
Bulletin of Mathematical Biology (2018) 80:2502–2525
https://doi.org/10.1007/s11538-018-0479-2

ORIG INAL ART ICLE

A Stochastic Model for Reproductive Isolation Under
Asymmetrical Mating Preferences

Hélène Leman1

Received: 26 September 2017 / Accepted: 23 July 2018 / Published online: 9 August 2018
© Society for Mathematical Biology 2018

Abstract
More andmore evidence shows thatmating preference is amechanism thatmay lead to
a reproductive isolation event. In this paper, a haploid population living on two patches
linked by migration is considered. Individuals are ecologically and demographically
neutral on the space and differ only on a trait, a or A, affecting both mating success
and migration rate. The special feature of this paper is to assume that the strengths of
the mating preference and themigration depend on the trait carried. Indeed, patterns of
mating preferences are generally asymmetrical between the subspecies of a population.
I prove that mating preference interacting with frequency-dependent migration behav-
ior can lead to a reproductive isolation. Then, I describe the time before reproductive
isolation occurs. To reach this result, I use an original method to study the limiting
dynamical system, analyzing first the system without migration and adding migration
with a perturbation method. Finally, I study how the time before reproductive isolation
is influenced by the parameters of migration and of mating preferences, highlighting
that large migration rates tend to favor types with weak mating preferences.

Keywords Mating preference · Asymmetrical preference · Birth-death stochastic
model · Dynamical system · Long-time behavior · Perturbation method

Mathematics Subject Classification 92D40 · 37N25 · 60J27

1 Introduction

Understanding the mechanisms of speciation and reproductive isolation is a major
issue in evolutionary biology. There is now strong evidence that sexual preferences
and speciation are tied (Lande 1981; Boughman 2001). Initially, the role of ’magic’ or
’multiple effect’ traits, which associate both adaptation to an ecological niche and a
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mate preference, has been studied deeply. It has been shown that such traits may lead
to speciation, using direct experimental evidence (Merrill et al. 2012) or theoretical
works (Lande and Kirkpatrick 1988; Van Doorn et al. 1998). Then, studies focused
on the particular role of mating preference during a speciation event (Gavrilets 2014),
highlighting that (i) it may impede reproductive isolation (Servedio 2011; Servedio
and Bürger 2014, 2015), or, (ii) it may promote reproductive isolation. This promoting
role may be secondary or primary. For example, the initial divergence in traits may be
the result of natural selection in order to decrease hybridization and then be subjected to
mating preference (Panhuis et al. 2001), producing speciation by reinforcement (Gre-
gorius 1989). Other studies illustrate the direct and promoting role of assortative
mating, using numerical simulations (Kondrashov and Shpak 1998; M’Gonigle et al.
2012; Smadi et al. 2018), or theoretical results (Rudnicki and Zwolenski 2015; Coron
et al. 2018).

The studies mentioned above focus on a symmetrical sexual preference, assum-
ing that all individuals express the same sexual preference. Numerous observations
and studies though do not support this assumption and describe examples of species
that express different patterns of preference (See Panhuis et al. (2001) for exam-
ples). Smadja and Ganem (2005) describe such an example between two subspecies of
the housemouse.The subspeciesMusmusculusmusculus is characterizedby a stronger
assortative preference than the subspecies Mus musculus domesticus (Smadja et al.
2004). A mechanism for subspecies recognition mediated by urinary signals occurs
between these two taxa and seems to maintain reproductive isolation. Another exam-
ple comes from Drosophila melanogaster populations where strong sexual isolation
with an asymmetrical pattern of sexual preference was observed (Wu et al. 1995; Hol-
locher et al. 1997). The Zimbabwe female lines of Drosophila melanogaster have a
nearly exclusive preference for males from the same locality over the males from other
regions or continents; the reciprocal mating is also reduced but to a lesser degree.

In this paper, I was thus interested in asymmetrical patterns of preference. I focused
on the caseswheremating preference promotes sexual selection, and Iwas interested in
twomain problematic: (i) studying the influence of an asymmetrical mating preference
pattern on speciation mechanisms, and (ii) understanding the effects of migration on
mating preference advantages. To do so, I aimed to generalize themodel of Coron et al.
(2018) to account for asymmetrical sexual preferences.Ahaploid population divided in
two demes but connected by migration is considered. Following the seminal papers of
Bolker and Pacala (1997), Dieckmann and Law (2000), Fournier and Méléard (2004),
I used a stochastic individual-based model with competition and varying population
size. Individuals are assumed not to express any local adaptation. Their parameters
do not depend on their location. Individuals, however, are characterized by a mating
trait, encoded by a bi-allelic locus, and which has two consequences: (i) individuals
of the same type have a higher probability to mate and give an offspring, and (ii)
the migration rate of an individual increases with the proportion of individuals caring
the other trait in its deme. Finally, the two alleles may not have identical effects, in
the sense that strengths of mating preferences and of migration depend on the allele
carried by the individual.

Using convergence to the large population limit, I first connected the microscopic
model to a macroscopic and deterministic model. Then, studying both models, I estab-
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lished the main result of the paper, which ensures that the mechanism of mating
preference combined with a negative type-dependent migration is sufficient to entail
reproductive isolation and which gives the time needed before reproductive isolation.
Here, unlike (Coron et al. 2018), the approximation of this time depends on both
mating preference parameters and both migration parameters, related to both alleles.
I finally conducted an extensive study on the influence of migration and preference
parameters on this time showing that large migration rates can favor types with a weak
mating preference. The proof of the main result is based on a fine analysis of the
deterministic limiting model. In particular, global results on the dynamical system are
established such that the dynamics of almost all trajectories can be predicted. To do
so, I developed an original method based on a perturbation theory of the migration
parameters, which strongly differs from the method used by Coron et al. (2018). The
asset of this method is that it can easily be adapted to other dynamical systems.

The paper is organized as follows. In Sect. 2, the stochastic model is introduced and
motivated from a biological perspective. Section 3 presents the results of the paper. In
particular, the main results on the deterministic limiting model and on the stochastic
process are stated in Sect. 3.1. Section 3.2 presents the main result in the case without
migration between both patches. In Sect. 3.3, the influence of migration on the time
before reproductive isolation is analyzed. Section 4 establishes the proof of the key
result using perturbation theory. Finally, Sect. 5 gives a discussion about the paper
results. Proofs of the case without migration will be found in “Appendix A”. Proofs
of the probabilistic parts of the main result will be found in “Appendix B”.

