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Abstract A model is developed and used to study within-human malaria parasite
dynamics. The model integrates actors involved in the development–progression of
parasitemia, gametocytogenesis and mechanisms for immune response activation.
Model analyses under immune suppression reveal different dynamical behaviours
for different healthy red blood cell (HRBC) generation functions. Existence of a
threshold parameter determines conditions for HRBCs depletion. Oscillatory dynam-
ics reminiscent of malaria parasitemia are obtained. A dependence exists on the type
of recruitment function used to generate HRBCs, with complexities observed for a
more nonlinear function. An upper bound that delimits the size of feasible parasitized
steady-state solution exists for a logistic function but not a constant function. The
upper bound is completely characterized and is affected by parameters associated
with HRBCs recruitment, parasitized red blood cells generation and the release and
time-to-release of free merozoites. A stable density size for mature gametocytes, the
bridge to invertebrate hosts, is derived.
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1 Introduction and Background

Malaria remains one of the most prevalent and lethal human infections worldwide.
It is also a significant problem in many tropical areas, especially in the Sub-Saharan
African region of the world. Although, since 2000, malaria mortality rates have fallen
among all age groups, including children under five (WHO 2015), the severity of the
malaria problem is still a cause for concern. According to the WHO malaria report
(2015), about 3.2 billion people remain at risk of malaria in 2015 alone, and there was
an estimated 214 million new cases of malaria and 438,000 deaths, with 90% of cases
in the sub-Saharan African countries.

Malaria is caused by a parasite of the genus Plasmodium. Of the five major species,
Plasmodium falciparum is the most virulent and potentially lethal to humans. It is
responsible for the greatest number of deaths and clinical cases and is the most
widespread in the tropics (WHO 2015). Its infection can lead to serious complications
affecting the brain, lungs, kidneys and other organs (Kirk 2001). It is our understand-
ing that environmental factors such as sanitation; health factors including healthy
eating habits, the availability of drugs and health facilities; climatic factors including
global warming; social factors including civil disturbances, all influence the spread
of malaria. Whatever the mitigating circumstances that favour the spread of malaria
between (human) communities, the starting point for an index case is the development
of the parasitewithin its (first) host (human andmosquito pair). It is nowknown that the
malaria parasite has adapted its life cycle so that part of it is within the human host and
the other part within the mosquito host. In this manuscript, we present a mathematical
study of the within-human dynamics of the malaria parasite, taking into consideration
the fact that in order to complete its life cycle, Plasmodiummust move frommosquito
to human and then back to mosquito again (Langhorne 2006; NIAID 2010).

Many mathematical models have been proposed to study the dynamics of spread
of malaria between human and mosquito populations; see, for example, Ngonghala
et al. (2012), Ngonghala et al. (2015) and references therein. The interaction between
the malaria parasite and the human host involves a number of interactions that result
in some forms of the parasite evading the human immune system. Since the stages
of the malaria life cycle are complex, this allows the use of various immune evasion
strategies by the malaria parasite and has major implications in the development of a
vaccine formalaria endemic areas (Kirk 2001). Parasites undergo a complex life cycle:
they sexually reproduce in mosquitoes (vectors) and asexually reproduce in vertebrate
(human) hosts. Here, we are interested in themathematical study of thewithin-human–
host dynamics of Plasmodium falciparum, the most dangerous Plasmodium species.

The within-human part of the life cycle of the malaria parasite, particularly the
Plasmodium falciparum species involves three main stages (Teboh-Ewungkem et al.
2013; Weekley and Smith 2013). These are exo-erythrocyte (or pre-erythrocyte) or
liver stage, erythrocyte asexual stage (or merozoite blood stage), erythrocyte sexual
stage (or gametocyte blood stage). The exo-erythrocyte stage or liver stage starts when
sporozoites injected by an infected mosquito are carried by the circulating blood to the
human’s liver. Here, they infect liver cells, multiply develop into (Hepatic) schizonts,
which then rupture releasing a load of free merozoites into the bloodstream. In the
erythrocyte stage (within-human blood stream stage), the free merozoites invade and
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infect the red blood cells or erythrocytes, or die out naturally, or are eliminated by the
immune system. During this erythrocyte stage, the merozoites undergo simple asexual
multiplication within the red blood cell breaking down the cell’s haemoglobin into
amino acids. Eventually, some of the infected red blood cells rupture, releasing toxins
and more free merozoites into the blood stream. The free merozoites re-invade other
uninfected erythrocytes, and the blood stage cycle repeats itself over and over. This
onslaught and destruction of the red blood cell population causes anaemia and related
illnesses and is potentially fatal if the process is allowed to continue unchecked. For a
proportion of infected red blood cells, the merozoites within the cell commit towards
development of gametocytes and instead of the infected red blood cell eventually
bursting to release more merozoites; it differentiates to become gametocytes. These
are the sexual forms of the parasite that are infective to the mosquito vectors (Kaushal
et al. 1980; Talman et al. 2004). The invasion of human blood by the parasite and the
subsequent action of destruction of the red blood cells takes place in the presence of the
immune system (Bousema and Drakeley 2011; Cuomo et al. 2009; Eichner et al. 2001;
Gardiner and Trenholme 2015; Kiszewski 2010; Kuehn and Pradel 2010; Perlmann
and Troye-Blomberg 2002; Tavares 2013; Teboh-Ewungkem and Yuster 2010).

White blood cells (WBCs), also called leukocytes, are the cells of the immune sys-
tem that are involved in protecting the body against diseases and foreign invaders
in general. The normal white blood cell count in human beings is in the range
4000–11,000 white blood cells per microlitre of blood (Hollowell et al. 2005).
All the forms of defence mechanisms that the body have constitute what we refer
to here as the human’s immune system. We consider in this manuscript that the
immune system operates at two levels of performance: the innate (non-specific)
and adaptive (specific) immunity levels. The innate immune system is the first line
of defence against invading pathogens such as malaria parasites (Bousema et al.
2011; Janeway et al. 2001; Sompayrac 2015). The innate immune response mech-
anism relies on recognition of pathogens (such as the malaria parasite), as foreign
bodies, to the system. On the other hand, the adaptive level of immunity relies
on the ability of the system to switch into activity, by for example, using variable
antigen-specific (or adaptive) receptors produced as a result of gene rearrangements
and triggered by the presence or activity of the invading foreign organism. In con-
trast to innate immunity, the adaptive immune system acts as a second line of
defence which also provides protection against re-invasion to the same parasites. It
allows for a targeted response against a specific pathogen. Only vertebrates have
specific immune responses (Bousema et al. 2011). An effective adaptive immune
response normally comprises two pathways: antibody-mediated immunity and cell-
mediated immunity that come into play at different stages of the attack by the
foreign organism (Anderson et al. 1989; Aron 1988a; Augustine et al. 2009; Chiyaka
et al. 2008; Langhorne et al. 2008; Li et al. 2011; Okrinya 2015; Perlmann and
Troye-Blomberg 2002; Tumwiine et al. 2008). Here, for simplicity, we basically
refer to the adaptive immune response without reference to its pathway to activa-
tion.

