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Abstract
Salivary gland acinar cells use the calcium (Ca2+) ion as a signalling messenger
to regulate a diverse range of intracellular processes, including the secretion of pri-
mary saliva. Although the underlying mechanisms responsible for saliva secretion
are reasonably well understood, the precise role played by spatially heterogeneous
intracellular Ca2+ signalling in these cells remains uncertain. In this study, we use a
mathematical model, based on new and unpublished experimental data from parotid
acinar cells (measured in excised lobules of mouse parotid gland), to investigate how
the structure of the cell and the spatio-temporal properties of Ca2+ signalling influ-
ence the production of primary saliva. We combine a new Ca2+ signalling model
[described in detail in a companion paper: Pages et al. in Bull Math Biol 2018, sub-
mitted] with an existing secretion model (Vera-Sigüenza et al. in Bull Math Biol
80:255–282, 2018. https://doi.org/10.1007/s11538-017-0370-6) and solve the resul-
tant model in an anatomically accurate three-dimensional cell. Our study yields three
principal results. Firstly, we show that spatial heterogeneities of Ca2+ concentration
in either the apical or basal regions of the cell have no significant effect on the rate of
primary saliva secretion. Secondly, in agreement with previous work (Palk et al., in J
Theor Biol 305:45–53, 2012. https://doi.org/10.1016/j.jtbi.2012.04.009) we show that
the frequency of Ca2+ oscillation has no significant effect on the rate of primary saliva
secretion, which is determined almost entirely by the mean (over time) of the apical
and basal [Ca2+]. Thirdly, it is possible to model the rate of primary saliva secretion as
a quasi-steady-state function of the cytosolic [Ca2+] averaged over the entire cell when
modelling the flow rate is the only interest, thus ignoring all the dynamic complexity
not only of the fluid secretion mechanism but also of the intracellular heterogeneity of
[Ca2+]i . Taken together, our results demonstrate that an accurate multiscale model of
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primary saliva secretion from a single acinar cell can be constructed by ignoring the
vast majority of the spatial and temporal complexity of the underlying mechanisms.

Keywords Salivary epithelia · Parotid gland · Fluid secretion · Plasma membrane ·
Saliva · Ca2+ Signalling · Ca2+ Mathematical modelling · Ion channels

1 Introduction

In most mammals, themajority of saliva is secreted by three principal pairs of exocrine
glands: the parotid, the sub-mandibular, and the sub-lingual.Clusters of salivary epithe-
lia, called acini, secrete a primary fluid into a collecting region called the acinar lumen.
The collected secretion is low in potassium (K+), but its sodium (Na+) and chloride
(Cl−) concentrations are similar to those in plasma (Martin and Young 1971). Along
with evidence regarding the inhomogeneous distribution of plasma membrane (PM)
transporters, channels, and exchangers in water-transporting epithelia, these obser-
vations led to the construction of the currently accepted secretion model (Silva et al.
1977). In this model, basolateral PMmechanisms accumulate Cl− to levels well above
its electrochemical equilibrium. Following an increase in the intracellular concentra-
tion of calcium ([Ca2+]i ), a Cl− efflux through apical Ca2+-dependent Cl− channels
generates a transepithelial osmotic gradient. Water follows this gradient by osmosis.

Cl− uptake via basolateralNa+-K+-2Cl− cotransporters (Nkcc1) is themajor driver
of fluid secretion in acinar cells, and its inhibition causes an approximate 70%decrease
in the rate of saliva secretion (Evans et al. 2000). The residual secretion is bicarbon-
ate (HCO−

3 )-dependent and involves two Na+/H+ (Nhe1) paired Cl−/HCO−
3 anion

exchangers: the anion exchanger 2 (Ae2) and the anion exchanger 4 (Ae4) (Melvin
et al. 2005). However, recent studies by Peña-Münzenmayer et al. (2015) revealed
that only the Ae4 is relevant in the secretory process. Experiments on Ae4 knockout
mice exhibited a decreased gland fluid secretion (∼ 30% of the control fluid flow rate),
whereasmice lackingAe2 expression displayed an unchanged secretion rate. Sigüenza
et al. (2018) developed a mathematical model, based on Palk et al. (2010), that aimed
to understand the mechanisms behind these results. The model supports the obser-
vations by Peña-Münzenmayer et al. (2015) and suggests that the Ae4’s cotransport
of monovalent cations is likely to be important in establishing the osmotic gradient
necessary for optimal transepithelial fluid movement.

Themodel of Sigüenza et al. (2018) assumes that [Ca2+]i is a given function of time
(for example, a given constant), not a dependent variable. Although this simplifies the
computations, there is a great deal of evidence that Ca2+ spatio-temporal phenomena
are involved in water transport (Foskett 1990; Tanimura 2009; Palk et al. 2012). In
particular, it is well known that Ca2+ travels in waves from apical to basolateral
regions of the cell (Foskett and Melvin 1989; Foskett et al. 1991). These encode a
large amount of signalling information that a constant, and homogeneous, [Ca2+]i
does not. Variations in wave amplitude, mean concentration, frequency, and also wave
speed serve as potential modifiers of saliva secretion.

