
Bull Math Biol (2018) 80:2209–2241
https://doi.org/10.1007/s11538-018-0453-z

ORIGINAL ARTICLE

Structural and Practical Identifiability Analysis of Zika
Epidemiological Models

Necibe Tuncer1 · Maia Marctheva2 ·
Brian LaBarre1 · Sabrina Payoute1

Received: 31 March 2017 / Accepted: 4 June 2018 / Published online: 13 June 2018
© Society for Mathematical Biology 2018

Abstract The Zika virus (ZIKV) epidemic has caused an ongoing threat to global
health security and spurred new investigations of the virus. Use of epidemiological
models for arbovirus diseases can be a powerful tool to assist in prevention and control
of the emerging disease. In this article, we introduce six models of ZIKV, beginning
with a general vector-borne model and gradually including different transmission
routes of ZIKV. These epidemiological models use various combinations of disease
transmission (vector and direct) and infectious classes (asymptomatic and pregnant),
with addition to loss of immunity being included. The disease-induced death rate is
omitted from the models. We test the structural and practical identifiability of the
models to find whether unknown model parameters can uniquely be determined. The
models were fit to obtain time-series data of cumulative incidences and pregnant infec-
tions from the Florida Department of Health Daily Zika Update Reports. The average
relative estimation errors (AREs) were computed from the Monte Carlo simulations
to further analyze the identifiability of the models. We show that direct transmission
rates are not practically identifiable; however, fixed recovery rates improve identifia-
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bility overall. We found ARE is low for each model (only slightly higher for those that
account for a pregnant class) and help to confirm a reproduction number greater than
one at the start of the Florida epidemic. Basic reproduction number, R0, is an epi-
demiologically important threshold value which gives the number of secondary cases
generated by one infected individual in a totally susceptible population in duration of
infectiousness. Elasticity of the reproduction numbers suggests that the mosquito-to-
human ratio, mosquito life span and biting rate have the greatest potential for reducing
the reproduction number of Zika, and therefore, corresponding control measures need
to be focused on.

Keywords Zika virus · Structural and practical identifiability analysis · Parameter
estimation · Arbovirus diseases

Mathematics Subject Classification 92D30 · 92D40

1 Introduction

Zika virus (ZIKV) was first isolated in Zika Forest of Uganda in a rhesus monkey
in 1947 and then in humans in 1952 (Dick et al. 1952). Following the isolation of
the first human case, several incidences occurred in a number of countries in Africa
and Asia (Faye and Freire 2014) in the 1970s and 1980s. The first major outbreak
of Zika was recorded in the Island of Yap with 185 suspected cases in 2007 (Kind-
hauser et al. 2016). Since 2015 the geographical distribution of the Zika virus has
continued with reported cases from Brazil, Puerto Rico and most recently in Miami,
Florida. It appears that the nature of the Zika virus infections has been changing
as the virus moves from Africa to the Americas (Kindhauser et al. 2016). It was
initially classified as obscure mosquito-borne infection causing mild illness across
equatorial Africa and Asia, but, since 2007 it has been causing large outbreaks and
has become global health emergency WHO http://www.who.int/emergencies/zika-
virus/articles/one-year-outbreak/en/index1.html). Zika outbreaks have been linked
to neurological disorders including Guillain–Barre syndrome and microcephaly in
newborns born to mothers infected with Zika across the Pacific region and the Amer-
icas (WHO http://www.who.int/emergencies/zika-virus/articles/one-year-outbreak/
en/index1.html; Perkins et al. 2016).

The main route of transmission for Zika virus is through the bite of an infected
mosquito mainly from the Aedes species (Ae. aegypti and Ae. albopictus). These are
the same vectors that transmit dengue, chikungunya and yellow fever. CDC estimates
that these mosquitoes species can be found in about half of the area of the continental
US,mostly the southern states but also in the northeast (CDC2016). Local transmission
of Zika in the continental US has been detected only in Florida and Texas.1 Though
very similar to dengue and chikungunya, Zika has other routes of transmission: through
sexual contact, vertical transmission and blood infusion (see footnote 1). The virus
can survive in semen longer than in blood and can sporadically be found in the vaginal

1 http://www.cdc.gov/zika/geo/united-states.html.
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fluids (Osuna and Lim 2016). A pregnant woman can pass Zika virus to her fetus
during pregnancy. Vertical transmission of the Zika virus causes microcephaly and
other severe fetal brain defects (Mlakar et al. 2016).

As of March 2017, the USA have had symptomatic cases of Zika, 215 of them
locally acquired in Florida (see footnote 1). The local transmission of Zika in Florida
began in June 2016 and was declared resolved by the governor in December 2016.
Zika has been endemic in Puerto Rico. These incidences show that Zika is a significant
public health problem in the USA as well as the remaining Americas.

Zika has been investigated through mathematical models. Kucharski et al. (2016)
uses a standard vector–host ODE model to understand Zika transmission during the
2013–2014 outbreak of Zika in French Polynesia. The authors estimate a reproduction
number of 2.6–4.8 with an estimated 11.5% of the cases reported. The article further
estimates that 94% of the population was infected, mostly asymptomatically. Sexual
transmission alongside vector-borne transmission for Zika was first modeled in Gao
et al. (2016). Gao et al use data from Brazil, Colombia and El Salvador to estimate
the reproduction number at 2.055. The large confidence interval for R0 (0.523–6.3)
suggests that some of the parameters that comprise the reproduction number are not
identifiable. The article further estimates that about 3%of the transmissions are sexual;
however, the large CI suggests again that the parameters related to sexual transmis-
sion are not identifiable. We address this question explicitly and show that without
data on sexual transmission, parameters related to sexual transmission are not identifi-
able. On the other hand, obtaining data for sexual transmission in the context of local
transmission is very difficult since it is hard to distinguish which case is mosquito
generated and which has resulted from sexual transmission (personal communication
with Florida Department of Health). Sexual and vector-borne transmissions are also
investigated in Baca-Carrasco and Velasco-Hernandez (2016) where the authors eval-
uate the impact of sexual transmission as well as importation of cases and find that
sexual transmission impacts the magnitude of the outbreak, while migration generates
outbreaks over time, possibly with lower magnitude. Chowell et al use the general-
ized Richards model to project new cases and estimate the burden of Zika, using data
from Antioquia, Colombia (Chowell et al. 2016). One of the most serious impacts of
Zika is on newborn babies to women infected with Zika. Perkins et al. (2016) uses
mathematical models to project Zika virus infections in childbearing women in the
Americas.

The goal of this article is twofold: (1) use a number of models to estimate R0 of
the local cases in Florida of Zika outbreak in 2016 and (2) develop identifiable models
of Zika, including models that explicitly account for pregnant women. In the next
section, we introduce six models of Zika, starting from the very generic vector–host
model and incorporating one by one distinct features of Zika, such as asymptomatic
infections, sexual transmission and separate class for pregnant women. In Sect. 3, we
discuss the structural identifiability of the models. In Sect. 4, we fit the models to
the data, estimate R0 and discuss the practical identifiability of the models. In Sect.
5, we derive basic analytical results for the Zika models. Section 6 summarizes our
conclusions. We have added all the MATLAB code used in this study to https://github.
com/NecibeTuncer/ZikaODEModels.
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Table 1 Definition of the
variables in the between host
models

Variables Meaning

Sv Number of susceptible vectors

Iv Number of infected vectors

S Number of susceptible individuals

Sp Number of susceptible pregnant individuals

I Number of infected individuals

Ip Number of infected pregnant individuals

A Number of asymptomatic individuals

R Number of recovered individuals

N Total human population

Nv Total vector population

2 Epidemiological Models of the Zika Virus Infection

Zika is an epidemiologically complex disease. Though in many respects similar to
other arboviral diseases, such as dengue and Chikungunya (Lanciotti et al. 2016),
it also has many distinct features. In this section, we introduce a number of epi-
demiological models, starting from very simple and generic vector-borne model and
including gradually the more distinctive features of Zika. Since Zika rarely leads to
death (Petersen et al. 2016), we neglect the disease-induced death rate in all models.
Nonetheless, we use standard incidence. Prior research has used outbreak models for
the human population (Gao et al. 2016). We use endemic models as the Zika epidemic
has continued for nearly 2 years; estimates of reproduction numbers suggest that the
virus is endemic andWHO has put the disease on the list of continued threat diseases.2

Model 1 is a general vector-borne model, much as the ones developed by Ross and
McDonald for Malaria (Smith et al. 2012). Although Zika infection with a given strain
(lineage) is believed to offer life-long protection (Dudley et al. 2016), infections with
other strains may be possible. To capture that possibility, we include loss of immu-
nity in the models. The dependent variables in the models are listed in Table 1. The
parameter meanings of the various models are listed in Table 2.

