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Abstract
Coalescent models of evolution account for incomplete lineage sorting by specifying a
species tree parameterwhich determines a distribution on gene trees, and consequently,
a site pattern probability distribution. It has been shown that the unrooted topology of
the species tree parameter of the multispecies coalescent is generically identifiable,
and a reconstruction method called SVDQuartets has been developed to infer this
topology. In this paper, we describe a modified multispecies coalescent model that
allows for varying effective population size and violations of the molecular clock.
We show that the unrooted topology of the species tree parameter for these models is
generically identifiable and that SVDQuartets can still be used to infer this topology.

Keywords Molecular clock · SVDQuartets · Multispecies Coalescent

1 Introduction

Thegoal of phylogenetics is to reconstruct the evolutionaryhistoryof a groupof species
from biological data. Most often, the data available are the aligned DNA sequences of
the species under consideration. The descent of these species from a common ancestor
is represented by a rooted phylogenetic tree which we call the species tree. However,
it is well known that due to various biological phenomena, such as horizontal gene
transfer and incomplete lineage sorting, the ancestry of individual genes will not nec-
essarily match the tree of the species in which they reside (Pamilo and Nei 1988;
Syvanen 1994; Maddison 1997). There are various phylogenetic reconstruction meth-
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ods that account for this discrepancy in different ways. One approach is to reconstruct
individual gene trees by some method and then utilize this information to infer the
original species tree (Liu et al. 2009, 2010; Wu 2012; Mirarab et al. 2014; Mirarab
and Warnow 2015).

Themultispecies coalescentmodel incorporates incomplete lineage sorting directly.
The tree parameter of the model is the species tree, an n-leaf rooted equidistant tree
with branch lengths. The species tree yields a distribution on possible gene trees along
which evolution is modeled by a κ-state substitution model. For a fixed choice of
parameters, the multispecies coalescent returns a probability distribution on the κn

possible n-tuples of states that may be observed. In order to infer the species tree from
data, one searches for model parameters yielding a distribution close to that observed,
using, for example, maximum likelihood.

In Chifman and Kubatko (2015), the authors show that given a probability dis-
tribution from the multispecies coalescent model, it is possible to infer the unrooted
topology of the species tree parameter. Unrooting the species tree and restricting to any
four-element subset of the leaves yield an unrooted four-leaf binary phylogenetic tree
called a quartet. For a given label set, there are only three possible quartets which each
induce a flattening of the probability tensor. Given a probability distribution arising
from the multispecies coalescent, the flattening matrix corresponding to the quartet
compatiblewith the species treewill be rank

(
κ+1
2

)
or lesswhile theother twowill gener-

ically have rank strictly greater than this value. Since the topology of an unrooted tree
is uniquely determined by quartets Semple and Steel (2003), these flattening matrices
can be used to determine the unrooted topology of the species tree exactly. Of course,
empirical and even simulated data produced by the multispecies coalescent will only
approximate the distribution arising from the model. Therefore, the same authors also
proposed a method called SVDQuartets Chifman and Kubatko (2014), which uses
singular value decomposition to infer each quartet topology by determining which of
the flattening matrices is closest to the set of rank

(
κ+1
2

)
matrices.

The method of SVDQuartets offers several advantages over other existing phyloge-
netic reconstruction methods. For example, it accounts for incomplete lineage sorting
and is computationallymuch less expensive thanBayesianmethods achieving the same
level of accuracy. It is often underappreciated that this reconstruction method can be
used to recover the species tree for several different underlying nucleotide substitution
models without any modifications. It was shown in Chifman and Kubatko (2015) that
the method of SVDQuartets is applicable when the underlying model for the evolution
of sequence data along the gene trees is the four-state general time-reversible (GTR)
model or any of the commonly used submodels thereof (e.g., JC69, K2P, K3P, F81,
HKY85, TN93). Thus, the method does not require any a priori assumptions about the
underlying nucleotide substitution process other than time reversibility.

In this paper, we show that the method of SVDQuartets has more theoretical robust-
ness even than has already been shown. We will specifically focus on the case where
the underlying nucleotide substitution model is one of the four-state models most
widely used in phylogenetics. We describe several modifications to the classical mul-
tispecies coalescent model to allow for more realistic mechanisms of evolution. For
example, we remove the assumption of a molecular clock by removing the restric-
tion that the species tree be equidistant. We also allow the effective population size
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to vary on each branch of the species tree. Remarkably, we show that the unrooted
topology of the species tree parameter of these modified models is still identifiable
and that SVDQuartets is still an appropriate reconstruction method. Thus, despite the
introduction of several parameters, effective and efficient methods for reconstructing
the unrooted topology of the species tree for these modified coalescent models are
already available off the shelf and implemented in PAUP∗ (Swofford 2002).

In Sect. 2, we review the classical multispecies coalescent model and discuss some
of its limitations in modeling certain biological phenomena. We then describe several
modifications to the classical model to remedy these weaknesses. In Sect. 3, we estab-
lish the theoretical properties of identifiability for these families ofmodified coalescent
models. Finally, in Sect. 4, we describe why SVDQuartets is a strong candidate for
reconstructing the species tree under the multispecies coalescent and propose several
other modifications that could be made to the multispecies coalescent.

2 TheMultispecies Coalescent

2.1 Coalescent Models of Evolution

In this section, we briefly review the multispecies coalescent model and explain how
the model yields a probability distribution on nucleotide site patterns. As our main
results will parallel those found in Chifman and Kubatko (2015), we will import
much of the notation from that paper and refer the reader there for a more thorough
description of the model.

The Wright-Fisher model from population genetics models the convergence of
multiple lineages backward in time toward a common ancestor. Beginning with j
lineages from the current generation, the model assumes discrete generations with
constant effective population size N . In each generation, each lineage is assigned a
parent uniformly from the previous generation. For diploid species, there are 2N copies
of each gene in each generation, and thus the probability of selecting any particular

gene as a parent is
1

2N
. Two lineages are said to coalesce when they share the same

parent in a particular generation.
As an example, if we begin with two lineages in the same species, the probability

they have the same parent in the previous generation, and hence coalesce, is
1

2N
and

the probability that they do not coalesce in this generation is (1− 1

2N
). Therefore, the

probability that two lineages coalesce in exactly the i th previous generation is given by

(
1

2N

)(
1 − 1

2N

)i−1

.

For large N , the time at which the two lineages coalesce, t , approximately follows
an exponential distribution with rate (2N )−1, where time is measured in number of
generations. Every 2N generation is called a coalescent unit, and time is typically
measured in these units to simplify the formulas for time to coalescence. However,
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in this paper, we will introduce separate effective population size parameters for each
branch of the species trees. So that our timescale is consistent across the tree we will
work in generations rather than coalescent units. In these units, for j lineages, the time
to the next coalescent event t has probability density,

f (t) = j( j − 1)

2

(
1

2N

)
exp

(
− j( j − 1)

2

(
1

2N

)
t

)
, t > 0. (1)

This is typically referred to as Kingman’s coalescent (Kingman 1982a, b, c; Tajima
1983; Tavaré 1984; Takahata and Nei 1985).