In this study, we investigate how the three-dimensional structure of a salivary acinar
cell and the spatio-temporal heterogeneities of Ca2+ signalling affect transepithelial
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Fig. 1 A parotid acinar cell depicted by a tetrahedral mesh. Two images of the same cell are shown. The
cell is rotated to exhibit the apical (red) and basal (blue) regions of the plasma membrane (PM). The non-
coloured triangular faces represent its lateral portion. The image reflects the hallmark pyramidal shape seen
in several water secreting epithelia. Details of the mesh construction can be found in Pages et al. (2018)
(Color figure online)

water transport. To do so, we use a partial differential equation model of Ca2+ sig-
nalling to drive fluid secretion on seven anatomically accurate three-dimensional cells
consisting of individual volumetric tetrahedral meshes. The details of the Ca2+ sig-
nalling model, and construction of the meshes, are presented in a companion paper by
Pages et al. (2018). Here, we demonstrate that given physiologically accurate spatio-
temporal Ca2+ responses to agonist-induced stimulation, each acinar cell will secrete
primary saliva at the correct physiological rate. In addition, we show that the model
reproduces critical experimental data, including the expected changes in cellular vol-
ume and the concentrations of the ionic species involved in fluid secretion such as
Cl−, Na+, K+, HCO−

3 and H+. We conclude with a brief discussion on how many of
the complexities of a spatial Ca2+ signalling model are unnecessary in the modelling
of primary secretion by these epithelia.

2 Experimental Data and Cell Reconstruction

The model presented in this study uses a mesh constructed by Pages et al. (2018)
and described in detail there. Briefly, it is based on 31 confocal microscopy images
of parotid gland epithelia at 1024 by 1024 pixels, with a resolution of 0.069 µm per
pixel and a stack spacing of 0.8 µm. These consist of fluorescent staining of the apical
Ca2+-dependent Cl− channels, (TMeM16a), and NaK-ATPases as a way to visualise
apical and basolateral plasma membranes of acinar cells. Using these data, a mesh
was created of a cluster of seven cells where every cell touches at least one or more
other cells. Here, we present in detail the results of our model applied to one of these
cells (Fig. 1). Refer to the supporting material for the results in all seven cells.

The Ca2+ dynamics model is based on previously unpublished data from excised
parotid gland lobules stimulated by 300 nM Carbachol (CCh), as described in Pages
et al. (2018) and in Sect. 3.3.
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3 SecretionModel

3.1 Assumptions

We use the mathematical model of primary secretion developed by Sigüenza et al.
(2018). Here, the interstitial and luminal compartments are modelled as constant vol-
ume sub-domains. In particular, the interstitial space is assumed to be an infinite ionic
bath (i.e. all its ionic concentrations are constant). Furthermore, with the exception of
[Ca2+]i , the ionic species are assumed well-stirred at all times throughout the three
compartments. This is because the intracellular diffusion of the ions involved in fluid
secretion occurs relatively fast compared to the time scale inwhichwater travels across
the cell and its plasma membrane (from interstitium to lumen) (Swietach et al. 2003).

Saliva flow is initiated, from rest, by an agonist-induced [Ca2+]i increase that
causes the opening of apical Ca2+-activated Cl− channels (TMem16a) in order to
establish a Cl− efflux into the acinar lumen. This is maintained by a compensating
K+ current through the basolateral Ca2+-activated K+ channels (BK/IK), along with
a paracellular cation current. Consequently, an osmotic gradient from the interstitium,
through the cell, to the lumen is created, enabling the flow of water in the secretory
direction (see Fig. 2). In our model, the Ca2+-activated Cl− channels are restricted
to the apical PM (Young 1968), and the Ca2+-activated K+ channels are restricted
to the basolateral PM. Although there is evidence for a limited number of Ca2+-
activated K+ channels on the apical PM considerable uncertainty as to the relative
distribution between apical and basolateral PM exists, so for simplicity we choose to
avoid this question entirely (Almassy et al. 2012). This problem has been addressed
in previous studies (Almássy et al. 2018; Palk et al. 2010). The distributions of all
pumps, transporters, and exchangers in their respective PM portions are assumed to
be homogeneous (see Fig. 2). As a consequence, the PM electric potentials, basolateral
and apical alike, are also homogeneous. Finally, as a simplification, we do not include
the basolateral anion exchanger 2 (Ae2). This is because the exchanger has been shown
to be less important for fluid secretion (Peña-Münzenmayer et al. 2015; Sigüenza et al.
2018).

3.2 Equations

We introduce the subscripts, e, i , and l to denote, respectively, the interstitial, intra-
cellular, and luminal compartments. The cellular PM fluxes are denoted by j , and
each flux is represented by a sub-model based on experimental data (where possible)
and/or previousmodels. To take the three-dimensional structure of the cell into account
requires only a small modification from the previous model of Sigüenza et al. (2018).
All the ions, with the exception of Ca2+, which is treated in detail in a companion
paper (Pages et al. 2018) are assumed to be spatially homogeneous. Thus, conservation
gives, for Cl−, say,

d([Cl−]iω)

dt
=

∫
∂Ωb

(
2 jNkcc1 + jAe4

)
dS −

∫
∂Ωa

jCl dS,

123



A Mathematical Model of Fluid Transport in an Accurate... 703

Ca

Cl-2

3

2

K

CO +

Ca

HCO +-

H2

H O2

K

CI

H O2

H O2

H O22 3

HCO-
3

Na+
Na+

Na+

Na+

+

H+

+

K
+ K

+
Cl-

Cl-

Na+

K
+2+

2+

Na+
K

+ H O2
Ca

Ca

Cytoplasm

Interstitium

Lumen

Ba
so

la
te

ra
l

Basolateral

Ap
ic

al
Apical

NKCC1NaK Ae4 Nhe1

Pa
ra

ce
llu

la
r

Paracellular

Fig. 2 Schematic diagram of the secretion model. Basolateral Nkcc1, NaK-ATPase, Ae4, Nhe1, and the
Ca2+-activated K+ channels (KCa) are in charge of accumulating Cl− in the cytoplasm. Opposite to
these, the apical PM is equipped with Ca2+-activated Cl− channels (ClCa) whose task is to extrude the
accumulated Cl−. Both apical and basolateral plasma membranes are permeable to water, which follows
the osmotic gradient created by the transepithelial passage of Cl− into the lumen. In this model, there are
paracellular K+ and Na+ currents along with a paracellular water flow (Sigüenza et al. 2018) (Color figure
online)

