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Abstract
Phylogenetic networks generalise phylogenetic (evolutionary) trees by allowing for
the representation of reticulation (non-treelike) events. The structure of such networks
is often viewed by the phylogenetic trees they embed. In this paper, we determinewhen
a phylogenetic network N has two phylogenetic tree embeddings which collectively
contain all of the edges ofN . This determination leads to a polynomial-time algorithm
for recognising such networks and an unexpected characterisation of the class of
reticulation-visible networks.

Keywords Phylogenetic networks · Reticulation-visible networks · Stack-free
networks · Tree-based networks

Mathematics Subject Classification 05C85 · 92D15

1 Introduction

The presence of reticulation (non-treelike) events in evolution has meant that, for
certain collections of present-day species, phylogenetic networks, rather than phylo-
genetic trees, provide a more accurate description of evolutionary history. Such events
include hybridisation and lateral gene transfer. However, the evolution of a particular
gene can generally be described without reticulation events. As a result, there has
been a variety of recent investigations concerning the underlying treelike structure
of phylogenetic networks. These investigations include the small maximum parsi-
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mony problem for phylogenetic networks (Nakhleh et al. 2005), determining whether
a phylogenetic network displays a tree twice (Cordue et al. 2014) and the well-studied
tree-containment problem (for example, see Gambette et al. 2016; van Iersel et al.
2010; Kanj et al. 2008). In this context, a natural question to ask is to what extent does
a given phylogenetic network differ from a phylogenetic tree? This question is partic-
ularly relevant in evolutionary biology to the continuing debate of whether, for certain
collections such as prokaryotes, evolution is treelike with some reticulations or it has
no treelike similarities at all (Dagan and Martin 2006; Doolittle and Bapteste 2007).

To quantify this question, Francis and Steel (2015) introduced the class of phyloge-
netic networks called tree-based networks. Loosely speaking, a phylogenetic network
N is tree based if it can be obtained from a phylogenetic tree T by simply adding
edges whose end-vertices subdivide edges of T . Equivalently, N is tree-based if, up
to degree-two vertices, it has an embedding of a phylogenetic tree containing all of the
vertices ofN . Here,we take a different approach to this question.Dating back at least to
Hein (1990), phylogenetic networks are frequently viewed as amalgamations of gene
trees. For example, one of the most well-known tasks in mathematical and computa-
tional phylogenetics is to find, amongst all phylogenetic networks that embed a given
set of gene trees, a network with the minimum number of reticulations (see, for exam-
ple, Bordewich and Semple 2007; van Iersel et al. 2016; Song and Hein 2003). From
this viewpoint, the simplest phylogenetic network which is not a phylogenetic tree is
one that is the amalgamation of two phylogenetic trees. Informally, a phylogenetic
network N is ‘two-tree coverable’ if it has two phylogenetic tree embeddings which
collectively contain every edge ofN . Not surprisingly, not every phylogenetic network
is two-tree coverable. In this paper, we characterise the class of phylogenetic networks
that are two-tree coverable. This characterisation leads immediately to a polynomial-
time algorithm for deciding if an arbitrary phylogenetic network has a two-tree
covering. It turns out that the increasingly prominent class of reticulation-visible net-
works is a subclass of the class of phylogenetic networks that are two-tree coverable. In
fact, aswe shall show, it is a particularly special subclass.Recent studies of reticulation-
visible networks include Bordewich and Semple (2016) and Gunawan et al. (2017).

The paper is organised as follows. In the next section, we state the threemain results,
Theorems 2.1, 2.3, and 2.4, and end with an open problem of which Theorem 2.4 is a
partial solution. The proofs of Theorems 2.1, 2.3 and 2.4 are given in Sects. 3, 4, and
5 , respectively.

We end the introduction with a comment. The underlying purpose of the paper
is to introduce some new concepts and ideas to help instigate further research into
the particularly important, but poorly understood, topic of the relationship between
phylogenetic networks and the sets of phylogenetic trees they display. We hope this
paper goes some way towards achieving this aim.