The multispecies coalescent is based on the same framework, but we assume that
the species tree of the sampled taxa is known. We let S denote the topology (without
branch lengths) of the n-leaf rooted binary phylogenetic species tree. The tips of S
represent distinct species and are labeled by uppercase letters. We assume here that
one lineage is sampled from each species, and we label each lineage by the lowercase
letter corresponding to the species from which it is sampled. We use eX to denote the
branch of S that is ancestral to exactly the species in X . The vector τ specifies branch
lengths where τX is the length of eX . Thus, (S, τ ) denotes a rooted species tree with
branch lengths. In the classical multispecies coalescent, the entries of τ are chosen so
that (S, τ ) is equidistant, meaning that the length of the path from the root to any tip
of the species tree is the same. This is commonly referred to as the molecular clock
assumption, and in what follows, we refer to the classical multispecies coalescent
as the equidistant coalescent. For example, for the four-leaf species tree depicted in
Fig. 1a, τ = (τA, τB, τC , τD, τAB , τC D) and the entries satisfy τA = τB, τC = τD ,
and τA +τAB = τC +τC D . Later, we will introduce different effective population sizes
in each population and we will use NX to denote the size of the population in eX .

Once this species tree is fixed, themultispecies coalescent gives a probability density
on possible gene trees, where here we use the term gene tree to mean both the topology
and the branch lengths. All of the same assumptions above apply, except that it is now
impossible for two lineages to coalesce if they are not part of the same population.
Hence, lineages may only coalesce if they are in the same branch of S. We use the
concept of a coalescent history, h (see, e.g., Degnan and Salter 2005) to indicate
a particular sequence of coalescent events as well as the populations in which they
occur (but not the precise times of the events). There are only finitely many possible
coalescent histories compatible with S, and we call the set of all such histories H.
We denote the topology of a rooted n-leaf binary phylogenetic gene tree by G and let
t = (t1, . . . , tn−1) be the vector that encodes the coalescent times. Thus, in the context
of a specific species tree and history, (G, t) encodes a gene tree with branch lengths.
As for the species tree, we measure all branch lengths in units of generations. Note
that any given history corresponds to infinitely many gene trees, though all will have
the same topology. Likewise, a particular gene tree topology may correspond to only
one history or (finitely) many histories. Figure 1 gives an example of a single gene
tree topology with two distinct histories. Note, however, that in Fig. 1a, b, there are
infinitely many choices for the values of t1, t2, and t3 that satisfy the constraints of
each history.
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412 C. Long, L. Kubatko

Fig. 1 A species tree and two different coalescent histories that result in the same gene tree topology. The
coalescent times t j are measured from the most recent speciation event (looking backwards in time). a A
gene tree with topology G and history h. b A gene tree with topology G and history h′

For a particular history and a particular species tree (S, τ ), we can compute the
probability density for gene trees (G, t) with that history explicitly under the multi-
species coalescent model. We denote this gene tree density by fh((G, t)|(S, τ )). We
demonstrate below how this is done for the history in Fig. 1a.

Example 2.1 Let (S, τ ) be the four-leaf species tree depicted in Fig. 1a, and let h
refer to the coalescent history in which the following events occur in order (looking
backward from the present):

(1) Lineages a and b coalesce in the population ancestral to A and B.
(2) Lineages c and d coalesce in the population above the root.
(3) Lineages ab and cd coalesce in the population above the root.

The probability of observing a gene tree with history h for the species tree (S, τ )

under the multispecies coalescent model can be found by integrating over all possible
times atwhich the coalescent events consistentwith h mayoccur.Note that the integrals
must be taken with respect to the boundaries for the coalescent events specified by
the history. Therefore, each history will have a unique region of integration, and each
must be considered separately. For history h shown in Fig. 1a, we have

∫

t
fh((G, t)|(S, τ ))dt =

∫ ∞

0

∫ t3

0

∫ τAB

0
exp

(−τC D

2N

)((
1

2N

)
exp

(−t1
2N

))

((
1

2N

)
exp

(−3t2
2N

))((
1

2N

)
exp

(−(t3 − t2)

2N

))
dt1dt2dt3.

We assume that the distribution of times to coalescent events is given by Kingman’s
coalescent as in Eq. (1). We compute fh((G, t)|(S, τ )) under the assumption that evo-
lution occurs independently in each branch of the species tree. Thus, we multiply the
contributions to the density of the events occurring in each species tree branch to obtain
the probability density of the history. For example, the first term of fh((G, t)|(S, τ ))

is equal to

1 −
∫ τC D

0

(
1

2N

)
exp

( −t

2N

)
dt,
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the probability that lineages c and d do not coalesce in the population ancestral to C
and D. The second term is the probability density for the event that lineages a and b
coalesce at time t1. The third term is the probability density for the event that lineages
c and d coalesce at time t2. Finally, the last term is the probability density for the
event that the newly formed lineages ab and cd coalesce at time t3 − t2 (measured
relative to the time when lineages c and d coalesced). Notice that the coalescent
history h′ depicted in Fig. 1b results in the same gene tree, but the density function
fh′((G, t)|(S, τ )) will not be the same as fh((G, t)|(S, τ )).

For a fixed gene tree at a given locus, we model the evolution along this gene tree as
a continuous-time homogenousMarkov process according to a nucleotide substitution
model. The model gives a probability distribution on the set of all 4n possible n-tuples
of observed states at the leaves of (G, t). We can write the probability of observing
the state (i1, . . . , in) as p∗

i1...in |(G,t). Precisely how this distribution is calculated is
described in Chifman and Kubatko (2015). Here, we sketch the relevant details needed
to introduce the modified multispecies coalescent model described in the next section.

For a four-state substitution model, there is a 4 × 4 instantaneous rate matrix Q
where the entry Qi j encodes the rate of conversion from state i to state j . To compute
the probability of observing a particular state at the leaves, we associate with each
vertex v a random variable Xv with state space equal to the set of four possible
states. The distribution of states at the root vertex is π = (πA, πG , πC , πT ) where
π is the stationary distribution of the rate matrix Q. Letting te be the length of edge
e = uv, P(te) = eQte is the matrix of transition probabilities along that edge. That
is, Pi j (te) = P(Xv = j |Xu = i). Given an assignment of states to each vertex of the
tree, we can compute the probability of observing this state using theMarkov property
and the appropriate entries of the transition matrices. To determine the probability of
observing a particular state at the leaves, we marginalize over all possible states of the
internal nodes.