One of the most complex evolutionary adaptive features of the malaria parasite is
the dynamic interaction between the parasite and the human’s immunity. The parasite’s
action of destroying the red blood cells of the human can quickly overrun the human
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system as toxins released from the parasite’s metabolism and death cells residues
accumulate leaving the human anaemic and poisoned. The onslaught during a first
malaria attack is very severe as the human’s system struggles to cope. Survival of the
human during subsequent attacks depends very strongly on surviving the first malaria
attack. It is therefore crucial that we understand the workings of the human immune
system during a malaria attack. In general, once a human being is infected, then he/she
starts developing acquired immunity (antibodies) that helps an individual to become
(immune to) better capable of coping with malaria parasite load. It is now known that
immunity to malaria is sustained by continuing exposure (Aron 1988a; Cowman et al.
2012; Cuomo et al. 2009; Gurarie et al. 2012; Perlmann and Troye-Blomberg 2002).

Mathematical models of the within-human–host dynamics of the malaria parasite
play an important role in understanding the different developmental stages including
the triggering gametocyte development as well as the interaction with the human
immune system and even the pharmaco-kinetics of malaria drugs. The literature on
within-human–host mathematical models for malaria parasite is vast (Anderson et al.
1989; Roy 1998; Bousema and Drakeley 2011; Heffernan 2011; Hetzel and Anderson
1996; Iggidr et al. 2006; Kuehn and Pradel 2010; Langhorne 2006; Perlmann and
Troye-Blomberg 2002; Tavares 2013; Tewa et al. 2012;Wahlgren and Perlmann 1999;
Weekley and Smith 2013; World Health Organisation 2010; Wongsrichanalai et al.
2007. Worthy of note are the works of Anderson, May, Gupta and others (Anderson
et al. 1989; Roy 1998; Chiyaka et al. 2008; Li et al. 2011; Hellriegel 1992; Tewa et al.
2012; Tumwiine et al. 2008) that have significantly set the stage for these class of
models. Some authors, such as Hoshen et al. (2000) and Iggidr et al. (2006), have
extended these works without including immune system, while others such as Hoshen
et al. (2000) have extended by including time-delay for the infected red blood cells.
Still others have extended by considering the compartmental age stage developments
of the infected red blood cells parasite based on a finite number of compartments,
for example Bichara et al. (2012), Chiyaka et al. (2008), Gravenor and Kwiatkowski
(1998), Gravenor and Lloyd (1998), Iggidr et al. (2006) and Wahlgren and Perlmann
(1999).

In most of the works cited above, the concept of including immature and mature
gametocytes and the interplay between the rate of generation of new healthy red
blood cells and the general state of the system have been handled either partially or
inadequately. Here, we present a comprehensive ordinary differential equation model
that captures the different stages in the development of the parasite within the human
body up to and including the generation of gametocytes and its interplay with the
adaptive and innate immune state of the human. We study how the rate of generation
of healthy red blood cells affects the state of the human host in a model system
where healthy red blood cells, infected red blood cells, free merozoites, early-stage
gametocytes, later-stagemature gametocytes, the innate and adaptive immune states of
the systems are integrated into a single dynamical system.To the best of our knowledge,
no such integrated model has been studied thus far. The rest of the manuscript is
organized as follows: In Sect. 2, we present a complete formulation of the general
model with immunity and establish the basic mathematical properties of boundedness,
existence and uniqueness of solutions of the model. In Sect. 3, we re-parameterize,
non-dimensionalizing the full model and in Sect. 4 carry out a careful and rigorous
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study of a simple immune-suppressed model wherein the rate of generation of healthy
red blood cells from the bone marrow is constant as well as the case for which the
dynamics of generation of healthy erythrocytes is based on the Verhulst–Pearl logistic
growthmodel.Wepresent a numerical simulationor themodel results basedon realistic
feasible parameter values as established in the literature, in Sect. 5 and then round up
the manuscript with a discussion and conclusion in Sect. 6.

2 The Basic Mathematical Model

In a malaria-positive patient, the condition known as a malaria attack results from a
systemof interactions between the populations ofmainly: (i) the healthy red blood cells
(HRBCs), (ii) the human’s infected red blood cells (IRBCs), (iii) the merozoites (that
infect and destroy the red blood cells), (iv) the human’s innate immune response, (v) the
human’s adaptive immune response (vi) the early-stage gametocyte and (vii) the late-
stage gametocytes. The late-stage gametocytes are the forms of the malaria parasite
that are infectious to mosquitoes. They are the transmissible forms of the parasite to
mosquitoes and thus represent an important link to be included in the mathematical
model analyses of the within-human dynamics of the malaria parasite. Thus, we shall
use the seven compartments indicated as state variables to develop our model of the
within-human–host dynamics of malaria parasite. To capture the immune response
to malaria, we shall consider two types: adaptive immune response, simply assumed
to be sustained by continuous exposure to the malarial infection, and innate immune
response, the immune response that a human has in the natural state to clear foreign
pathogens in the human’s system.The innate immune status also affects the progression
of the malarial infection within the human’s system. As noted in the introduction, the
model presented here generalizes previous works on the within-human dynamics of
malaria parasites, for example, as in Anderson et al. (1989), Chiyaka et al. (2008),
Hetzel and Anderson (1996), Li et al. (2011), Okrinya (2015) and Tewa et al. (2012).
In particular, to the best of our knowledge, our mathematical model is probably the
only ordinary differential equations within-host malaria model thus far that explicitly
incorporates the late-state gametocytes, the actual transmissible and infectious forms
of the parasites, as well as incorporates both the innate and adaptive immune effects in
the model development. Most of the previous models combine both immune effects;
however, the adaptive immune effects are only initiated due to continuous exposure
and infection to the malaria parasite. Additionally, our study highlights the importance
of the choice ofHRBCs recruitment function indicating the complexity observedwhen
a more nonlinear growth rate function is used to model the recruitment of healthy red
blood cells. Most of the prior studies used the linear recruitment function, which is
easier to analyse.

2.1 Description of the General Model Variables and Parameters

At any time t we assume that the human system comprises densities defined as follows:
Rh(t) healthy/unparasitized red blood cells (HRBCs), Rp(t) parasitized/infected red
blood cells (IRBCs), M(t) free floating merozoites, Ge(t) early/immature state game-
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Table 1 Description of state variables and their quasi-dimension

State variable Description Quasi-dimension

Rh Density of healthy red blood cells per unit volume C

Rp Density of infected red blood cells per unit volume C

M Density of merozoites per unit volume of blood M

Ge Density of immature gametocytes per unit volume G

Gl Density of mature gametocytes per unit volume G

Ei Density of innate immune system cells per unit volume I

Ea Density of adaptive immune system cells per unit volume I

C = density of cells per unit volume of blood usually red blood cells per microlitre of blood; M =
density of merozoites per unit volume of blood usually merozoites per microlitre of blood; G = density of
Gametocytes per unit volume of blood usually gametocytes per microlitre of blood; I = density of immune
system cells per unit volume, usually per microlitre of blood

tocytes, Gl(t) late/mature state gametocytes, Ea(t) adaptive immune system cells,
Ei (t) innate immune system cells. These seven types of cells interact in a specific way
and the general state of the person will depend on the concentrations of these cell types
in the system. We will adopt the following units: time is measured in days, volume
in microlitre, µl, HRBCs and IRBCs are measured in cell density per unit volume,
denoted C = Cell density ×µl−1, free floating merozoites are measured in mero-
zoite density per unit volume, denoted M = Merozoite density ×µl−1, gametocytes,
mature and immature are measured in gametocyte density per unit volume, denoted
G = gametocyte density ×µl−1, innate and adaptive immune cells are measured in
immune cell density per unit volume, denoted I = immune cells ×µl−1. Table 1
summarizes the state variables indicating their quasi-dimensions.