where jNkcc1 and jAe4 are the molar fluxes of Cl− (with units of amol/μm2 s) through
the basolateral PM (∂Ωb) and jCl the molar flux through the apical PM (∂Ωa) Ca2+-
activated Cl− channels. Performing the surface integrals and using the product rule,
we obtain:

d
(
[Cl−]i

)

dt
= Sb

ωi
2JNkcc1 + Sb

ωi
JAe4 − 1

ωi

∫
∂Ωa

jCl dS − dωi

dt

[Cl−]i
ωi

, (1)

where Sb is the surface area of the basolateral PM. Note that the integral over the
basolateral PM disappears, as these fluxes do not depend on Ca2+. However, the
integral over the apical membrane cannot be similarly reduced. This is because the
apical Cl− flux term depends on Ca2+, which is spatially heterogeneous.

After performing the respective integrals, Eq. (1) describes how the intracellular
Cl− concentration changes over time (in units of mM/sec). The integral for the apical
PM Cl− flux term is described in more detail in Sect. 3.3. The volume’s (ωi ) rate of
change with respect to time is given by the difference between basolateral and apical
PM water fluxes (Jw) through aquaporins (PM water-selective channels):

dωi

dt
= Jw

a − Jw
b . (2)

The luminal concentration equation is derived similarly. However, ωl (the luminal
volume) is kept constant, and using conservation laws the water flux out of the lumen
is given by,
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Jw
out = Jw

a + Jw
t (3)

where Jw
t is the paracellular water flux through the tight junctions. Hence,

d
(
[Cl−]l

)

dt
= 1

ωl

∫
∂Ωa

jCl dS − Jw
out

[Cl−]l
ωl

. (4)

Following this approach, we obtain the following system of ordinary differential
equations:

ωl
d[Na+]l

dt
= J tNa − Jw

out[Na+]l , (5)

ωl
d[K+]l
dt

= J tK − Jw
out[K+]l , (6)

ωl
d[Cl−]l

dt
=

∫
∂Ωa

jCl dS − Jw
out[Cl−]l , (7)

dωi

dt
= Jw

b − Jw
a , (8)

d
(
[Na+]iωi

)

dt
= Sb

(
JNkcc1 − 3JNaK + JNhe1 − JAe4

)
, (9)

d
(
[K+]iωi

)

dt
= Sb

(
JNkcc1 + 2JNaK

)
−

∫
∂Ωb

jK dS, (10)

d
(
[Cl−]iωi

)

dt
= Sb

(
2JNkcc1 + JAe4

)
−

∫
∂Ωa

jCl dS, (11)

d
(
[HCO−

3 ]iωi

)

dt
= ωi JBuffer − Sb2JAe4, (12)

d
(
[H+]iωi

)

dt
= ωi JBuffer − Sb JNhe1, (13)

(Cm

F

)dVa
dt

=
∫

∂Ωa

jCl dS −
(
J tK + J tNa

)
, (14)

(Cm

F

)dVb
dt

= −
∫

∂Ωb

jK dS − Sb JNaK +
(
J tK + J tNa

)
. (15)

Cm and F are the PMcapacitance and Faraday’s constant, respectively. The conduc-
tances and densities of the systemwere chosen such that the resting states of the system
are physiologically accurate. The various expressions of the transporters, exchangers,
and ion channels used in this model are briefly presented in the “Appendix”. The
parameters used here can be found in Table 1 in the “Appendix”. For further details
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Fig. 3 a Cell-wide average cytosolic [Ca2+] response to agonist. Our simulation is initiated such that
[Ca2+]i remains at its resting state (∼ 72nM) for a period of 60 s before introducing agonist. Soon thereafter,
the concentration oscillates around a plateau with a mean of∼200 nM. The result is presented and analysed
in a companion paper (Pages et al. 2018). b Experimental cytosolic [Ca2+], spatially averaged over the
entire cell. Upon stimulation with the InsP3-generating agonist ([CCh] = 300 nM), oscillatory changes in
the intracellular [Ca2+] of a parotid acinar cell can be observed (bymeans of the fluorescent Ca2+ indicator
Fluo-4) for the duration of the agonist exposure

on the specific details of the flux models refer to Palk et al. (2010), Sigüenza et al.
(2018) and the companion paper Pages et al. (2018).

3.3 Ca2+ Signalling

Full details of the Ca2+ signalling model are given in Pages et al. (2018). For conve-
nience, some of the experimental data and a typical result from the Ca2+ dynamics
model are reproduced in Fig. 3.