In this paper, we are primarily interested in four-state models of DNA evolution
where the four states correspond to the DNA bases. Different phylogenetic models
place different restrictions on the entries of the rate matrices. The results that we prove
in the next section will apply when the underlying nucleotide substitution model is
any of the commonly used four-state time-reversible models. As an example, the rate
matrices for two of these models, the Kimura three-parameter model (K3P) and the
four-state general time-reversible model (GTR), are given in Fig. 2. We note here
that because these models are time reversible, the location of the root in each gene
tree is unidentifiable from the site pattern probability distribution for that gene tree
Felsenstein (1981). In subsequent sections, we will introduce and describe similar
results for the JC+I+� model that allows for invariable sites and gamma-distributed
rates across sites.

Now, given a species tree (S, τ ) and a choice of nucleotide substitution model,
let pi1...in |(S,τ ) be the probability of observing the site pattern i1 . . . in at the tips of
(S, τ ). To compute pi1...in |(S,τ ), we must consider the contribution of each history to
the site pattern probability distribution by integrating over branch lengths. So that we
may write the formulas explicitly, and we first consider the contribution of gene trees
matching a particular coalescent history,
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∗ a b c
a ∗ c b
b c ∗ a
c b a ∗

∗ απG βπC γπT

απA ∗ δπC επT

βπA δπG ∗ ηπT

γπA επG ηπC ∗
(a) (b)

Fig. 2 Rate matrices for two commonly used models in phylogenetics. The diagonal entries are chosen
so that the row sums are equal to zero. In the K3P model, the root distribution is uniform. a Kimura
three-parameter model (K3P). b Four-state general time-reversible model (GTR)

pi1...in |h,(S,τ ) =
∫

t
p∗

i1...in |(G,t) fh((G, t)|(S, τ )) dt.

As noted previously, there will be finitely many histories for any given species
tree (S, τ ), and summing over these gives the probability of observing the site pattern
i1 . . . in at the tips of the species tree (S, τ ),

pi1...in |(S,τ ) =
∑

h∈H

∫

t
p∗

i1...in |(G,t) fh((G, t)|(S, τ )) dt

=
∑

h∈H
pi1...in |h,(S,τ ).

Note again that the bounds of integration in each term of the sum will depend on
the history being considered.

2.2 AModified Coalescent

In this section, we introduce various ways that we might alter the multispecies coa-
lescent to better reflect the evolutionary process. Recall that the length of the path
from the root of the species tree to each tip is the total number of generations that
have occurred between the species at the root and that at the tip. Since the length of
a generation may vary for different species Martin and Palumbi (1993), it may be
desirable to allow the lengths of the paths from the root to each tip to differ. Therefore,
we first consider expanding the allowable set of branch lengths so that (S, τ ) is not
required to be equidistant.

Fix a nucleotide substitution model. Let C(S) ⊆ �4n−1 be the set of site pattern
probability distributions obtained from the equidistant multispecies coalescent model
on the n-leaf topological rooted tree S. Let Cn ⊆ �4n−1 denote the set of all distribu-
tions obtained by allowing (S, τ ) to be any equidistant n-leaf rooted tree. If (S, τ ) is
not required to be equidistant, this removes the assumption of a molecular clock and
we refer to this model as the clockless coalescent. The set of site pattern probabilities
obtained from a single species tree topology in the clockless coalescent is C∗(S), and
the set of distributions obtained by allowing (S, τ ) to be any n-leaf rooted tree (not
necessarily equidistant) is C∗

n .
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We can also account for the fact that the effective population size, N , may vary for
different species Charlesworth (2009) by introducing a separate effective population
size parameter for each internal branch of the species tree. We call this model the
p-coalescent and denote the set of all site pattern probabilities arising from the model
as C(S, N ). Note that here we consider the species tree (S, τ ) to be equidistant. In
analogy to our notation from above, we use Cn(N ) to denote the set of all site pattern
probability distributions obtained from the p-coalescent and use C∗(S, N ) and C∗

n (N )

for the clockless p-coalescent.
Since we assume that coalescent events do not occur within terminal edges of

the species tree, changing the effective population size on the terminal edges does not
change the probability distribution on gene trees or the site pattern probabilities arising
from a given gene tree. In the next section, we will show that, remarkably, the unrooted
topologies of the species tree parameter of the clockless coalescent, p-coalescent,
and the clockless p-coalescent are all generically identifiable. Conveniently, from the
perspective of reconstruction, we also show that the method of SVDQuartets Chifman
and Kubatko (2014) can be used to reconstruct the unrooted topology of the species
tree based on a sample from the site pattern probability distribution given by themodel.

It is well known that when considering the gene tree distribution from the coalescent
model on a rooted tree S, the branch lengths and population sizes are confounded. For
example, if a particular branch length is doubled and the population size on that
branch halved, this will not affect the gene tree distribution. However, we note that
the site pattern probability distributions induced by the clockless coalescent and by
the p-coalescent on S are not necessarily equal (i.e., C∗(S) does not necessarily equal
C(S, N )). Some intuition for why these are not necessarily the same can be obtained by
comparing each of these modified coalescent models to the equidistant model. We can
construct a species tree from the clockless coalescent by beginning with an equidistant
species tree and either stretching or contracting certain branches. This alters the gene
tree distribution by allowing more or less time, respectively, for coalescent events to
occur along the affected branch. However, the probability density of the time to a
fixed coalescent event will not necessarily be affected by this change. In contrast, the
p-coalescent induces a change in the rate of coalescence, as can be seen by examining
Eq. (1), which will alter the probability density of the time of a coalescent event that
resides in any affected species tree branch. For example, if the branch e in Fig. 3 is
from an equidistant tree (S, τ ), increasing τe will not affect the probability density of
the time to coalescence of lineages a and b, denoted by t in the figure and given by
Eq. (1). However, changing the effective population size along this branch will affect
the probability density of t , since the effective population size N appears in Eq. (1).

One might be interested in a generalization of the multispecies coalescent model
in which a mutation rate is associated with each branch of the species tree. This is
biologically realistic in that it would allow for mutation to accumulate at different rates
along different branches of the species tree, in response to factors such as variations
in climate or other ecological conditions. One might think of modeling this by gen-
eralizing the definition of the instantaneous rate matrix Q defined in Section 2.1, so
that, rather than associating a single matrix Q with the entire species tree, the lineages
within each species tree branch e evolve according to a species tree branch-specific
matrix ρe Q (ρe is a scalar that modifies the mutation rate on branch e). The example
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Fig. 3 Two lineages coalescing
in a branch of a species tree

below shows that we can obtain the same site pattern probability distribution obtained
by scaling Q by ρe by instead scaling the length of e and the effective population size
in e by ρe. This illustrates that a model with a different mutation rate on each species
tree edge is subsumed by the clockless p-coalescent.

