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Abstract
Microtubules are filamentous tubular protein polymers which are essential for a range
of cellular behaviour, and are generally straight over micron length scales. However,
in some gliding assays, where microtubules move over a carpet of molecular motors,
individual microtubules can also form tight arcs or rings, even in the absence of
crosslinking proteins. Understanding this phenomenon may provide important expla-
nations for similar highly curved microtubules which can be found in nerve cells
undergoing neurodegeneration. We propose a model for gliding assays where the
kinesins moving the microtubules over the surface induce ring formation through dif-
ferential binding, substantiated by recent findings that a mutant version of the motor
protein kinesin applied in solution is able to lock-in microtubule curvature. For certain
parameter regimes, our model predicts that both straight and curved microtubules can
exist simultaneously as stable steady states, as has been seen experimentally. Addi-
tionally, unsteady solutions are found, where a wave of differential binding propagates
down the microtubule as it glides across the surface, which can lead to chaotic motion.
Whilst this model explains two-dimensional microtubule behaviour in an experimen-
tal gliding assay, it has the potential to be adapted to explain pathological curling in
nerve cells.
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1 Introduction

The skeleton of cells (cytoskeleton) is essential for cell structure, dynamics and func-
tion. It is formed by long filamentous protein polymers of three different classes:
actin, intermediate filaments and microtubules (MTs). Of these, MTs are the stiffest
filaments with important roles in cellular processes, such as cell motility, division,
organisation, adhesion, signalling and intracellular transport. MTs are composed of
α- and β-tubulin heterodimers which are bonded in a polar head-to-tail fashion to form
long chains known as protofilaments; these protofilaments are then assembled into a
helical tube. For a detailed description of how microtubules behave, see for example
Hawkins et al. (2010) or Barsegov et al. (2017).

Many different proteins bind to MTs, controlling MT behaviours, including their
nucleation, (de)-polymerisation, stabilisation, severing, biochemicalmodification, and
crosslinking to each other or other cellular components (Lawson and Salas 2013;
Prokop 2013). One particular class are MT-associated motor proteins, which use ATP
as an energy source to walk along MTs, either to slide them against each other or to
use MTs as intracellular highways to transport cargo around cells. Two fundamentally
different classes of MT-associated motor proteins exist: the various members of the
kinesin family of whichmost walk towards one end of theMT, and the dynein/dynactin
complex which moves towards the other (Prokop 2013; Schliwa and Woehlke 2003).

Outside of cells, a powerful in vitro tool to study MT behaviour is a gliding (or
motility) assay. In these experiments, motor proteins (typically kinesin-1) are adsorbed
onto a solid surface in a drop of solution. When MTs are added, the surface-attached
motor proteins attempt to walk along them, causing the MTs to glide over the surface.
Typically in these assays, MTs stay relatively straight, as would be expected from their
large persistence length [2–4mm (Howard 2001)]. However, in certain experimental
conditions,MTs can formmicron-sized rings; such conditions include highMTdensity
or the presence of an air-medium interface (Weiss et al. 1991; Amos and Amos 1991;
Liu et al. 2011; Kawamura et al. 2008; Kabir et al. 2012). Strikingly, these MTs are
able to transform from straight gliding to a curved circling motion and back again (Liu
et al. 2011), showing a dynamic and reversible ability to change curvature, implying
that this is not due to permanent damage or irreversible damage/repair cycles (Schaedel
et al. 2015) (see Fig. 1).

Studying the mechanisms that underlie MT curling has important applications. For
example, systems based onMT-kinesin gliding assays have potential uses as lab-on-a-
chipmedical devices, utilising the ability to bind only selected proteins toMTs through
the choice of specific cargo adapters, leading to advective transport rather than mere
diffusion (Bachand et al. 2014; Chaudhuri et al. 2017). These nano-devices need to
be robust for potential clinical uses, but the presence of MT rings may disrupt their
design.

Furthermore, curvedMTs as observed in gliding assays are similarly found in cells,
particularly in axons. Axons are the cable-like extensions of nerve cells; their structural
backbone is formed by straight, parallel bundles of MTs. However, in the ageing brain
or in nerves affected by certain neurodegenerative diseases (e.g. some forms of motor
neuron disease),MTs are found to curl upwith similar diameters as observed in gliding
assays (Sanchez-Soriano et al. 2009; Voelzmann et al. 2016, 2017).
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Fig. 1 Time-series of an initially straight MT forming a loop at 35 s, rotating until 75 s before re-
straightening, extracted from Supplementary Movie 1 of Liu et al. (2011). Another adjacent MT stays
in a loop through the whole video. Each frame is 15µm square. Used with permission of Prof. J. Ross

To explain this phenomenon, the model of local axon homeostasis has been put
forward (Voelzmann et al. 2016). It proposes that MTs in axonal environments have
a strong tendency to curl up likely due to high abundance of MTs and MT-associated
motor proteins, thus meeting the conditions known to cause rings in gliding assays.
Various MT-regulating proteins are required to ‘tame’ MTs into ordered bundles;
functional loss of these regulators increases the risk of MT curling and could explain
neurodegeneration linked to them (Voelzmann et al. 2016). This model represents a
paradigm shift for the explanation of certain forms of axon degeneration, by putting
the emphasis on MTs as the key drivers of axon decay.