2 Model

The population is divided into two patches. The individuals are haploid and charac-
terized by a diallelic locus (a or A) and a position (1 or 2 depending on the patch
in which they are). The set E := {(α, i), α ∈ {a, A}, i ∈ {1, 2}} is used to charac-
terize the individuals. The population dynamics follows a multitype birth and death
process with competition in continuous time. In other words, the dynamics follows a
Markov jump process in space NE , whose rates are described below. At any time t ,
the population is represented by the following vector of dimension 4 in N

E :

NK (t) =
(
NK
A,1(t), N

K
a,1(t), N

K
A,2(t), N

K
a,2(t)
)

∈ N
E

where NK
α,i (t) denotes the number of individuals with genotype α in the deme i at

time t . K is an integer parameter associated with the concept of carrying capacity
and accounting for the quantity of available resources or space [see also (Coron et al.
2018) for more details]. Consequently, it is a scaling parameter for the size of the
community. It is assumed to give the order of magnitude of the initial population, in
the sense that the initial number of individuals divided by K converges (in probability)
when K goes to infinity. The competition for resources is also scaled with 1/K , as
presented below.
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In what follows, if α denotes one of the alleles, notation ᾱ denotes the other allele
and if i denotes one of the demes, ī denotes the other one.

The birth, death and migration rates of each individual are now described.
At a rate B > 0, a given individual with trait α ∈ {a, A} encounters uniformly at

random another individual of its deme. Then, it mates with the latter and transmits its
trait with probability bβα/B ≤ 1 if the other individual carries also the trait α, and
with probability b/B ≤ 1 if the other individual carries the trait ᾱ. That is to say, after
encountering, two individuals that carry the same trait α have a probability βα-times
larger to mate and give birth to a viable offspring than two mating individuals with
different traits. Hence, as the current state of the population is denoted by NK ∈ N

E ,
the total birth rate of α-individuals in patch i is

bNK
α,i

βαNK
α,i + NK

ᾱ,i

N K
α,i + NK

ᾱ,i

. (1)

Note that two parameters, βa and βA, are used to model the sexual preference depend-
ing on the trait carried by the individual. The limiting case where βA = βa was studied
by Coron et al. (2018). Here, I was interested in the case where βa �= βA although the
result of the limiting case can be rediscovered with our calculation. As presented in
Coron et al. (2018), Formula (1) models an assortative mating by phenotypic match-
ing or recognition alleles (Blaustein 1983; Jones and Ratterman 2009). Note that, in
the present model, preference modifies the rate of mating and not only the distribu-
tion of genotypes, unlike what is usually assumed in classical generational models
(O’Donald 1960; Lande 1981; Kirkpatrick 1982; Gavrilets 2004; Brger and Schneider
2006; Servedio 2011). The presentmodel can be comparedwith these classical ones by
computing the probabilities that an individual of trait α in the deme i gives birth after
encountering an individual of the same trait (resp. of the opposite trait) conditionally
on the fact that this individual gives birth at time t , and we find

βαNK
α,i

βαNK
α,i + NK

ᾱ,i

(
resp.

NK
ᾱ,i

βαNK
α,i + NK

ᾱ,i

)
.

Note that these terms correspond to the ones presented in the supplementary material
of Servedio (2011), or in Gavrilets and Boake (1998). An extended discussion between
these two types of models (discrete time versus continuous time models) can be found
in Section 2 of Coron et al. (2018).

The death rate of a given individual is composed of a natural death rate and a com-
petition death rate. Individuals compete for resources or space against all individuals
of their own deme. The competitive death rate of each individual is thus proportional
to the total population size of its deme. Finally, the total death rate of α-individuals in
patch i is (

d + c

K

(
NK

α,i + NK
ᾱ,i

))
NK

α,i , (2)

where d models the natural death and c models the competition for resources. As
presented previously, K is the scaling parameter that scales the amount for resources.
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Hence, the larger K is, the smaller the strength of competition between two individuals,
c/K , is.

Finally, individuals can migrate from one patch to the other one. Following (Payne
and Krakauer 1997; Coron et al. 2018; Smadi et al. 2018), I use a frequency-dependent
migration rate in such a way that individuals are more prone to move if they do not
find a suitable mate. This hypothesis is relevant for all organisms with active mate
searching (Uy et al. 2001; Jugovic et al. 2017). The migration term of an individual is
proportional to the proportion of individuals carrying the other allele in its deme, and
to a parametermα which depends on the trait of the individual. Hence, the alleles code
for the strength of the mating preference and simultaneously, the speed of migration.
The total migration rate of α-individuals from patch 1 to patch 2 finally is

mα

(
NK

ᾱ,1

NK
α,1 + NK

ᾱ,1

)
NK

α,1. (3)

Note that the migration rate does not depend on the other deme composition.
In what follows, the following statements on the parameters are assumed:

βA > 1, βa > 1, b > d > 0, c > 0, mA ≥ 0, ma ≥ 0.

3 Results

3.1 Time Needed Before Reproductive Isolation

In this section, I present the main result of the paper that gives the time needed for
the process NK to reach reproductive isolation. This time depends on K , the carrying
capacity of the process.

To this aim, let us first give the average behavior of the process using convergence
to the large limit population. Precisely, Lemma 1 below ensures that the sequence of
re-scaled processes

(ZK (t))t≥0 =
(
NK (t)

K

)

t≥0

converges when K goes to infinity to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
zA,1(t) = zA,1

[
b

βAzA,1 + za,1

zA,1 + za,1
− d − c(zA,1 + za,1) − mA

za,1

zA,1 + za,1

]
+ mA

zA,2za,2

zA,2 + za,2

d

dt
za,1(t) = za,1

[
b

βa za,1 + zA,1

zA,1 + za,1
− d − c(zA,1 + za,1) − ma

zA,1

zA,1 + za,1

]
+ ma

zA,2za,2

zA,2 + za,2

d

dt
zA,2(t) = zA,2

[
b

βAzA,2 + za,2

zA,2 + za,2
− d − c(zA,2 + za,2) − mA

za,2

zA,2 + za,2

]
+ mA

zA,1za,1

zA,1 + za,1

d

dt
za,2(t) = za,2

[
b

βa za,2 + zA,2

zA,2 + za,2
− d − c(zA,2 + za,2) − ma

zA,2

zA,2 + za,2

]
+ ma

zA,1za,1

zA,1 + za,1
.

(4)
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Lemma 1 Assume that the sequence (ZK (0))K≥0 converges in probability to the deter-
ministic vector z0 ∈ R

E . Then, for any T ≥ 0,

lim
K→∞ sup

s≤T
‖ZK (s) − z(z0)(s)‖ = 0 in probability, (5)

where ‖.‖ denotes the L∞-Norm on R
E and (z(z0)(t))t≥0 denotes the solution of (4)

with initial condition z0 ∈ R
E

This result can be deduced from a direct application of Theorem 2.1 p. 456 by Ethier
and Kurtz (1986), as done by Coron et al. (2018) to deduce their Lemma 1.