Example 2.2 Let a and b be two lineages entering a branch e of a species tree as in
Fig. 3. Let τe be the length of this branch and N be the effective population size
parameter. The probability that a and b do not coalesce in e is

1 −
∫ τe

0

(
1

2N

)
exp

( −t

2N

)
dt = exp

(−τe

2N

)
. (2)

If a and b coalesce, then we can compute the probability of observing the state xy
at a and b under a homogenous Markov model where the rate matrix on the branch
e is scaled by a factor ρe. We assume the distribution of states at the vertex u is the
vector π . Thus, we have,

pxy =
∑

z1,z2

∫ τe

0

(
1

2N

)
exp

( −t

2N

)
πz1

exp(ρe Q(τe − t))z1,z2 exp(ρe Q(t))z2,x exp(ρe Q(t))z2,y dt . (3)

Instead of scaling the rate matrix Q by ρe, we could scale the length of e and the
effective population size by ρe. Then, the probability that lineages a and b do not
coalesce remains unchanged since

exp

(−ρeτe

2ρe N

)
= exp

(−τe

2N

)
.

Likewise, the probability of observing state xy is given by the following formula,
where we make the substitution t = ρeT ,

pxy =
∑

z1,z2

∫ ρeτe

0

(
1

2ρe N

)
exp

( −t

2ρe N

)
πz1 exp(Q(ρeτe

− t))z1,z2 exp(Q(t))z2,x exp(Q(t))z2,y dt
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=
∑

z1,z2

∫ τe

0

(
1

2N

)
exp

(−T

2N

)
πz1 exp(ρe Q(τe

− T ))z1,z2 exp(ρe Q(T ))z2,x exp(ρe Q(T ))z2,y dT .

This expression is equal to (3), and thus we have the same distribution of site
patterns at the leaves of the tree. Generalizing this example, we can obtain the site
pattern probability distribution for a species tree with any branch-specific scaled rate
matrices that we desire by appropriately adjusting population sizes and branch lengths
across the tree. Thus, we consider only the clockless coalescent, p-coalescent, and
clockless p-coalescent models in what follows.

3 Identifiability of theModified Coalescent

One of the most fundamental concepts in model-based reconstruction is that of identi-
fiability. A model parameter is identifiable if any probability distribution arising from
the model uniquely determines the value of that parameter. For the purposes of phylo-
genetic reconstruction, it is particularly important that the tree parameter of the model
be identifiable in order to make consistent inference.

In the following paragraphs, we will use the notation Cn for the set of site pattern
probability distributions obtained by varying the n-leaf tree parameter in the equidis-
tant coalescent model, though the discussion applies equally to C∗

n , Cn(N ), and C∗
n (N ).

To uniquely recover the unrooted topology of the species tree parameter of the n-
leaf multispecies coalescent model, we would require that for all n-leaf rooted trees
S1 and S2 that are topologically distinct when the root vertex of each is suppressed,
C(S1)∩C(S2) = ∅. This notion of identifiability is unobtainable in most instances and
much stronger than is required in practice. Instead, we often wish to establish generic
identifiability. A model parameter is generically identifiable if the set of parameters
from which the original parameter cannot be recovered is a set of Lebesgue mea-
sure zero in the parameter space. In our case, although we cannot guarantee that
C(S1) ∩ C(S2) = ∅, we will show that if we select parameters for either model, the
resulting distribution will lie in C(S1) ∩ C(S2) with probability zero.

In Chifman and Kubatko (2015), it was shown that the unrooted topology of the
tree parameter for the coalescent model is generically identifiable when the nucleotide
substitution model is GTR+I+ � or any of the commonly used submodels thereof,
using the machinery of analytic functions and varieties. A function f with domain
an open set U ⊆ R

m and range R is real analytic on U if it is given locally by a
convergent power series. An analytic variety is the common zero set of a collection
of analytic functions. For the purposes of this paper, we will only need to consider
analytic varieties defined by a single function, that is, varieties of the form

V( f ) = {u ∈ U | f (u) = 0},
where f is real analytic on U . The property of real analytic functions that we will use
later is the following: For a real analytic function f with domain an open setU ⊆ R

m ,
either f is identically zero or V( f ) is a set of Lebesgue measure zero (Mityagin 2015).
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418 C. Long, L. Kubatko

To illustrate howwewill use this property, we describe the strategy used in Chifman
and Kubatko (2015) to prove the generic identifiability of the unrooted topology of
the species tree parameter of the coalescent model. For the coalescent model with
underlying κ-state nucleotide substitution model on an n-leaf rooted species tree S,
let

ψS : 	S 	→ �κn−1

be the map from the continuous parameter space for S, 	S , to the probability simplex
with Im(ψS) = C(S). Label the states of the model by the natural numbers {1, . . . , κ}.
Given any two rooted species trees S1 and S2 that are topologically distinct when the
root vertex of each is suppressed, the strategy is to find a polynomial

g ∈ R[qi1...in : 1 ≤ i1, . . . , in ≤ κ]

such that for all p1 ∈ C(S1), g(p1) = 0, but for which there exists p2 ∈ C(S2) such
that g(p2) �= 0. Then, since g(p1) = 0 for all p1 ∈ C(S1), the set of parameters in
	S2 mapping into C(S1) ∩ C(S2), must be contained in the zero set of

g ◦ ψS2 : 	S2 → R.

If it can then be shown that g ◦ ψS2 is a real analytic function, then its zero set is the
analytic variety V(g ◦ ψS2). The existence of p2 implies that g ◦ ψS2 is not identically
zero on 	S2 , and so the set of parameters in 	S2 mapping into C(S1) ∩ C(S2) must
be measure zero. Doing this for all pairs of n-leaf trees that are topologically distinct
when the root vertex of each is suppressed establishes the generic identifiability of the
unrooted topology of the species tree parameter of Cn .

We will show that the species tree parameter of each of the modified models
introduced above is generically identifiable using the same approach. In the discus-
sion proceeding (Chifman and Kubatko 2015, Corollary 1), it was shown that for
the equidistant multispecies coalescent, to establish identifiability of the species tree
parameter of the coalescent model for trees with any number of leaves, it is enough to
prove the identifiability of the species tree parameter for the four-leaf model. Essen-
tially, the same proof of that theorem applies to the clockless coalescent giving us the
following proposition.

Proposition 3.1 If the unrooted topology of the species tree parameter of C∗
4 is gener-

ically identifiable, then the unrooted topology of the species tree parameter of C∗
n is

generically identifiable for all n.

Asimilar proposition holds for the p-coalescent but a slightmodification is required.
The subtlety is illustrated in Fig. 4 where a species tree and its restriction to a four-leaf
subset of the leaves are shown.Notice that on the restricted tree, the effective population
size may now vary within a single branch. Therefore, to show the identifiability of the
unrooted species tree parameter of the p-coalescent for n-leaf trees, we must show the
identifiability of the unrooted topology of the species tree parameter of a model on
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Fig. 4 A five-leaf species tree with topology S with multiple effective population size parameters and its
restriction to the four-leaf topological subtree S|{A,B,D,E}. The image of the marginalization map applied
to the model for S will be the model for S|{A,B,D,E} with different effective population size parameters on
different portions of eAB

four-leaf trees that allows for a finite number of bands on each branch with separate
effective population sizes. We will revisit this point after the proof of Theorem 3.5,
though it turns out to be rather inconsequential.