To lend credibility to thismodel, it is pivotal to identify and validate themechanisms
that can explain the phenomenon ofMT curling. So far, Ziebert et al. (2015) introduced
amodel to explain the formation ofMT ringswhich suggests that, in the presence of the
MT-stabilising drug taxol, each tubulin dimer may exist in two distinct conformations,
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Fig. 2 Sketch of the proposed model. aWhen theMT is straight, the surface-bound kinesin is equally likely
to bind to each side, with no effect on the overall curvature. b If a MT becomes curved, the likelihood of
kinesin binding from each side becomes asymmetric; this asymmetry in the amount of bound kinesin to
each side induces curvature by acting as a lateral reinforcement. As the MT then continues to glide across
the array, the newly encountered kinesin will also preferentially bind to the same side (Color Figure Online)

one slightly shorter than the other. In their model, protofilaments are able to switch
between these two states; when only some of the protofilaments are switched this
leads to a longitudinally curved MT as an energetically favoured condition, providing
a mechanism to create rings via an internal change to the MT.

Here, we explore the complementary possibility that differential binding of exter-
nal factors can actively contribute to MT curling. Peet et al. (2018) show that MTs
which are being bent in a flow chamber normally straighten after the flow is removed,
but stay curved in the presence of a non-motile version of kinesin-1. They propose
that this non-motile kinesin has a tendency to bind preferentially to the convex side
of curved MTs and, by doing so, stabilise them in bent confirmation (see Fig. 2); at
higher concentrations this behaviour disappears, presumably because oversaturation
occurs so the kinesin binds in equal amounts on all sides of the MT.

This behaviour is consistent with findings for other MT-associated proteins, in par-
ticular tau (Samsonov et al. 2004) and doublecortin (Bechstedt et al. 2014; Ettinger
et al. 2016), which bind differentially between straight and curved MTs due to confor-
mational changes that happen on the structural scale of the individual tubulin dimer:
at a curvature of 1µm−1 the tubulin dimer spacing at the outside of the MT is 2.5%
larger compared to that of the inside.

Here we present a model based on the hypothesis that curvature-selective binding
can occur inMT-kinesin gliding assays; the flexible neck linker of the surface-attached
kinesins can extend up to 45nm from the surface (Palacci et al. 2016), and is there-
fore long enough to reach the curved sides of the MT which are typically held at
around 17nm above the surface (Kerssemakers et al. 2006). Our model reproduces
key behaviours of MTs observed in gliding assays, with a bistable regime where
straight MTs and MT rings can coexist, and predicts how they can be controlled. Fur-
thermore, we find unsteady propagating wave solutions and chaotic dynamics within
the system, which have not been previously reported for filaments and may reflect true
MT behaviours that have escaped the attention of experimenters so far.
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2 Mathematical Model

2.1 Filament Dynamics

We consider a MT as an inextensible filament represented by a curve, x(s, t),
parametrized by its arclength smeasured at time t , which lieswithin a two-dimensional
plane. This is a reasonable approximation for gliding assays, where the MTs remain
close to the surface throughout their movement. The treatment shown here follows the
standard case where the filament has no reference curvature (see, for example, Audoly
2015; Ziebert et al. 2015; De Canio et al. 2017).

As the individual tubulin dimers are of fixed length, the total arclength is constant
and we impose the inextensibility constraint, x′ · x′ = 1, where a prime denotes
differentiation with respect to s. Relative to fixed Cartesian coordinate axes ex , ey , we
define the tangent vector as

t = x′ = cos θex + sin θey, (1)

where θ(s) measures the angle between t and ex . The normal vector n is then given
by the relation t′ = κn, which defines the curvature κ = θ ′.

We will assume that the filament has a variable reference curvature (to be specified
later), κ̃(s, t), and that the mechanical energy of the MT is a function of the squared
deviation of the curvature from the reference curvature,

E = 1

2

∫ L

0

[
B(κ − κ̃)2 + λ

(
x′ · x′ − 1

)]
ds. (2)

Here λ is a Lagrange multiplier enforcing the inextensibility constraint and B is the
bending (flexural) modulus. Taking the variational derivative of (2), utilising δκ =
n · δx′′, we find