Water transport is driven by Ca2+ signalling with Ca2+-dependent Cl− channels
in the apical membrane, and Ca2+-dependent K+ channels in the basal membrane.
Here, the channel flux is described by:

Jc = Gc

F

(
Va,b − RT

Fzc
ln

[ [c]out
[c]inside

])
,

where [c] represents the total concentration of either K+ or Cl− and the subscripts
a apical, and b basolateral. The parameters R, T , F , and zc denote the universal
gas constant, temperature in Kelvin, Faraday’s constant, and the valence of the ionic
species (c), respectively. Gc is the channel conductance (dependent on [Ca2+]i ) and
is given by

Gc =
(

gc
Sa,b

)∫
∂Ωa,b

( [Ca2+]ηi
K η
c + [Ca2+]ηi

)
dS, (16)

where gc is the whole cell maximum conductance, Kc represents the half-maximal
activation concentration, η its Hill coefficient, Sa,b the respective PM surface area,
and [Ca2+]i the local Ca2+ concentration.
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To compute Eq. (16), we note that each node of the tetrahedral mesh comprising
the PM surface (∂Ω) has a [Ca2+]i value associated with it (Pages et al. 2018). The
current (either K+ or Cl−) across each triangular surface face of the tetrahedral mesh
is computed by calculating the average [Ca2+] on the surface triangle using the three
values at the corners of the triangular face (i.e. the nodes of the mesh). This average
[Ca2+]i (c̃) is then used in Eq. (16) to calculate the K+ or Cl− current across that
triangular face. Thus,

Gc =
(

gc
Sa,b

) N∑
k=1

∫
∂Ωk

a,b

(
c̃η
k

K η
c + c̃η

k

)
dSk . (17)

Here, k denotes the kth tetrahedral face comprising the respective PM surface (∂Ωa,b),
and N is the total number of tetrahedral faces in ∂Ωa,b. This procedure is repeated
with every step of the numerical integration and incorporated into the equations for
[Cl−]l , [Cl−]i , and [K+]i , accordingly.

4 Results

4.1 Ionic Concentrations, PM Potentials, Cellular Volume, and Fluid Flow Rate

In order to mimic the experimental procedure shown in Fig. 3b, we initiated our
simulation by setting the cytosolic [Ca2+] at rest (corresponding to the steady-state
value of ∼72 nM) for a period of 60 s before introducing agonist. Upon maximal
stimulation (corresponding to 300 nM of the agonist CCh, t > 60 in Fig. 3), the
cell-wide spatial average intracellular [Ca2+] reaches an oscillatory plateau with an
average value of∼200 nM. The rest of the ionic concentrations, the PM potentials, and
the cellular volume mirror the [Ca2+]i and oscillate with the same frequency around a
plateau for the duration of the agonist exposure (Figs. 4, 5, 6, and 7). For instance, the
[Na+]i oscillates with a relatively small amplitude around the mean value of 63.5 mM
(Fig. 4a). This is consistent with the 2.5-fold increase, from rest, reported by Soltoff
et al. (1989). The result reflects the complex interplay between the NaK-ATPases, the
Ae4 exchangers (which, together with the NaK-ATPases, extrude a large quantity of
Na+), and the electroneutral Nhe1 antiporters whose task includes the re-introduction
of extracellular Na+ to promote an inwardly directed gradient whilst maintaining an
adequate intracellular pH. The net Na+ transport serves to energise the electroneutral
cotransport of Cl− by the basolateral Nkcc1 cotransporters.

The [K+]i can be seen decreasing by approximately 20% from its resting state
of 120 mM to a mean value of ∼97 mM (Fig. 4b). This result is in agreement with
Poulsen and Bledsoe (1978) who reported an increase in interstitial [K+] increase of
2.2–18.7meq/l corresponding to the loss of intracellular K+ after maximal cholinergic
stimulation.

The cellular pH is consistent with Peña-Münzenmayer et al. (2015). The model
indicates that the variation of [HCO−

3 ]i is relatively small and the intracellular pH is
approximately constant (Fig. 4c, d). This suggests that the complex dynamics between
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Fig. 4 Response of the intracellular ionic concentrations and intracellular pH to agonist-induced secretion.
a An increase in cytosolic [Ca2+] promotes an approximate 2.5-fold increase in the [Na+]i . The result
is an improvement from previous models and is consistent with observations by Soltoff et al. (1989). b
A pronounced K+ efflux serves to hyperpolarise the membrane and sustain apical Cl− efflux. Our model
reproduces the behaviour reported by Poulsen and Bledsoe (1978). c, d The pH and [HCO−

3 ]i are seen
varying relatively little, in agreement with Peña-Münzenmayer et al. (2015). e Upon secretion, the [Cl−]i
decreases to∼ 50% of its resting value during each oscillation. The result is the hallmark of water secreting
epithelia (Silva et al. 1977)

the Ae4 and Nhe1, and their role as parallel Cl− accumulation supporting mechanism,
are within physiological agreement with what Sigüenza et al. (2018) reported.

Upon agonist stimulation, apically localised inositol 1,4,5-trisphosphate (InsP3)
receptors release Ca2+ from internal stores causing the activation of neighbouring
apical Cl− channels resulting in a drop in [Cl−]i to approximately 50% of its resting
value (Fig. 4e). This causes a fast apical PM depolarisation (Fig. 5). Note that if this
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tial and b basal potential. As [Ca2+] in the apical region reaches its maximum value, the negatively outward
directed current depolarises the entire plasma membrane, but soon thereafter (nearly instantaneously) the
basolateral [Ca2+] activates a K+ current that hyperpolarises the PM and sustains the apical Cl− efflux
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Fig. 6 Response of the cellular volume and fluid flow rate to changes in the cytosolic [Ca2+] upon agonist
stimulation. a During secretion, the fluid flow rate reaches an oscillating plateau with a mean value of ∼78
µm3/s above its resting value of 22 µm3/s. b Experimental observations in parotid epithelia demonstrate
that the transcellular passage of water is responsible for an approximate 30% decrease in cellular volume
(Melvin et al. 2005). Our model exhibits a volume decrease of approximately 27% of its resting value for
the duration of the agonist exposure

depolarisation were to continue, it would prevent the efflux of Cl− and consequently
stop water transport. To prevent this, a slightly delayed increase in basolateral [Ca2+]i
causes rapid activation of the basolateral IK/BK1 channels allowingK+ to exit towards
the interstitial compartment. The cation efflux decreases the basolateral and apical PM
potentials, thus maintaining apical Cl− efflux.