3.1 The analyticity ofÃS

In the discussion preceding Proposition 3.1, we described how to use the properties
of real analytic varieties to prove generic identifiability. One of the results needed was
that the function g ◦ ψS is a real analytic function. Since polynomial functions are
real analytic and the composition of real analytic functions is again analytic, to prove
this it is enough to show that for any tree S, each coordinate of ψS is a real analytic
function in the continuous parameters of the model. That this is so may seem obvious
to some and was stated without proof in Chifman and Kubatko (2015). However, this
issue is slightly more subtle than it might first appear.

Recall that each coordinate of ψS : 	S → �κn−1 is defined by a function of the
form

∑

h∈H

∫

t
p∗

i1...in |(G,t) fh((G, t)|(S, τ )) dt.

The entries of the matrix exponential are defined by convergent power series on 	S

and so are real analytic functions on 	S . Moreover, since elementary functions are
analytic, as are sums, products, and compositions of real analytic functions Krantz and
Parks (2002), the function p∗

i1...in |(G,t) fh((G, t)|(S, τ )) is also a real analytic function
on the entire parameter space. However, notice that the integral may be improper as
in Example 2.1. It is not in general true that taking an improper integral with respect
to certain variables in a real analytic function results in a real analytic function. As
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a counterexample, consider the function f (α, t) = d

dt
(α tanh(αt)) and define the

function F(α) = ∫ ∞
0 f (α, t) dt . Then, f (α, t) is a real analytic function on its entire

domain, but F(α) = |α| and so is not analytic at α = 0.
For the models JC69, K2P, K3P, F81, HKY85, TN93, and the generalized κ-state

JC, these issues become irrelevant, as we can diagonalize the rate matrices and obtain
a closed-form expression for the entries of the transition matrices. The entries are then
seen to be exponential functions of branch length, and we can solve the improper inte-
grals from the multispecies coalescent and obtain exact formulas for each coordinate
of ψS that are clearly analytic. Thus, we have the following proposition.

Proposition 3.2 Let S be a rooted four-leaf species tree. The parameterization map
ψS is analytic when the underlying nucleotide substitution model is any of JC69, K2P,
K3P, F81, HKY85, TN93, or the generalized κ-state JC.

The rate matrix for the four-state general time-reversible model is similar to a real
symmetric matrix and is thus also diagonalizable. However, actually writing down a
closed form for the entries of the transition matrix is not possible due to the large
number of computations involved. Consequently, we cannot write down a closed-
form expression for the coordinate functions of ψS . Of course, this is not a necessary
condition for these functions to be analytic, but it is difficult to argue that they are
without such a closed-form expression. Therefore, in the proposition below, we will
argue that around a generic choice of parameters for the GTR rate matrix, there exists
a neighborhood on which the entries of the matrix exponential can be written as
expressions involving only elementary functions of the rate matrix parameters, roots
of the ratematrix parameters, and exponential functions. This allowsus to argue that the
coordinate functions of ψS can also be expressed in terms of well-known functions
of the rate matrix parameters, and hence, that they are real analytic functions in a
neighborhood around any generic choice of parameters from the modified coalescent
models.

Proposition 3.3 Let S be a rooted four-leaf species tree. LetψS be the parameterization
map for the multispecies coalescent model when the underlying nucleotide substitution
model is the four-state GTR model. For a generic choice of continuous parameters
θ ∈ 	S, there exists a neighborhood around θ on which each coordinate of ψS is a
real analytic function.

Proof Let θ be a generic point in 	S , and let Q be the rate matrix for the four-state
GTR model. The matrix

A = diag(π1/2)Qdiag(π−1/2)

is a real symmetric matrix that is similar to Q. Hence, all eigenvalues of A are real
numbers that are less than or equal to zero and one of these eigenvalues is λ1 = 0. We
can factor the degree four characteristic equation of A and use the cubic formula to
write the other eigenvalues 0 ≥ λ2 ≥ λ3 ≥ λ4 in terms of the rate matrix parameters.
For a generic choice of parameters, the eigenvalues will be distinct and the columns
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of
∏

j �=i (A − λ j I ) will be eigenvectors of A with eigenvalue λi . Define the vector
Vi to be the first column of

∏
j �=i (A − λ j I ) for 1 ≤ i ≤ 4, and let U be the 4 × 4

matrix with i-th column equal to Vi/‖Vi‖. Since A is a real symmetric matrix, the
eigenvectors corresponding to distinct eigenvalues are orthogonal Hoffman andKunze
(1971); hence, U is an orthonormal matrix. Therefore, A = Udiag(0, λ2, λ3, λ4)U T

and

eQt = (diag(π−1/2)U )diag(1, eλ2t , eλ3t , eλ4t )(U T diag(π1/2)).

Thus, in a neighborhood around θ , each entry of the matrix exponential can be written
as

Pi j (t) =
∑

1≤k≤4

f (i j)
k (q)eλk t ,

where the f (i j)
k (q) are rational functions of the rate matrix parameters and roots of the

rate matrix parameters coming from the cubic formula.
The functions p∗

i1...in |(G,t) are all sums of products of these functions which are
exponential in the branch length t . The formulas coming from the coalescent process,
fh((G, t)|(S, τ )), are also exponential functions in t . Because each λi is guaranteed
to be less than or equal to zero, when we integrate each p∗

i1...in |(G,t) fh((G, t)|(S, τ ))

with respect to branch length, the integral converges. Therefore, in a neighborhood
around θ , each coordinate of ψS can be written in closed form as an expression
involving rational functions of the model parameters, roots of the model parameters,
and exponential functions of both of these. ��

3.2 Identifiability of theModifiedMultispecies Coalescent for Four-Leaf Trees

We may encode the site pattern probability distribution associated with a κ-state phy-
logenetic model on an n-leaf species tree as an n-dimensional κ × . . . × κ tensor P
where the entry Pi1...in is the probability of observing the state i1 . . . in . In (Chifman
and Kubatko 2015, Section 4), the authors explain how to construct tensor flattenings
according to a bipartition of the taxa, or split, of the species tree. Our first result is
the analogue of (Chifman and Kubatko 2015, Theorem 1) for the modified coalescent
models. We use the notation P(S,τ ,θ) to denote the probability tensor that results from
choosing a species tree S with vector of edge lengths τ and continuous parameters θ .

Theorem 3.4 Let S be a four-taxon symmetric ((A, B), (C, D)) or asymmetric
(A, (B, (C, D)) species tree with a cherry (C, D). Consider the clockless coalescent
when the underlying nucleotide substitution model is any of the following: JC69, K2P,
K3P, F81, HKY85, TN93, or GTR. Let L1|L2 be the split AB|C D that is valid for S.
Then, for all P(S,τ ,θ) ∈ C∗(S),

rank(FlatL1|L2(P(S,τ ,θ))) ≤ 10.
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Fig. 5 Extending one leaf in a
cherry of S

Proof Let L1|L2 be the split AB|C D that is valid for S, and consider the distribution
P(S,τ ,θ). Without loss of generality, suppose τC ≥ τD . Consider the new vector of
edge lengths ξ where each entry is the same as in τ except that ξC = τD . Thus, we
can think of the tree (S, τ ) as an extension of the tree (S, ξ) as in Fig. 5.