δE =
∫ L

0
B(κ − κ̃)δκ + λ(x′ · δx′) ds

= [
B(κ − κ̃)n · δx′]L

0 + [(λx′ − B((κ − κ̃)n)′) · δx]L0
+

∫ L

0
((B(κ − κ̃)n)′ − (λx′))′ · δx ds (3)

where δ represents the variation of a quantity and n′ = −κt. The elastic force density,
f , acting on an element of the MT is therefore given by

f = −δE

δx
= −B((κ − κ̃)n)′′ + (λx′)′, (4)

subject to x′ · x′ = 1. Here f has units of force per unit length, and may be considered
as the circumferentially averaged surface stress (Lindner and Shelley 2015). The MT
is immersed within a viscous medium at very low Reynolds number, and so we use
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resistive force theory, a Stokes-flowapproximationwhich takes advantage of the aspect
ratio being small, ε = h/L � 1, where h is the MT diameter (25nm). This is the
simplest approximation of slender body theory, and gives the local dynamic relation
(Lindner and Shelley 2015),

v = c

2πμ
P · (f + fext ) (5)

where v = ∂x
∂t = ẋ is the velocity of material points, fext is the external force per unit

length acting along theMT,μ is the fluid viscosity, and the tensorP ≡ (I+(ξ−1)tt) =
nn + ξ tt reflects the anisotropic drag on the filament due to its shape. The constant
c = ln(2ε−1) is a free-space slender body ratio (Becker and Shelley 2001), and we
also use the free-space approximation ξ = 2 for an idealised slender filament. Both
of these neglect the effect of the nearby surface; a more refined approach is likely to
predict higher values of overall drag. There is nothing to prevent self-intersection of
the filament within this model; if self-intersection does occur the filament is therefore
assumed to go out of plane, crossing over or under itself. The equations of motion are
therefore given by

ẋ = c

2πμ
P · (−B((κ − κ̃)n)′′ + (λx′)′ + fext

)
, x′ · x′ = 1, 0 ≤ s ≤ L. (6)

Due to the constraint, this is a ninth-order (in s) system of differential algebraic equa-
tions with index 3, so six spatial boundary conditions are required to fully specify
the system. It is easier to work in terms of intrinsic coordinates which move with the
filament, so we take the derivative of (6) with respect to s, and use ẋ′ = θ̇n to give
two equations in the normal and tangential directions, respectively,

θ̇ = c

2πμ

(−(BK ′′ − τκ)′ + ξ(τ ′ + BκK ′ + fm)κ
)

(7a)

0 = c

2πμ

(
(BK ′′ − τκ)κ + ξ(τ ′ + BκK ′ + fm)′

)
(7b)

where K = κ − κ̃ is the excess curvature and τ = λ + BκK is a generalised tension.
Here, as in Ziebert et al. (2015), we have assumed that the external force comes solely
from the action of the kinesin motors, which force the microtubule along its tangent
and so fext = fmt, where fm is a constant. Equation (6) nevertheless allows the MT
to move normal to its centreline. The position x may then be found from the filament
angle θ by integrating (1). The natural boundary conditions for a free end of the MT
come from the variational principle (3), and are given by

K = 0, K ′ = 0, τ = 0. (8)

For a fixed end, we have x = x0, and therefore we set ẋ = 0 in (6) which leads to the
force conditions,

τκ − BK ′′ = 0, τ ′ + BκK ′ + fm = 0, (9)
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which are supplemented with either K = 0 for a freely rotating pinned end or θ = θ0
for a clamped end.

For a straight filament with κ = κ̃ = 0, (6) gives

v = |ẋ| = ξ
c fm
2πμ

, (10)

which allows us to estimate an appropriate tangential force being applied from mea-
surements of the MT velocity. Typical velocities for gliding assays are 0.5µms−1 to
1µms−1, with differences due to factors such as viscosity, ATP concentration, temper-
ature and salt concentrations.Whilst, it would be reasonable to expect that the speed of
the MT would be proportional to the amount of kinesin attached to the MT (and hence
the surface kinesin density), as Eq. (10) implies, this is not seen in experiments, which
show that the velocity is constant for kinesin densities of 10–10,000µm−2 (Howard
et al. 1989). We therefore will use v to set an appropriate choice of fm .

2.2 Kinesin Binding

We now turn to the binding of the surface-bound kinesin to the MT, which we will
model as a continuous field, assuming that the concentration is sufficiently high for
this to be valid. Here we focus on the ‘sides’ of the filament, arbitrarily denoting them
with + and − with associated bound concentrations c+ and c−; we do not model the
protofilaments which are directly above the surface as we assume that they will not
affect the reference curvature. The proteins bind and unbind to the filament according
to standard protein binding kinetics,

ċ± + vsc
±′ = a±(κ)

(
1 − c±

cmax

)
− δc± + Dc±′′, (11)

where a±(κ) is a curvature-dependent association rate, δ is a disassociation rate, cmax
is the maximum number of binding sites per unit length and D is a diffusion constant
[measured as 0.036µm2s−1 for kinesin-1 (Lu et al. 2009)]. The left-hand side of
(11) is a material derivative, incorporating the fact that we are working in intrinsic
coordinates whilst the kinesin is fixed to the surface, where vs is the instantaneous MT
velocity (6) projected in the tangential direction,

vs ≡ ẋ · t = ξ(τ ′ + BκK ′ + fm). (12)

Dividing (11) by cmax, we use the bound ratios φ± = c±/cmax as dependent variables,
giving

φ̇± = a±(κ)

cmax
(1 − φ±) − δφ± + Dφ±′′ − vsφ

±′. (13)