A direct computation implies that the following four points are stable equilibria of
the system (4):

– equilibria with fixation of an allele (where only an allele is maintained in both
patches)

(ζA, 0, ζA, 0), (0, ζa, 0, ζa), (6)

– equilibria with maintenance of each allele in a different patch

(ζA, 0, 0, ζa), (0, ζa, ζA, 0), (7)

with ζα := bβα−d
c , α ∈ {A, a}. These four equilibria describe states of reproductive

isolation: Once reaching one of these equilibria, migration rates equal zero and indi-
viduals do not migrate anymore. More specifically, observe that Equilibria (7) are of
particular interest to our problematic. Indeed, once reaching one of these equilibria,
even if a small basal migration (i.e., constant migration) is added, the mating prefer-
ences and the frequency-dependent migration terms will prevent the populations of
both demes to mix again, leading to migration-selection balance (Karlin and McGre-
gor 1972) but where selection is due to sexual selection and not to natural selection.
Precisely, if an A-individual travels because of basal migration from patch 1 to patch
2, which is filled with a-individuals, its probability to reproduce will be significantly
reduced in patch 2 and its return migration rate will be so high that it is quite unlikely
that its offspring establish in patch 2. This reasoning, however, fails with Equilibria
(6).

Our aim is then to understand the long-time behavior of trajectories of the dynamical
system and more specifically to detail the set of initial states that lead to one of these
equilibria, this corresponds exactly to the basin of attraction of an equilibrium. With
this aim in mind, let us define the weighted sums

Σi := (βA − 1)zA,i + (βa − 1)za,i , for i = 1, 2,

Σ := Σ1 + Σ2 = (βA − 1)(zA,1 + zA,2) + (βa − 1)(za,1 + za,2),
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and the compact set

S :=
{
z ∈ R

E ,Σi ≥ (βmin − 1)(b − d)

4c
, for i = 1, 2, and

Σ ≤ 4(βmax − 1)(bβmax − d)

c

}
, (8)

where βmin = min(βa, βA) and βmax = max(βa, βA). Next Lemma ensures that we
can focus on trajectories starting from S. Indeed, any trajectory reaches it in finite
time.

Lemma 2 Assume that

mA(βA − 1) + ma(βa − 1) ≤ 2(b − d)(βmin − 1). (9)

S is a positively invariant set for the dynamical system (4), in the sense that any
trajectories starting from this set will stay in it when t grows to +∞. Moreover, any
trajectory solution of (4) hits S after a finite time.

The aim is thus to study trajectories in the compact set S.

Theorem 1 1. Assume that mA = 0 if and only if ma = 0. There exists m0 > 0 such
that for all mA ≤ m0 and ma ≤ m0, there exist four open subsets (Dα,α′

mA,ma )α,α′∈A
of S that are the basins of attraction in S of the four Equilibria (6) and (7) of the
system (4), and such that the closure of ∪α,α′∈ADα,α′

mA,ma is equal to S.
2. In the case mA = ma = 0, the basins of attraction are exactly

Dα,α′
0,0 =

{
z ∈ R

E , (βα − 1)zα,1 > (βᾱ − 1)zᾱ,1 and

(βα′ − 1)zα′,2 > (βᾱ′ − 1)zᾱ′,2
}

∩ S.

Theorem 1 ensures that any trajectory starting from S, except from a set with empty
interior which corresponds to the boundary of the basins of attraction, reaches one of
the steady states (6) or (7). In particular, coexistence of both alleles in a single deme
does never occur. In other words, assortative mating combined with negative type-
dependent migration entails reproductive isolation. The assumption on the migration
rate is essential to obtain this result. Different results are deduced in models with
frequency-independent migration (Servedio and Bürger 2014; Smadi et al. 2018). In
particular, reproductive isolation may be prevented. Smadi et al. (2018) study a similar
model as the one used here, but individuals are diploid. A mechanism of mating
preference interacting with frequency-dependent migration is studied. In Sect. 3.4 of
this paper, the frequency-dependent migration term is replaced by a constant migration
term. Then, polymorphic equilibria with both alleles in demes can be observed, but
only if themigration rate is sufficiently large. This highlights that, although using other
kind of migration prevents reproductive isolation, the mechanism that would prevent

123



A Stochastic Model for Reproductive Isolation Under… 2509

reproductive isolation is migration and not assortative mating, in their case as in the
one presented here.

Theorem 1 is, furthermore, a key result to deduce the next theorem, which gives the
time before reproductive isolation. It can be compared to Theorem 2 of Coron et al.
(2018) which gives same results in the symmetrical case (βA = βa and mA = ma).
In the latter, the equilibrium reached is given by the alleles that make up the majority
initially in each patch. In our case, the dynamics is more involved. Without migration,
the equilibrium reached depends on the initial number of individuals of each type and
of the mating preference strengths. Then, when mA and ma are small, the basin of
attraction Dα,α′

mA,ma is a continuous deformation of Dα,α′
0,0 . I drew such an example in

Sect. 3.3. Note that no basin of attraction is empty, since the four equilibria are stable
equilibria.

The asymmetrical sexual preferences make the long-time behavior more involved
than in the symmetrical case and proofs here use completely different mathematical
techniques. I used perturbation theory to deduce Theorem 1 : the system is first studied
in the particular case where mA = ma = 0, then one makes mA and ma grow up to
deduce the result for positive migration rates. Unfortunately, I was not able to give an
explicit formulation for the sets Dα,α′

mA,ma unlike in the symmetrical case.
Let us now state the main result. It describes the random time T K

BA,a,ε
that is the first

time when the population process NK reaches the set

BA,a,ε := [(ζA − ε)K , (ζA + ε)K ] × {0} × {0} × [(ζa − ε)K , (ζa + ε)K ],

with ε > 0 and when K is large. In other words, it is the random time before (1)
all a-individuals in patch 1 and all A-individuals in patch 2 get extinct, and (2) the
population size in patch 1 is approximately K ζA and the one in patch 2 is approximately
K ζa . In the light of the previous discussion about equilibrium (ζA, 0, 0, ζa), it thus
corresponds to the time before reproductive isolation occurs.

Theorem 2 Assume that Assumptions of Theorem 1 holds and that mA ≤ m0 and
ma ≤ m0.
Let ε0 > 0 and assume also that ZK (0) = NK (0)/K converges in probability to a
deterministic vector z0 ∈ DA,a

mA,ma such that (z0a,1, z
0
A,2) �= (0, 0). Then there exist

C0 > 0, M > 0, and V > 0 depending only on (M, ε0) such that, for any ε ≤ ε0,

lim
K→∞P

(∣∣∣∣∣
T K
BA,a,ε

log K
− 1

ω(A, a)

∣∣∣∣∣ ≤ C0ε, NK
(
T K
BA,a,ε

+ t
)

∈ BA,a,Mε; ∀t ≤ eV K

)
= 1, (10)

where for all α, α′ ∈ A,

ω(α, α′) = 1

2

[
b(βα − 1 + βα′ − 1) + mα + mα′

−
√(

b(βα − βα′) + (mα′ − mα)
)2 + 4mαmα′

]
. (11)
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Similar results hold for the three other Equilibria of (6) and (7).