2 Main Results

Throughout the paper, X denotes a finite non-empty set. A phylogenetic network on X
is a rooted acyclic directed graph with no parallel arcs having the following properties:
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(i) the (unique) root has out-degree two;
(ii) a vertex with out-degree zero has in-degree one, and the set of vertices with

out-degree zero is X ; and
(iii) all other vertices have either in-degree one and out-degree two, or in-degree two

and out-degree one.

If |X | = 1, we additionally allow the directed graph consisting of the single vertex in
X to be a phylogenetic network. The vertices in X are called leaves. Furthermore, the
vertices of in-degree one and out-degree two are tree vertices, while the vertices of in-
degree two and out-degree one are reticulations. The arcs directed into a reticulation
are called reticulation arcs; all other arcs are tree arcs. In the literature, what we
have called a phylogenetic network is sometimes referred to as a binary phylogenetic
network. A (binary) phylogenetic X-tree is a phylogenetic network on X with no
reticulations.

Let N be a phylogenetic network on X and let T be a phylogenetic X -tree. We
say that Ndisplays T if, up to degree-two vertices, T can be obtained from N by
deleting arcs and non-root vertices, in which case, the resulting acyclic digraph is an
embedding of T inN . Note that if S is an embedding of T inN , then the root of S is
the root ofN and so it may have out-degree one. Furthermore, ifN displays T , then
an embedding of T in N is not necessarily unique.

A phylogenetic network N on X is two-tree coverable if there are embeddings S1
and S2 of phylogenetic X -trees T1 and T2, respectively, inN such that each arc ofN
is an arc of either S1 or S2. If this holds, then {T1, T2} (as well as {S1,S2}) is a two-tree
cover of N . Note that T1 and T2 need not be distinct and so a phylogenetic tree T
is two-tree coverable as the multiset {T , T } is a two-tree cover of N . To illustrate,
consider the phylogenetic network N on X = {x1, x2, . . . , x5} as well as the two
phylogenetic X -trees T1 and T2 shown in Fig. 1. As with all figures in this paper,
arcs are directed down the page. Both T1 and T2 are displayed byN . In particular, an
embedding of T1 is given by the dashed reticulation arcs and all of the tree arcs ofN ,
while an embedding ofT2 is given by the non-dashed reticulation arcs and all of the tree
arcs of N . Thus, {T1, T2} is a two-tree cover of N , and so N is two-tree coverable.
We next state the first main result of this paper, a characterisation of phylogenetic
networks that are two-tree coverable.

A phylogenetic network N on X is a stack-free network if N has no two reticula-
tions, u and v say, such that u is the parent of v, that is, there is no reticulation edge in
which both end-vertices are reticulations. Such a pair of reticulations are called stack
reticulations. The class of stack-free networks arises naturally amongst the various
classes of phylogenetic networks as follows. One of the most well-studied classes of
phylogenetic networks is the class of tree-child networks. A phylogenetic network is
tree-child if each non-leaf vertex is the parent of a tree vertex or a leaf (Cardona et al.
2009). Tree-child networks have been characterised in a variety of ways including
the characterisation that says a phylogenetic network is tree-child if and only if it has
no stack or sibling reticulations (Semple 2016). Two distinct reticulations are sibling
reticulations if they have a common parent. Thus, stack-free networks generalise tree-
child networks by allowing sibling reticulations. The first main result of this paper
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Fig. 1 A phylogenetic network N , and a two-tree cover {T1,T2} ofN

shows that the class of phylogenetic networks that are two-tree coverable coincides
with the class of stack-free networks.

Theorem 2.1 A phylogenetic network is two-tree coverable if and only if it is a stack-
free network.

By systematically checking that no reticulation arc joins two reticulations, an imme-
diate consequence of Theorem 2.1 is the next corollary.

Corollary 2.2 Deciding if an arbitrary phylogenetic network N is two-tree coverable
can be done in time polynomial in the number of vertices of N .

In establishing Theorem 2.1, we explicitly construct, in time polynomial in the number
of vertices, a two-tree cover for a stack-free network.