Zika model with vector transmission only:

Model 1 (M1) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSv

dt
= �v − β I Sv

N
− μvSv,

dIv
dt

= β I Sv

N
− μv Iv,

dS

dt
= � − βv IvS

N
− μS + ωR,

dI

dt
= βv IvS

N
− (μ + γ )I,

dR

dt
= γ I − (μ + ω)R.

(1)

2 https://newsline.com/zika-virus-no-longer-international-emergency-still-threat/.
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The total human population N (t) = S(t) + I (t) + R(t) satisfies the following differ-
ential equation,

N ′ = � − μN , N (0) = S(0) + I (0) + R(0). (2)

Similarly, the total mosquito population Nv(t) = Sv(t) + Iv(t) can be determined
from the following differential equation,

N ′
v = �v − μvNv, Nv(0) = Sv(0) + Iv(0). (3)

Zika infections are often asymptomatic with an estimated 80% of the cases being
without symptoms (Petersen et al. 2016). In symptomatic individuals, clinical man-
ifestation are mild. Symptoms in non-pregnant individuals last from several days to
a week.3 To account for the asymptomatic infections, we consider a version of the
above model with asymptomatic class A:

Zika model with vector transmission and asymptomatic class:

Model 2 (M2) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSv

dt
= �v − β(I + q A)Sv

N
− μvSv,

dIv
dt

= β(I + q A)Sv

N
− μv Iv,

dS

dt
= � − βv IvS

N
− μS + ωR,

dA

dt
= (1 − φ)βv IvS

N
− (μ + γA)A,

dI

dt
= φβv IvS

N
− (μ + γ )I,

dR

dt
= γ I + γA A − (μ + ω)R,

(4)

where q is the reduction in infectivity of asymptomatic individuals andφ is the fraction
of the new infections that are symptomatic. N = S + A + I + R. Models with
asymptomatic class have also been investigated before (Chitnis et al. 2013).

As a vector-borne disease, Zika is transmitted predominantly by mosquitos. A
distinctive feature of Zika is that it can be transmitted through sexual contact.4

More recent data suggest that sexual transmissions may not be as rare as originally
thought. To account for sexual transmission, we include a direct transmission term in
Model 1:

3 http://www.cdc.gov/zika/hc-providers/preparing-for-zika/clinicalevaluationdisease.html.
4 http://www.cdc.gov/zika/transmission/sexual-transmission.html.
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Zika model with vector and direct transmissions:

Model 3 (M3) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSv

dt
= �v − β I Sv

N
− μvSv,

dIv
dt

= β I Sv

N
− μv Iv,

dS

dt
= � − βv IvS + βd I S

N
− μS + ωR,

dI

dt
= βv IvS + βd S I

N
− (μ + γ )I,

dR

dt
= γ I − (μ + ω)R.

(5)

Here, N = S + I + R. Models of vector-borne diseases with direct transmission are
not new and have been considered before (Velasco-Hernandez 1994; Wei et al. 2008).

We include the asymptomatic infectious class in the model with vector and direct
transmission.

Zika model with vector/direct transmission and asymptomatic class:

Model 4 (M4) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSv

dt
= �v − β(I + q A)Sv

N
− μvSv,

dIv
dt

= β(I + q A)Sv

N
− μv Iv,

dS

dt
= � − βv IvS + βd S(I + qA A)

N
− μS + ωR,

dA

dt
= (1 − φ)βv IvS + (1 − φ)βd S(I + qA A)

N
− (μ + γA)A,

dI

dt
= φβv IvS + φβd S(I + qA A)

N
− (μ + γ )I,

dR

dt
= γ I + γA A − (μ + ω)R,

(6)
where N = S + I + A + R.

Although Zika is a mild infection in individuals, it may be serious for pregnant
women and their unborn children. Now it is well determined that Zika can cross the
placenta and infect the fetus, particularly the brain, causing birth defects (Wu and Zuo
2016; Mlakar et al. 2016).5 CDC reports the number of pregnant women infected with
Zika,6 allowing for modeling of this class separately. We include a model of Zika
tracking separately pregnant women below. We do not include infected births because
we assume that the contribution to new infections from the newly born infected babies
is minimal.

5 https://www.cdc.gov/zika/pregnancy/.
6 http://www.cdc.gov/zika/geo/pregwomen-uscases.html.
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Table 2 Definition of the parameters in models (1), (4), (5), (6), (7)

Parameter Meaning

β Transmission rate of infection from an infected human to a susceptible vector

βv Transmission rate of infection from an infected mosquito to a susceptible human

βvp Transmission rate of infection from an infected mosquito to a susceptible pregnant human

βd Direct transmission rate of infection from an infected human to a susceptible human

βdp Direct transmission rate of infection from an infected human to a susceptible pregnant human

� Recruitment rate for human population

�v Recruitment rate for mosquito population

μ Natural death rate for human population

μv Natural death rate for mosquito population

ω The rate at which recovered individuals lose immunity

ξ The rate of becoming pregnant

1/ξp Duration of pregnancy

γ Recovery rate for infected human population

γp Recovery rate for infected pregnant human population

γA Recovery rate for asymptomatic human population

φ Proportion of symptomatic human population

q Reduction of infectivity to vectors of asymptomatic human population

qA Reduction of infectivity to humans of asymptomatic human population

m Ratio of mosquito to human population at disease-free equilibrium

Zika model with vector/direct transmission and pregnant women:

Model 5 (M5) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSv

dt
= �v − β(I + Ip)Sv

N
− μvSv,

dIv
dt

= β(I + Ip)Sv

N
− μv Iv,

dS

dt
= � + ξpSp − βv IvS + βd(I + Ip)S

N
− (μ + ξ)S + ωR,

dSp
dt

= ξ S − βvp IvSp + βdp I Sp
N

− (μ + ξp)Sp,

dI

dt
= βv IvS + βd(I + Ip)S

N
− (μ + γ )I,

dIp
dt

= βvp IvSp + βdp I Sp
N

− (μ + γp)Ip,

dR

dt
= γ I + γp Ip − (μ + ω)R.

(7)
Here, N = S + Sp + I + Ip + R. Research (Dudley et al. 2016) in monkeys suggests
that pregnant individuals are infected for longer but the infection persists at lower
level in the serummaking them on average perhaps less invective to the mosquitos. To

123



2216 N. Tuncer et al.

Table 3 Summary of Zika models presented in the paper

Model Brief Summary

M1 Vector transmission, no direct transmission, no asymptomatic class, no pregnant class

M2 Vector transmission, no direct transmission, asymptomatic class, no pregnant class

M3 Vector transmission, direct transmission, no asymptomatic class, no pregnant class

M4 Vector transmission, direct transmission, asymptomatic class, no pregnant class

M5 Vector transmission, direct transmission, no asymptomatic class, pregnant class

M6 Vector transmission, no direct transmission, no asymptomatic class, pregnant class

account for that difference, we assume distinct transmission rates for pregnant women
to mosquitoes. However, for direct transmission we assume the same transmission
rate based on the fact that direct transmission is more rare and the difference in the
transmission rates will have a small impact on the disease dynamics.

Zika model with vector transmission and pregnant women class:

Model 6 (M6) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSv

dt
= �v − β(I + Ip)Sv

N
− μvSv,

dIv
dt

= β(I + Ip)Sv

N
− μv Iv,

dS

dt
= � + ξpSp − βv IvS

N
− (μ + ξ)S + ωR,

dSp
dt

= ξ S − βvp IvSp
N

− (μ + ξp)Sp,

dI

dt
= βv IvS

N
− (μ + γ )I,

dIp
dt

= βvp IvSp
N

− (μ + γp)Ip,

dR

dt
= γ I + γp Ip − (μ + ω)R.

(8)

Here, N = S + Sp + I + Ip + R. All the models and their characteristic differences
are summarized in Table 3.

3 Structural Identifiability Analysis of the Epidemiological Models of
Zika Virus Infection

As in many applications, in this study as well the parameters of the models can-
not be directly measured by clinical studies, but can only be determined by indirect
approaches such as parameter estimation methods using time-varying incidence
reports provided by the health organizations. However, it is necessary to answer the
fundamental question of whether the mathematical model is structured to identify its
parameters from the given observations. For a well-posed parameter estimation prob-
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lem,we need to knowwhether there exists a unique set of parameters that had produced
the data. We first study the well posedness of the parameter estimation problem for
the given observations such as cumulative incidences and infected pregnant women.
A model is said to be structurally identifiable if for given large enough data sets, free
of errors, it is theoretically possible to uniquely determine the parameter values from
the observations that generated these data points. If infinite number of parameter sets
leads to the same observations, then the model is called non-identifiable. If two or
more (finite and isolated) parameter sets lead to the same observational output, the
model is called locally identifiable.