Theorem 2 gives the first-order approximation of the time before reproductive
isolation. The latter is proportional to log(K ), which is short compared to K , the order
of magnitude of the population size. Comparatively, the time scale needed for random
genetic drift to cause the end of gene flow between two populations is of order K in
many models [as for example in Wright–Fisher model, see chapter 7 in Hartl et al.
(1997)].Hence,Theorem2 implies that reproductive isolationdue tomatingpreference
is much shorter. Note also that Theorem 2 not only gives the time before reproductive
isolation but also it ensures that once the equilibrium is reached, the population sizes
of both patches stay around K ζα during at least a long time of order eKV . Secondly, as
ω(α, α) = b(βα − 1), the time before reaching one of Equilibria (6) does not depend
onmigration parameters unlike the time before reaching one of Equilibria (7). I studied
more specifically the influence of migration parameters on this time in Sect. 3.3.

The assumption on initial condition ((z0a,1, z
0
A,2) �= (0, 0)) is only needed to obtain

the lower bound on the time T K
BA,a,ε

given in (10). Otherwise, this time would be faster.
Finally, note that, assuming βA = βa andmA = ma , Theorem 3 of Coron et al. (2018)
is rediscovered.

3.2 Study of the SystemWithout Migration

The proofs of Theorems 1 and 2 require a full understanding of the dynamics without
migration. Hence before proceeding with the proofs, I present a complete study of the
dynamical system when mA = ma = 0. Since both patches evolve independently in
this case, only the dynamics of patch 1 is studied and, for the sake of simplicity, the
dependency on patches in notation is dropped. From (4), we find that

⎧⎪⎪⎨
⎪⎪⎩

d

dt
zA(t) = zA

[
b
βAzA + za
zA + za

− d − c(zA + za)

]

d

dt
za(t) = za

[
b
βaza + zA
zA + za

− d − c(zA + za)

] (12)

The equilibria of the system will be written with the following quantities

χα := (βᾱ − 1)χ, where χ := b(βa − 1)(βA − 1) + (b − d)(βA − 1 + βa − 1)

c(βA − 1 + βa − 1)2
,

and where ᾱ is the complement of α ∈ A. A direct computation implies that there
exist exactly four fixed points of the dynamical system (12):

(0, 0), (ζA, 0), (0, ζa), and (χA, χa).

These equilibria represent respectively the extinction of the population, the loss of
allele a or allele A, or the long-time coexistence of both alleles.

Let us nowdescribe their stability and the long-timebehavior of any solution of (12).

123



A Stochastic Model for Reproductive Isolation Under… 2511

Fig. 1 Example of phase portrait of a single patch dynamics. The black line is the set of initial conditions for
which trajectories converge to the unstable equilibrium (χA, χa). Above (resp. below) this line, trajectories
converge to (0, ζa) (resp. (ζA, 0)). The red and the blue curves are examples of trajectories. The black and
the gray points represent respectively the stable and the unstable equilibria (Color figure online)

Lemma 3 – (ζA, 0) and (0, ζa) are stable equilibria, (0, 0) is unstable and (χA, χa)

is a saddle point.
– The set

DA
0 :=
{
(zA, za) ∈ R

2, (βA − 1)zA > (βa − 1)za
}

(13)

is a positively invariant set under the dynamical system (12). Moreover, any solu-
tion starting from DA

0 converges to (ζA, 0) when t converges to +∞.
– The set

Da
0 := {(zA, za) ∈ R

2, (βA − 1)zA < (βa − 1)za},
is a positively invariant set under the dynamical system (12). Any solution starting
from Da

0 converges to (0, ζa) when t converges to +∞.
– Finally, {(zA, za) ∈ R, (βA − 1)zA = (βa − 1)za} is also a positively invariant
set and any solution starting from this set converges to (χA, χa) when t grows to
+∞.

In other words, the system is bi-stable: All trajectories converge to (ζA, 0) or (0, ζa),
except the trajectories starting from a line (see Fig. 1). A direct consequence of this
Lemma is that the basin of attractionDα,α′

0,0 are exactly the ones describedbyTheorem1.
As per the information provided by the publisher, Figs. 1–3 will be black and white in
print; hence, please confirm whether we can add “colour figure online” to the caption.

3.3 Influence of Parameters on the Time Before Reproductive Isolation

In this section, the model under study is the initial one with two demes. I used func-
tional studies and simulations to explore the influence of migration rates and mating
preference parameters on the process. The simulations below were computed with the
following demographic parameters:

βA = 2, βa = 1.5, b = 2, d = 1 and c = 0.1, (14)
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2512 H. Leman

Fig. 2 Graphs of the constants in front of the times before reproductive isolation, ω(A, a)−1 (blue line),
ω(A, A)−1 (red dashed line), ω(a, a)−1 (red dashed-dotted line), with respect to βA (left) and tom (right).
The demographic parameters are defined by (14), γA = 1, γa = βa − 1 = 0.5 and m = 2 on the left and
βA = 2 on the right (Color figure online)

unless stated otherwise. For these parameters,

ζA = 30 and ζa = 20.

Assume that the process starts from a state z0 ∈ DA,a
mA,ma . Then, according to

Theorems 1 and 2, the trajectory will reach a neighborhood BA,a,ε of equilibrium
(ζA, 0, 0, ζa) after a time of magnitude log(K )ω(A, a)−1. Direct functional studies
ensure that the constant of interest,ω(A, a)−1, is a decreasing function with respect to
βA and to βa whatever the other parameters are (see Fig. 2, left). Hence, the stronger
the sexual preference is, the faster the reproductive isolation is.

Then, I focus on how the constant depends on mA and ma . It may be natural to
consider that mA and ma can be rewritten using three positive parameters γA, γa and
m as follows:

mA := γAm and ma := γam.

In this way, both migration parameters change simultaneously with m. Once again,
a direct functional study ensures that ω(A, a)−1 is a non-increasing function with
respect to m (see Fig. 2, right). Hence, increasing both migration rates at the same
time accelerates the reproductive isolation, in the same way as when mating prefer-
ence parameters increase. Moreover, the migration parameters used in the model are
frequency-dependent terms such that individuals are more prone to migrate when they
do not find suitable mates in their deme. With this in mind, the first conclusion is that
a large migration rate seems to strengthen the homogamy.

The result is then improved by studying how constant ω(A, a)−1 changes with
respect to mA and ma separately. A direct computation shows that ω(A, a)−1 is a
decreasing function with respect to mA if βA > βa and it is an increasing function
with respect tomA if βA < βa . In other words, if A-individuals have a stronger sexual
preference than a-individuals (βA > βa), the bigger their migration rate is when
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Fig. 3 Plots of the trajectories in the phase planes which represent the patch 1 (left) and the patch 2 (right)
for t ∈ [0, 10] and for three values of m: m = 0 (red), m = 1 (blue), m = 5 (green). The initial condition is
(4, 10, 8.5, 15), represented by the black dots. The dark line is the solution of (βA −1)zA − (βa −1)za = 0
(Color figure online)

they are in contact with too much a-individuals, the shorter the time before reaching
the equilibrium is. Once again, it highlights that the effects of migration and sexual
preference are similar. However, assuming again that A-individuals have a stronger
sexual preference than a-individuals (βA > βa), the bigger the a-individualsmigration
rate is, the longer the time before reproductive isolation is. This is more surprising.
In particular, it highlights that a large migration rate does not only reflect a strong
sexual preference but implies more involved behavior. This will be corroborated in
what follows.