What is the relationship between stack-free networks and tree-based networks? A
phylogenetic network N on X is a tree-based network if it has an embedding S of
a phylogenetic X -tree T with the property that each vertex of N is a vertex of S,
in which case, T is a base tree of N . Note that this definition is equivalent to the
original definition given in Francis and Steel (2015). It immediately follows from
Theorem 2.1 and a characterisation of Zhang (2016) that stack-free networks are tree-
based networks; however, the converse does not hold. For example, the phylogenetic
network shown in Fig. 2i is tree-based but it does not have a two-tree covering.

Before stating the secondmain result, wemake two remarks. First, unlike tree-child
networks, the number of vertices in a stack-free network is not bounded by the size
of its leaf set (see Fig. 4 in Semple 2017). Second, it is thus natural to ask whether,
for all n ≥ 1, there is a universal stack-free network on X , where n = |X |, that is,
a stack-free network on X that (simultaneously) displays every phylogenetic X -tree.
This question was originally asked in the context of tree-based networks (Francis and
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Fig. 2 i A tree-based network that has a 5-tree covering but not a 4-tree covering and ii a phylogenetic
network that does not have a 2-tree covering, yet the longest directed path in which each vertex is a
reticulation is two

Steel 2015), for which a positive answer was independently established in Hayamizu
(2016) and Zhang (2016). The associated constructions were recently sharpened to
a ‘best’ possible construction using O(n log n) reticulations (Bordewich and Semple
2018). Curiously, all of these constructions take the same approach and all of them
are stack-free networks, and so each has a two-tree cover.

To state the second main result, let N be a phylogenetic network on X with root
ρ. A vertex u in N is visible if there is a leaf x ∈ X such that every directed path
from ρ to x traverses u. It is interesting to note that tree-child networks are precisely
the phylogenetic networks in which every vertex is visible (Cardona et al. 2009). A
reticulation-visible network is a phylogenetic network with the property that every
reticulation is visible. It is easily seen that if N is reticulation-visible, then N has
no stack reticulations and so, by Theorem 2.1, N is a stack-free network. However,
not every stack-free network is reticulation-visible. For example, in Fig. 1, N is a
stack-free network but it is not reticulation-visible as the reticulation labelled v is
not visible. To see this, observe that, for each i ∈ {1, 2, . . . , 5}, there is a directed
path from the root ofN to xi avoiding v. The next theorem characterises reticulation-
visible networks in terms of two-tree coverings, thereby showing that such networks
are special subclass of stack-free networks.

LetN be a stack-free network on X . Let {E1, E2} be a partition of the reticulation
arcs in N so that, for each reticulation v, one arc directed into v is in E1, while the
other arc directed into v is in E2.We call {E1, E2} a complementary partition of the set
of reticulation arcs inN . We say thatN is freely coverable if, for each complementary
partition of the set of reticulation arcs of N , there is a two-tree covering {S1,S2} of
N such that E1 (resp. E2) is a subset of the arc set of S1 (resp. S2).

Theorem 2.3 A phylogenetic network is reticulation-visible if and only if it is freely
coverable.

We now state the third main result and an open problem. Let N be an arbitrary
phylogenetic network on X . For a positive integer k, we say thatN is k-tree coverable
if there is a setP of at most k phylogenetic X -tree embeddings inN with the property
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that each arc of N is an arc of some embedding in P , in which case, P is a k-tree
covering ofN . What is the smallest k for whichN is k-tree coverable? It is easily seen
that ifN has a directed path consisting of � vertices each ofwhich is a reticulation, then
k ≥ � + 1. For example, the tree-based network in Fig. 2i has such a path consisting
of four reticulations and it is easily checked that it has a 5-tree covering but not a
4-tree covering. Indeed, it is natural to conjecture that N has a k-tree covering if and
only if k ≥ � + 1, where � is the number of vertices in a maximum-length directed
path in N in which each vertex is a reticulation. However, it is easily checked that,
for the phylogenetic network shown in Fig. 2ii, the smallest k for which it has a k-tree
covering is four, yet the longest directed path where each vertex is a reticulation is
two.

The thirdmain result is a resolution of the above problem for a class of phylogenetic
networks that naturally generalises reticulation-visible networks but is not contained
within the class of tree-based networks. LetN be a phylogenetic network. A reticula-
tion ofN is a sink if it is the parent of a tree vertex. For example, in each of Fig. 2i, ii,
the parent of x2 is a sink but every other reticulation is not a sink. A sink-visible net-
work is a phylogenetic network with the property that every sink is visible. Thus, the
class of reticulation-visible networks is contained in the class of sink-visible networks
as every reticulation is a sink.