It is interesting to note that the responses of the apical and basolateral membrane
potentials are not simple oscillations, but have a complicated structure. This is because
any change in voltage at either membrane portion is mirrored in the other membrane
section. For example, when apical Ca2+ increases this causes an immediate increase
in the apical Cl− current, and thus an immediate depolarisation of both the apical and
basolateral plasma membranes. The subsequent increase in basal Ca2+ then increases
the basal K+ current, which hyperpolarises the basolateral PM, but also reduces the
potential of the apical PM.Thus, bothVa andVb showcomplex responseswithmultiple
peaks and troughs.
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[K+]l reach an oscillating plateau ∼15% larger than their respective resting values. Note how the luminal
concentration of Cl− is higher than that of Na+. This is because the paracellular movement of Na+ and
K+ ions through the tight junction into the lumen requires a lumen negative driving force. c The [K+]l in
the lumen is relatively low, in agreement with Mangos et al. (1973)

The salivary flow rate changes from a resting state of 22 to a∼78µm3/s mean upon
agonist-induced [Ca2+]i increases (Fig. 6a). Fluid flow rate experiments in mouse
parotid glands, demonstrated that cholinergic-induced secretion results in a gland
secretory rate of approximately 11–16 µL/min (Evans et al. 2000; Romanenko et al.
2010). Accordingly, our model estimates about 2.86 ×106 cells in a typical mouse
parotid gland. This is an improvement from previous mathematical models in which
the flow did not attain a physiological rate (Gin et al. 2007; Palk et al. 2010; Sigüenza
et al. 2018). Water transport causes a decrease in cellular volume of approximately
29% (Fig. 6b), in agreement with Foskett et al. (1991). The electrolyte concentration of
primary saliva produced by the model has a relatively high concentration of Na+Cl−,
whilst [K+]i is relatively low (Fig. 7), consistent with Mangos et al. (1973).

5 Effects of Calcium Signalling in Fluid Secretion

The following results correspond to a series of “in-silico” experiments with distinct
variations of the model presented in Sect. 4. We define:

– Model 1 to be the model whose results are presented in Figs. 4, 5, 6, 7. It
corresponds to the secretion model solved in conjunction with the spatially het-
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erogeneous, and oscillating in time, Ca2+ signalling model (described in Pages
et al. 2018).

– Model 2 is the secretion model driven by the mean apical and the mean basal
[Ca2+]. Note that each of these spatial means will be oscillating in time.

– Model 3 is the secretion model driven by the mean apical and the mean basal
[Ca2+], where (as opposed to Model 2) the means are now taken in both space
and time. Thus, water secretion in Model 3 is driven by a constant apical and a
constant basal [Ca2+].

– QSS Model is a quasi-steady-state (QSS) approximation of the fluid secretion
model. Here, water secretion is assumed to be an algebraic function of the mean
[Ca2+], where the mean is now taken over the entire cell at each point in time.
Thus, in this model, the mean [Ca2+] is oscillating, but is the same in both the
apical and basal regions.

Apical and Basolateral Heterogeneities

We analysed the distribution of Cl− and K+ current densities given byModel 1. Fig-
ure 8a, b depict a spread of surface current density values across the tetrahedral faces
that form the apical and basolateral plasma membranes of the cell, respectively. These
correspond to the different values of peak [Ca2+]i during a period of the oscilla-
tion. Figure 8a shows that the majority of the apical Cl− current (∼ 76%) peaks at
approximately 140 pA/µm2. Similarly, Fig. 8b shows that the majority of the basal
K+ current peaks at 220 pA/µm2. Given the large number of triangular faces in the
PM with approximately similar surface current density, we hypothesised that only the
spatial [Ca2+]i mean at the apical and basolateral regions of the cell may be needed
to attain an appropriate secretion rate. To test this, we computed the fluid flow rate
using the cytosolic [Ca2+] spatial mean response to agonist stimulation at the apical
and basolateral regions of the cell (Fig. 8c). The results, shown in Fig. 8d (denoted as
Model 2), indicate that the spatial heterogeneities of the [Ca2+]i exhibited inModel 1
have little impact on the mean saliva secretion rate.

Effects of Oscillations on Fluid Flow

Palk et al. (2012) reported that using the spatio-temporalmean of an oscillating [Ca2+]i
to drive water transport, in an earlier secretion model, resulted in an almost identical
flow rate as when using its oscillating counterpart. Thus, they concluded, this was
sufficient to drive secretion when the flow rate is the only modelling concern [as in
Sigüenza et al. (2018)]. We thus simulated Model 3 the spatio-temporal mean of the
apical and basolateral cytosolic [Ca2+] response to agonist stimulation (see Fig. 9a).
Results reveal that using the spatio-temporalmean [Ca2+]i to drive secretion generates
a mean flow rate almost identical to the one given by Model 1 (Fig. 9b). Our result
validates the findings of Palk et al. (2012), and indicates that the spatio-temporal
patterns emerging from Ca2+ signalling are not an important determining factor when
it comes to secretion. Interestingly, if saliva secretion is driven by a Ca2+ model that
exhibits low-frequency baseline spiking, the oscillation period and shape has a large
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Fig. 8 a Distribution of the Cl− surface current densities of Model 1 at maximal [Ca2+]i , as a function
of the percentage of tetrahedral faces that form the apical PM. The majority reach a maximal Cl− current
of approximately 140 pA/µm2. b Distribution of K+ surface current densities of Model 1 as a function of
the percentage of triangular faces that form the basolateral PM at maximum [Ca2+]i . The majority reach a
maximal K+ current of approximately 220 pA/µm2. c Model 2. Spatial mean of the [Ca2+]i response to
agonist stimulation at the apical (green) and basolateral (orange) cellular regions. d Mean fluid flow rate of
Model 2 (red) compared to the mean fluid flow rate of Model 1 (black). Model 2 gives an 8% decrease in
mean flow rate compared to Model 1. The result indicates that the signalling heterogeneities in the apical
and basal regions, exhibited in Model 1, are not necessary to drive a physiological secretion rate (Color
figure online)

effect on saliva secretion (results not shown). Thus, we conclude that the insensitivity
of saliva secretion to the frequency and shape of the oscillations is a result of the fact
that the oscillations are of high frequency and on a raised baseline. In saliva secreting
cells, [Ca2+]i oscillations are invariably of this type.