We now briefly describe how the equations governing the time rate of change of
each of the entities in Table 1 are constructed. A summary of the parameters used
through in the model equations is given in Table 2.

2.2 Derivation of the General Model Equations

(i) The Healthy red blood cells (HRBCs), Rh The density of healthy red blood
cells is increased when the bone marrow produces more of these cells at the
rate ψ(Rh) per healthy red blood cell per time. We assume that the healthy red
blood cells die naturally at rate μh > 0 per healthy red blood cell. In addition,
the density of healthy red blood cells is reduced when they are invaded and
parasitized by free floating merozoites through simple mass action contact with
contact parameter β1. The equation governing the healthy red blood cell density
takes the form:

dRh

dt
= Rhψ(Rh) − μh Rh − β1RhM

1 + ξ0Ea
, (1)

123



4570 W. A. Woldegerima et al.

Table 2 Description of parameters and their quasi- dimensional units

Parameter Description Quasi-dimension

β1 Mass action contact parameter between free merozoites
and healthy red blood cells. This parameter also
models the effective rate of parasitization of healthy
red blood cells by merozoites

M−1T−1

β2 Adjusted mass action contact parameter between free
merozoites and healthy red blood cells. It also models
the effective absorption rate of free merozoites by red
blood cells as the merozoites seek to enter the cells
and being cleared as free merozoites from the blood
stream

C−1T−1

β3 Mass action contact parameter between free merozoites
and infected red blood cells. It also models the
effective absorption rate of free merozoites by
infected red blood cells as the merozoites seek to enter
the cells and being cleared as free merozoites from the
blood stream

C−1T−1

� Constant recruitment rate of healthy red blood cells
from bone marrow

CT−1

μh Per capita natural death rate of healthy red blood cells T−1

μ̃h Additional death of healthy red blood cells due to
density-dependent related contact inhibition and other
limiting processes

C−1T−1

� Linear growth rate of red blood cells due to per capita
production of red blood cells from the bone marrow

T−1

μp Per capita natural linear death rate of infected
erythrocytes

T−1

μe Per capita natural linear death rate of immature
gametocytes

T−1

μl Per capita natural linear death rate of mature
gametocytes

T−1

μm Per capita natural linear death rate of freely floating
merozoites

T−1

μi Per capita natural linear death rate of innate immune
system cells

T−1

μa Per capita natural linear death rate of adaptive immune
system cells

T−1

δi Linear growth rate of innate immune system cells T−1

Ki Effective carrying capacity of the systems environment
for innate immune system cells

I

Mi Switching point for innate immune system cells below
which the innate immunity becomes ineffective. Here
0 < Mi < Ki

I
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Table 2 continued

Parameter Description Quasi-dimension

ξ0 The efficiency of the adaptive immune effectors in
inhibiting merozoite contact with red blood cells via
mass action contact

I−1

ξ1 The efficiency of the adaptive immune effectors in
inhibiting merozoite transformation in parasitized red
blood cells

I−1

ξ2 The efficiency of the adaptive immune effectors in
inhibiting maturation of early-state gametocytes

I−1

ρp Mass action contact rate between parasitized red blood
cells and innate immune system cells resulting in the
elimination of the parasitized cells

I−1T−1

ρm Mass action contact rate between free merozoites and
innate immune system cells resulting in the
elimination of the free merozoites

I−1T−1

ρg Mass action contact rate between immature gametocytes
and innate immune system cells resulting in the
elimination of the immature gametocytes

I−1T−1

ρl Mass action contact rate between mature gametocytes
and innate immune system cells resulting in the
elimination of the mature gametocytes

I−1T−1

ρa Mass action contact rate between infected red blood
cells, innate immune system cells and adaptive
immune system cells. These are additional clearances
due to the presence of adaptive immunity

I−2T−1

ρn Mass action contact rate between merozoites, innate
immune system cells and adaptive immune system
cells. These are additional clearances due to the
presence of adaptive immunity

I−2T−1

ρq Mass action contact rate between immature
gametocytes, innate immune system cells and adaptive
immune system cells. These are additional clearances
due to presence of adaptive immunity

I−2T−1

r Average number of merozoites released by each
bursting infected red blood cell

MC−1

s Average number of early-stage gametocytes arising
from one infected red blood cell

GC−1

σ σ ∈ [0, 1] is the proportion of the infected red blood
cells that differentiate towards the path to
gametocytogenesis

1

γp Rate of maturation per infected red blood cell to a point
where the IRBC either bursts to release more free
merozoites or continue differentiating towards the
gametocytogenesis path

T−1
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Table 2 continued

Parameter Description Quasi-dimension

γl Rate of maturation per immature gametocyte to mature
gametocytes

T−1

ϑ1 Linear response/production rate of innate immune
effectors due to stimulation by infected red blood cells

IC−1T−1

ϑ2 Linear response/production rate of adaptive immune
effectors due to stimulation by free merozoites

I M−1T−1

�1 Linear response/proportion rate of adaptive immune
system cells due to stimulation by parasitized red
blood cells

IC−1T−1

�2 Linear response/proportion rate of adaptive immune
system cells due to simulation by free merozoites

I M−1T−1

λ1 Mass action contact parameter between infected red
blood cells and innate immune system cells modelling
the rate of depletion of the innate immune

C−1T−1

λ2 Mass action contact parameter between free merozoites
and innate immune system cells. This parameter is
modelling the rate of depletion of the innate immunity
due to such contact

M−1T−1

θ1 Mass action contact parameter between infected red
blood cells and adaptive immune system cells. This
parameter is modelling the rate of depletion of the
adaptive immunity through mass action contact

C−1T−1

θ2 Mass action contact parameter between free merozoites
and adaptive immune system cells. This parameter is
modelling the rate of depletion of the adaptive
immunity due to the contact

M−1T−1

where ξ0 is a positive parametermeasuring the efficiency of the adaptive immune
cells Ea at prohibiting the destructionof the healthy redblood cells.As a function
of Rh , the functionψ : [0,∞) → R is assumed to have the following properties:

(1) ψ(0+) > 0, ψ(Rh) ≥ 0, ∀Rh ≥ 0,whereψ(0+) = limRh→0+ ψ(Rh). This
condition ensures that the quantity Rhψ(Rh) is non-negative and represents
the net rate of production of new Rh per time.

(2) ψ ′(Rh) < 0 ∀Rh ≥ 0. This condition ensures that ψ is a continuously differ-
entiable monotone decreasing function of its argument and that Rhψ(Rh) is
bounded above with amaximum value given by R̂hψ(R̂h), where R̂h ∈ [0,∞)

satisfies the equation ψ(R̂h) + R̂hψ
′(R̂h) = 0.

(3) limRh→+∞ ψ(Rh) ≤ ψ(Rh) < limRh→0+ ψ(Rh), ∀Rh > 0. This condition

ensures that the equation
dRh

dt
= Rhψ(Rh) − μh Rh which represents the

dynamics of healthy erythrocytes in the absence of infection has a nonzero
steady-state solution R∗

h such that R∗
h = ψ−1(μh) which is stable. Fur-

thermore, it ensures the existence of a carrying capacity K such that for
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Rh < K ,
dRh

dt
> 0 and thus the population Rh is increasing with time

and for Rh > K ,
dRh

dt
< 0 and thus Rh is decreasing with time t . There are

many choices of the function ψ which satisfies the above condition. In this
manuscript, we consider two forms (see Ngonghala et al. (2016) and a brief
discussion in “Appendix” for other function choices).
(a) ψ(Rh) = �

Rh
so that in the absence of infection and immunity, the equation

for the healthy red blood cells is modelled by the constant recruitment
linear growth model in biology.