First, we claim that

rank(FlatL1|L2(P(S,τ ,θ))) ≤ rank(FlatL1|L2(P(S,ξ ,θ)))

Notice that since coalescent events do not happen in the terminal edges of the species
tree, the gene tree histories and the formulas for the gene tree distributions from (S, τ )

and (S, ξ) are identical. The only difference is that the leaf edge labeled by C in the
gene tree (G, t) from (S, τ ) is longer by τC − ξC than the same edge in the gene tree
(G, t) from (S, ξ). The probability of observing the state i1i2i3i4 from these two gene
trees will not be the same, so let us express this probability as p∗

i1i2i3i4|(G,t,θ)
when the

species tree is (S, ξ) and q∗
i1i2i3i4|(G,t,θ)

when the species tree is (S, τ ). Extending the
branch of a gene tree is equivalent to grafting a new edge onto the leaf edge to create
an internal vertex of degree two. To compute the probability of observing a particular
state at the leaves of the extended gene tree, we sum over all possible states of this
vertex. For clarity of notation, let us represent the matrix of transition probabilities
along the grafted edge by M = eQ(τC −ξC ). Thus,

q∗
i1i2i3i4|(G,t,θ) =

∑

1≤ j≤4

(M ji3)p∗
i1i2 j i4|(G,t,θ).

Therefore, the total probability for a particular history is given by

pi1i2i3i4|h,(S,τ ,θ) =
∫

t
q∗

i1i2i3i4|(G,t,θ) fh((G, t)|(S, τ )) dt

=
∫

t

⎛

⎝
∑

1≤ j≤4

(M ji3)p∗
i1i2 j i4|(G,t,θ)

⎞

⎠ fh((G, t)|(S, ξ)) dt
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=
∑

1≤ j≤4

(M ji3)

(∫

t
p∗

i1i2 j i4|(G,t,θ) fh((G, t)|(S, ξ)) dt
)

=
∑

1≤ j≤4

(M ji3)pi1i2 j i4|h,(S,ξ ,θ)

Summing over all histories, we also obtain

pi1i2i3i4|(S,τ ,θ) =
∑

1≤ j≤4

(M ji3)pi1i2 j i4|(S,ξ ,θ).

Now consider the column of FlatL1|L2(P(S,τ ,θ)) indexed by the joint state i3i4.
The formula above shows that this column is a linear combination of the columns of
FlatL1|L2(P(S,ξ ,θ)) indexed by 1i4, 2i4, 3i4, and 4i4. Therefore,

rank(FlatL1|L2(P(S,τ ,θ))) ≤ rank(FlatL1|L2(P(S,ξ ,θ))).

Thus, any four-leaf species tree (S, τ ) with a (C, D) cherry can be constructed by
lengthening one terminal edge in a tree (S, ξ) with a (C, D) cherry that satisfies
ξC = ξD . The tree (S, ξ)may not be equidistant, but it is still clear from the symmetry
in the cherry that for any choice of continuous parameters, we will have

pi1i2i3i4|(S,ξ ,θ) = pi1i2i4i3|(S,ξ ,θ),

which implies that rank(FlatL1|L2(P(S,ξ ,θ))) ≤ 10, and hence that
rank(FlatL1|L2(P(S,τ ,θ))) ≤ 10. ��
Theorem 3.5 Let S be a four-taxon symmetric ((A, B), (C, D)) or asymmetric
(A, (B, (C, D)) species tree with a cherry (C, D). Let L1|L2 be one of the splits
AC |B D, or AD|BC. Consider the clockless coalescent when the underlying
nucleotide substitution model is any of the following: JC69, K2P, K3P, F81, HKY85,
TN93, or GTR. Then, for generic distributions P(S,τ ,θ) ∈ C∗(S),

rank(FlatL1|L2(P(S,τ ,θ))) = 16.

Proof Consider the degree 16 polynomial det(FlatL1|L2(q)) in the ringR[qi1...in : 1 ≤
i1, . . . , i4 ≤ 4].Any choice of continuous parameters for the clockless coalescent that
satisfies

rank(FlatL1|L2(P(S,τ ,θ))) < 16,

must be contained in the real analytic variety V(det(FlatL1|L2(q)) ◦ ψS). As per the
discussion at the beginning of Section 3, to show that this is a set of measure zero,
we need only verify that the function det(FlatL1|L2(q)) ◦ ψS is not identically zero.
To do so, we need only produce a single choice of parameters for both the symmet-
ric and asymmetric trees for which FlatAC|B D(P(S,τ ,θ)) is rank 16 and likewise for
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FlatAD|BC (P(S,τ ,θ)). In fact, we can address both the symmetric and asymmetric cases
with one tree by letting S be the symmetric tree and setting τAB = 0. In the supplemen-
tal materials, we choose parameters from the Jukes–Cantor model and show that both
flattening matrices for the invalid splits are rank 16. Since the Jukes–Cantor model
is contained in JC69, K2P, K3P, F81, HKY85, and TN93, this choice of parameters
establishes the result for each of these.

The Jukes–Cantor model is of course also contained in the four-state GTR model.
However, in light of Proposition 3.3, our choice of parameters must be sufficiently
generic so that det(FlatL1|L2(q) ◦ ψS is a real analytic function in a neighborhood
around this point. In the supplemental materials, we also choose a set of sufficiently
generic K3P parameters and show that both flattening matrices for the invalid splits
are rank 16. ��

Suppose now that S is a four-leaf tree that displays the split L1|L2 and that S′ is a
four-leaf trees with different unrooted topology than S. Then, S′ does not display the
split L1|L2, and Theorem 3.5 shows that the determinant of FlatL1|L2(q) is a degree
16 polynomial that does not vanish on the set C∗(S′). Hence, as per the discussion in
Sect. 3, the set of parameters for S′ mapping intoC∗(S)∩C∗(S′) is a set ofmeasure zero.
Thus, the unrooted topology of the species tree parameter of the clockless coalescent
is generically identifiable.

Following Proposition 3.1, we observed that showing the identifiability of the
unrooted topology of the species tree parameter of the p-coalescent requires proving
the identifiability of the unrooted topology of the species tree parameter for four-leaf
trees in a model that allows multiple effective population size parameters on a single
edge. Specifically, to prove the identifiability of the unrooted topology of the species
tree parameter in C∗

n (N ), it is sufficient to prove the identifiability of the unrooted
topology of the species tree parameter for four-leaf trees in a model with 2n − 3 dif-
ferent effective population size parameters on each edge. This is because the effective
population size parameters in the four-leaf tree are inherited from the original n-leaf
tree, and the number of different effective population size parameters in an n-leaf tree
is bounded above by the number of edges, 2n − 3. All of the key ingredients needed
to prove this result have already been presented in Theorems 3.4 and 3.5.