Quasi-Steady-State Approximation

Wenext consider how the time scales involved in the various ionic currents and changes
in cell volume affect saliva secretion. For a given fixed [Ca] (across the entire cell), the
fluid flow can be calculated. When this is done for a range of fixed [Ca] we can then
derive a relationship between steady state [Ca2+]i and fluid flow. This relationship is
plotted in Fig. 10a. The functional relationship is given by,

fFR([Ca2+]i ) = V

( [Ca2+]3.5i

K + [Ca2+]3.5i

)
,
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Fig. 10 a QSS Model. We fitted a Hill function (red) to the flow rate steady states of the secretion model.
These were driven by the cell-wide spatio-temporal mean [Ca2+]i responses to different agonist concen-
trations (dotted black curve). b Single flow rate oscillation given by the QSS Model (red) driven by the
cell-wide spatial [Ca2+]i mean, against the flow rate given by Model 1 (black). The QSS Model gives a
reasonably accurate prediction of the mean flow rate (Color figure online)

where V = 91 and K = 3 × 10−4.
In Fig. 10b, we present a comparison between the QSS Model (driven by the cell-

wide spatial, but not temporal, mean [Ca2+] see Fig. 3a) and Model 1 flow rates
(Fig. 6a). Although the shape of the flow rate curves differs, the mean fluid secretion
rate is almost identical. The result indicates that a quasi-steady-state approximation to
the saliva secretion model gives a reasonably accurate prediction of the flow rate and
if modelling the latter is the only goal, the QSS Model suffices. However, in doing so,
all the dynamic complexity, not only of the fluid secretion mechanism but also of the
intracellular heterogeneity of cytosolic [Ca2+], is ignored.

This is a startling result, potentially of great importance for future attempts at model
simplification. It shows that, although in our current model some of the time scales of
the ionic currents (or those of volume change) affect total fluid flow, the entire model
can be replaced by a QSS curve that algebraically relates spatially averaged [Ca2+]i
to fluid flow. Thus, in a more complex multicellular setting, the entire fluid flowmodel
(in each cell) could potentially be replaced by an algebraic relationship that could be
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Fig. 11 Tetrahedral mesh depicting a salivary gland acinar cell constructed by Pages et al. (2018). Two
images of the same cell are shown, where the cell is rotated to exhibit the apical (red) and basal (blue)
regions of the cellular plasma membrane. The non-coloured triangular faces represent the lateral portion
(Color figure online)

computed separately (for each cell), leading to an enormous increase in simulation
speed.

As yet we have performed no detailed analysis of this result (for example, to what
extent does the volume affect the result?) and so it is not yet possible to say with
certainty that the fluid flow model for any realistic parotid cell can always be reduced
to a single algebraic relationship between saliva secretion and [Ca2+]i . Nevertheless,
the possibilities are intriguing.

5.1 Other Cells

Until nowwe have concentrated on discussing the results from a single cell. To demon-
strate that our model works in any given cell, we solved Model 1 in seven different
cells, each of which has a different shape and volume constructed from a z stack
of confocal slices. The results can be found in the supplementary material. Here, we
briefly present the results from one of the other cells. Figure 11 shows the cellularmesh
created by Pages et al. (2018). From Figs. 12 and 13, we see that the model reproduces
critical experimental data for this cell also, including the expected changes in cellular
volume and the concentrations of the ionic species involved in fluid secretion.

6 Discussion

Ca2+ signalling plays a pivotal role in the process of water transport regulation by
salivary epithelia. The second messenger modulates the activation of PM channels,
providing the cellwith ameans of control for the efflux and influx ofCl− and ultimately
fluid secretion. Although secretion models that include Ca2+ signalling exist, up until
now the majority have been based on highly simplified dynamics (Palk et al. 2010,

123



714 E. Vera-Sigüenza et al.

0 100 200
Time (sec)

30

50
[N

a+ ] i (m
M

)

0 100 200
Time (sec)

20

30

40

50

60

[C
l- ] i (m

M
)

0 100 200
Time (sec)

110

120

[K
+ ] i (m

M
)

0 100 200
Time (sec)

8

9

10

[H
C

O
3- ] i (m

M
)

0 100 200
Time (sec)

6.92

6.96

pH
i

0 100 200
Time (sec)

600

700

800

900

V
ol

um
e 

(
m

3 )

A B

C D

E F

Fig. 12 Intracellular concentrations, pH, and volume responses to agonist stimulation in the cell shown in
Fig. 11 (Color figure online)

2012; Gin et al. 2007; Sigüenza et al. 2018). In this study, we used a physiologically
accurate Ca2+ signalling model, solved on seven anatomically accurate domains, to
drive fluid secretion. The Ca2+ model is described in detail in a companion paper
(Pages et al. 2018). Our aim was to investigate how the structure of the cells and the
heterogeneity of the Ca2+ dynamics affects saliva secretion.