Basins of attraction I then explored how basins of attraction are modified when migra-
tion parameters increase. To simplify the study, I assumed here that m := mA = ma .

Figure 3 presents the trajectories of some solutions of dynamical system (4) in both
phase planes which represent both patches. The trajectories are drawn for the initial
condition

zA,1(0) = 4, za,1(0) = 10, zA,2(0) = 8.5 and za,2(0) = 15,

and for three different values of m: 0, 1 and 5. It is important to notice that the equi-
librium reached depends not only on the initial condition but also on the value of m,
unlike the symmetrical case. Indeed, on the example of Fig. 3, when m is small, the
trajectory converges to (0, ζa, ζA, 0). When m is larger, only a-individuals survive,
the trajectory converges to (0, ζa, 0, ζa). Hence, a large migration rate m can favor
allele a, which codes for the weakest of both mating preferences (βa < βA), to invade
both patches.

Then, an example of basins of attraction Dα,α′
m,m is given in the case of a large

migration parameter (m = 5). Figure 4 presents the projections of the four sets on
six different planes. More specifically, each graph (a–f) represents the equilibrium
reached with respect to the initial condition in patch 1 for a couple of initial conditions
in patch 2, which is plotted on graph (g). In order to compare results for m = 5 and
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Fig. 4 a–f Projections of sets Dα,α′
5 on the planes characterized by the values of (zA,2(0), za,2(0)) given

in captions. On each plane, the four sets from white to dark gray corresponds to initial conditions with
convergence to (ζA, 0, ζA, 0), (ζA, 0, 0, ζa), (0, ζa , ζA, 0) and (0, ζa , 0, ζa), respectively. The black line
is the solution of (βA − 1)zA,1 − (βa − 1)za,1 = 0. g The black diamond points correspond to the initial
conditions in patch 2 taken to obtain plots (a–f). a zA,2(0) = 4, za,2(0) = 5, b zA,2(0) = 4, za,2(0) = 10,
c zA,2(0) = 4, za,2(0) = 15, d zA,2(0) = 8, za,2(0) = 5, e zA,2(0) = 8, za,2(0) = 10, f zA,2(0) = 8,
za,2(0) = 15, g Representation of the initial conditions in the patch 2

m = 0, I plotted the line solution of (βA − 1)zA,1 − (βa − 1)za,1 = 0 on all planes.
Indeed, according to Lemma 3, withoutmigration any trajectorywith initial conditions
in patch 1 above (resp. below) this line converges to a patch filled with a-individuals
(resp. A-individuals). Generally, observe that when the number of a-individuals is
large in patch 1, these individuals are favored by a large migration rate. Thus, the
conclusion here is that a large migration parameter m favors the allele coding for the
weakest mating preference by mixing the populations of both patches.

Minimal number of individuals for invasion In the following simulations, it is assumed
that, initially, each patch is filled with a density of ζa a-individuals and some A-
individuals are introduced in patch 1. To corroborate previous observations, I computed
the minimal number of A-individuals that is needed to be introduced such that they
can survive, i.e., such that the dynamical system converges to a stable equilibrium
with a positive number of A-individuals. I computed this minimal number, denoted
by Nmin(βA,m), for a range of values of βA (βA ∈ (1, 2]) and m (m ∈ [0, 2]), other
parameters are defined by (14). On the left part of Fig. 5, the number Nmin(βA,m) is
drawn using a logarithmic color scale. Note that the minimal number of A-individuals
required for survival decreases when βA increases. For example, when βA is large
(βA = 2), observe that the minimal number of A-individuals needed for survival, is
only half (resp. two-thirds) of ζa = 20whenm = 0 (resp.m = 2).Moreover, ifβA and
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Fig. 5 Left Minimal number of initial A-individuals in patch 1 that is needed for a long-time survival
when starting from two patches filled with ζa a-individuals; a logarithmic color scale is used. Right Scaling
differences between theminimal number of A-individuals neededwithoutmigration (i.e., (βa−1)ζa/(βA−
1)) and the one computed on the left plot. Parameters are defined by (14) where βa = 1.5 (Color figure
online)

m are sufficiently large (βA ≥ 2.9 and m ≥ 1.9 (data not shown)), the A-population
replaces the resident a-population in both patches as soon as the initial number of
A-individuals is equal to Nmin(βA,m). This suggests that individuals with a higher
mating preference have a selective advantage.

Secondly, to better understand how m affects Nmin(βA,m), I computed the scaling
difference

D(βA,m) := Nmin(βA, 0) − Nmin(βA,m)

Nmin(βA, 0)
,

on the right part of Fig. 5. Section 3.2 implies that Nmin(βA, 0) = (βa−1)ζa/(βA−1).
For βA and m fixed, a positive value of D(βA,m) indicates that the minimal number
of A-individuals needed for survival is smaller than in the case without migration,
that is to say, the migration favors A-individuals, especially if D(βA,m) is large. The
opposite conclusion holds for negative value of D(βA,m). Here, when βA is smaller
than βa = 1.5, D(βA,m) is positive and increases with migration m whereas, when
it is smaller than βa , it is decreasing with m. Hence, migration seems here again to
favor the allele with the weakest mating preference.

4 Proofs

This part is devoted to the proof of Theorem 1. Theorem 2 is a consequence of it and
is proved in “Appendix B”. The main idea to prove Theorem 1 is to start from the
results without migration, then use a perturbation method to make mA and ma grow
up and deduce results for some positive migration parameters.

However, this perturbation techniquewill only apply on a bounded set ofRE exclud-
ing 0. Thus, let us first prove Lemma 2, which allows us to restrict the study of the
dynamical system (4) to the compact set S. To help with proofreading, we recall here
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the definitions of the weighted sums :

Σi := (βA − 1)zA,i + (βa − 1)za,i , for i = 1, 2,

Σ := Σ1 + Σ2 = (βA − 1)(zA,1 + zA,2) + (βa − 1)(za,1 + za,2).

Proof of Lemma 2 The proof is based on the equations satisfied by Σ1, Σ2 and Σ .
From (4), we find

d

dt
Σ1 = Σ1

[
b

Σ1

zA,1 + za,1
− 2b(βA − 1)(βa − 1)

za,1zA,1

(zA,1 + za,1)Σ1

+b − d − c(zA,1 + za,1)
]

− (mA(βA − 1) + ma(βa − 1)
) [ zA,1za,1

zA,1 + za,1
− zA,2za,2

zA,2 + za,2

]
. (15)

Since Σ2
1 − 2(βA − 1)(βa − 1)za,1zA,1 ≥ 0 and Σ1 ≥ (βmin − 1)(za,1 + zA,1), we

obtain

d

dt
Σ1 ≥ Σ1

[
b − d − c

(βmin − 1)
Σ1 − (mA(βA − 1) + ma(βa − 1)

) zA,1za,1

(zA,1 + za,1)Σ1

]
. (16)

We then find an upper bound of zA,1za,1
(zA,1+za,1)Σ1

:

Σ1(zA,1 + za,1) = (βA − 1)z2A,1 + (βa − 1)z2a,1 + (βA + βa − 2)zA,1za,1

≥ (βmin − 1)[z2A,1 + z2a,1 + 2zA,1za,1]
≥ 4(βmin − 1)zA,1za,1.