If themodel is not structurally identifiable, thenwe cannot estimate the “true values”
of the parameters. As a first step in determining the parameters, we investigate the
identifiability of the candidate models M1-M6. There are multiple ways to test for
the identifiability of a model: Taylor’s or generating series approaches, identifiability
tableaus, differential algebra approach, direct methods, implicit function approach,
profile likelihood, output sensitivities and differential geometry approaches (Chis et al.
2011; Miao et al. 2011; Raue et al. 2009; Stigter and Molenaar 2015; Villaverde et al.
2016; Meshkat et al. 2014).7 Among these methods, there is not a single method that
is applicable to all mathematical models. For comparison of these methods in terms of
applicability, computational complexity and information provided, we refer the reader
to Chis et al. (2011).

To set up the problem, without loss of generality we express the models M1 through
M6 in the following compact form

x′ = f (x(t), p) x(0) = x0, (9)

where p denotes the parameters of the system, x(t) denotes the state variables and x0
is the initial values. The observations, cumulative number of incidences and pregnant
women infected with Zika are given by the output function g(x(t), p). The definition
of the structural identifiability in the literature is given as in Miao et al. (2011).

Definition 3.1 A parameter set p is called structurally globally (or uniquely) identi-
fiable if for every q in the parameter space, the equation

g(x(t), p) = g(x(t), q) ⇐⇒ p = q .

That is, if p �= q, then g(x(t), p) �= g(x(t), q) and hence the corresponding noise-
free data are as well distinct. In other words, if any observation of the mathematical
model can only be determined by a unique set of parameters, then the model is said
to be globally (structurally) identifiable. The definition of local identifiability is given
in Miao et al. (2011) as the following.

Definition 3.2 LetN ( p) denote the neighborhood of the parameter p. The parameter
set p is called locally identifiable if for every p there exists an open neighborhood
N ( p), such that for every q ∈ N ( p) the equation

7 http://biocyb1.cs.ucla.edu/combos/.
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g(x(t), p) = g(x(t), q) ⇐⇒ p = q .

Among all the methods to test for the structural identifiability, the differential
algebra approach stands out because not only it distinguishes between local and
global identifiability, but also it reveals the parameter correlations that lead to un-
identifiability. So, if the model is not identifiable, using the parameter combinations
obtained by the differential algebra approach, it is possible to scale the model to
obtain a structurally identifiable model (Tuncer et al. 2016). Another advantage of
the differential algebra approach is that there exists a software package “Differ-
ential Algebra for Identifiability of SYstems (DAISY)” implemented in REDUCE
introduced by Bellu et al. (2007). However, the software does not perform well for
large dynamical systems as pointed out in Chis et al. (2011). We ran DAISY for
the model M1 with mass action incidence term. DAISY could not finish the com-
putations to produce an input–output equation where the output is the cumulative
number of cases. DAISY reported computational errors due to the lack of mem-
ory. Computation of input–output equation does not depend on which parameters
are fixed. We believe that the model M1, with only 5 state variables, should not be
considered a large dynamical system. In the era of connecting epidemiological models
with time-series data, it is essential to develop computer packages (implemented in
MATHEMATICA or MAPLE) to obtain structural identifiability analysis of epidemio-
logical models using differential algebra approach.

In this study, we use the Identifiability Analysis package in
MATHEMATICA to test for the local identifiability of the epidemiological models
of Zika, M1 through M6. This implementation is based on a probabilistic numerical
method of computing the rank of the identifiability (Jacobian) matrix (11) where the
matrix parameters and initial state variables are specialized to random integers. We
briefly describe the method here; for more detailed information, we refer to Karlson
et al. (2012). Let y(t) = g(x(t), p) denote the observations which had generated the
data and p be set of model parameters. The power series expansion of the observations
y(t) at the initial time t = 0 is given as

y(t) = y(0) + y′(0)t + y′′(0) t
2

2
+ . . . + yν(0)

tν

ν! + O(tν+1),

where

y(0) = g(x(0), p)

y′(0) = ∂g(x(0), p)
∂x

∂x
∂t

= L1
f g(x(0), p)

y′′(0) = L2
f g(x(0), p)

...

yν(0) = Lν
f g(x(0), p)

(10)

with L f denoting the Lie-derivative along the vector field f . Setting Y =
(y(0), y′(0), y′′(0), · · · , yν(0))T , (10) can be written in compact form, Y =
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Y(x(0), p). The inverse function theorem states that the equation Y = Y(x(0), p)
can be uniquely solved for x(0) and p if and only if the Jacobian matrix

J (x(0), p) = ∂Y(x(0), p)
∂(x(0), p)

(11)

has full rank. The Identifiability Analysis package determines the rank
of the matrix (11) by assigning random integers to model parameters and initial
state variables. The method is based on two assumptions (observations). First, this
method assumes that if a model is identifiable locally at time close to 0, then the
identifiability carries over to all times. Second, probability of obtaining the actual
rank of the matrix (11) by assigning random integers to initial state variables and
model parameters is high. We are mainly interested in estimating epidemiologically
important parameter values such as transmission and recovery rates in models M1
through M6. Thus, the parameter such as recruitment rate or natural death rates is
fixed when estimating the other parameters. Full list of fixed parameters is given in
Table 4. Identifiability Analysis states that the parameters of the models
M1 through M4 are locally identifiable from the cumulative incidence observations,
but parameters of the model M5 cannot be obtained from the cumulative incidence
observations only. For model M5, we use two data sets, cumulative incidences and
infected pregnant women, and then, the Identifiability Analysis states
that the models M5 and M6 are locally identifiable. Structural identifiability analy-
sis is necessary but not sufficient in concluding the identifiability of the parameter
estimation problem. A model that is structurally identifiable may not be identifi-
able in practice when real data with noise are considered. On the other hand, the
IdentifiabilityAnalysis tool is a numerical algorithm which relies on the
determining the identifiability at the initial time and by determining the rank of the
Jacobianmatrix randomly. Hence, we further investigate the identifiability of themod-
els M1 through M6 by Monte Carlo simulations.

4 Fitting the Epidemiological Models of Zika to Data

The observations (cumulative incidences and infected pregnant women) {yi }ni=1 are
obtained at discrete time points t1 , t2 , . . . tn of the output function g(x(t), p). We
define the statistical model by following the definition in Banks et al. (2014) as,

yi = g(x(ti ), p̂) + Ei , (12)

where p̂ denotes the true parameters that generate the observations {yi }ni=1 and Ei

are the random variables that represent the observation or measurement error which
cause the observations not fall exactly on the points g(x(ti ), p̂) of the smooth path
g(x(t), p̂). In a general setting, the measurements errors are assumed to have the
following form,

Ei = g(x(ti ), p̂)ξ εi , (13)
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where ξ ≥ 0 and εi are independent and identically distributed with mean zero and
constant variance σ 2

0 . The random variables yi have mean E(yi ) = g(x(ti ), p̂) and
variances Var(yi ) = g(x(ti ), p̂)2ξ σ 2

0 . Varying ξ allows for varying error scales in the
measurements. We use the relative error model, that is, ξ = 1 in (13), and use ordi-
nary least squares in the parameter estimation problem. For the parameter estimation
problem, we suppose that the Zika outbreak in Florida is exactly described by one of
the deterministic models M1 through M6, that is, there is no modeling error and the
expected value of the random variables εi is zero, hence E(εi ) = 0.

Parameter estimation problem in the sense of least squares is to find the “true”
parameter p̂ by solving the following optimization problem

p̂ = min
p

n∑

i=1

(yi − g(x(ti ), p))2 . (14)

4.1 Data and Parameter Values

As of November 23, 2016, there are total 4444 cases of Zika in the US, 182 of which
locally acquired. All of the locally acquired cases have been acquired in Florida, where
the vectors transmitting Zika, Aedes aegypti and Aedes albopictus can be found (see
footnote 1). We obtained time-series data of cumulative incidences from the Florida
Department of Health Daily Zika Update Reports.8 The first locally acquired Zika
case is observed on July 19, 2016 (see footnote 8). We use the time-series data of
locally inquired Zika cases from July 19, 2016, to September 29, 2016. The Daily
Zika Update Reports do not include locally acquired pregnant women cases; reports
only consider the travel-related pregnant cases. Through email communications with
FloridaDepartment ofHealth,we obtained the infectedZika pregnant cases acquired in
Florida. Based on the identifiability results of the previous section, we fit the models
in the framework to the data with the following goals: (1) to select the best model
representing the data in Florida; (2) to estimate the reproduction number of Zika in
Florida; (3) tomake short-term projections about the epidemic in Florida and its impact
on pregnant women.