At the ends of the MT, we allow no diffusion-based flux of the protein (although it

will ‘fall off’ the trailing end with the velocity vs) and hence impose ∂φ±
∂s = 0 at both

ends. Although we are modelling the MT as a one-dimensional rod, in reality it has
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a complex protein structure, with each tubulin monomer consisting of approximately
450 amino acids folded into a 3D arrangement with charged residues protruding from
the surface. Bending the entire filament moves these residues in relation to each other,
expanding those on one side and contracting those on the other; such changes can
be expected to change the binding kinetics of associated proteins, as these are also
complex charged structures. The precise nature of this relationship is unknown, but
here we will assume a sigmoidal relationship of the protein association rate a on the
local curvature κ ,

a±(κ) = α0(1 ± tanh(βκ)), (14)

where β acts as a scaling factor (with dimensions of length) to determine the degree
of preferential binding of the kinesin to curved MTs. This implies that when the MT
becomes curved the binding rates to each side of the MT will locally change, and
increasing the value of β will mean that the differential binding is more sensitive to
small curvatures.

The choice of this sigmoidal relationship ensures that the association rate both
saturates at high curvature and that a±(κ) is always positive; we have checked that
other functional forms can be used to similar effect.

We assume that the average on-rate α0 is proportional to both the number of kinesin
molecules available in the vicinity of the MT and their ability to reach one side of the
MT,

α0 = dΓ ωon, (15)

where Γ is the surface kinesin density, assumed to be sufficiently large for depletion
not to be a concern, d is the maximum distance kinesin can extend [45nm (Palacci
et al. 2016)], andωon is an attachment rate per kinesin molecule within range, given as
20 s−1 (Chaudhuri and Chaudhuri 2016). We note that this is a high estimate, because
we neglect the binding to protofilaments directly above the surface.

Our final model assumption is that the local concentration of bound protein influ-
ences the intrinsic curvature of the filament, by acting as a brace on the side of the
filament or some other conformational change, as suggested by Peet et al. (2018). As
the protofilaments are bonded to each other via lateral bonds, it is assumed that this
is able to affect the entire MT. If only one side of the MT has a high concentration
this will prevent the filament from straightening, altering the MT reference curvature,
whilst if both sides have bound protein then there will be no net effect on the curvature.
Again, we assume a sigmoidal dependence of κ̃ on the difference between the two
‘sides’ of the MT,

κ̃ = κc tanh
(
γ (φ+ − φ−)

)
, (16)

where γ > 0 is a scaling factor that controls the steepness of the MT response
to differential binding and κc > 0 is the maximum characteristic curvature. These
unknown constants will depend on the precise nature of the bracing effect, but the
measured lattice expansion of 1.6% in Peet et al. (2018) suggests κc = 0.625µm−1.
The MT will therefore curve towards the side with less bound protein, as shown in
Fig. 2.
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2.3 Non-dimensionalisation

We non-dimensionalise equations (7, 12, 13, 16) with respect to the MT length L
and the unbinding time δ−1, resulting in the domain of integration being s ∈ (0, 1),
yielding

χ−1θ̇ = −(K ′′ − τκ)′ + ξ(τ ′ + κK ′ + F)κ (17a)

0 = (K ′′ − τκ)κ + ξ(τ ′ + κK ′ + F)′ (17b)

φ̇± = α(1 ± tanh(βκ))(1 − φ±) − φ± − vsφ
±′ + Dφ±′′, (17c)

κ̃ = κc tanh
(
γ (φ+ − φ−)

)
, (17d)

vs = ξ(τ ′ + κK ′ + F), (17e)

where the three dimensionless numbers,

F = fm L3

B
, χ = cB

2πμL4δ
, α = α0

cmaxδ
(18)

are the ratio of forcing to bending rigidity, called the flexure number in Isele-Holder
et al. (2015), the ratio of elastic to viscous forces [inversely related to the Spermnumber
(Lowe 2003)] and the updated base on-rate, respectively. The boundary conditions at
a free end are

K = K ′ = τ = φ+′ = φ−′ = 0, (19)

whilst at a pinned end we have,

τκ − K ′′ = τ ′ + κK ′ + F = K = φ+′ = φ−′ = 0. (20)

To connect back to the spatial positions, (6) may be written as,

ẋ = χ(− sin θ(K ′′ + τκ) + ξ cos θ(τ ′ + K ′κ + F)) (21a)

ẏ = χ( cos θ(K ′′ + τκ) + ξ sin θ(τ ′ + K ′κ + F)), (21b)

which we can calculate after solving for κ . We can also use (1) to get the shape,
supplementing with (21) to find the position at a single point.

For the examples shown here, we will set D = 0.036µm2s−1 (Lu et al. 2009),
v = 0.5µms−1, κc = 1µm−1 (comparable to the 0.625µm−1 suggested in Peet
et al. (2018); the exact value does not affect the primary conclusions here), δ =
1 s−1 (Chaudhuri and Chaudhuri 2016). For calculating χ , there is a wide range of
measured values of the bendingmodulus B, depending on themeasuring technique and
conditions, with a noticeable length dependence (Pampaloni et al. 2006). Similarly, the
viscosity μ is not clear, as the medium of the gliding assay is more viscous than pure
water, and so we shall set χ = χ0/L4, where χ0 = 1µm4 or 3µm4 in the examples
below.