In addition with (9) and (16), we deduce

d

dt
Σ1 ≥ Σ1

[
b − d

2
− c

(βmin − 1)
Σ1

]
.

Hence, as soon as Σ1 < (βmin − 1)(b − d)/2c, its derivative is strictly positive. In
other words, if Σ1(0) ≤ (βmin − 1)(b − d)/4c, there exists t1 > 0 such that for all
t ≥ t1, Σ1(t) is higher than this threshold. Moreover, if Σ1(t2) is higher than this
threshold, for all t ≥ t2, Σ1(t) remains higher than it. The same conclusion holds for
Σ2.
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Let us now deal with Σ . From equations (15) satisfied by Σ1 and Σ2, we find

d

dt
Σ =

∑
i=1,2

Σi

[
b
βAzA,i + βaza,i

z A,i + za,i
− d − c(zA,i + za,i )

]

− 2b(βA − 1)(βa − 1)
zA,i za,i

z A,i + za,i

≤
∑
i=1,2

Σi

[
bβmax − d − c

βmax − 1
Σi

]

≤ Σ

[
bβmax − d − c

2(βmax − 1)
Σ

]
.

Using a reasoning similar to the previous one, we conclude that there exists a time after
whichΣ(t) remains lower than 4(βmax −1)(bβmax −d)/c. Finally, any trajectory hits
S after a finite time and S is a positively invariant set. That ends the proof of Lemma 2.

�
Lemma 2 implies that the study of the dynamical system (4) can be restricted to the

study of trajectories belonging to S. Note that when mA = ma = 0, Sect. 3.2 ensures
that the dynamical system (4) has exactly 9 equilibria which belong to S:

(ζA, 0, 0, ζa), (ζA, 0, ζA, 0), (0, ζa, ζA, 0), (0, ζa, 0, ζa), (17)

(χA, χa, ζA, 0), (χA, χa, 0, ζa), (0, ζa, χA, χa), (ζA, 0, χA, χa). (18)

(χA, χa, χA, χa). (19)

Equilibria (17) are stable fixed point, whereas Equilibria (18) (resp. (19)) are unstable
with a local stablemanifold of dimension 3 (resp. 2), i.e., there exists a set of dimension
3 (resp. 2) such that any trajectory starting from this set converges to Equilibria (18)
or (19).

In order to simplify the notation of the proofs, let us write migration rates mA and
ma using three parameters γA ∈ [0, 1], γa ∈ [0, 1] and m ≥ 0 as

mA := mγA and ma := mγa .

We consider that γA and γa are fixed parameters and we will make m grow up in
the following proof. We can rewrite the dynamical system (4) considering m as a
parameter

d

dt
z(t) = F(z(t),m). (20)

The solution of (20) with initial condition z0 is written t �→ ϕm,z0(t). Our goal is to
understand the dynamics of the flow ϕm,z0 associated with the vector field F(z,m)

using ϕ0,z0 (without migration) which is entirely described in Sect. A. Theorem 1 can
be rewritten as follows using the notion of flow.

Theorem 3 (Theorem 1’) There exists m0 > 0 such that for all m ≤ m0, we can find

four open subsets (Dα,α′
m )α,α′∈A of S with the following properties:
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– The closure of ∪α,α′∈ADα,α′
m is equal to S.

– For all z0 ∈ DA,a
m , the flow ϕm,z0(t) converges to (ζA, 0, 0, ζa) when t tends to

+∞. Similar results hold for the three other Equilibria (17).

Proof The first step is to construct a neighborhood around each Equilibrium (17)–(19)
which includes a unique equilibrium of the dynamical system (4) with m > 0.

Let us first focus our study on the equilibrium (ζA, 0, 0, ζa). Subsection A implies
that, when m = 0, the equilibrium (ζA, 0, 0, ζa) is an attractive stable equilibrium.

The first derivative DzF evaluated at (z,m) = ((ζA, 0, 0, ζa), 0) is
⎛
⎜⎜⎝

− (bβA − d) − b(βA − 1) − (bβA − d) 0 0
0 − b(βA − 1) 0 0
0 0 − b(βa − 1) 0
0 0 − b(βa − 1) − (bβa − d) − (bβa − d)

⎞
⎟⎟⎠ . (21)

Since matrix (21) is invertible and F is smooth on S × R
+, the Implicit Function

Theorem implies that there existsm1 and a neighborhood V1 of (ζA, 0, 0, ζa) inS such
that there is a unique point y1(m) ∈ V1 satisfying F(y1(m),m) = 0 for all m < m1.
And m �→ y1(m) is regular and converges to (ζA, 0, 0, ζa) when m converges to 0.
A simple computation ensures that F(y1(0),m) = F((ζA, 0, 0, ζa),m) = 0, for any
m > 0. Since y1(m) is unique, we deduce that y1(m) = y1(0).

Moreover, from Theorem 6.1 and Section 6.3 of Ruelle (1989) [see also Appendix
B of Collet et al. (2011), or Hoppensteadt (1966)], we conclude that if m1 and V1 are
small enough, any solution ϕm,z0 with z0 ∈ V1 and m < m1 converges uniformly to
ϕ0,z0 whenm converges to 0. In other words, y1(0) attracts all the orbits ϕm,z0 starting
from V1.

Similarly, we find (mi )i=2,3,4 and (Vi )i=2,3,4 neighborhoods around the three other
Equilibria of (17), denoted by (yi (0))i=2,3,4, such that, for i ∈ {2, 3, 4}, for allm < mi ,
yi (0) attracts all solutions ϕm,z0 with z

0 ∈ Vi and m < mi .
Theorem 6.1 and Section 6.3 of Ruelle (1989) ensure also the stability of the local

stable and unstable manifolds of a hyperbolic non-attractive fixed points. Thus, we
find m5, . . . ,m9 and V5, . . . ,V9, neighborhoods around Equilibria (18) and (19) that
satisfy the following properties. For all i ∈ {5, . . . , 9}, for all m < mi , there exists a
unique fixed point yi (m) ∈ Vi invariant by F(.,m) which repulses all orbits solution
associated with F(.,m), except the orbits that start from a surface of dimension 3 or 2,
depending on whether we are focused on Equilibria (18) or (19), respectively. These
surfaces are the stable manifolds of (yi (m))i=5,...,9 in (Vi )i=5,...,9, respectively.

Without loss of generality, we assume that these nine neighborhoods are disjoint
sets.