Florida’s population currently is about 20 million people with life expectancy in the
USA at 79 years. We take μ = 1/(79 ∗ 365) days−1 and � = 20000000 ∗ μ people
per day. Female mosquitoes, which bite and transmit the disease, live in captivity up
to 30 days, but in the wild they often do not survive longer than 2weeks.9 We take
μv = 1/10 days−1 andwe set�v = μv toworkwith proportions ofmosquitoes, rather
than mosquito numbers. There are 2% pregnant women in the entire population on

average at any time in theUSA10 which gives a value for ξ = 0.02

0.98
μ.11 Various sources

8 http://www.floridahealth.gov/newsroom/all-articles.html.
9 https://en.wikipedia.org/wiki/Mosquito.
10 http://www.cdc.gov/nchs/data/databriefs/db136.htm.
11 http://www.cdc.gov/zika/hc-providers/pregnant-woman.html.
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Table 4 Fixed parameters in models (1), (4), (5), (6), (7), (8)

Parameter Value Range Reference Comment

� 20,000,000μ 1,950,000μ–
2,500,000μ

Population (2016) Fixed all models

�v 1/10 1/30–1/4 See footnote 9 Fixed all models

μ 1/(78.8 × 365) 1/(78.5 × 365) −
1/(79 × 365)

a Fixed all models

μv 1/10 1/30–1/4 See footnote 9 Fixed all models

ξ 7 × 10−7 10−7–10−6 See footnote 10 Used for reference

1/ξp 280 days Fixed in all models

γ 1/5 1/7–1/2 See footnote 12 Used for reference

γp 1/45 1/70–1/7 Driggers et al. (2016) Used for reference

γA 1/5 1/7–1/2 See footnote 12 Used for reference

φ 0.2 0.2–0.25 Petersen et al. (2016) Fixed in all models

q 1 0–1 Dudley et al. (2016) Fixed in all models

qA 1 0–2 Dudley et al. (2016) Fixed in all models

ω 0 0–1/100 Dudley et al. (2016) Fixed in all models

ahttp://www.cdc.gov/nchs/fastats/life-expectancy.htm

give information about the duration of Zika symptoms which last for 2–7 days.12 That
is also the typical duration of viremia (Dudley et al. 2016) in non-pregnant individuals.
Duration of viremia in pregnant individuals can last 40–50 days and up to 10 weeks
(Driggers et al. 2016).

Viremia studies in monkeys suggest that viremia levels of symptomatic and asymp-
tomatic individuals are not that different than the asymptomatic so we assume that
q ≈ 1. We also surmise that in direct transmission asymptomatic individuals may be
more infectious than symptomatic as they may not know that they are sick.

Table 4 shows a list of fixed parameters and their ranges.

4.2 Fitting the Models to the Data

We fit models (1), (4), (5), (6), the models with no pregnant classes, to the cumulative
local Zika infections in Florida, starting from July 19 to September 29, 2016. For the
optimization, we useMATLABsfminsearchbndwith both lower and upper bound
on the fitted parameters. We fit repeatedly until the error does not decrease and the
algorithm terminates because optimization tolerances have been reached. We observe
that the recovery rates typically fit at the lower bound.We fit model (7), the model with
pregnant classes, to cumulative number of local cases and cumulative number of local
pregnant Zika cases. We use similar fitting approach as with other models; however,
we only fit with lower bound (that we assume the upper bound for all parameters is
infinity). In this case, the recovery rates also fit at the lower bound. To avoid fitting γp

12 http://www.who.int/mediacentre/factsheets/zika/en/.
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Table 5 Fitted parameters in models (1), (4), (5), (6), (7), (8) models M2 and M4 have asymptomatic
classes, whereas the models M1, M3, M5 and M6 do not have asymptomatic classes

Parameter M1 M2 M3 M4 M5 M6

β 2825.0 547.6 2825.0 565.0 2617.7 2617.7

βv 100.4 519.3 100.4 501.9 91.3 91.4

βd 9.4 × 10−7 3.6 × 10−4 6.3 × 10−9

βvp 399.0 399.0

βdp 2.5 × 10−5

γ 0.1 0.1 0.1 0.1 0.1 0.1

γA 0.1 0.1

γp 0.02 0.02

R0i 1.46 1.47 1.46 1.46 1.24 1.24

at a very low value, we take a lower bound 1/50. Only epidemiological parameters
such as transmission and recovery rates in all models are estimated, and the list of fitted
parameters with their values is given in Table 5. The fitted parameters of the models
are within the same magnitude when models are compared according to having an
asymptomatic class or not.

4.3 Practical Identifiability Analysis of Zika Models

To further analyze the identifiability of the models, we perform Monte Carlo sim-
ulations which have been widely used for practical identifiability of ODE models
(Miao et al. 2011). We generate 1000 synthetic data sets using the true parameter set
p̂ and adding noise at increasing levels. The true parameter set p̂ for each model is
obtained through fitting, and the results are given in Table 5. We outline the Monte
Carlo simulations in the following steps.

(1.) Solve the epidemiological model (M1 through M6) numerically with the true
parameters p̂ and obtain the output vector g(x(t), p̂) at the discrete data time
points {ti }ni=1 .

(2.) Generate M = 1000 data sets from the statistical model (12) with a given mea-
surement error. Data sets are drawn from a normal distribution whose mean is the
output vector obtained in step (1.) and standard deviation is the σ0% of the mean.
That is, we set ξ = 1 in the error structure given in (12)

yi = g(x(ti ), p̂) + g(x(ti ), p̂)εi i = 1, 2, . . . , n,

where E(εi ) = 0 and Var(εi ) = σ 2
0 . Hence, the random variables yi have mean

E(yi ) = g(x(ti ), p̂) and variances Var(yi ) = g(x(ti ), p̂)2σ 2
0 .
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(3.) Fit the epidemiological model x′ = f (x, t, p), x(0) = x0 to each of the M
simulated data sets to estimate the parameter set p j for j = 1, 2, . . . , M . That
is,

p j = min
p

n∑

i=1

(yi − g(x(ti ), p))2 , j = 1, 2, . . . , M .

(4.) Calculate the average relative estimation error for each parameter in the set p by
Miao et al. (2011)

ARE(p(k)) = 100%
1

M

M∑

j=1

| p̂(k) − p(k)
j |

p̂(k)
,

where p(k) is the kth parameter in the set p, p̂(k) is the kth parameter in the true
parameter set p̂ and p(k)

j is the kth parameter in the set p j .
(5.) Repeat steps 1 through 5 with increasing level of noise, that is, take σ0 =

0, 1, 5, 10, 20, 30% .

We performMonte Carlo simulations by generating 1000 random data sets for each
measurement error level andfitting each data set to the epidemiologicalmodel.We then
compute the relative estimation errors (ARE) for each parameter in the epidemiological
model which gives an insight about the practical identifiability of the parameters.
When σ0 = 0, that is, when there is no noise in the data, the ARE of the parameters
of a structurally (globally) identifiable model should be 0 or very close to 0. As
the noise level in the data increases, the ARE of the model parameters increases as
well. If a parameter is not practically identifiable, then the ARE of that parameter
will be significantly high even for a reasonable level of measurement error. Some
of the parameters will be very sensitive to the noise in the data, and increasing the
measurement errors will result in significantly high AREs, and then, we claim that the
parameter is practically unidentifiable. To be specific, if the ARE of the parameter is
higher than the measurement error σ0, then we say that the parameter is practically
unidentifiable.

The average relative errors computed from the firstMonteCarlo simulations are pre-
sented in Table 6. As we see from Table 6, only the transmission rate from an infected
mosquito to a susceptible human (βv) is practically identifiable in models with vector
transmission only, that is, in models M1 and M2. When direct transmission is added to
models with vector transmission, we observe that the identifiability of βv is lost, and
none of the parameters in models M3 and M4 are identifiable. The average relative
errors of the direct transmission rate (βd ) in models with direct transmission (M3, M4
and M5) are significantly high compared with all other parameters. That is, we con-
clude that the direct transmission is not practically identifiable from time-series data
of cumulative incidences. Hence, the uncertainties in the estimates of direct transmis-
sion rate are very high in models M3, M4 and M5 (see Table 6). The uncertainties
in the parameter estimation decrease if data related to other state variables are used
in the fitting. Even though model M5 includes direct transmission, since we use both
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Table 6 Monte Carlo simulations: average relative estimation error (ARE) for parameters of the models
M1 through M6

Model M1 Model M2

σ0 (%) β (%) βv (%) γ (%) β (%) βv (%) γ (%) γA (%)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 7.7 2.2 6.3 9.3 2.2 36.0 5.9

5 67.5 10.9 49.4 74.4 10.2 79.7 55.4

10 97.9 14.8 72.6 137.4 15.3 106.9 103.7

20 115.6 18.6 88.9 181.1 19.7 128.8 140.9

30 126.4 21.7 99.0 200.3 22.6 146.3 156.3

Model M3 Model M4

σ0 (%) β (%) βv (%) βd (%) γ (%) β (%) βv (%) βd (%) γ (%) γA (%)