(b) In the second instance, we consider ψ(Rh) = � − μ̃h Rh where � is the
per capita constant recruitment rate of HRBCs from bone marrow and μ̃h

is additional death rate per HRBCs when we evoke the assumption that a
self-limiting process kicks in for large densities, so that additional deaths
are possible. In this case, the dynamics ofHRBC in the absence of infection
Rhψ(Rh)−μh Rh will effectively be the logistic growth model in biology
originally proposed by Verhulst (1838) and used by Pearl (1925). We
note, however, that this form ofψ does not satisfy the positivity condition
above when Rh > �

μ̃h
, but we assume that, in this case, �

μ̃h
is sufficiently

large and continue to use the postulated form for ψ(Rh) for mathematical
tractability.

(ii) The Parasitized/Infected red blood cells (IRBC), Rp Parasitized red blood cells
are produced when free merozoites infect healthy red blood cells through mass
action contact. They die naturally with linear death rate μp per parasitized red
blood cells. The density of parasitized red blood cell reduces when the parasites
in them change course at rate γp per infected red blood cell, developing and
maturing to the point where they either burst to releasemore freemerozoites into
circulation or continue through the gametocytogenesis path towards formation
of gametocytes. In addition, specific innate and adaptive immune responses
remove infected red blood cells through mass action contact. The equation
governing time rate of change of these class of cells takes the form

dRp

dt
= β1RhM

1 + ξ0Ea
− (γp + μp)Rp − (ρp + ρa Ea)RpEi , (2)

where ρp > 0 and ρa > 0 are mass action contact terms that measure the
efficiency of the immune system to clear the system of parasitized red blood
cells.

(iii) The free Merozoites, M The density of free merozoites is increased when a
fraction (1 − σ) of the parasitized red blood cells rupture at rate γp releasing
r merozoites per bursting red blood cell. They die naturally at rate μm per
merozoite and are cleared from the system (both in the free and combined state)
by both the adaptive and innate immune system. The time rate of change for the
equation of the merozoites takes the form:

dM

dt
= rγp(1 − σ)Rp

1 + ξ1Ea
− μmM
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−
(

β2Rh

1 + ξ0Ea
+ β3Rp

1 + ξ0Ea
+ (ρm + ρn Ea)Ei

)
M, (3)

where ρm > 0, ρn > 0, β2, β3 > 0 are mass action contact terms and ξ1 is the
efficiency of the adaptive immune effectors in inhibiting merozoite transforma-
tion in parasitized red blood cells. ξo is as described earlier.

(iv) The early-state or immature gametocytes, Ge The early-state gametocytes are
produced from the fraction σ of the parasitized red blood cells that differentiate
and mature at rate γp, following the gametocytogenesis path, leading to the
production of s gametocytes per parasitized red blood cell of this type. They
die naturally at rate μe per early-stage gametocyte. The density of this type of
cells also reduces when the adaptive and innate immune system cells clear them
through mass action contact and when the early-state gametocytes mature at
rate γl to enter the late-stage gametocyte class. The time rate of change for the
equation for the early-state or immature gametocytes takes the form:

dGe

dt
= sσγp Rp

1 + ξ1Ea
− (γl + μe)Ge − (ρg + ρq Ea)EiGe, (4)

where ρg > 0, ρq > 0 are mass action contact terms and ξ1 is as described
earlier.

(v) The late-state ormatureGametocytes, Gl The late-state gametocytes are formed
when the early-state gametocytes mature at rate γl . They die naturally at rateμe

per early-state gametocyte. The density of this type of cells is also reduced when
the innate immune system cells clear them through mass action contact. The
time rate of change for the equation for the early-state or mature gametocytes
takes the form:

dGl

dt
= γlGe

1 + ξ2Ea
− μlGl − ρl EiGl , (5)

where ρl > 0 is a mass action contact term. It is assumed that the adaptive
immune system does not have an effect on the late-state gametocytes as the
these are cloaked against them.However, it is believed to play a role in inhibiting
the maturation of early-state gametocytes and the efficiency of this process is
modelled via ξ2.

(vi) The Innate Immune system, Ei The density of the innate immune system cells
is maintained by the body at a rate Hi (Ei ), where Hi : [0,∞) → R is a
continuously differentiable function of its argument. The innate immune system
is also boosted by the presence of infection in the body and is depleted as they
fight the infection since elimination of the foreign body in the system is assumed
to be done by phagocytosis. The equation for the innate immune system takes
the form

dEi

dt
= Hi (Ei ) + ϑ1Rp + ϑ2M − (

λ1Rp + λ2M
)
Ei , (6)
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where ϑ1 > 0, ϑ2 > 0, λ1 > 0 and λ2 > 0 are constant parameters as explained
in Table 2. Here, Hi : [0,∞) → R is at least C1− function. Hi (Ei ) can have
different forms, but here we present two possible cases:

(a) In the first case, Hi is be modelled by the Verhulst–Pearl logistic model

Hi (Ei ) = δi Ei

(
1 − Ei

Ki

)
, where δi > 0 is the net linear per capita growth

rate of innate immune system cells and Ki > 0 is the carrying capacity of the
environment for innate immune system cells.

(b) In the second case, Hi it ismodelledwith amodel that accounts forAllee effect,

Hi (Ei ) = δi Ei

(
1 − Ei

Ki

) (
Ei
Mi

− 1
)
, where δi and Ki retain their character as

presented in (a), but Mi > 0 is a constant switch point immune system cell
density, which is the Allee threshold density. At an innate immune density
below Mi , innate immunity ceases to be effective. So, for this switch to be
effective and meaningful, we assume that 0 < Mi < Ki .

(vii) The Adaptive Immune system, Ea We assume that the adaptive immune system
gets activated when the infection is in the system, and that it wanes over time
in the absence of infection. The rate of change for the equation for the adaptive
immunity takes the form

dEa

dt
= �1Rp + �2M − (

μa + θ1Rp + θ2M
)
Ea, (7)

where �1, �2, θ1, θ2 and μa are positive constants each of whose interpretation
is given in Table 2. It is clear in this formulation that in the absence of infec-
tion (Rp = M = 0, ∀t > 0), Ea will decay exponentially to zero with time
according to the relation Ea ∝ exp(−μat), where μa > 0 is the per capita rate
of waning of the adaptive immunity.

The system we study in this manuscript is thus the set of seven ordinary differential
equations which when collected together is the system

dRh

dt
= Rhψ(Rh) − μh Rh − β1RhM

1 + ξ0Ea
; (8)

dRp

dt
= β1RhM

1 + ξ0Ea
− (γp + μp)Rp − (ρp + ρa Ea)RpEi ; (9)

dM

dt
= rγp(1 − σ)Rp

1 + ξ1Ea
− μmM

−
(

β2Rh

1 + ξ0Ea
+ β3Rp

1 + ξ0Ea
+ (ρm + ρn Ea)Ei

)
M; (10)

dGe

dt
= sσγp Rp

1 + ξ1Ea
− (γl + μe)Ge − (ρg + ρq Ea)EiGe; (11)

dGl

dt
= γlGe

1 + ξ2Ea
− μlGl − ρl EiGl; (12)

dEi

dt
= Hi (Ei ) + ϑ1Rp + ϑ2M − (

λ1Rp + λ2M
)
Ei ; (13)
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dEa

dt
= �1Rp + �2M − (

μa + θ1Rp + θ2M
)
Ea . (14)

The system described by (8)–(14) requires a set of initial conditions to complete its
formulation. One set of initial conditions could be

Rh(0) = R0h > 0, Rp(0) = 0, M(0) = M0 ≥ 0,
Ge(0) = 0, Gl(0) = 0, Ei (0) = E0i > 0, Ea(0) = 0.