Since coalescent events do not occur in the terminal edges of the species tree,
Theorem 3.4 applies equally to the p-coalescent and clockless p-coalescent models.
Both distributions in the proof of Theorem 3.5 are still contained in the model where
we allow multiple effective population size parameters on each edge since we can just
choose all of the population size parameters on eC D to be equal. We must still verify
that the parameterizationmap for thismodel is analytic, but the argument fromSect. 3.1
remains unchanged when we allow multiple effective population size parameters on
each edge. Thus, the same choices of parameters from the proof of Theorem 3.5
establish the result for the clockless p-coalescent. We also intentionally chose a point
corresponding to an equidistant tree so that it applies to the p-coalescent. Thus, we
have the following corollary.

Corollary 3.6 The unrooted topology of the species tree parameter of the clockless
coalescent, the p-coalescent, and the clockless p-coalescent models on an n-leaf tree
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is generically identifiable for all n when the underlying nucleotide substitution model
is any of the following: JC69, K2P, K3P, F81, HKY85, TN93, or GTR.

3.3 Identifiability with Invariable Sites and Gamma-Distributed Rates

It is well known that the rate of evolution may vary across sites (Yang 1993, 1994).
One way to account for this is to let each site evolve according to the same model but
where the rate matrix at each site is scaled by a random factor drawn from a specified
gamma distribution. If the underlying nucleotide substitution model is assumed to be
the GTR model, this is what is known as the GTR+� model.

In practice, the gamma distribution is approximated using m rate categories, each

with probability
1

m
, and ρi is defined to be the mean rate for category i (see Yang

1994 for details). From the formulas in Yang (1994), it is easy to see that the rates can
be expressed as analytic functions in the parameters of the gamma distribution and
consequently that the distributions from the GTR+� model are given by real analytic
functions of the parameters.

It is also common to account for invariable sites by using the GTR+I+� model,
where δ is the proportion of invariable sites. The multispecies coalescent with the
m-discrete κ-state GTR+I+� model was shown to exhibit the same flattening ranks
as the multispecies coalescent with the κ-state GTR model in Chifman and Kubatko
(2015). This is not terribly surprising as a probability distribution from the former is
the sum of m + 1 distributions each satisfying the same linear relations. Explicitly,
letting P I+� be the site pattern probability distribution from a model with invariant
sites and gamma-distributed rates,

pI+�
i1i2i3i4|(S,τ,θ)

= (1 − δ)

m
(pρ1

i1i2i3i4|(S,τ,θ)
+ · · · + pρm

i1i2i3i4|(S,τ,θ)
) + δ(zi1i2i3i4|θ ),

where p
ρ j

i1i2i3i4|(S,τ,θ)
is the probability of observing i1i2i3i4 from the multispecies

coalescent model with scaling factor ρ j and zi1i2i3i4|θ is the probability of observing
this state at an invariable site. If S has a (C, D) cherry as above, then each summand is
contained in the linear space defined by the linear relations of the form p��i3i4 − p��i4i3
in the distribution space. The sum satisfies these relations as well, so we have

rank(FlatAB|C D(P I+�
(S,τ ,θ)

)) ≤
(

κ + 1

2

)
.

For a non-equidistant tree, the same result no longer applies. If we view (S, τ ) as
an extension of (S, ξ) as we did in Theorem 3.4, we can see that

rank(FlatAB|C D(P
ρ j

(S,τ ,θ)
)) ≤

(
κ + 1

2

)
,

but the particular linear relationships satisfied by the columns of each flattening matrix
will depend on the entries of the transition matrix on the extended edge, which in turn
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depend on the ρi . However, we can obtain an analogous result for JC+I+�, where the
JC refers to the κ-state Jukes–Cantor model. When κ = 4, we prove the result for
m = 2, 3, and 4, as four is the most common number of categories used in actual
phylogenetic applications (Lio and Goldman 1998).

Theorem 3.7 Let S be a four-taxon symmetric ((A, B), (C, D)) or asymmetric
(A, (B, (C, D)) species tree with a cherry (C, D). Let L1|L2 be one of the splits
AB|C D, AC |B D, or AD|BC. For κ ≥ 4, consider the κ-state m-discrete JC+I+�

model under the coalescent with species tree S and m ≤ 4.

(1) If L1|L2 is a valid split for S, then for all P I+�
(S,τ ,θ)

from the clockless p-coalescent
with invariant sites and gamma-distributed rates,

rank(FlatL1|L2(P I+�
(S,τ ,θ)

)) ≤ κ2 −
(

κ − 1

2

)

(2) If L1|L2 is not a valid split for S, then for a generic distribution P I+�
(S,τ ,θ)

from the
clockless p-coalescent with invariant sites and gamma-distributed rates,

rank(FlatL1|L2(P I+�
(S,τ ,θ)

)) > κ2 −
(

κ − 1

2

)
.

Proof Let L1|L2 be the split AB|C D that is valid for S, and consider the distribution
P(S,τ ,θ) from the Jukes-Cantor model. Without loss of generality, suppose τC ≥ τD .
Construct the vector ξ with all entries equal to those of τ but with ξC = τD . Again,
by symmetry, we have

p��i3i4|(S,ξ ,θ) = p��i4i3|(S,ξ ,θ).

As in Theorem 3.4, we will identify the tree (S, τ ) as an extension of (S, ξ). For the
JC model, there are only two distinct entries of M = eQ(τC −ξC ). Let Mi j = a if i = j
and b otherwise. Therefore, we have

p��i3i4|(S,τ ,θ) = ap��i3i4|(S,ξ ,θ) +
∑

j �=i3

bp�� j i4|(S,ξ ,θ),

and one can check that for distinct k1, k2, k3 ∈ [κ], the distribution P|(S,τ ,θ), satisfies

p��k1k2 − p��k1k3 − p��k2k1 + p��k2k3 + p��k3k1 − p��k3k2 = 0.

We obtain such a relation for any three-element subset of [κ]. Moreover, since this
linear relation does not depend on a or b, it is satisfied by Pρi

|(S,ξ,θ)
. It is also satisfied

by the matrix for invariable sites, Z|θ , with entries given by zi1i2i3i4|θ . Hence, this
linear relation is also satisfied by any distribution from the m-discrete JC+I+� model.
Consider the

(
κ−1
2

)
relations that come from choosing three-element subsets of the

form {k1, k2, κ}. For all k1, k2 ∈ [κ − 1], exactly one of these relations involves the

123



Identifiability and Reconstructibility of Species… 427

variable p��k1k2 . Therefore, these relations are linearly independent, and so the first
claim of the theorem follows.