0 0.0 0.0 1.5e−5 0.0 0.0 0.0 0.0 0.0 0.0

1 4.7 3.7 4.4e5 4.8 17.1 4.5 2.9e3 58.0 11.7

5 27.2 21.2 3.9e6 29.0 73.2 17.4 4.8e4 58.0 61.5

10 38.4 32.1 6.4e6 42.7 131.5 21.7 5.6e4 85.3 115.2

20 43.1 44.2 9.2e6 53.4 155.7 34.2 1.7e5 135.7 138.5

30 45.4 52.6 1.1e7 59.3 200.9 36.4 1.8e5 192.7 150.7

Model M5

σ0 (%) β (%) βv (%) βd (%) βvp (%) βdp (%) γ (%) γp (%)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 1.1 0.9 3.1e4 1.2 9.0e3 1.2e−4 0.008

5 5.7 4.5 2.7e4 5.8 4.0e4 2.7e−4 0.01

10 11.6 9.0 6.4e4 11.1 7.0e4 7.8e−4 0.01

20 25.1 18.1 5.2e4 20.8 8.0e4 0.001 0.03

30 42.0 26.9 2.9e5 30.8 9.8e4 0.002 0.03

Model M6

σ0 (%) β (%) βv (%) βvp (%) γ (%) γp (%)

0 0.0 0.0 0.0 0.0 0.0

1 1.1 0.9 0.8 1.4e−10 3.0e−9

5 5.7 4.5 4.2 3.4e−10 6.4e−9

10 11.7 9.1 8.7 5.1e−10 1.1e−8

20 25.1 18.1 18.2 8.0e−10 1.3e−8

30 42.1 26.9 28.7 10.0e−10 2.1e−8

Models M1, M2, M3 and M4 are fitted to cumulative local Zika cases. Models M5 and M6 are fitted to both
cumulative local cases and pregnant infected cases

cumulative incidences and Zika infected pregnant cases while fitting this model, the
AREs of the model M5 parameters are less compared with model M3. (Both models
have direct and vector transmission; the models differ only at the pregnant classes.)
The direct transmission rates βd and βdp in model M5 are not identifiable. Comparing
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Table 7 Monte Carlo simulations: average relative estimation error (ARE) for parameters of the models
M1 through M6

M1 M2 M3

σ0 (%) β (%) βv (%) β (%) βv (%) β (%) βv (%) βd (%)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 1.1 0.8 1.1 0.7 1.8 1.3 6.2

5 5.5 4.0 5.3 3.8 9.0 6.6 20.9

10 11.2 7.9 10.8 7.5 17.9 13.2 33.5

20 23.6 15.7 22.7 15.0 36.8 26.2 40.1

30 38.8 23.5 37.1 22.5 53.2 43.0 1.1e6

M4 M5

σ0 (%) β (%) βv (%) βd (%) β (%) βv (%) βd (%) βvp (%) βdp (%)

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 2.2 2.0 7.2e3 1.1 0.9 6.4e4 1.3 1.1e4

5 13.6 9.2 3.4e4 5.7 4.5 1.2e4 4.8 1.5e4

10 23.2 14.6 5.0e4 11.6 9.0 2.9e4 10.2 3.7e4

20 34.9 23.1 7.8e4 25.1 18.0 9.0e4 20.5 7.5e4

30 62.2 31.0 1.1e5 42.0 26.9 3.7e4 30.7 7.8e4

M6

σ0 (%) β (%) βv (%) βvp (%)

0 0.0 0.0 0.0

1 1.1 0.9 0.8

5 5.7 4.5 4.3

10 11.6 9.1 8.6

20 24.1 18.1 18.3

30 42.1 26.9 28.7

Models M1, M2, M3 and M4 are fitted to cumulative local Zika cases. Models M5 and M6 are fitted to both
cumulative local cases and pregnant infected cases. The recovery rates (γ and γA) are fixed to the fitted
values given in Table 5

all the models, we see that the model M6 has the least ARE parameters. For model
M6, β has AREs up to 50% higher than σ0, but in comparison with an unidentifiable
parameter such as βd in model M5 which has ARE at 2.9× 105, it is not that high. We
conclude that ARE of β is in reasonable range and all other parameters of the model
M6 are practically identifiable from cumulative incidence and infected pregnant cases
(see Table 6).

A standard approach to increasing the identifiability of parameters, when the param-
eters of the model are not identifiable, is to fix some parameters to previously known
values, especially in the case that no other state variables are measurable. Since the
recovery rate of Zika infections can be obtained fromother sources, we perform second
Monte Carlo simulations by fixing the recovery rates to the fitted values. The AREs
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of the parameters computed for the second Monte Carlo experiment are presented in
Table 7. It is clear that fixing recovery rates decreased the AREs of all parameters in
fitting models M1, M2, M3 and M4, in the fittings where we could only fit cumulative
incidences. This process has also decreased the ARE of the unidentifiable parameter,
i.e., the direct transmission rates in all models. But the direct transmission rates remain
unidentifiable even after fixing recovery rates.

The ultimate goal in estimating the parameters of an epidemiological model is to
estimate the basic reproduction number of the infection. Since, we observe that fixing
recovery rates decreases the uncertainties in parameter estimation, we would like to
see whether this is still true in estimating the basic reproduction number. So, next we
perform the following Monte Carlo simulations.

(1.) Generate M = 2000 recovery rates (γ, γA) from a normal distribution whose
mean is the fitted value of the recovery rate, that is, μγ = 0.1, and standard
deviation is σγ = 0.1, that is,

γ j = N (μγ , σγ ) = N (0.1, 0.1) j = 1, 2, . . . , M.

Since recovery rate ranges between 2 and 15 days, we move to next step only if
γ j ≥ 0.07 for each j . If randomly chosen recovery rate is less than 0.07, then
another recovery rate is chosen from the normal distribution N (0.1, 0.1).
Similarly, generate M = 2000 recovery rates (γp) from a normal distribution
whose mean is the fitted value of the recovery rate, that is, μγp = 0.02, and
standard deviation is σγp = 0.005, that is,

γpj = N (μγp , σγp ) = N (0.02, 0.005) j = 1, 2, . . . , M.

Randomly chosen recovery rate for pregnant women from a normal distribution
with N (0.02, 0.005) puts the recovery rate in the range of 40–70 days.

(2.) Fix recovery rate(s) in the epidemiological model

x′ = f (x, t, p) x(0) = x0

to the randomly chosen value γ j in step (1.) j = 1, 2, . . . , M
(3.) For models M1, M2, M3 and M4 fit the epidemiological model x′ = f (x, t, p),

x(0) = x0 to the observed cumulative Florida cases to estimate the rest of the
parameters in p j . That is,

p j = min
p

n∑

i=1

(yi − g(x(ti ), p))2 j = 1, 2, . . . , M .

Estimate the parameters of themodelsM5 andM6 by fitting to cumulative Florida
cases and pregnant infections.

(4.) Compute the basic reproduction number, R j
0i using γ j and p j for each j .
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Table 8 Monte Carlo simulations: average relative estimation error (ARE) for basic reproduction numbers
and the parameters of the models M1−M6 when recovery rates are randomly chosen from the range given
in the literature

Model R0i (%) β (%) βv (%) βd (%) βvp (%) βdp (%)

M1 6.7 92.8 16.0 – – –

M2 6.0 77.2 13.5 – – –

M3 6.8 93.5 16.3 1.2e5 – –

M4 6.1 78.4 15.4 1.1e4 – –

M5 10.2 52.6 11.3 98.0 4.3 97.5

M6 10.2 52.6 11.3 4.3

(5.) Compute the average relative error in basic reproduction number,

ARE(R0i ) = 100%
1

M

M∑

j=1

|R j
0i − R0i |
R0i

,

where R0i is the fitted value obtained in Table 5.

Performing this third Monte Carlo simulations for model M1, we obtain the following
average relative errors (see Table 8),

ARE(R01) = 6.7% ARE(β) = 92.8% ARE(βv) = 16.0% .

That is, even though the average relative error of the transmission rate β is very
high (the estimates for β ranges from 2000 to 20000), the average relative error in
the computation of the basic reproduction number R01 is low. The computed basic
reproduction number R01 ranges between 1.25 and 1.6. Based on this Monte Carlo
simulation results, we conclude that by fixing recovery rate to any value in the range
2–15 days will result in large variations in the estimates of the transmission rate β from
an infected individual to an infectedmosquito, but the computation of the reproduction
rate will not have huge variations.

4.4 Elasticity of the Reproduction Numbers

In this section, we investigate the elasticities of the reproduction numbers. The for-
mulas for the reproduction numbers are computed in the next section. Elasticities of
R0i are shown in Fig. 1.

The elasticity of quantity Q with respect to parameter p is given by

EQ
p = ∂Q

∂p

p

Q
.