}
(15)

Figure 1 shows the flow chart of the model in the absence of immunity. In the pres-
ence of immunity, the variable components that will be affected are the parasitized red
blood cells (Rp), the free merozoites M and the early-state gametocytes (Ge), affected
by both the innate and adaptive immune systems, and the late-state gametocytes (Gl ),
affected by the innate immune system.

2.3 Invariance, Positivity, Boundedness and Uniqueness

We start by establishing that in consonance with biological reality, since all the state
variables and parameters in the system are non-negative, the solution will also remain

Fig. 1 Flow diagram showing the within-human–host dynamics of malaria parasite in the absence of
immunity. Free merozoites (M) come in contact with HRBCs (Rh ) modelled and illustrated by the function
φ1(Rh , M) = RhM , invading and infecting the HRBCs. This contact occurs at a mass action rate of β1
to produce IRBCs (Rp). During this interaction, there is loss of merozoites as they are absorbed by the
HRBCs, assumed to be at the contact rate β2 to account for the fact that more than one merozoite may
come in contact with a HRBC. The IRBCs either die naturally or mature following one of two paths at rate
γp : a fraction σ follow the asexual path maturing to eventually rupture to produce r free merozoites per
IRBC or follow the sexual path committed by the infecting merozoites to produce s early state/immature
gametocytes (Ge) gametocytes, which will further mature to produce the late-state gametocytes (Gl ). Free
merozoites can also come in contact with IRBCs to be absorbed, modelled and illustrated by the function
φ2(Rp, M) = RpM , occurring at a mass action contact rate of β3. Lastly death occurs from each parasite
state at rate μsub , where sub represents the first letter of the class variable (Color figure online)
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positive for all time. Let x = (Rh, Rp, M,Ge,Gl , Ei , Ea)
T be a column vector in

R
7, and define

S =
{
x ∈ R

7 : Rh ≥ 0, Rp ≥ 0, M ≥ 0,Ge ≥ 0,Gl ≥ 0, Ei ≥ 0, Ea ≥ 0
}

= R
7+.

We rewrite the dynamical system (8)–(14) with (15) in the form

x′ = �(x), x(0) = x0, (16)

where � : R
7 × [0,∞) −→ R

7 with �(x) = (φ1, · · · , φ7)
T (x) the vec-

tor valued function containing the RHS of the system as its components, x0 =(
R0h, R0p, M0,G0e,G0l , E0i , E0a

)T is the column vector containing the initial con-
ditions of the system, and T stands for the transpose. It is obvious that � ∈ C2, that is,
� is a twice continuously differentiable function since its components φi , 1 ≤ i ≤ 7
are rational functions of the state variables, which are hypothesized to be C2.

Theorem 1 (Positivity and positive invariance of solution) Consider system (8)–(14)
with initial conditions in (15) and under the conditions given for ψ(Rh) and Hi (Ei )

as stated in Sect. 2.2. Then, every solution of the system with initial condition in R
7+

remains in R
7+. Additionally, if x(0) ≡ 0, the solution of system (8)–(14) will remain

zero (or positively bounded depending on the form ofψ(Rh)), for all time t > 0 . That
is, R7+, is positively invariant and attracting with respect to the system. Furthermore,
the system has a forward positive solution in R7+ provided that it starts in it.

Proof See “Appendix” �
Theorem 2 (Boundedness of solution) Consider system (8)–(14) with initial condi-
tions in (15) and under the conditions for ψ(Rh) and Hi (Ei ) as stated in Sect. 2.2.
Then, every forward solution of the system in R

7+, with initial condition in R
7+, is

bounded. Moreover, the system is uniformly dissipative in R7+.

Proof See “Appendix” �
Theorem 3 (Uniqueness of Solution) The positive and bounded solution for the sys-
tem (8)–(14) whenever it exists, is unique.

Proof See “Appendix” �

3 Re-parameterization and Non-dimensionalization

In order to carry out mathematical analysis of our model, we start by scaling the
model to reduce the number of relevant parameters. The only physical dimension in
our system is that of time. But we have state variables which depend on the density
of cells and parameters which depend on cell types and parasite densities. A state
variable or parameter that measures the number of individuals of certain type has
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dimension-like quantity associated with it (Ingemar 1985). To remove the dimension-
like character on the parameters and variables, we make the following change of
variables

rh = Rh

R0
h

, rp = Rp

R0
p
, m = M

M0 , ge = Ge

G0
e
, gl = Gl

G0
l

,

ei = Ei

E0
i

, ea = Ea

E0
a
, τ = t

T 0 (17)

where R0
0, R

0
p, M

0, G0
e , G

0
l , E

0
a and E0

i are reference quantities associated with the
different cell types and T 0 is a characteristic time frame for the system. In this regard,
set

R0
h = R0

p =
{

�
μh

if ψ(Rh) = �
Rh

�−μh
μ̃h

if ψ(Rh) = � − μ̃h Rh,

M0 = rγp

β2
, G0

e = sγp R0
p

μe + γl
, G0

l = γl

μl
G0

e, E0
i = Ki , E0

a = �1R
0
pT

0

and then define the dimensionless parameter groupings

T 0 = 1

μp + γp
, β = β3

β2
, δ = δi T

0, K = Mi

Ki
,

a0 =
{

μhT 0 if ψ(Rh) = �
Rh

(� − μh)T 0 if ψ(Rh) = � − μ̃h Rh,

a1 = β1M
0T 0, a2 = β2R

0
hT

0, a3 = μmT
0,

a4 = (μe + γl)T
0, a5 = μl T

0, a6 = μaT
0,

ρ1 = ρpE
0
i T

0, ρ2 = ρa

ρp
E0
a , ρ3 = ρmE

0
i T

0,

ρ4 = ρn

ρm
E0
a , ρ5 = ρgE

0
i T

0, ρ6 = ρq

ρg
E0
a ,

ρ7 = ρl Ei T
0, p0 = ξ0E

0
a , p1 = ξ1E

0
a , p2 = ξ2E

0
a ,

b1 = ϑ1R0
pT

0

E0
i

, b2 = ϑ2M0

ϑ1R0
p
,

b3 = �2M0

�1R0
p
, c1 = λ1R

0
pT

0, c2 = λ2M0

λ1R0
p
,

c3 = θ1R
0
PT

0, c4 = θ2M0

θ1R0
p
. (18)

This leads to the scaled system

drh
dτ

= a0g(rh) − a1mrh
1 + p0ea

, (19)
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drp
dτ

= a1mrh
1 + p0ea

− rp − ρ1(1 + ρ2ea)rpei , (20)

dm

dτ
= a2

[
(1 − σ)rp
1 + p1ea

− m

(
rh

1 + p0ea
+ βrp

1 + p0ea

)]

−a3m − ρ3(1 + ρ4ea)eim, (21)
dge
dτ

= a4

[
σrp

1 + p1ea
− ge

]
− ρ5(1 + ρ6ea)ei ge, (22)

dgl
dτ

= a5

[
ge

1 + p2ea
− gl

]
− ρ7ei gl , (23)

dei
dτ

= h(ei ) + b1(rp + b2m) − c1(rp + c2m)ei , (24)

dea
dτ

= rp + b3m − a6ea − c3(rp + c4m)ea, (25)

where

g(rh) =
{
1 − rh if ψ(Rh) = �

Rh

rh(1 − rh) if ψ(Rh) = � − μ̃h Rh

)
, (26)

h(ei ) =
⎧⎨
⎩

δei (1 − ei ) if Hi (Ei ) = δi Ei

(
1 − Ei

Ki

)
δei (1 − ei )(

ei
K − 1) if Hi (Ei ) = δi Ei

(
1 − Ei

Ki

) (
Ei
Mi

− 1
) (27)

From the definition of the parameters (Table 2), 0 < Mi < Ki ⇒ 0 < K < 1, so that
in the second case of (27), K is the innate immunity threshold below which the the
innate immune effect becomes less effective. It is worth noting that to account for the
reduced elimination of IRBCs by immune cells Ei and Ea , compared to their effect on
free floating merozoites (Okrinya 2015), we should have: �1 ≤ �2, θ1 ≤ θ2, ϑ1 ≤ ϑ2
and λ1 ≤ λ2.