We found that our model successfully reproduces the observed physiological
responses of salivary epithelia upon agonist-induced stimulation, including the
expected changes in cell volume and the relevant ionic concentrations involved in the
transport of water (Figs. 4, 7). The addition of the spatio-temporal Ca2+-signalling
model to drive fluid secretion resolves several problems encountered in previous mod-
els. For instance, the [Na+]i increases approximately 2.5 fold upon agonist stimulation,
a result seen often in experimental settings (Fig. 4a). The result is an improvement
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Fig. 13 Fluid flow and luminal concentrations upon agonist stimulation in the cell shown in Fig. 11 (Color
figure online)

from earlier models which display only an increase of 30% above the rest state (Palk
et al. 2010; Sigüenza et al. 2018). Similarly, Foskett (1990) observed a decrease of
approximately 50% in cytosolic [Cl−]i upon stimulation, and our model successfully
reproduces their results.As a consequence, the cell volumedecreases by approximately
29% (Nauntofte 1992). The mean fluid flow rate of the model upon agonist-induced
stimulation is ∼78 µm3/sec or a ∼4 fold increase from rest (Fig. 6a). Although the
figure seems low, given that Sigüenza et al. (2018) claim a 12-fold increase, this is
because we based our model on experiments which use only 300 nM of CCh agonist to
induce Ca2+ responses. In Peña-Münzenmayer et al. (2015), the study that Sigüenza
et al. (2018) results are based on, they use 2 agonists, CCh and isoproterenol (IPR), to
stimulate secretion. This results in a larger [Ca2+]i , ultimately elevating the secretion
rate to a 12-fold increase above rest. Nevertheless, our result is an improvement on
previous models in which the fluid flow rate increases by only 2–2.5-fold from rest
under similar conditions to our model (Palk et al. 2010; Gin et al. 2007). Furthermore,
Evans et al. (2000) observed a volume of 400 µL per 100 mg of parotid gland in 50
min. We estimated that an upper bound of approximately 2.86×106 acinar cells exists
in 100 mg of parotid gland. According to this figure, our model’s results are consistent
with experimental data.

Here, as in previous studies, the secretionmodel includes two coupledPMpotentials
to account for the polarised nature of acinar cells (Palk et al. 2010; Sigüenza et al. 2018).
However, the corresponding responses (apical and basolateral) to the transmembrane
movement of ions display complicated oscillatory structures previously unreported in

123



716 E. Vera-Sigüenza et al.

primary saliva models (Fig. 5a, b). Our results show that following a [Ca2+]i increase
in the apical region, an immediate depolarisation of both plasma membranes occurs.
Shortly thereafter, as a consequence of the relay ofCa2+ signals towards the basolateral
region, a delayed hyperpolarisation of the basolateral PM occurs, causing a reduction
in the apical PM potential. The coupling of both membranes is evident here, as a
change in voltage at either membrane portion is mirrored by the other.

Measuring the response of apical Cl− and basolateral K+ currents revealed that
the majority of the PM surface reaches a similar Cl− and K+ current density (Fig. 8a,
b). Interestingly, these correspond to the current densities given by the average apical
and basolateral [Ca2+]i traces (Fig. 8c). The observation suggests that averaging the
[Ca2+]i at each region (basolateral and apical) would yield the same fluid flow as
would a heterogeneous distribution of [Ca2+]i in the cell. When this hypothesis is
tested (Fig. 8d) we see that the fluid flow rate obtained by averaging the [Ca2+]i in
each region produces the same result as its heterogeneous counterpart. We propose
that heterogeneity of [Ca2+]i in the apical and basal regions is not an important
mechanism in the secretion process. Thus, at least for modelling purposes, we claim
that to predict and understand the acinar secretion, a three-dimensional model of Ca2+
signalling is, perhaps, not necessary. Instead, a simpler ordinary differential equation
model describing the signalling phenomena that reproduces the appropriate Ca2+
responses at each end of the cell may be sufficient.

Perhaps one of the most important results, and a prediction of our study, stemmed
from computing the fluid flow rate of the system using a spatio-temporal homogeneous
distribution of apical and basolateral [Ca2+]i - denotedModel 3 in Sect. 5 (see Fig. 9a).
The resultant non-oscillating mean flow rate was found to be nearly identical to its
oscillating counterpart - given by Model 1 (see Fig. 9b). Palk et al. (2012) suggested
that driving secretion using the spatio-temporalmean of a [Ca2+]i oscillation, results in
an accurate flow rate. Our result supports their hypothesis. Although Palk et al. (2012)
never tested this with an accurate Ca2+ model, it is evident now that because of the
high-frequency [Ca2+]i oscillations, the only important factor determining secretion
is the temporal mean [Ca2+]i .

Our secretion model can possibly be simplified even further, as long as the only
output of interest is the mean fluid flow. Equation 5 assumes a quasi-steady-state
approximation to the rate of change in cellular volume and the associated ionic con-
centrations in order to compute the fluid flow rate as a function of [Ca2+]i . Using
the cell-wide cytosolic [Ca2+] spatial mean, we compared the solution of Model
1 to the solution using this quasi-steady-state approximation (Fig. 9b), and found
that mean saliva secretion was identical. Although we have not tested this result
exhaustively, it raises the intriguing possibility that an accurate model of fluid flow
may be constructed by assuming that all ionic flows and cell volume changes are at
quasi-steady state, and thus that their dynamic responses have little effect on fluid
secretion. One possible difficulty with this simplified approach is that our present
model does not include an accurate model of bicarbonate buffering. It is possible
that slower time scales involved in pH control and bicarbonate buffering will make a
quasi-steady-state assumption inaccurate, but resolution of this question awaits further
work.
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Lastly, our simulations were performed using the Sigüenza et al. (2018) model
for fluid secretion. However, we simplified their model by omitting the basolateral
Cl−/HCO−

3 AnionExchanger 2, and assuming that [CO2] is constant. It has been shown
mathematically, and experimentally, that the Ae2 is not important for fluid secretion.
Furthermore, Sigüenza et al. (2018) show that throughout stimulation and the rest
phases of secretion [CO2] is constant, as is pH. Thus, in our pursuit of computational
simplicity we set [CO2] to be constant. It is unclear how much of a difference this
simplifying assumption makes. However, it remains possible that, for some cells and
for some parameters, the dynamics of pH and bicarbonate buffering will introduce
time scales that have a more significant impact on the rate of saliva secretion. This is
a question that will be explored in further work.