LetN be a phylogenetic network and let v be a sink ofN . A reticulation arc (t, u)

ofN is a source arc for v if t is a tree vertex, and there is a directed path P inN from
t to v that traverses (t, u) in which every arc in P is a reticulation arc. Observe that if
there is such a path, then that path is unique as a reticulation has out-degree one. We
denote the total number of source arcs for v by s(v).

Theorem 2.4 Let N be a sink-visible network. Then N has a k-tree covering if and
only if

k ≥ max{s(v): v is a sink of N }.

The proof of Theorem 2.4 crucially relies on each sink being visible. Indeed, it is
straightforward to construct an example for which the outcome of the theorem does
not hold if N is not sink-visible. We leave it as an open problem to determine the
smallest value of k for which a given arbitrary phylogenetic network has a k-covering.
Since, in part, the work in this paper is motivated by tree-based networks, it worth
noting that while such networks have an embedding of a phylogenetic tree containing
every vertex, the smallest value of k for which tree-based networks have a k-tree
covering can be arbitrarily large. The reason for this is that tree-based networks can
have arbitrarily long paths in which each vertex is a reticulation.

In stating the main results of the paper, we have mentioned five classes of phylo-
genetic networks, namely tree-child, reticulation-visible, stack-free, tree-based, and
sink-visible networks.Weend this sectionwith aVenndiagram illustrating the relation-
ships between these classes (see Fig. 3). It is easily checked that each of the indicated
inclusions is proper and, furthermore, the intersection of the classes of stack-free and
sink-visible networks is precisely the class of reticulation-visible networks.
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Fig. 3 Relationships between various classes of phylogenetic networks

3 Proof of Theorem 2.1

We begin with a construction which we will eventually show constructs a two-tree
cover of a stack-free network. LetN be a stack-free network on X , and let ER denote
the set of reticulation arcs of N . Choose a subset M of ER satisfying the following
properties:

(i) if v is a reticulation of N , then M contains exactly one arc directed into v; and
(ii) if u is the parent of two (distinct) reticulations, then M contains exactly one arc

incident with u.

To see that there exists such a subsetM of reticulation arcs and how to findM , consider
the following bipartite graph. Let R be the set of reticulations ofN and let P be the set
of vertices of N which are parents of at least one reticulation. Since N is stack-free,
P consists of tree vertices, and so P and R are disjoint. Let B be the bipartite graph
with vertex bipartition {P, R} and edge set

{{p, r}: p ∈ P, r ∈ R, and (p, r) is an arc of N
}
.

It is easily checked that each component of B consists of either a path starting and
ending at vertices in P , or a cycle. It now follows that a subset of arcs inN satisfying
(i) and (ii) exists and can be found in time polynomial in the number of vertices in
N . Observe that, viewing the arcs in M as undirected edges, M is a matching of
B, that is, a subset of edges no two of which are incident with the same vertex. For
the reader familiar with tree-based networks, such matchings are reminiscent of the
theory underlying tree-based networks (Francis et al. 2018; Jetten and Iersel 2018;
Zhang 2016).

We refer to M as a cover matching of N . Observe that the subset of reticulation
arcs ofN not in M , that is ER − M , is also a cover matching; thus, {M, ER − M} is a
complementary partition of ER . To illustrate, the dashed reticulation arcs of the stack-
free network N shown in Fig. 1 are a cover matching of N . The sufficient direction
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of Theorem 2.1 as well as the polynomial-time construction of a two-tree cover of a
stack-free network follows from the next lemma.

Lemma 3.1 Let N be a stack-free network on X, and let M be a cover matching of
N . Then, there is an embedding inN of a phylogenetic X-tree containing each of the
arcs in M as well as each of the tree arcs in N .

Proof Let ET denote the set of tree arcs of N , and let S be the embedding in N
induced by the arcs in ET ∪ M . As S does not contain two reticulation arcs directed
into the same reticulation, S has no underlying cycles. Therefore, observing that at
least one edge incident with the root of N is a tree arc, to establish the lemma, it
suffices to show that if u is a vertex of S with out-degree zero in the embedding, then
u is an element of X .