As we are considering only the protofilaments on the sides of the MT, we have
cmax = 250µm−1 if we only consider two protofilaments as being available for

123



Curvature-Sensitive Kinesin Binding Can Explain… 3011

binding on each side. Combined with the estimates of the other values above, this
gives α = 3.6 when Γ = 1000µm−2.

3 Results

3.1 Uniform Steady States

First we consider steady-state solutions with uniform curvature, where κ = κ̃ = κ0,
τ , φ+ and φ− are all constant. Evaluating (17) leads to values for the steady-state
protein concentrations,

φ±
0 = α(1 ± tanh(βκ0))

α(1 ± tanh(βκ0)) + 1
(22)

and the following transcendental equation for κ0:

κ0 − κc tanh

(
2αγ tanh(βκ0)

(α + 1)2 − α2 tanh(βκ0)2

)
= 0. (23)

The straightMTwith no differential binding is always a solution to (23),whilst nonzero
roots of κ0 correspond to curved states with radius of curvature κ−1

0 . Note that (23)
depends only on the parameters involved in the protein binding, not those connected
to the mechanical response.

Defining z = κ0/κc, b = βκc, steady states are associated with the roots of the
following three-parameter equation,

j(z) = z − tanh

(
2αγ tanh(bz)

(α + 1)2 − α2 tanh(bz)2

)
≡ z − j̃(z) = 0, (24)

defining the function j̃(z). Nonzero roots of j(z) will therefore correspond to steady
states with a nonzero uniform curvature, and so we wish to understand how the param-
eters affect the existence of these roots. If j ′(0) < 0, then a positive root must exist
as limz→±∞ j(z) = ±∞, which leads to a bifurcation condition from where nonzero
roots intersect z = 0,

j ′(0) = 2αbγ

(α + 1)2
− 1 = 0. (25)

As shown in Fig. 3a, (25) defines two values of the binding rate α, (α1, α2), at which
pitchfork bifurcations occur; we focus on α as it is the parameter most available for
experimental control.

A linear stability analysis (see “Appendix”) shows that the uniform solution
becomes unstable with a single real positive eigenvalue at α = α1, until it re-stabilizes
at α = α2. The first bifurcation at α = α1 is supercritical, producing stable non-
uniform solutions, but the solutions arising from α = α2 can be either stable or
unstable, depending on the values of b and γ , with a saddle-node bifurcation occur-
ring further along the branch to re-stabilize solutions when they are initially unstable
(Fig. 3b). This saddle-node bifurcation occurs for a wide range of parameters and
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A B

Fig. 3 a Bifurcation diagram for b = 3, γ = 1, plotting normalised curvature z against dimensionless
binding rate α. Unstable branches are marked by dashes, dots represent the location of the Hopf bifurcations
shown in b. Vertical lines I–IV show positions with 1, 3, 5 and 1 values of κ0, respectively. b Parameter
space map (over binding rate α and preferential binding affinity b) showing the position of the three types
of local bifurcations seen in the system, for γ = 1, χ0 = 3µm4, L = 10µm. The dotted line corresponds
to the bifurcation diagram shown in a

leads to multiple nonzero roots as shown in Fig. 3a. These additional roots appear
when j̃(z) is initially smaller than z but grows sufficiently fast to exceed z, giving a
second nonzero root.

Provided that α1 and α2 are far enough apart, we also find that a nested series of
Hopf bifurcations occur along both the unstable branches as the periodically spaced
complex eigenvalues move across the real axis, generating unstable limit cycles (due
to the positive eigenvalue still being present), with a corresponding reverse bifurcation
when they pass back over the real axis. The positions of these Hopf bifurcations are
indicated as points in Fig. 3a and as curves in Fig. 3b, which shows the parameter
space as α and b are varied for a fixed γ = 1. A similar picture is found as the
curvature-binding parameter γ is changed, but with a negative relationship between
the two feedback parameters b (or β) and γ ; when one is small the other needs to be
large in order for the feedback strength to be large enough to create nonzero roots, as
can be seen in (25).

We have therefore shown there exists a range of parameter values forwhichmultiple
stable steady states exist, allowing for the simultaneous existence of straight and curved
MTs at the sameparameter values and for a singleMT to be transferred between the two
when suitably perturbed, as was shown experimentally by Liu et al. (2011) (Fig. 1).
As can be seen in Fig. 3a, the nonzero constant value of κ0 is generally below the
prescribed characteristic curvature κc (i.e. z is less than 1); this value is approached
for some parameter values but can be significantly less, allowing for variation in the
ring sizes with a fixed κc. Furthermore, the Hopf bifurcations point to the potential
existence of oscillating states, which we will explore below.
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Fig. 4 Shape evolution of two MTs which are temporarily pinned before being released. All the parameters
are the same except the time of release, which are t = 13, 13.1, respectively, with α = 5, b = 3, γ =
1, χ0 = 3µm4, L = 5µm. The resulting end-states correspond to the two stable steady-states seen at line
III in Fig. 3a

3.2 Numerical Solutions

We now solve the full set of partial differential equations, (17)–(21), to see how the
curvature of theMT evolves in time. To do this, we use themethod of lines, discretising
in s with a fourth-order central-difference formula to give a set of coupled nonlinear
ordinary differential equations in t , which are solved using Mathematica.