In summary, the exact details of the cytosolic [Ca2+] heterogeneity seem to matter
little. Our study still does not resolve to what extent does the propagation of Ca2+
waves, from apical to basolateral affect the secretory process due to the high-frequency
of [Ca2+]i oscillations. What we can infer from our results, however, is that these
waves occur very fast, resulting in a near instantaneous Ca2+ response across the cell
as reported by Giovannucci et al. (2002). But based on the results of our study, we
claim that a partial differential equationmodel ofCa2+ signallingmay not be necessary
to attain a physiological secretion rate in this model. When combined with the fact
that the dynamics of ion currents and cell volume control appear to be unimportant
if the only modelling concern is flow rate, we conclude that an accurate model of
saliva secretion could possibly be constructed by a small system of ODEs coupled
with an algebraic function describing secretion as a function of [Ca2+]i . Such an
extreme simplification, if shown to be reliably accurate, would make multicellular and
multiscale computations possible and efficient.
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Appendix

Fluxes of theModel

jNaK = αNaK

(
r

[K+]2e[Na+]3i
[K+]2e + α[Na+]3i

)
, (18)

jNkcc1 = αNkcc1

(
a1 − a2[Na+]i [K+]i [Cl−]2i
a3 + a4[Na+]i [K+]i [Cl−]2i

)
, (19)

jNhe1 = GNhe1

( [H+]i
[H+]i + KH

)2( [Na+]e
[Na+]e + KNa

)
, (20)
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JAe4 = GAe4

( [Cl−]e
[Cl−]e + KCl

)( [Na+]i
[Na+]i + KNa

)( [HCO−
3 ]i

[HCO−
3 ]i + KB

)2

, (21)

JBuffer = k1[CO2]i − k−1[H+]i [HCO−
3 ]i (22)

J tNa+ = Gt
Na+

FzNa

[
Va − Vb − RT

F
ln

( [Na+]l
[Na+]e

)]
, (23)

J tK+ = Gt
K+

FzK

[
Va − Vb − RT

F
ln

( [K+]l
[K+]e

)]
. (24)

Water Fluxes

Jw
a = Pa

(∑
[c]l + Ψl −

∑
[c]i − xi

ωi

)
, (25)

Jw
b = Pb

(∑
[c]i + xi

ωi
−

∑
[c]e

)
, (26)

Jw
t = Pt

( ∑
[c]l + Ψl −

∑
[c]e

)
. (27)

Where,

∑
[c]e = [K+]e + [Na+]e + [Cl−]e + [HCO−

3 ]e + [H+]e + [CO2]e,∑
[c]i = [K+]i + [Na+]i + [Cl−]i + [HCO−

3 ]i + [H+]i + [CO2]i ,∑
[c]l = [K+]l + [Na+]l + [Cl−]l + [HCO−

3 ]l + [H+]l .

The parameter xi denotes the amount of negatively charged ions with valence z = −1
impermeable to the cellular PM. Its value is determined by imposing electroneutrality
in the cellular compartment. Note that all compartments of the model are assumed
electroneutral at all times. The parameter Ψl in Eq. (26) represents the concentration
of uncharged impermeable species present in the lumen, including (but not limited to)
proteins such as amylase and big molecules like CO2.

Parameters of theModel

See the Table 1.
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Table 1 Table of parameters

Parameter Description Value Units

w0 Cellular volukme 1105.44 µm3

Sa Apical surface area 95.25 µm2

Sb Basal surface area 284.75 µm2

αNaK Membrane surface density 1.6 amol/µm2

αNkcc1 Membrane surface density 2.15 amol/µm2

GNhe1 Membrane surface density 0.9 amol/µm2

GAe4 Membrane surface density 1.3 amol/µm2

Gt
Na Conductance 0.2 nS

Gt
K Conductance 0.16 nS

r NaK-ATPase rate 0.0016 mM−3 s−1

a1 Nkcc1 rate 157.55 s−2

a2 Nkcc1 rate 2.009×10−5 mM−4 s−2

a3 Nkcc1 rate 1.0306 s−1

a4 Nkcc1 rate 1.38×10−6 mM−4 s−1

KH Half half-maximal H+ concentration 4.5×10−4 mM

KNa Half half-maximal Na+ concentration 15 mM

KCl Half half-maximal Na+ concentration 5.6 mM

KB Half half-maximal Na+ concentration 1e4 mM

kn HCO−
3 Buffer Dissociation rate 0.132 s−1

kp HCO−
3 Buffer Association rate 312 s−1

zNa Na+ valence +1 –

zK K+ valence +1 –

Pa Apical PM water permeability 4.43 µm3 mM−1 s−1

Pb Basolateral PM water permeability 1.94 µm3 mM−1 s−1

Pt Tight junction’s water permeability 0.05 µm3 mM−1 s−1

Ψl Luminal uncharged particles 51.74 mM
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