari A, Kageyama R, Nishida E (2008) FGF induces oscillations of Hes1 expression
and Ras/ERK activation. Curr Biol CB 18:R332–R334

Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA,
Spiller DG et al (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression.
Science 306:704–708

Oiso N, Fukai K, Kawada A, Suzuki T (2013) Piebaldism. J Dermatol 40:330–335
Pape H (1990) The inheritance of the piebald spotting pattern and its variation in Holstein-Friesian cattle

and in Landseer-Newfoundland dogs. Genetica 80:115–128
Quininao C, Prochiantz A, Touboul J (2015) Local homeoprotein diffusion can stabilize boundaries gener-

ated by graded positional cues. Development 142:1860–1868
Raspopovic J, Marcon L, Russo L, Sharpe J (2014) Modeling digits. Digit patterning is controlled by a

Bmp-Sox9-Wnt Turing network modulated by morphogen gradients. Science 345:566–570
Salsa S, Vegni FMG, Zaretti A, Zunino P (2013) Reaction-diffusion models. In: A primer on PDEs: models,

methods, simulations, Springer, Milan, pp 139–188
Sapkota G, Alarcon C, Spagnoli FM, Brivanlou AH, Massague J (2007) Balancing BMP signaling through

integrated inputs into the Smad1 linker. Mol Cell 25:441–454
Schneider J (2012)Perfect stripes fromageneral turingmodel in different geometries.BoiseStateUniversity,

Boise
Sick S, Reinker S, Timmer J, Schlake T (2006) WNT and DKK determine hair follicle spacing through a

reaction–diffusion mechanism. Science 314:1447–1450
Spritz RA (1994) Molecular basis of human piebaldism. J Invest Dermatol 103:137S–140S
Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci

98:8614–8619
Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–72

123



1478 M. Dougoud et al.

Wang Y, Viennet C, Robin S, Berthon JY, He L, Humbert P (2017) Precise role of dermal fibroblasts on
melanocyte pigmentation. J Dermatol Sci 88:159–166

Zheng Q, Wang Z, Shen J, Iqbal HMA (2017) Turing bifurcation and pattern formation of stochastic
reaction–diffusion system. Adv Math Phys 2017:9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Extending the Mathematical Palette for Developmental Pattern Formation: Piebaldism
	Abstract
	1 Introduction
	2 Methods
	2.1 Concept
	2.2 Mathematical Model

	3 Results
	3.1 The Four Situations
	3.2 The Effect of Initial and Dynamical Noise on the Pattern
	3.3 Pattern “Freezing”
	3.4 A Model Extension for Describing Overlapping Patterns
	3.5 Overlap of Regular and Irregular Piebald Patterns

	4 Discussion
	Acknowledgements
	References