In (Chifman and Kubatko 2015, Theorem 1), the authors show that for all m, when
κ ≥ 4, if L1|L2 is not a valid split for S, then

rank(FlatL1|L2(P I+�
(S,τ ,θ)

)) > κ2 − κ.

When κ ≥ 5, we have

κ2 − κ ≥ κ2 −
(

κ − 1

2

)
,

which establishes our result. For κ = 4, we must produce a choice of parameters
to prove that the claim holds for m = 2, 3, and 4 and for both the symmetric and
asymmetric trees. Choosing α = β = 1, δ = 1/2, and the same continuous JC69
parameters fromTheorem 3.5 establishes the result. Code to verify these computations
is contained in the supplementary materials. ��

Since all of the parameterization functions involved are analytic, this is enough to
prove the identifiability of the unrooted topology of the species tree parameter of the
JC+I+� model. Thus, we have the following corollary.

Corollary 3.8 The unrooted topology of the species tree parameter of the clockless
coalescent, the p-coalescent, and the clockless p-coalescent models on an n-leaf tree
is generically identifiable for all n when the underlying nucleotide substitution model
is the m-discrete κ-state JC+I+� model with κ ≥ 5 and m ∈ N and with κ = 4 and
m = 2, 3, or 4.

Moreover, the parameters that we used to demonstrate that the invalid flattenings
are full rank come from an exponential distribution, which is a special case of the
gamma distribution. Therefore, the same result holds for a model where the m rates
are constructed from an exponential distribution. In fact, this also applies to a more
general variable rates model where the m rates are free parameters.

4 Conclusions

In the previous section, we have proven that the unrooted species tree parameter of
several more generalized versions of the multispecies coalescent model is generi-
cally identifiable from the site pattern probability distributions on the species trees.
Moreover, the means by which we have proven identifiability give us the necessary
framework for reconstructing the unrooted topology of the species tree from data. In
each case, we showed that we can reconstruct the unrooted quartets of the species tree
parameter if we know the distribution exactly by taking ranks of the flattening matri-
ces. Specifically, for a four-state model and generic choices of parameters, we showed
that the rank of the flattening matrix for the quartet compatible with the species tree
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will be less than or equal to 10 while the other two flattening matrices will both be
rank 16.

This gives a natural method for inferring the unrooted topology of the species from
biological data. Specifically, for each quartet, we infer the unrooted quartets of the
species tree by determining which of the three flattening matrices is closest to the set
of rank 10 matrices. The method of singular value decomposition from linear algebra
already provides a means of determining how close a matrix is to the set of matrices
of a certain rank under the Frobenius norm (Golub and Loan 2013). This is exactly the
procedure used by themethod SVDQuartets, which is already fully implemented in the
PAUP∗ software (Swofford 2016). Hence, there is strong theoretical justification for
applyingSVDQuartets for phylogenetic reconstruction evenwhen effective population
sizes vary throughout the tree or when the molecular clock does not hold.

The model presented in Sect. 2, as well as that presented in Chifman and Kubatko
(2015), describes the situation in which gene trees are randomly sampled under the
multispecies coalescent model, and then sequence data for a single site evolve along
each sampled gene tree according to one of the standard nucleotide substitution mod-
els. Data generated in this way have been termed “coalescent independent sites” Tian
and Kubatko (2016) to distinguish them from SNP data. Although coalescent inde-
pendent sites and SNP data refer to observations of single sites that are assumed to be
conditionally independent samples from the model given the species tree, SNP data
are generally biallelic, while coalescent independent sites may include three or four
nucleotides at a site, or may be constant.

The other situation in which one might wish to apply these results is to multilocus
data. Multilocus data are data in which individual genes are sampled from the species
tree under themultispecies coalescent, but for each sampled gene tree,many individual
sites are observed. Typical genes observed in phylogenomic studies range from 100
base pairs (bp) to 2000 bp in size, thoughmost are< 500 bp. The site patterns observed
within a gene are not independent observations under themodel because they share the
same gene tree, and thus it is not immediately obvious that the results presented here
apply to this case. However, consider the case in which a large sample of genes, say
W , is obtained, and for each gene, s sites are observed. Then, the flattening matrices
of site pattern counts constructed from such data will be s times the flattening matrix
of site pattern counts that would have been observed if only a single site had been
observed from each gene tree, which does not change the matrix rank. It is clear that
as W → ∞, the correct theoretical distribution will be well approximated by the
observed site pattern frequencies, and the results presented here will hold. In practice,
the genes will vary in their lengths and a more careful argument is required. We
have elsewhere carried out thorough simulation studies to show that the methods used
in SVDQuartets hold for multilocus data as well as for SNP data and for coalescent
independent sites for the originalmodel (Chifman andKubatko 2014).Weare currently
working on a simulation study to compare the effectiveness of SVDQuartets to that
of other species tree estimation methods on the models presented herein.

We note two possible criticisms of this method. The first is that, while we showed
that generically the flattening matrices for the invalid splits will be rank 16, we have no
theoretical guarantees that they are not arbitrarily close to the set of rank 10 matrices.
Therefore, we do not know a priori that this method will provide any insight with a
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finite amount of either simulated or biological data. Along the same lines, determining
that a flattening matrix is close to the set of rank 10matrices does not necessarily mean
that it is close to the set of distributions arising from a coalescent model, as the latter is
properly contained in the former.While both are valid considerations, they appear to be
academic, as SVDQuartets has already been shown to be an effective reconstruction
method on several data sets, both real and simulated (Chifman and Kubatko 2014;
Chou et al. 2015). As mentioned above, in a forthcoming paper, we will demonstrate
that SVDQuartets also works well in practice by simulating data from these modified
coalescentmodels and applying themethod to real biological data sets known to violate
the molecular clock.

In recent years, the amount of sequence data available for species tree inference
has increased rapidly, presenting significant computational challenges formostmodel-
based species tree inference methods that accommodate the coalescent process. The
SVDQuartets method is fully model based but inference using this method is much
more computationally efficient than methods that require evaluation of a likelihood
function, such as ∗BEAST Heled and Drummond (2010) and SNAPP Bryant et al.
(2012). This is because, for each quartet considered, all that is required is construction
of the three flatteningmatrices, which involves the simple task of counting site patterns
and computation of singular values from these 16×16 matrices. In addition, increases
in sequence length benefit the performance of the method (because site pattern prob-
abilities are estimated more accurately) with almost no increased computational cost.
However, increases in the number of sequences do incur a computational cost, in that
more quartets must be evaluated and because the complexity of the algorithm for
assembling the inferred quartets to form an overall species tree estimate increases.
Even with these costs, however, computations can be carried out much more rapidly
than with the likelihood-based methods referenced above. In the work presented here,
we show that the theory underlying the SVDQuartets method holds in much more
general settings than originally suggested. In particular, the method can be applied
to data that violate the molecular clock and to the case in which each population has
a distinct effective population size. Thus, this work is a significant advance that will
contribute meaningfully to the collection of methods available to infer species-level
phylogenies from phylogenomic data in very general settings.
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