Choose u to be a vertex of S with out-degree zero and suppose u is not an element
of X . By construction, no arc directed out of u is a tree arc so, as N has no stack
reticulations, u is the parent of two reticulations, v1 and v2 say. But then, as M is a
cover matching, either (u, v1) or (u, v2) is an arc in S, and so u is not a vertex of
S with out-degree zero; a contradiction. Thus, S is an embedding of a phylogenetic
X -tree displayed by N , thereby completing the proof of the lemma. ��
Proof of Theorem 2.1 Let N be a phylogenetic network on X . If N contains a stack
reticulation, then at least three phylogenetic X -tree embeddings are necessary to cover
N , that is, the smallest k for which N has a k-tree covering is at least three. Thus,
if N is two-tree coverable, N is stack-free. Conversely, suppose that N is a stack-
free network. Choosing a cover matching of N , it follows by Lemma 3.1 and the
observation prior to it that N is two-tree coverable. This completes the proof of
Theorem 2.1. ��

4 Proof of Theorem 2.3

We start with a general lemma concerning the uniqueness of an embedding. For a
phylogenetic networkN , a tree-path is a directed path in which each arc is a tree arc.
Reversing the order of the vertices, and thus the arcs, in such a path is referred to as a
backward tree-path.

Lemma 4.1 Let N be a phylogenetic network on X, and let S be an embedding of a
phylogenetic X-tree inN . Let E1 denote the subset of reticulation arcs ofN contained
in S. Then S is the unique embedding in N of a phylogenetic X-tree containing E1.

Proof Let S ′ be an embedding of a phylogenetic X -tree displayed by N containing
each of the arcs in E1. Let F1 denote the set of tree arcs inN on a backward tree-path
starting at either a leaf or a vertex that is a tail of an arc in E1. Observe that if e is a
tree arc in F1, then S ′ contains e. But, the arcs in E1 ∪ F1 have the property that, for
each leaf x ∈ X , there is a directed path from the root of N to x using only the arcs
in E1 ∪ F1. Thus, E1 ∪ F1 is the arc set of S ′ and also the arc set of S. It now follows
that S ′ = S. ��

123



2346 C. Semple, J. Simpson

Lemma 4.2 Let N be a phylogenetic network on X, and let v be a reticulation of N .
If v is not visible, then N has an embedding of a phylogenetic X-tree avoiding v.

Proof Suppose v is not visible. Then, for each x ∈ X , there is a directed path from
the root of N to x that avoids traversing v. Let S be the embedding of N induced by
the subset of arcs ofN in at least one of these paths. Up to degree-two vertices, S is a
phylogenetic network on X . Thus, a subset of arcs of S induces an embedding in N
of a phylogenetic X -tree. This embedding avoids v and so completes the proof of the
lemma. ��

We now combine the last two lemmas to establish Theorem 2.3.

Proof of Theorem 2.3 Let N be a phylogenetic network on X . Suppose that N is not
reticulation-visible. Then, by Lemma 4.2, there is an embedding S inN of a phyloge-
netic X -tree that avoids a reticulation, v say. Let E1 denote the subset of reticulation
arcs of N in S. Let {E ′

1, E2} be a complementary partition of the set of reticulation
arcs ofN , where E1 is a subset of E ′

1. Since S avoids v, it follows that E1 is a proper
subset of E ′

1. By Lemma 4.1, S is the unique embedding of a phylogenetic X -tree
containing E1, and so there is no embedding inN of a phylogenetic X -tree containing
E ′
1. It follows that N is not freely coverable.
Now suppose thatN is reticulation-visible. Let {E1, E2} be a complementary par-

tition of the set of reticulation arcs in N . We first show that N has an embedding of
a phylogenetic X -tree containing the arcs in E1. Let F1 denote the set of tree arcs in
N on a backward tree-path starting at either a leaf or a vertex that is a tail of an arc
in E1. We show that the arcs in E1 ∪ F1 induce an embedding S1 of a phylogenetic
X -tree displayed by N .