4 Model Analysis Under Immunity Suppression

In this section, we present the mathematical analysis of our model when both the
innate and adaptive immunity are suppressed. We believe that to understand the role
immunity plays on the within human–host Plasmodium falciparum dynamics, it is
important to first understand how the function choice used to model recruitment of
HRBCs impacts the model dynamics. Thus, we shall attempt an analysis subject to
simplifications whereby in system (19)–(25), ei = ea = 0, that is, when immunity
is suppressed, and for two choice functions for the net rate of production of HRBCs,
given by the scaled function g(rh) and as defined by (26). With this simplification,
system (19)–(25) reduces to the system,

drh
dτ

= a0g(rh) − a1mrh, (28)

drp
dτ

= a1mrh − rp, (29)
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dm

dτ
= a2

[
(1 − σ)rp − m

(
rh + βrp

)]− a3m, (30)

dge
dτ

= a4
[
σrp − ge

]
, (31)

dgl
dτ

= a5 [ge − gl ] , (32)

where the scaled parameters are as described in (18). For this simplified system,
theorems 1, 2 and 3 still hold, with the bounds obtained by setting ei = ea = 0.

4.1 Parameters and Relative Sizes of the Scaled Parameters

Values used to quantify the parameters in Table 2 that pertains to the system (28)–(32)
are either obtained from the literature or estimated using published biological infor-
mation about the within-host malaria parasite dynamics. In particular, it is reported
that the maximal natural life expectancy of human HRBCs is 120 days with very
slight variations reported (Gottlieb et al. 2012; Sackmann 1995; Shemin and Ritten-
berg 1946). Thus, the per capita natural death rate of HRBCs, μh , is the reciprocal
1/120 per day. This value was also used in Anderson et al. (1989) and Li et al. (2011).
Note, however, that a recent study (An et al. 2016) used a mathematical model to
estimate this life span of HRBCs in humans for different age groups and gender, and
they reported a range of 100–133 for humans aged 14 years and older. The range was
lower, 54–85 days for children under 14 years (An et al. 2016).

IRBCs, on the other hand, change forms as the parasites in themmature, undergoing
schizogony following the path to its immediate demise via the rupture and release of
free floating merozoites or the path towards gametocyte formation. This rate γp is the
reciprocal of the time period of schizogony and is faster (see Ginsburg and Hoshen
(2002)) than the per capita natural death rate of HRBCs, i.e.μh < γp. In particular, the
schizogony time frame 1/γp takes about 48–72h (i.e. ≈2–3 days), (Anderson et al.
1989; Baron 1996; Hoffman and Crutcher 2017; Ginsburg and Stein 1987) giving
a range of 0.33–0.5 for γp. The process of schizogony ends with the release of r
merozoites per bursting IRBC, where r has been reported (see Hetzel and Anderson
(1996) and McKenzie and Bossert (1997)) to be in the range 8–32 for plasmodium
falciparum, with a value of 36 also reported (Hoffman and Crutcher 2017).

Although most deaths of IRBCs that do not follow the path to gametocytogenesis
are due to the rupture and release of merozoites, we assume here that any that do not
rupture nor transform to immature or early-state gametocytes will be removed at the
rate μp, assumed to be of the same order of magnitude as μh , if not slightly bigger
(a value of 0.055 was cited in Okrinya (2015)), due to its parasitized state. Thus,
μh ≤ μp ≤ μp + γp. Next, Plasmodium falciparum free floating merozoites have a
short life-span of less than 30 minutes (Hetzel and Anderson 1996; Talman et al. 2004
with other authors giving less than 20 minutes (Anderson et al. 1989). Thus, μm , the
per capita linear death rate falls approximately in the range 48–72 per day. In terms
of the scaled parameters (see Eq. (18)), we see that a3 = μmT 0 = μm

μp+γp
> 1.
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The recruitment parameters� and� are particular to the form of birth rate function
used. For a constant recruitment rate of HRBCs from the bonemarrow, Rhψ(Rh) = �

and the dynamics of theHRBCpopulation in the absence of parasitemia ismodelled by

the constant recruitment linear death model
dRh

dt
= Rhψ(Rh)−μh Rh = �−μh Rh .

Values for � are estimated to be in the order of 104 − 107µL, estimated as follows:
the number of new erythrocytes produced per second in a human is approximately
2.4 million (yielding 2.4 × 106 × 24 × 3600 per day) (Sackmann 1995). An adult
human at about 150 lb has a volume of blood of about 4.5–5 litres, and this value
depends on the gender and increases with weight. (Blood volume can be calculated
using MedScape Blood volume Calculator.) This volume can go as low as about 1.47
litres for a 50 lb female. Thus, a range of 4 × 104 − 6 × 107 cells per µL per day
for adults, as cited in Bianconi et al. (2013), Hetzel and Anderson (1996) and Li et al.
(2011), is not unreasonable. However, a more reasonable range in children should be
reduced by about 30%.

For a density-dependent growth function, Rhψ(Rh) = (� − μ̃h Rh)Rh . In this
case, the HRBC population dynamics in the absence of parasitemia is modelled by

the logistic growth model
dRh

dt
= Rhψ(Rh) − μh Rh = (� − μh)Rh − μ̃h R2

h , where

� is the per capita constant recruitment rate of HRBCs from bone marrow and μ̃h

is additional death rate per HRBCs when the assumption that a self-limiting process
kicks in for large densities is evoked, so that additional deaths are possible (see Landaw
(1987) andWillekens et al. (2008).The size of the limitingHRBCpopulation is (�−μh )

μ̃h
.

We estimate the recruitment term �−μh by considering the time period for a healthy
adult person to replenish their blood after a blood donation. Based on the literature,
when an adult donates blood the amount given is a pint representing about 10% of the
individual’s total blood volume (Brookhaven 2017). Most of the composition of blood
dran from a donor is water with about just a third red blood cells. Iron is also lost in
the process. Assuming a donor adheres to the guidelines of drinking plenty of fluids
after a blood donation, it takes about a day to replenish the lost water but requires
about 3 to 4 weeks to replace the lost blood and about 8 weeks to replace the iron lost
(Brookhaven 2017). Thus, we estimate that the time from donation to full recovery is
anywhere from a day to 66 days though a more reasonable time frame should be from
about 2 days to 28 days. We estimate a baseline value of 4 days, to capture our guess
that the initial replenishment period for the blood, after the water has been replenished,
should be faster saturating as the time of 28 days is approached. Thus, based on these
estimates, we estimate the rate � − μh to be in the range 1

28 − 1
2 (yielding 0.036–0.5

per day). The maximal red blood cell count is of the order of 106 − 107 cells per
µL of blood [estimated from the total which is of the order of 1012 − 1013 in the
entire blood volume of about 4.5–5 litres) (Bianconi et al. 2013; Sackmann 1995)].1

Using this as an estimate for the limiting HRBC population size, (�−μh)
μ̃h

, we see that

3.6 × 10−9 − 5.0 × 10−7 is an estimated range for μ̃h .