The elasticities give the percentage change in the quantity Q in response to 1% increase
in the parameter p. When EQ

p > 0 that means that Q increases with p; when EQ
p < 0
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that means that Q decreases when p increases. The elasticities are relative to the size of
the quantity and the parameter and allow us to compare the sensitivity of the quantity
to different in size parameters.

Looking through the panels in Fig. 1, we can observe common trends. (1) All repro-
duction numbers are most sensitive to the parameters β (transmission from infected
humans to susceptible mosquitoes), μv (death rate of mosquitos) and m (ratio of
mosquitos to human). The elasticitiesR0i to these parameters are approximately 1%,
that is, 1% change in the parameter results in 1% change in R0i . This observation
suggests that control measures targeted toward decreasing the mosquito/human ratio,
decreasing the mosquito life span and decreasing the biting rate are most effective in
reducing the reproduction number of Zika. (2) All reproduction numbers that depend
on direct transmission βd (βdp ) show very small sensitivities to direct transmission
parameters. For instance, the elasticity ofR03 with respect to βd is 6.4∗10−6%, which
is negligent. We surmise that the low sensitivity of the reproduction numbers to the
direct transmission parameters is due to the very small values of these parameters. On
the other hand, these low elasticities explain why even if we cannot identify the direct
transmission parameters from the given data, the estimates of the reproduction are
still quite reliable. The small sensitivities of the reproduction numbers with respect
to the direct transmission parameters imply that control measures targeted at direct
transmission have little population-level effect.

Figure 1 also suggests that the elasticities of R01 and R03 are quite similar; the
elasticities of R02 and R04 are quite similar and the elasticities of R05 and R06 are
quite similar.We continue by discussingmore carefully the elasticities ofR04 andR05.

Figure 1 panel (d) shows the elasticities of R04. One immediate observation that
can be made from Figure 1 is that R04 is most sensitive to β, βv and μv , m and q.
These are all parameters that govern the vector-borne transmission of Zika. Reducing
β or βv with 1% will reduce R04 with approximately 0.9975%. The effect of vec-
tor mortality rate and the quotient of mosquitos to humans is similar. Increasing μv

or reducing m with 1% will decrease R04 with 0.9975%. This suggests that control
measures that may reduce the vector life span or reduce the vector to human ratio
are some of the most efficient. On the other hand, the reproduction number depends
very little on the direct transmission coefficient βd . Reducing βd with 1% will reduce
R04 with only 0.00245%. One surprising observation is that the proportion of symp-
tomatic/asymptomatic individuals φ has little impact on the reproduction numberR04.
That effect may be a result of the fact that γ ≈ γA causing the terms multiplied by φ to
cancel out. Reciprocally, since (1−φ) >> φ, the sensitivity to γA is much larger than
the sensitivity to γ . This suggests that when potential treatment is available, treating
asymptomatic individuals is at least as important as treating symptomatic individuals.

Figure 1 panel (e) shows the elasticities ofR05.R05 is most sensitive to β,μv andm
where 1% increase in the parameter will lead to 1% change inR05. As before, param-
eters related to the vector-borne transmission are most influential, suggesting control
measures targeted toward reducing mosquito life span and the ratio of mosquitos to
humans. Using personal protection to prevent bites is also important control strategy.
The elasticities ofR05 with respect to transmission parameters from vector to human
are 0.29%with respect to βvp and 0.706%with respect βv . The elasticities ofR05 with
respect to recovery rates are 0.29% with respect to γp and 0.705% with respect γ .
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Fig. 1 (Color figure online) Elasticities of basic reproduction numbers of models M1 through M6. a
Elasticities of R01, b elasticities of R02, c elasticities of R03, d elasticities of R04, e elasticities of R05,
f elasticities ofR06

Even though pregnant women are fewer than the general population, the trans-
mission to them has a significant impact on the reproduction number. Moreover, the
duration of infectiousness of pregnant women γp is a very notable factor influencing
the reproduction number. This suggests that there is an urgent need of treatment strate-
gies that will reduce the duration of infectiousness in pregnant women, and these will
not only protect unborn children but also contribute to the reduction in population-level
transmission of Zika. Regarding sexual transmission, the elasticity ofR05 with respect
to βd is 1.9∗10−10% and the elasticity ofR05 with respect to βdp is 1.5∗10−7%. The
direct transmission parameters impact on R05 is minimal, perhaps because although
sexual transmission can occur, it is much more rare.13

13 https://www.cdc.gov/zika/hc-providers/clinical-guidance/sexualtransmission.html.
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5 Analysis of the Epidemiological Models of Zika Virus Infection

In this section, we provide basic analysis of the models in Sect. 2.

5.1 Analysis of Model (1)

Model M1 has disease-free equilibrium ε0M1
= (S0v , 0, S0, 0, 0) = (

�v

μv

, 0,
�

μ
, 0, 0)

which is locally and globally asymptotically stable when R01 < 1, where R01 is the
reproduction number given by

R01 = ββvm

μv(μ + γ )
,

where m = Nv/N is the ratio of mosquitos to human and Nv = �v

μv

, N = �

μ
. This

result is not hard to establish and we omit the proof. When R01 > 1, the model M1
has a unique locally stable endemic equilibrium ε∗

M1
= (S∗

v , I ∗
v , S∗, I ∗, R∗) given by,

I ∗
v = βNvi∗

(βi∗ + μv)

S∗ = �

μ

(

1 − (μ + ω + γ )i∗

μ + ω

)

i∗ = μv(R01 − 1)

βK
K = 1 + βvm

(μ + γ )

μ + ω + γ

μ + ω
,

(15)

where i∗ = I ∗/N . Substituting I ∗ in S∗ and simplifying show that S∗ > 0. This
equilibrium is also locally and globally stable (Yang et al. 2010), at least in the case
ω = 0.

5.2 Analysis of Model (4)

ModelM2 has a disease-free equilibrium ε0M2
=(S0v , 0, S0, 0, 0)=(

�v

μv

, 0,
�

μ
, 0, 0, 0)

which is locally and globally asymptotically stable when R02 < 1, where R02 is the
reproduction number given by

R02 = φββvm

μv(μ + γ )
+ (1 − φ)qββvm

μv(μ + γA)
.

The reproduction number consists of sum of two terms, the first one giving the
secondary infections of symptomatic individuals and the second one—of asymp-
tomatic individuals. This result is also not hard to establish using the Jacobian
approach. In the case R02 > 1, the model M2 has a unique endemic equilibrium
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ε∗
M2

= (S∗
v , I ∗

v , S∗, A∗, I ∗, R∗). The components of this equilibrium or their fractions
in the total human population s, i , a and r , respectively, are given by:

A∗ = (1 − φ)(μ + γ )

(μ + γA)φ
I ∗ = κ I ∗,

I ∗
v = βK1Nvi∗

(βK1i∗ + μv)
,

S∗ = �

μ

(
1 − K2i

∗) ,

i∗ = μv(R02 − 1)

βK1 + μvR02K2
,

R∗ = γ I ∗ + γA A∗

μ + ω
,

(16)

where the constants K1 and K2 are defined as follows:

K1 = 1 + κq,

K2 = μ + ω + γ

μ + ω
+ κ

μ + ω + γA

μ + ω
.

(17)

Substituting I ∗ and A∗ in S∗ and simplifying show that S∗ > 0.

5.3 Analysis of Model (5)

Models with vector-borne and direct transmission have been investigated before (Wei
et al. 2008). Model M3 has disease-free equilibrium ε0M3

= (S0v , 0, S0, 0, 0) =
(
�v

μv

, 0,
�

μ
, 0, 0) which is locally and globally asymptotically stable when R03 < 1,

where

R03 = βd

μ + γ
+ ββvm

μv(μ + γ )
.

When R03 > 1, the model M3 has a unique locally stable (Wei et al. 2008) endemic
equilibrium ε∗

M3
= (S∗

v , I ∗
v , S∗, I ∗, R∗) given by,

I ∗
v = β�vi∗

μv(βi∗ + μv)
,

S∗ = �

μ
− (μ + ω + γ )I ∗

μ + ω
.

The equilibrium i∗ can be determined uniquely from

(

1 − (μ + ω + γ )i∗

μ + ω

) (
βd

μ + γ
+ βvβ�v

Nμv(μ + γ )(βi∗ + μv)

)

− 1 = 0.
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Note that when i∗ = 0, we haveR03−1 > 0.Once i∗ is obtained, we have I ∗ = �
μ
i∗.