As E1 contains exactly one reticulation arc directed into a reticulation, S1 has no
underlying cycles and so, by construction of S1, there is a (unique) path in S1 against
the direction of the arcs from each x ∈ X to the root ρ of N . We next show that the
vertices in S1 with out-degree zero are vertices in X . If not, then there is a vertex v

with out-degree zero in S1 but with out-degree one or two in N . By construction, v
is a reticulation in N . In turn, this implies that v is not visible in N as there is no
x ∈ X such that every path from ρ to x traverses v; a contradiction. Thus, S1 is an
embedding in N of a phylogenetic X -tree.

Similarly, let F2 denote the set of tree arcs in N on a backward tree-path starting
at either a leaf or a vertex that is the tail of an arc in E2. Then, as above, the edges
in E2 ∪ F2 induce an embedding S2 of a phylogenetic X -tree displayed by N . Now
every reticulation edge of N is in either S1 or S2. To complete the proof, let e be a
tree arc in N that is not an arc in either S1 or S2, that is e /∈ F1 ∪ F2. Then there is
a tree-path consisting of arcs not in F1 ∪ F2 from the head of e to a vertex u that is
the parent of two reticulations, v1 and v2 say. But (u, v1), (u, v2) ∈ E1 ∪ E2 and so
e ∈ F1 ∪ F2; a contradiction. Hence, {S1,S2} is a two-tree cover ofN . It follows that
N is freely coverable. ��
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5 Proof of Theorem 2.4

Proof of Theorem 2.4 First suppose thatN has a k-tree covering. Let v be a sink ofN
and let S(v) denote the set of source arcs for v, and assume that S is an embedding in
N of a phylogenetic X -tree displayed byN . If (t, u) is an arc in S(v) and S contains
(t, u), then S contains each of the arcs on the unique directed path from t to v. In
particular, S contains no other source arc for v; otherwise, S has a vertex with in-
degree two. Thus, S contains at most one source arc for v. It immediately follows that
k ≥ s(v), and so

k ≥ max{s(v): v is a sink of N }.
To prove the converse, now suppose

k ≥ max{s(v): v is a sink of N }.

We next construct a k-tree covering of N . Let {E1, E2, . . . , Ek} be a collection of
subsets of the set Es of source arcs of N satisfying the following properties:

(i) For all i ∈ {1, 2, . . . , k}, the set Ei contains exactly one source arc for each sink
of N .

(ii) The union
⋃

i∈{1,2,...,k} Ei = Es .

By the choice of k, such a collection is possible.
For each i , let Fi denote the set of tree arcs in N on a backward tree-path starting

at either a leaf or a vertex that is a tail of a source arc in Ei . Furthermore, for each i ,
let Gi denote the subset of reticulation arcs of N on a directed path from the head of
a source arc in Ei to its respective sink. For all i , the arcs in

Ei ∪ Fi ∪ Gi

are the arcs of an embedding, Si say, of a phylogenetic X -tree displayed byN . To see
this, first note that, since there is exactly one source arc in Ei for each sink, Si has
no underlying cycles. Therefore, for each x ∈ X , there is a unique path in Si against
the direction of the arcs from x to the root of N . Moreover, if there is a vertex v in
Si with out-degree zero and v /∈ X , then, by construction, v is a sink. But then v is
not visible; a contradiction. It follows that Si is an embedding inN of a phylogenetic
X -tree displayed by N .

We complete the proof by showing that {S1,S2, . . . ,Sk} is a k-covering ofN . Let
e be an arc ofN . If e is a tree arc, then there is a path inN from the head of e to either
a leaf or a vertex that is the tail of a source arc, in which case, for some i , we have
e ∈ Fi and so e is an arc in Si . Assume e is a reticulation arc. If e is a source arc, then
e ∈ Ei for some i , so e ∈ Si . Otherwise, for some sink v of N and source arc f for
v, we have that e lies on the unique directed path from the head of f to v, in which
case, e ∈ Gi for some i where f ∈ Ei . Thus, e is an arc in one of the embeddings
S1,S2, . . . ,Sk . It now follows that {S1,S2, . . . ,Sk} is a k-tree covering of N . This
completes the proof of the theorem. ��
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