As the straight solution is always a steady state, we need to introduce an initial
curvature perturbation to the MT to be able to see other behaviours. One option is to
temporarily pin the leading tip of a gliding MT [as is observed in gliding assays when
the MT encounters defective motors (Bourdieu et al. 1995)]. For a large enough F,
this will cause the MT to buckle and rotate around the pinned point (Sekimoto et al.
1995; Chelakkot et al. 2014; De Canio et al. 2017). We then allow the MT to unpin
after some curvature (and therefore also differential binding) has been generated, and
the MT will then either reach a curved configuration or re-straighten. This is shown in
Fig. 4 and Supplementary Movie S1, where two MTs that are unpinned after slightly
different amounts of time settle into the two different steady-states.

Instead of pinning an initially straight MT, we can also generate an initial perturba-
tion by bending the MT into a non-straight configuration and then allowing it to relax,
mimicking an interaction with other MTs. In both of these cases, the exact basins
of attraction of the two steady states depends on both the binding and the mechan-
ical parameters; a relatively large perturbation from straight gliding, which persists
for long enough to produce binding differences, is required to move the MT into the
curved configuration.

3.3 PropagatingWaves and Chaotic Motion

As well as the steady states detailed in Sect. 3.1, we also find parameter regimes
where stable propagating waves move down the MT, shown in Fig. 5 and Supple-
mentary Movie S2; the resulting MT shapes look strikingly similar to those of cilia
beating. These MTs show globally directed motion in the same way as straight MTs,
gliding across the surface, but with the addition of a periodic oscillation feeding back
from the tip. These sustained oscillations are caused by the reference curvature being
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A

B C

Fig. 5 a Shape evolution of a MT showing oscillatory behaviour as it moves across the surface. At these
parameter values propagating waves in κ̃ cause the MT to periodically undulate as it moves across the
surface, settling into a steady rhythm. One period of these shapes is shown superimposed in b. For these
parameters, the trailing tip preferred curvature, κ̃(L, t), plotted in c, has a regular gap between zeroes of
T = 3.466. Here α = 8, b = 3, γ = 1, χ0 = 1µm4, L = 5µm

translated along the MT as it glides. The curvature of the MT trailing tip, κ̃(L), shows
the regular periodicity where the waveform reaches the tip (Fig. 5b), and we denote
the time between zeroes of κ̃(L) by T .

As the parameters are changed, the period and amplitude between these oscilla-
tions changes smoothly. Additionally, as the diffusion D is increased from Di =
0.036µm2s−1 (Lu et al. 2009), we also see period-doubling bifurcations occur as
shown in Fig. 6, where T breaks symmetry, leading to a non-symmetric behaviour in
the waveform (Fig. 6c). As D is increased further a period-doubling cascade contin-
ues, leading to chaotic behaviour where the MT never settles into a periodic regime,
as shown in Fig. 6a. Upon further increasing of D, the wave solution disappears and
the system settles into the uniform curvature solutions described in Sect. 3.1. Whilst it
is unlikely that D could be used as a control parameter in an experiment, these results
demonstrate the range of possible outcomes in this system, and their sensitivity to
parameter values.

After the initial period-doubling, the overall motion of the MT is biased, leading
to the MT moving in a large circle whilst undulating, as shown in the insets of Fig. 6a
and in Supplementary Movies S3–S7. The radius of this large circle, Rc, decreases
monotonically with D, as the waveform becomes increasingly asymmetric, shown in
Fig. 6d.

These oscillatory solutions, and the period-doubling cascade to chaos, appear to
exist in regions of parameter space around the second pitchfork bifurcation, α2, shown
in Fig. 3, provided that the ‘wings’ of the bifurcation diagram are large enough to
include the Hopf bifurcations. They also exist when different sigmoidal functions
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A

B C D

Fig. 6 a Time T between the zeroes of the trailing tip curvature κ̃(L, t) (after initial transient behaviour)
as the diffusion D is increased, showing a period-doubling cascade to chaos. Inset above are plots (all on
the same scale) showing the motion of the trailing tip of the MT after the initial transient behaviour. For
D/Di = 3.55, 3.56, 3.57, the MT settles into a steady orbit with decreasing radius, whereas for D/Di =
3.5823 the MTmoves around the plane in a chaotic manner. b Superimposed shapes for D/Di = 3.57 over
a sub-interval of the orbit, showing a larger amplitude than in Fig. 5. c Plot of the reference curvature at the
end of the MT, κ̃(L), showing the two values of T which can be seen in a. d Plot showing how the radius
of the large orbit traced out by the oscillating MT decreases monotonically as D/Di is increased. All other
parameters are the same as in Fig. 5