5.4 Analysis of Model (6)

Model M4 has a disease-free equilibrium ε0M4
= (S0v , 0, S0, 0, 0, 0) = (

�v

μv

, 0,
�

μ
,

0, 0, 0). The system has three transmitting infectious classes which leads to a full next-
generationmatrix. Alternatively, we use the Jacobian. The Jacobian has one eigenvalue
λ1 = −(μ + ω). The remaining eigenvalues are eigenvalues of the characteristic
polynomial:

0 = (μv + λ)(λ + μ + γ )(λ + μ + γA) − φβd(μv + λ)(λ + μ + γA)

− (1 − φ)qAβd(μv + λ)(λ + μ + γ ) − βmφβv(λ + μ + γA)

−βm(1 − φ)qβv(λ + μ + γ ).

(18)

This polynomial has a positive leading term; whence, if the constant term c0 < 0, the
equation has a positive root and the disease-free equilibrium is unstable. The condition
c0 < 0 is satisfied if and only if the reproduction number R04 > 1, where

R04 = βmφβv

(μ + γ )μv

+ βm(1 − φ)qβv

(μ + γA)μv

+ φβd

μ + γ
+ (1 − φ)qAβd

μ + γA
.

That implies that ifR04 > 1 the disease-free equilibrium is unstable. IfR04 < 1, then
we can rewrite the characteristic equation in the form H(λ) = 1 where

H(λ) = βmφβv

(μ + γ + λ)(μv + λ)
+ βm(1 − φ)qβv

(μ + γA + λ)(μv + λ)

+ φβd

μ + γ + λ
+ (1 − φ)qAβd

μ + γA + λ
.

Then, for λ with 
λ ≥ 0 we have |H(λ)| ≤ H(0) = R04 < 1. We conclude that if
R04 < 1 the disease-free equilibrium is locally asymptotically stable. In interpreting
the reproduction number, we notice that the first term gives the secondary infections
obtained by vector transmission generated by a single symptomatic individual; the
second term gives the secondary infections obtained by vector transmission generated
by a single asymptomatic individual; the third term gives the secondary infections
obtained by direct transmission generated by a single symptomatic individual; and the
last term gives the secondary infections obtained by direct transmission generated by
a single asymptomatic individual.

When R04 > 1, the model M4 has a unique endemic equilibrium ε∗
M4

=
(S∗

v , I ∗
v , S∗, A∗, I ∗, R∗). Dividing the last two equations, we obtain A∗ in terms of I ∗.

From the first equation, we obtain Iv in terms of i∗ where i∗ = I ∗/N and we express
S in terms of I ∗ from the equation for the total populations size:
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A∗ = κ I ∗ = (1 − φ)(μ + γ )

φ(μ + γA)
I ∗,

I ∗
v = β(1 + qκ)i∗Nv

β(1 + qκ)i∗ + μv

,

S∗ = �

μ
− K3 I

∗,

(19)

where

K3 = ω + μ + γ

ω + μ
+ κ

ω + μ + γA

ω + μ
.

I ∗ is then obtained from the following equation for i∗:

φ

μ + γ

(
βmβv(1 + qκ)

β(1 + qκ)i∗ + μv

+ βd(1 + qAκ)

)
(
1 − K3i

∗) = 1. (20)

It is not hard to see that if F(i∗) is the left-hand side of the above equation, F(0) =
R04 > 1. That says that the equation has a positive solution. On the other hand, it is
clear that F(i∗) is a decreasing function, and therefore, if a solution exists, it must be
unique.

5.5 Analysis of Model (7)

We recast the model in the following form, which has the same dynamics:

Model 5 (M5) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − βv IvS + βd(I + Ip)S

N
− (μ + ξ)S + ωR + ξpSp,

dSp
dt

= ξ S − βvp IvSp + βdp I Sp
N

− (μ + ξp)Sp,

dI

dt
= βv IvS + βd(I + Ip)S

N
− (μ + γ )I,

dIp
dt

= βvp IvSp + βdp I Sp
N

− (μ + γp)Ip,

dR

dt
= γ I + γp Ip − (μ + ω)R,

dIv
dt

= β(I + Ip)

N
(
�v

μv

− Iv) − μv Iv.

(21)
This model also has a disease-free equilibrium which always exists

ε0M5
= (S0v , 0, S0, S0p, 0, 0, 0) =

(
�v

μv

, 0,
�(μ + ξp)

μ(μ + ξ + ξp)
,

ξ

μ + ξp
S0, 0, 0, 0

)

.
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We will denote by s0 and s0p the fractions S
0/N and S0p/N given by

s0 = μ + ξp

μ + ξ + ξp
s0p = ξ

μ + ξ + ξp
.

Computing the reproduction number via the next-generation approach does not result
in a compact closed-form expression because the next-generation matrix is a full
three-dimensional matrix. We compute the reproduction number using the Jacobian.
Arranging the variables as (S, Sp, I, Ip, R, Iv), the Jacobian of the system has two
eigenvalues, λ1, λ2 with negative real parts and λ3 = −(μ + ω). The remaining three
eigenvalues satisfy the following characteristic equation:

0 = (λ + μv)(λ + μ + γp)(λ + μ + γ ) − βds
0(λ + μv)(λ + μ + γp)

−βdp s
0
pβmβvs

0 − βdp s
0
pβps

0(λ + μv)

−βvp s
0
pβm(λ + μ + γ ) − βvs

0βm(λ + μ + γp).

(22)

Since the leading termof this equation is positive, the equation has a positive eigenvalue
if the constant term c0 < 0. This inequality holds if the reproduction numberR05 > 1
where

R05 = βds0

μ + γ
+ βvs0βm

μv(μ + γ )
+ βvp s

0
pβm

μv(μ + γp)
+ βdp s

0
p

μ + γ

(
β0
d s

0

μ + γp
+ βvs0βm

μv(μ + γp)

)

withm = Nv/N . On the other hand, one can show that ifR05 < 1, then the character-
istic equation (22) does not have roots with nonnegative real part (Martcheva 2015). In
interpretingR05, notice that the first two terms give secondary infections generated by
one infected individual. The first term accounts for the secondary infections generated
by direct transmission, while the second accounts for secondary infections generated
through the vector transmission pathway. The third and fourth terms are the secondary
infections of pregnant individuals generated by one pregnant individual. The third term
accounts for secondary infections generated through vector transmission by pregnant
women. The last term is most difficult to understand. We obtain this term because
pregnant individuals do not infect directly other pregnant individuals. Thus, for one
infected pregnant woman to generate a secondary infected pregnant woman through
direct transmission one of two routes must be taken: (1) the pregnant woman infects a
non-pregnant individual though direct transmission who in turn infects another preg-
nant individual; or (2) the pregnant woman infects a vector which in turn infects
a non-pregnant individual who transmits through direct transmission to a pregnant
woman. The number of secondary cases generated through the first scenario is given
by the first term in the parenthesis, while the second scenario is given by the second
term in the parenthesis.More specifically, one pregnant individual infectsβm/(μ+γp)

vectors during her life span as infectious, which in turn infect βvs0/μv individuals,
who in turn infect βdp s

0
p/(μ + γ ) pregnant women through direct transmission.
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Fig. 2 (Color figure online) Backward bifurcation in model (7) in the case of no direct transmission.
Parameter values are as follows: μ = 1/(75 ∗ 365), � = μ/3, �v = 100000000000, μv = 1/10, ξ = 0.5,
γp = 1/40, γ = 1/5, ω is variable, βv = 0.0000005, βvp = 0.000000001, ξp = 0

Theorem 1 Assume ξp = 0 and R05 > 1. Then, model (7) has an endemic equilib-
rium. If ω = 0, then that equilibrium is unique.

The proof of the theorem is delegated to Appendix.

Theorem 2 Assume there is no direct transmission, that is,βd = βdp = 0 and ξp = 0.
Then, model (7) exhibits backward bifurcation if and only if

(
βvm

μ + γ
+ βvpm

μ + γp

ξ

μ

)
ω

μ + ω

(
γ

μ + γ

βvs0

μ + ξ
+ γp

μ + γp

βvp s
0
p

μ + ξ

)

−
(

βvm

μ + γ
+ βvpm

μ + γp

ξ

μ

)
βvs0

μ + ξ
− βvpm

μ + γp

βvp s
0
p

μ
− βvp s

0
p

μ + γp
− βvs0

μ + γ
> 0,

(23)
where m = Nv/N and Nv = �v

μv
, N = �

μ
.

The proof of the theorem is also delegated to Appendix. Figure 2 shows the back-
ward bifurcation. There are several conclusions that can be drawn from the figure and
condition (23). As Theorem 1 suggests if ω = 0 there is no backward bifurcation or
multiple equilibria. More careful examination of (23) reveals that γp = 0 or βvp = 0
there is no backward bifurcation. Figure 2 suggests that ω controls the depth of the
backward bifurcation—the larger ω, the deeper the backward bifurcation. Further-
more, we seem to need a very large value ofm to produce an example of the backward
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bifurcation. We must note that if βd , βdp �= 0 backward bifurcation may still occur,
just the necessary and sufficient condition for this to happen is more cumbersome to
derive.