The second step is to deal with trajectories outside these nine neighborhoods. Let
ε > 0 and for i = 1, . . . , 9, we define

Vε
i = B(yi (0), Ri ) = {z ∈ S, ‖z − yi (0)‖ ≤ Ri },
where Ri = max{r > 0, B(yi (0), r + ε) ⊂ Vi },

which is a neighborhood of yi (0) slightly smaller than Vi .
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Recall that the five neighborhoods (Vε
i )i=5,...,9 attracts some solutions ϕ0,z0 . Thus,

we set

W =
⎛
⎝ ⋃

i=5,...,9

⋃

z0∈Vε
i

(ϕ0,z0)
−1([0,+∞))

⎞
⎠⋂S, (22)

which is a neighborhood of the union of all stablemanifolds of unstable Equilibria (19)
and (18) assuming m = 0. We denote the complement of W in S by Wc.

Let us first deal with the trajectories starting fromWc. According to “Appendix A”,
all trajectories ϕ0,z0 starting fromWc converge to a stable equilibrium, i.e., they reach
anyneighborhoodof set {yi (0), i = 1, . . . , 4} in finite time. SinceWc is compact, there
exists a finite time t1 > 0 such that ϕ0,z0(t1) ∈ ∪4

i=1Vε
i , for all z

0 ∈ Wc. Moreover,
fromTheorem1.4.7 byBerger andGostiaux (1992), the flowϕ is uniformly continuous
with respect to m, to z0 and to t . We can thus find m10 < mini=1,...,9 mi such that for
every m ≤ m10, z0 ∈ Wc

∣∣ϕ0,z0(t1) − ϕm,z0(t1)
∣∣ ≤ ε.

Then, by definition of (Vi )i=1,...,4 and (Vε
i )i=1,...,4, we deduce that for all m ≤ m10,

all z0 ∈ Wc and all t ≥ t1,

ϕm,z0(t) ∈
4⋃

i=1

Vi .

Then, we deal with the trajectories starting from W . According to the definition
of W (22), all trajectories ϕ0,z0 starting from W reach one of the five neighborhoods
(Vε

i )i=5,...,9 in finite time. Thus, by reasoning as above, we can find m11 ≤ m10 and
t2 > 0 such that for all m ≤ m11 and all z0 ∈ W , there exists t ≤ t2, with

ϕm,z0(t) ∈
9⋃

i=5

Vi .

Let us fix m ≤ m11, z0 ∈ W and assume that ϕm,z0(t3) ∈ Vi . We have then three
possibilities:

(i) If ϕm,z0(t) ∈ Vi for all t ≥ t3, then z0 belongs to the stable manifold of yi (m)

in S. Since we have a global diffeomorphism on S, we can find the stable man-
ifold of yi (m) by iterating the Implicit Function Theorem and deduce that this
stable manifold is a set of dimension 3 or 2, depending on which equilibrium is
considered.

(ii) Otherwise, there exists t4 ≥ t3 such that ϕm,z0(t4) /∈ Vi . If ϕm,z0(t4) ∈ Wc,
the flow will converge to one of the four Equilibria (17) according to previous
reasoning.

(iii) The last possibility is ϕm,z0(t4) ∈ W \ ∪9
i=5Vi . Thus, the flow (ϕm,z0(t))t≥t4

will reach again one of the neighborhoods (V j ) j=5,...,9. It would have a problem
if the trajectory went from a neighborhood to an other without living W as
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t �→ +∞. Thus, let us show that this is not possible. Indeed, the flow goes
out of Vi by following the unstable manifold of yi (m) which is close to the
unstable manifold of yi (0) [according to the continuity of the unstable manifolds
with respect to m, cf Theorem 6.1 by Ruelle (1989)]. Since ϕm,z0 leaves Vi by
staying in W , the intersection of the unstable manifold of yi (0) and W is not
empty. From the definition of W (22) and “Appendix A”, it is possible if and
only if yi (0) = y9(0) = (χA, χa, χA, χa) and if ϕm,z0 leaves V9 through the
neighborhood of the stable manifold of one of the Equilibria (18). Thus, the flow
(ϕm,z0(t))t≥t4 will reach one of the neighborhood (V j ) j∈{5,6,7,8}. Then, only the
two previous possibilities (i) or (ii) are possible.

Finally, we have shown that any solution ϕm,z0 of (20) starting from S and with
m ≤ m11 converges to one of the Equilibria (17), except if it starts from a set with
empty interior which is the union of the global stable manifolds of the Equilibria
(yi (m))i=5,...,9.

Finally, m0 := m11,

DA,a
m = ∪

z0∈V1

ϕm,z0
−1([0,+∞)),

and DA,A
m , Da,A

m , Da,a
m are defined in a similar way using sets V2, V3 and V4,

respectively. We have shown that for all m ≤ m0, the four non empty interior sets
(Dα,α′

m )α,α′=A,a satisfy Theorem 3. �

5 Discussion

The first conclusion of the study is that a population with a large mating preference
has selective advantages: (1) the larger the mating preference strength is, the shorter
is the time before reaching an equilibrium where this allele is maintained, and (2)
a population with a strong mating preference can invade a resident population with
a weak preference even if its initial number of individuals is small. Same kind of
conclusion is drawn by Smadja et al. (2004). In the latter, the authors predict that
the asymmetrical mating preference observed between two species of mouse could
lead to the replacement of the subspecies with the weakest mating preference (M. m.
domesticus) by the other subspecies (M. m. musculus), if no other mechanism was
involved. This conclusion is a substantial added value compared to Coron et al. (2018)
where only the symmetrical case (βA = βa , mA = ma) is considered. Accounting
for asymmetrical preference gave the possibility to better understand advantages of a
strong mating preference.

Migration has a more involved impact on the system dynamics than mating pref-
erence, although the frequency-dependent term I used for migration seemed only to
mimic mating preferences. More precisely, there exists a trade-off between two phe-
nomena (Coron et al. 2018): (1) large migration rates can help individuals to escape
disadvantageous patches (Clobert et al. 2001) but (2) large migration rates entail also
risks of moving to unfamiliar patches (i.e., filled with not-preferred individuals) and
thus may increase the time before reproductive isolation. This is understandable since
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the migration terms only focus on the departure patch. More surprisingly, large migra-
tion rates seem to favor alleles with reduced mating preferences. This tendency was
not noticed by Coron et al. (2018) and could be linked to the effects of migration
on habitat specialization (Brown and Pavlovic 1992; Cuevas et al. 2003; Elena et al.
2009). In these articles, the authors highlight that migration may prevent the local
specialization of subpopulations and favor generalist species. Hence, in both cases,
large migration rates tend to avoid specialized behaviors in terms of ecological niche
adaptation or mating partner adaptation.
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Appendix A: Dynamical SystemWithout Migration

In this appendix, we will prove the results of Sect. 3.2, which is related to the case
without migration. To this aim, we use the two following weighted quantities

Ω(t) := (βA − 1)zA(t) − (βa − 1)za(t),

Σ(t) := (βA − 1)zA(t) + (βa − 1)za(t).