κ̃ = κcG(γ (φ+ − φ−)) are used instead of (16), for instance

G(x) = 2

π
arctan

(πx

2

)
, erf

(√
πx

2

)
,

x√
1 + x2

, (26)

where erf is the error function (results not shown).
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4 Discussion

We have presented here a model for the occurrence of rings and arcs seen in MT
gliding assays, based on the extrinsic effect of differential binding of the surface-
attached kinesinswhichmove theMTs forward.Ourmodel goes beyond that of Ziebert
et al. (2015), who assume that the formation of these rings is the result of an intrinsic
property of the MTs. Our model incorporates the presence of the kinesins as external
factors that drive a feedback loop where MT bending is recognised and stabilised,
thus recruiting further kinesins; intrinsic properties of MTs as considered by Ziebert
et al. (2015) may contribute to these effects and can be considered in our model by
modifying the equation for the reference curvature (16).

Both models are able to reproduce the key aspect of the experiments, with regimes
of bistability where both curved and straight MTs exist simultaneously for the same
parameters, differentiated by the local forcing on the MT. In order for rings to be
formed, we find that the system needs to be within a parameter regime (α, β, γ ) which
permitsmultiple steady states, and theMTmust undergohigh induced curvature.Going
beyond the model of Ziebert et al. (2015), our approach leads to two predictions which
can be experimentally tested:

1. Our model predicts that varying the effective binding rate α should affect whether
or not MT rings can form, as well as their size. This on-rate includes both the
binding distance d, which can be experimentally altered by truncations of the
kinesin-1 tail region as in the experiments performed inVanDelinder et al. (2016a),
as well as the surface-bound kinesin density Γ which may be directly varied by
altering the kinesin concentration.

2. Our model predicts that high MT density will encourage the formation of rings,
consistent with the experiments of Liu et al. (2011). MT density contributes in
two ways: it encourages the bending of MTs through MT–MT interactions, and
it promotes the pushing down of MTs towards the surface of the assay during
cross-over events, significantly enhancing the access to the convex MT side.

The non-kinesin parameters used in our model are already well-known or easily
measurable, but the parameters β, γ and κc which connect the protein binding to
the preferred curvature are entirely unknown. However, they could be characterised
via fluid-bending experiments of the kind performed in Peet et al. (2018), and then
fitting an appropriate variation of the model described here. The measurements of the
curvature sensitivity for the protein doublecortin in taxol-stabilised MTs [Fig. 3g of
Ettinger et al. (2016)] suggest a value of β of approximately 3µm.

Additionally, the exact values for the parameters involved in the combined kinesin
on-rate α are not very well characterised. For instance, the surface kinesin density
Γ is not routinely measured in gliding assays, but can be obtained via landing-rate
experiments (Katira et al. 2007). Furthermore, othermotor proteins than kinesin-1 (e.g.
other members of the kinesin superfamily or the minus-end directed dynein/dynactin
motor complex), are able to translocate MTs in gliding assays. If parameter changes
in these assays facilitate the occurrence of rings, this would provide additional data
sets that could be compared and help to refine parameter determination.
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The unsteady solutions where the MT oscillates whilst moving across the surface,
including the period-doubling cascade to chaos, are particularly interestingmathemati-
cally as they are not immediately obvious from the governing equations. An oscillating
regime for a clamped or pinned filament (without the preferred curvature) driven by
the tangential motors, as considered here, was found by Sekimoto et al. (1995), with a
Hopf bifurcation occurring above a critical forcing F; De Canio et al. (2017) also show
this behaviour for the case of a filament with a follower force acting on the free end,
and expand upon its origin. The behaviour seen here is similar, with a self-sustained
oscillatory waveform, but these authors did not report chaotic dynamics.

These oscillations may be biologically relevant; the wavy MTs generated by our
model look similar to those shown in an experimental figure of Gosselin et al. (2016),
as well as a MT seen in Supplementary Movie 1 of Scharrel et al. (2014), and similar
regularly undulating curved MTs are seen in cells (Brangwynne et al. 2007, 2006);
although these are assumed to be caused by mechanical buckling, it is possible that
this kind of curvature-dependent binding may enhance the effect. There may also be
a connection to the MT phenomenon described as ‘fishtailing’, where MTs oscillate
laterally whilst their head is stuck, as shown in Applewhite et al. (2010) and Weiss
et al. (1991) for example. We therefore encourage experimentalists to look out for this
kind of behaviour.

5 Future Directions

Our current model is only a starting point, and a number of further aspects can or
should be incorporated.