1 Note that the estimate in Bianconi et al. (2013) was for total cell count. However, the given range can be
deduced based on the percentage of cells that are HRBCs.
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Based on the above discussion, we now provide an estimate for the size of the scaled
parameter a0, which will depend on the non-dimensional growth function g(rh). For
the linear growth function, g(rh) = (1 − rh) with a0 = μhT 0 = μh

μp+γp
< 1 since

μh ≤ μp < μp + γp. For the logistic growth function, g(rh) = rh(1 − rh) with
a0 = (�−μh)T 0 = �−μh

μp+γp
. For this case, the value of a0 could be less than or greater

than unity depending on the net recruitment rate or HRBCs and so we can only state
that a0 > 0.

As earliermentioned, some IRBCs do not rupture but continue the gametocytogene-
sis path, obligating the continuation of themalaria parasite life cycle. The proportion of
merozoites that commit to gametocytes via gametocytogenesis,σ , ismuch smaller than
the proportion that continue the schizogony path. Proportions of less than 10% (Josling
and Llinás 2015; Julius et al. 2017) have been reported with a value of 6.4×10−3 used
in Okrinya (2015). Gametocyte development is within an erythrocyte and erythrocytes
that have male or females present are the potential contributors to the parasite forms
in the mosquitoes after fertilization, if ingested by the mosquito (Teboh-Ewungkem
and Wang 2012; Teboh-Ewungkem and Yuster 2010, 2016). The number of mature
gametocytes, s, per infected red blood cell is either 0 or 1.

Thematuration period forPlasmodium falciparum gametocyte takes approximately
10−12 days (Josling andLlinás 2015; Julius et al. 2017; Sinden1982).Webreak this up
to account for early-state gametocytes (where the differentiation of state commences
post the schizogony period, so stages II or III–IV) and the late-state gametocytes (stage
V). Based on the chart in Bousema et al. (2011) and Talman et al. (2004), we assume
that 1/γl is the maturation time frame from the period after schizogony to the mature
state gametocytes, and we approximate this in the range 3–9 days and thus a range of
0.11–0.33 for γl . We note that this rate will depend on other intrinsic human factors.
However, the smaller the rate, the longer it takes for gametocytes to mature, the better
for control as gametocytes are the transmissible forms of the malaria parasite and a
delay in the formation of these transmissible forms (the mature forms) translates to
their inaccessibility and minimizes the chances of transmission.

The half-life for mature gametocytes is 2.4 days which can be used to estimate the
death rate of mature gametocytes μl , as 0.28 per day. However, some gametocytes
have been known to stay as long as four weeks in the bloodstream (Talman et al. 2004).
In Okrinya (2015), a value of 0.02 per day was utilized; thus, a range of 0.02–0.28 per
day for μl would be assumed. For early-state gametocytes, most of their loss comes
from transformation into mature state gametocytes. However, we assume, here, that
those that do not fully transform can be removed at a rate of maximum order as that
mature state gametocytes. Given the size of μm , it is clear that μe < μm , μl < μm .
Thus, a4 = (μe + γl)T 0 = μe+γl

μp+γp
< a3 and a5 = μl T 0 = μl

μp+γp
< a3.

The parameters with minimal experimental measurements and information are the
mass action contact rates β1, β2, β3. The rate β1 models the effective parasitization of
healthy red blood cells by merozoites. The size of its value determines the parasite’s
ability to invade and infect HRBCs, an obligate part of the parasites life cycle. It would
play a significant role in initiating an immune response. Values for β1 under immune
suppression were estimated using a rat model for the parasite Plasmodium berghei
in Hetzel and Anderson (1996) was 2 × 10−5µL per cell per day. (The data were
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reported in millilitres.) We do not expect these estimates to be same in humans and for
Plasmodium falciparum parasite. However, it gives an idea of the order of magnitude
of the contact rate. In Okrinya (2015), a value of 4.9 × 10−6µL per cell per day was
used. Starting with this value, we will consider rates much higher and much less to
ensure that the parasite ratios are of the right orders observed in vivo. Moreover, small
values of β1 are desirable for control purposes as they determine the parasite’s ability
to invade HRBCs. Thus, the effect of small values will be investigated as well.

As merozoites invade HRBCs, they are absorbed in the process as they seek to enter
the cell, and thus cleared by the bloodstream in the process. We model this by the rate
β2. In Okrinya (2015) and Tewa et al. (2012), β1 = β2. Here, however, we assume
that this rate is at most β1, to account for the possibility of a reduction in absorption
of free merozoites during the invasion of HRBCs, which may be a result of immune
response. For the immune-suppressed model, we will consider that they are the same.
Additionally, as in Hetzel and Anderson (1996) and Tewa et al. (2012) we assume that
IRBCs can also absorb free merozoites; however, one would expect this rate to be no
more than the rate β2 as this is not an evolutionary productive way for the malaria
parasite to ensure the successful completion of its life cycle. Thus, β3 ≤ β2 ≤ β1
which account for a possibly smaller absorption effect, smaller by IRBCs compared
to HRBCs, than parasitization contact.

From the scaling (18), we see that a1 = β1M0T 0 = β1rγp
β2(μp+γp)

<
β1
β2
r , which gives

an upper bound for a1. Since β3 ≤ β2 ≤ β1, we can deduce that β = β3
β2

≤ 1. Next,

the scaled parameter a2 = β2R0
hT

0 takes two forms depending on the choice of the

birth rate g(rh). For g(rh) = (1− rh), a2 = β2R0
hT

0 = β2�
μh(μp+γp)

> 0. However, for

g(rh) = rh(1 − rh), a2 = β2R0
hT

0 = β2(�−μh)
μ̃h(μp+γp)

> 0.
In summary, we have that

a0 =
{

μh
μp+γp

< 1 if g(rh) = 1 − rh
�−μh
μp+γp

> 0 if g(rh) = (1 − rh) rh
, 0 ≤ a1 <

β1

β2
r, a2 > 0, a3 > 1, 0 < a4, a5 < a3.

(33)
Table 3 gives the values and range of values of the parameters used in the immune-

suppressed model simulations.
In terms of the scaling (18), the scaled time 1

μp+γp
is the average life of a para-

sitized red blood cell until natural death or transformation to early-state gametocytes
or rupture to release free floating merozoites. From a control perspective, if the burst-
ing rate of IRBCs γp is greater than the per capita death rate μp, then IRBCs will
burst releasing merozoites before they can be cleared, ensuring the continuation of
parasitemia detrimental to patients with naive-immunity. However, if this fails, the
propensity for the IRBCs to die before bursting is higher, a desirable outcome for a
patient. Thus, for some parameter choices for the other variables, ifμp < γp we could
control parasitemia and if μp > γp, then we would have persistence of parasitemia.
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4.2 Existence and Stability of Steady-State Solutions

We now examine the different special cases of the model for existence and stability of
steady-state solutions.