From (12), we find that

d

dt
Ω(t) = Ω

[
b
βAzA + βaza

zA + za
− d − c(zA + za)

]
, (23)

d

dt
Σ(t) = Σ

[
b
βAzA + βaza

zA + za
− d − c(zA + za)

]

− 2b(βA − 1)(βa − 1)
zazA

zA + za
. (24)

Proof of Lemma 3 We start by studying the stability of equilibrium (0, 0). Assume that
Σ(0) > 0. From (24), we derive

d

dt
Σ ≥ Σ

[
b − d + b

(
Σ

zA + za
− 2(βA − 1)(βa − 1)

zazA
(zA + za)Σ

)
− c(zA + za)

]
.

SinceΣ2−2(βA −1)(βa −1)zazA ≥ 0 and−(βmin −1)(zA + za) ≥ −Σ , we deduce
that

d

dt
Σ ≥ Σ

[
b − d − c

Σ

(βmin − 1)

]
.

Hence, as long as Σ ∈]0, (b − d)(βmin − 1)/c[, Σ(t) is increasing. Thus (0, 0) is an
unstable equilibrium.
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The stability of the three other equilibria, (ζA, 0), (0, ζa) and (χA, χa), can be
deduce by a direct computation of Jacobian matrices at these points, which we do not
detail.

Finally, let us study the long-time behavior of any solution. Equation (23) implies
that the sign of Ω(t) is equal at all time and, thatDA

0 is a positively invariant set under
dynamical system (12). Moreover, there exists only a stable equilibrium that belongs
to the set DA

0 , which is (ζA, 0).
We consider the function W : DA

0 → R:

W (zA, za) := ln

(
Σ

Ω

)
= ln

(
(βA − 1)zA + (βa − 1)za
(βA − 1)zA − (βa − 1)za

)
≥ 0. (25)

From (23) and (24), we deduce that

dW (zA(t), za(t))

dt
= −2b(βA − 1)(βa − 1)

zazA
(zA + za)Σ

≤ 0.

Moreover for any (zA, za) ∈ DA
0 , W (zA, za) = 0 if and only if za = 0. W (zA, za)

converges to+∞when (βA−1)zA−(βa−1)za converges to 0 and dW
dt is non-positive

on DA
0 and is equal to zero if and only if za = 0. It ensures that W is a Lyapunov

function for (12) on the setDA
0 which cancels only onDA

0 ∩ {za = 0}. Furthermore, a
simple computation gives that the largest invariant set in DA

0 ∩ {za = 0} is {(ζA, 0)}.
Theorem 1 of LaSalle (1960) is thus sufficient to conclude that any solution of (12)
with initial condition in DA

0 converges to (ζA, 0) when t tends to +∞. Similarly, we
prove that any solution with initial condition in Da

0 converges to (0, ζa).
Finally, assume that Ω(0) = 0. Then, Ω(t) = 0 for all t ≥ 0 according to (23)

and, in addition with (12), we derive for all α ∈ A,

d

dt
zα = zα

[
b

βAβa − 1

βA + βa − 2
− d − c

βA + βa − 2

βᾱ − 1
zα

]
.

We deduce the last point of Lemma 3 easily. �

Appendix B: Extinction Time

This subsection is devoted to the proof of Theorem 2 following ideas similar to the
ones of the proof of Theorem 3 and Proposition 4.1 in Coron et al. (2018). Hence, we
do not give all details, but explain only parts that are different.

Assume that mA ≤ m0, ma ≤ m0 and that ZK (0) converges in probability to a
deterministic vector z0 belonging to DA,a

mA,ma , Lemma 3 and Theorem 1 ensure that
(ZK (t), t ≥ 0) reaches a neighborhood of the equilibrium (ζA, 0, 0, ζa) after a finite
time independent from K . Indeed, the process dynamics is close to the one of the
limiting deterministic system (4).
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To prove Theorem 2, it remains to estimate the time before all a-individuals in
patch 1 and all A-individuals in patch 2 disappear. We denote it by

T K
0 = inf{t ≥ 0, ZK

a,1(t) + ZK
A,2(t) = 0}, (26)

and we assume that the process is initially close to equilibrium (ζA, 0, 0, ζa). The
estimation is deduced from the following Lemma.

Lemma 4 There exist two positive constants ε0 and C0 such that for any ε ≤ ε0, if
there exists η ∈]0, 1/2[ that satisfies max(|z0A,1 − ζA|, |z0a,2 − ζa |) ≤ ε and ηε/2 ≤
z0a,1, z

0
A,2 ≤ ε/2, then

for all C > (ω(A, a))−1 + C0ε, P(T K
0 ≤ C log(K )) →

K→+∞ 1,

for all 0 ≤ C < (ω(A, a))−1 − C0ε, P(T K
0 ≤ C log(K )) →

K→+∞ 0.

Proof Following the first step of Proposition 4.1’s proof given by Coron et al. (2018),
we prove that as long as the population processes ZK

a,1(t) and ZK
A,2(t) have small

values, the processes ZK
A,1(t) and ZK

a,2(t) stay close to ζA and ζa respectively.

Then, by bounding death rates, birth rates and migration rates of (ZK
a,1(t), t ≥ 0)

and (ZK
A,2(t), t ≥ 0), we are able to compare the dynamics of these two processes

with the ones of
(Na(t)

K
,
NA(t)

K
, t ≥ 0

)
,

where (Na(t),NA(t)) ∈ N
{a,A} is a two types of branching process with types a and

A and for which

– any α-individual gives birth to a α-individual at rate b,
– any α-individual gives birth to a ᾱ-individual at rate mᾱ ,
– any α-individual dies at rate bβᾱ + mα .

The goal is thus to estimate the extinction time of such a subcritical two types of
branching process. Let M(t) be the mean matrix of the multitype process, that is,

M(t) =

⎛
⎜⎜⎝
E

[
E

[
Na(t)
∣∣∣(Na(0),NA(0)) = (1, 0)

]]
E

[
E

[
NA(t)

∣∣∣(Na(0),NA(0)) = (1, 0)
]]

E

[
E

[
Na(t)
∣∣∣(Na(0),NA(0)) = (0, 1)

]]
E

[
E

[
NA(t)

∣∣∣(Na(0),NA(0)) = (0, 1)
]]

⎞
⎟⎟⎠ ,

and let G be the infinitesimal generator of the semigroup {M(t), t ≥ 0}. From the
book of Athreya and Ney (1972) p.202, we deduce a formula of G which is

G =
(−b(βA − 1) − ma mA

ma − b(βa − 1) − mA

)
.
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Applying Theorem 3.1 of Heinzmann (2009), we find that

P

(
(Na(t),NA(t)) = (0, 0)

∣∣∣(Na(0),NA(0)) = (z0a,1K , z0A,2K )
)

= (1 − cae
rt )

z0a,1K (1 − cAe
rt )

z0A,2K , (27)

where ca, cA are two positive constants and r is the largest eigenvalue of the matrix
G. With a simple computation, we find that r = −ω(A, a). From (27), we deduce
that the extinction time is of order ω(A, a)−1 log K when K tends to +∞ by arguing
as in step 2 of Proposition 4.1’s proof of Coron et al. (2018). This concludes the proof
of Lemma 4. �

Finally, this gives all elements to induce Theorem 2.
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