1. The arrangement of protofilaments into the MT is via a helical arrangement, with
a skew angle inducing a global supertwist for the MTs where moving forward
along one protofilament involves rotating around theMT; the exception is for MTs
with 13 protofilaments which are almost straight, and this is therefore the type
considered in our model so far. MTs with more or fewer protofilaments are shown
to rotate as the kinesin moves along them (Ray et al. 1993), inducing a torque that
could be considered in future versions of themodel, particularly as axonalMTs are
not always the 13 protofilament type (Chaaban and Brouhard 2017). Furthermore,
Kawamura et al. (2008) find that more rings occur in gliding assays when they
use freshly prepared MTs, which have fewer 13-protofilament MTs than their 24h
aged MTs, suggesting that this MT rotation might enhance the ring formation by
making it easier for the kinesin to be bound to the outer side of the MTs; this
effect may be explained by kinesin stepping from one protofilament to another as
it reaches its maximum extension, as it does to move around obstacles (Schneider
et al. 2015).

2. The inclusion of the crosslinking protein streptavidin into gliding assays induces
the formation of bundles of curved MTs, known as spools, where multiple MTs
are attached together and the entire structure is bent into an arc (VanDelinder
et al. 2016b). Luria et al. (2011) found more small-circumference spools than
predicted by their simulations; these spools have a similar diameter to that of the
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non-crosslinkedMT loops (Liu et al. 2011; Kawamura et al. 2008), and we suggest
that themechanismwe proposemay be responsible. In particular, Lam et al. (2014)
found that the size and number of crosslinked spools depends upon the kinesin
density, with the presence of more kinesin leading to fewer small-diameter spools,
which is consistent with our results. Incorporation of MT–MT interactions via
crosslinking proteins would therefore be a natural extension of our model.

3. The core of this model is suitable for other situations where differential protein
binding may influence filament curvature, for instance where the protein is freely
diffusing in solution as in Peet et al. (2018). The model assumes that the MT stays
in the same vertical plane, as it is attached to the surface by the kinesin, and the
extension to three dimensions may be required to properly model the situation in
cells, incorporating both the twisting as well as the bending of the MT, as well as
modelling all the protofilaments individually.

4. As mentioned in the introduction, other MT-binding proteins occurring in nerve
cells, such as tau and doublecortin, have been shown to be curvature-sensitive,
and we therefore recommend that these are tested to see if they can also reinforce
the curvature. Additionally, an extension to the model to incorporate competition
between proteins for the same binding sites may explain how certain proteins have
a protective function.
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Appendix: Linear Stability Analysis

To investigate the stability of the steady states, we expand every variable about the
constant solution as,

θ = Ωt + κ0s + εθ1(s)e
ωt , τ = ετ1(s)e

ωt ,

φ± = φ±
0 + εφ±

1 (s)eωt , κ̃ = κ0 + εκ̃1(s)e
ωt ,

where the steady-state values are given by (22) and (23), and the angular velocity Ω

is given by
Ω = ξχFκ0 = vκ0,

connecting the rotation speed of the arc solutions with the free gliding speed.
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Linearising with respect to ε and letting K1 = θ ′
1 − κ̃1 gives at first order,

ωθ1 = χ(2Fθ ′
1 + 3κ0τ

′
1 + 2κ2

0K
′
1 − K ′′′

1 )

0 = κ2
0 τ1 − 3κ0K

′′
1

ωφ±
1 = −(1+α ± α tanh(βκ0))φ

±
1 ± αβsech2(βκ0)(1 − φ±

0 )κ1 − Fχξφ±′
1 +Dφ±′′

1

κ̃ = γ (κc + κ0 tanh(βκ0)).

Writing as afirst ordermatrix system,y′ = Aywherey = (θ1, K1, K ′
1, K

′′
1 , τ1, τ

′
1, φ

+
1 ,

φ+′
1 , φ−

1 , φ−′
1 ), the matrix A is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 a1 0 − a1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
−ωχ−1 ξF ξκ2

0 0 0 (1 + ξ)κ0 ξFa1 0 − ξFa1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 − (1 + ξ)κ0ξ

−1 κ2
0 ξ−1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0
0 − a+

2 0 0 0 0 a+
3 + ωD−1 −FξχD−1 γ a1a

+
2 0

0 0 0 0 0 0 0 0 0 1
0 a−

2 0 0 0 0 a1a
−
2 0 a−

3 + ωD−1 −FξχD−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

a1 = γ

(
κc + κ0 tanh

(
2αγ tanh(βκ0)

α2 tanh(βκ0)2 − (1 + α)2

))

a±
2 = αβsech(βκ0)

2

D(1 + α ± α tanh(βκ0))

a±
3 = 1 + α(2 − a1βγ ) + α2 ± 2α(1 + α) tanh(βκ0) + α(α + a1βγ ) tanh(βκ0)

2

D(1 + α ± α tanh(βκ0))
.

We find the eigenvalues of this linear boundary-value problem using the Com-
pound Matrix method to calculate the Evans function (Afendikov and Bridges
2001) in Mathematica (a package implementation of which is available from
github.com/SPPearce/CompoundMatrixMethod) and chebfun (Driscoll et al. 2014)
in Matlab. The spectrum of eigenvalues here is discrete, with regularly spaced pairs
of complex conjugates.
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