6 Discussion

Investigating the necessary public health measures needs mathematical models that
are developed with available data in mind and have identifiable parameters. In this
study, we develop six ODE models of Zika, encompassing various features of the
disease, and we test them against two data sets: the cumulative number of local cases
in Florida and cumulative number of local cases in pregnant women in Florida. Our
main objectives were: (1) to compute the reproduction number of Zika in Florida, (2)
to develop identifiable models of Zika and to estimate some of the critical parameters
associated with Zika transmission.

We found that M1–M4 are structurally locally identifiable from data on cumulative
number of local cases only, while M5 and M6 are not. We found that M5 and M6
are structurally locally identifiable from data on cumulative number of local cases
and cumulative number of local cases of pregnant women in Florida (data that we
obtained courtesy of the Florida Department of Public Health). We fit all the models
to the relevant data sets using MATLAB’s fminsearchbnd routine and obtained
the fitted parameters. Models M1 through M4 give a value of R0i = 1.46. Models
M5 and M6 give reproduction number R0i = 1.24, i = 5, 6. We conclude that the
reproduction number depends on the data used but not on the model (given the same
methodology of computation).

After fitting the models and estimating the parameters, we performed practical
identifiability analysis using Monte Carlo simulations. We fit the transmission rates
and the recovery rates.Wefind that formodelM1 throughM4 only the transmission rate
fromhumans tomosquitos is practically identifiable,while the direct transmission rates
have average relative errors (AREs) of 106 for all noise levels except the zero noise.
Practical identifiability of parameters improves dramatically in M5 and M6 where we
use two data sets. In model M5 only the direct transmission rates are not practically
identifiable with AREs of 105 for noise level above 20%. Model M6 parameters are
all practically identifiable.

In this study, we have not considered amodel with all possible cases, that is, amodel
which includes vector and direct transmissions and asymptotic and pregnant classes.
This was intentional. The goal of this paper is to study the identifiability analysis of
Zikamodels.We have shown that adding asymptotic class definitely increases theARE
of the model parameters. Same is true for direct transmission. So, if we had a model
with all possible cases, then we know for sure that the model would be unidentifiable
with the current available data. If we had data available for the asymptotic and direct
transmission cases, then we would have studied the model with all possible cases.

Next, we fixed the recovery rates at their fitted values and performed Monte Carlo
simulation to understand the identifiability of the transmission rates. In this case,
the identifiability of all transmission rates in all models has improved, but the direct
transmission rates are still not identifiable in M3 and M4. In model M5, the AREs of
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the direct transmission coefficients are only 2 ∗ 102 at noise level of 30%. Since data
on direct transmission are hard to obtain in a place of local transmission of Zika, such
as Florida, inference about the direct transmission can best be made from model M5
with fixed recovery rates.

Finally, we address the impact of how we fix the recovery rates in their plausible
intervals on the value of the reproduction number and the estimates of the transmission
rates. We perform Monte Carlo simulations by randomly choosing the recovery rates
from their biologically realistic intervals, fitting the transmission rates and computing
the reproduction number of each model and its AREs. Notably, the AREs of R0i for
i = 1, . . . , 4 are around 6.5%, while AREs of R0i for i = 5, 6 are 10%. This leads
to a very small range for the reproduction number. For instance, R01 ranges between
1.25 and 1.6. There seems to be little doubt that the reproduction number of Zika in
Florida at the start of the epidemic was above one.

Elasticities of the reproduction numbers suggest that the reproduction numbers are
most sensitive to the transmission from humans to vectors, the ratio of vectors to
humans and the vector mortality rate. This means that public health measures should
focus in two main directions: (1) insecticide spraying to reduce mosquito life span and
the mosquito population; (2) education of the public how to protect themselves against
mosquito bites. Furthermore, the reproduction numbers are not sensitive at all to the
direct transmission rate. Thatmeans that controlmeasures targeting direct transmission
have little population-level impact. The low sensitivity of the reproduction number to
the direct transmission rates explains why its value has not been impacted by the
presence of direct transmission in the model.

Appendix

Here, we prove Theorem 1.

Proof Let ξp = 0. We assume that γ ≥ γp. The case γ < γp is similar. We express
all variables in terms of i + i p where i = I/N and i p = Ip/N

Iv = (i + i p)
βNv

β(i + i p) + μv

=: (i + i p) fv(i + i p)Nv.

We solve for s = S/N :

s = μ + ωγp
μ+ω

(i + i p) + ω
μ+ω

(γ − γp)i

βv Iv/N + βd(i + i p) + μ + ξ
.

Substituting in the equation for i and solving for i , we have

i = (i + i p)
(βv fvm + βd)(μ + ωγp

μ+ω
(i + i p))

(μ + γ )(βv Iv/N + βd(i + i p) + μ + ξ)(1 − g(i + i p))

=: (i + i p)G(i + i p),
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where

g(i + i p) =
ω

μ+ω
(γ − γp)(βv Iv/N + βd(i + i p))

(βv Iv/N + βd(i + i p) + μ + ξ)(μ + γ )
.

It is not hard to show that i > 0. Replacing i from the above expression in s, we can
obtain s in terms of i + i p.

s = μ + ωγp
μ+ω

(i + i p) + ω
μ+ω

(γ − γp)(i + i p)G(i + i p)

βv Iv/N + βd(i + i p) + μ + ξ
.

We express sp in terms of i + i p:

sp = ξs

βvp Iv/N + βdp (i + i p)G(i + i p) + μ
.

From here, we obtain i p in terms of i + i p:

i p = (i + i p)
βvp fvm + βdpG(i + i p)

μ + γp
sp =: (i + i p)K(i + i p).

Substituting in i+ i p and canceling i+ i p, we obtain the following equation for i+ i p:

1 = G(i + i p) + K(i + i p).

It is not hard to see that if ω = 0, the right-hand side of the above equality is a
decreasing function of i + i p that does not depend of γ − γp. Hence, in the case
ω = 0, if the above equation has a solution, it must be unique. In the general case to
see that the above equation has a solution, notice that G(0)+K(0) = R05 > 1. Next,
we show that G(1) + K(1) < 1. Some computation shows that

G(1) ≤ (μ + γp)(βv fvm + βd)

(μ + γp)(βv fvm + βd) + (μ + γ )(μ + ξ)
.

Furthermore,

s(1) ≤ (μ + γp)(μ + γ )

(μ + γp)(βv fvm + βd) + (μ + γ )(μ + ξ)
.

This gives the estimate

K(1) ≤ ξs

μ + γp
= ξ(μ + γ )

(μ + γp)(βv fvm + βd) + (μ + γ )(μ + ξ)
.
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Hence,

G(1) + K(1) ≤ (μ + γp)(βv fvm + βd) + ξ(μ + γ )

(μ + γp)(βv fvm + βd) + (μ + γ )(μ + ξ)
< 1.

We conclude that in the case R05 > 1 there must be at least one solution. �
Now we prove Theorem 2.

Proof We apply Theorem 4.1 in Castillo-Chavez and Song (2004). We denote by
f1, . . . , f6 the right-hand sides of Eq. (7) with variables ordered the same way as the
equations. We use β as a bifurcation parameter in place of φ in Theorem 4.1. It is not
hard to show that if β = β∗ where β∗ is the value that makes R05 = 1, the Jacobian
of the system has a unique zero eigenvalue and all other eigenvalues have negative
real parts. We compute the right eigenvector to obtain:

w6 = 1 w3 = βvs0

μ + γ
w4 = βvp s

0
p

μ + γp

w5 = γw3 + γpw4

μ = ω
w1 = ωw5 − βvs0

μ + ξ
w2 = ξw1 − βvp s

0
p

μ
.

(24)

Next, we compute the left eigenvector which has the following nonzero components:

v6 = 1 v3 = β∗m
μ + γ

v4 = β∗m
μ + γp

. (25)

Since only v2, v3, v6 are nonzero, we need the partial derivatives of f3, f4 and f6.
They are not hard to compute:

∂2 f3
∂S∂ Iv

= βv

N

∂2 f4
∂Sp∂ Iv

= βvp

N

∂2 f6
∂ I∂ Iv

= −β∗

N

∂2 f6
∂ Ip∂ Iv

= −β∗

N
. (26)

In addition, the only right-hand side in (21) that has nonzero derivative with respect
to β is f6. Hence, we have

∂2 f6
∂ I∂β

= m
∂2 f6
∂ Ip∂β

= m. (27)

From here, b = v6m(w3+w4) > 0. Thus, the direction of the bifurcation is controlled
by a and is a backward bifurcation if and only if a > 0 where

a = 2β∗/Nw6

(
βvm

μ + γ
w1 + βvpm

μ + γp
w2 − w2 − w3

)

,

which gives the condition in the statement of the theorem. This concludes the proof.
�
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