4.2.1 Existence of Steady States

Theorem 4 The immune-suppressed system described by the scaled Eqs. (28)–(32)
has at least one steady-state solutionwhose existence, depending on its nature, depends
on the size of a threshold parameter R0 = a1a2(1−σ)

a2+a3
. In particular,

1. for g(rh) = 1− rh, the system has a merozoite-free (or parasite-free) steady-state
solution x p f = (1, 0, 0, 0, 0), which always exists for all values of R0, and a
non-trivial parasitized steady state, xe = (r∗

h , r∗
p,m

∗, g∗
e , g

∗
l ) ∈ R

5+, which only
exists for R0 > 1.

2. for g(rh) = rh(1 − rh), the system has a trivial steady-state solution x0 =
(0, 0, 0, 0, 0), and a merozoite-free (or parasite-free) steady-state solution x p f =
(1, 0, 0, 0, 0), both of which always coexists for all values of R0, in addition to
either zero, one or at most two positive merozoite steady-state solutions (m∗) that
may result in either zero or one real positive parasitized steady-state solution (xe)
depending on the size of R0 and

0 < m∗ <
a0
a1

so that 0 < r∗
h < 1. (34)

In particular,
(a) if R0 = 1 there is a unique real positive merozoite steady-state solution for

m∗, but it does not yield a real positive parasitized equilibrium solution within
the bounds (34);

(b) if R0 < 1 there is a unique real positive merozoite steady state solution for
m∗, but it does not yield a real positive parasitized equilibrium solution within
the bounds (34);

(c) if R0 > 1, there are two real positive merozoite steady-state solutions for m∗,
but only one leads to a unique real positive parasitized equilibrium solution
within the bounds (34).

The non-trivial positive parasitized steady state, when it exists, also always coexists
with the trivial and parasite-free steady states.

Proof Let (r∗
h , r∗

p,m
∗, g∗

e , g
∗
l ) be a steady-state solution. Then, their values are

obtained by solving the algebraic equations obtained by setting the right hand side
of (28)–(32) to zero. Now, we have the following cases:
(i) g(rh) = 1 − rh . In this case, we have on solving the algebraic equations that

r∗
h (m∗) = a0

a0 + a1m∗ , r∗
p(m

∗) = a1m
∗r∗

h (m∗),

g∗
e (m

∗) = σr∗
p(m

∗), g∗
l (m

∗) = g∗
e (m

∗). (35)
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Substituting these in (30), and rearranging we have

m∗ [a0(a2 + a3)(R0 − 1) − a1(a3 + βa0a2)m∗]
a0 + a1m∗ = 0

leading to the two solutions

m∗ = 0 or m∗ = a0(a2 + a3)(R0 − 1)

a1(a3 + βa0a2)
, (36)

where

R0 = a1a2(1 − σ)

a2 + a3
. (37)

Observe that the nonzero solution for m∗ in (36) exists and is positive only when
R0 > 1 and that when R0 ≤ 1 the only steady-state solution for which each of the
variables in (35) is non-negative is the parasite-free solution (r∗

h , r∗
p,m

∗, g∗
e , g

∗
l ) =

x p f = (1, 0, 0, 0, 0). Moreover, when R0 > 1, a steady state solution xe =
(r∗

h , r∗
p,m

∗, g∗
e , g

∗
l ), for which all the state variables are positive is given by (35)

with explicit form obtained by substituting m∗ given in (36) into Eq. (35) yielding

r∗
h = a3 + βa0a2

a3 + βa0a2 + (a2 + a3)(R0 − 1)
, r∗

p = a0(a2 + a3)(R0 − 1)

a3 + βa0a2 + (a2 + a3)(R0 − 1)
,

g∗
e = g∗

l = σr∗
p = σa0(a2 + a3)(R0 − 1)

a3 + βa0a2 + (a2 + a3)(R0 − 1)
. (38)

This establishes the proof of the first part of the theorem.
(ii) g(rh) = rh(1 − rh). In this case, the algebraic equations are no longer linear

functions, but the steady-state solution, x0 = (0, 0, 0, 0, 0), that is the steady state
where both the merozoite and red blood cell densities are at the trivial state and the
merozoite-free or disease-free steady state, x p f = (1, 0, 0, 0, 0) are easily obtained.
The steady-state solution,where both themerozoite and healthy red blood cell densities
are nonzero, denoted by xe = (r∗

h , r∗
p,m

∗, g∗
e , g

∗
l ) is now defined by

r∗
h (m∗) = a0 − a1m∗

a0
, r∗

p(m
∗) = a1m

∗r∗
h (m∗), g∗

l (m
∗) = g∗

e (m
∗) = σr∗

p(m
∗),

(39)

where m∗ is the positive solution of the quadratic equation

m∗2 − C1m
∗ + C0 = 0. (40)

Solving Eq. (40) yields two possible solutions, m∗
1 and m∗

2, of m
∗, defined as

m∗
1 = 1

2

(
C1 −

√
C2
1 − 4C0

)
, and m∗

2 = 1

2

(
C1 +

√
C2
1 − 4C0

)
(41)
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where

C1 = a2 (a0β + (R0 − 1)) + a3R0

a1a2β
, C0 = a0 (a2 + a3) (R0 − 1)

a21a2β
, (42)

with R0 as defined in (36). For any R0 value, the solutions of (41), m∗
1,m

∗
2 could

produce zero, one or two positive real solutions depending on whether C2
1 − 4C0 ≥ 0

or not. Observe that

C2
1 − 4C0 = D2

(
R2
0 − D1R0 + D0

)
= D2

((
R0 − D1

2

)2

− D2
1 − 4D0

4

)
,

(43)

where D0 = a2
(
a2(a0β+1)2+4a0a3β

)
(a2+a3)2

> 0, D1 = 2a2(a0β+1)
a2+a3

> 0, D2 = (a2+a3)2

a21a
2
2β

2 > 0

and D2
1 − 4D0 = − 16a0a2a3β

(a2+a3)2
< 0, showing that there are no real values of R0 for

which C2
1 − 4C0 = 0, nor C2

1 − 4C0 < 0 since C2
1 − 4C0 is a continuous function of

R0. Thus, the solutions of (41) are real.
Specifically, if R0 = 1, C0 = 0 and the solutions to (40) are m∗ = 0 and m∗ = C1.

The solution m∗ = 0 produces the parasite-free steady state x p f = (1, 0, 0, 0, 0),
while the solution m∗ = C1 at R0 = 1 reduces to m∗ = a0a2β+a3

a1a2β
> a0

a1
, making the

steady-state variable, r∗
h (m∗) defined by (39), to fall outside the bounds of Eq. (34)

and hence unrealistic in the context of the scaling in this manuscript. Thus, there is
no positive parasitized steady-state solution, only the trivial and parasite-free steady
states. This establishes the proof of part (a) of the second part of the theorem.

If R0 < 1, C0 < 0 and from (41),
√
C2
1 − 4C0 > |C1|, which implies that m∗

1 < 0

andm∗
2 > 0, regardless of the sign ofC1. Thus, only one positive solution ofm∗ exists

for R0 < 1 and it is m∗ = m∗
2 which is greater than C1. However, for the parasitized

steady state xe = (r∗
h , r∗

p,m
∗, g∗

e , g
∗
l ), to exist in R

5+, the restrictions in (34) must
hold, that is m∗

2 must lie in (0, a0
a1

). We next prove that m∗
2 as defined in (41) falls

outside the interval (0, a0
a1

). First, notice that C1 in Eq. (42) can be rewritten as

C1 = a0
a1

+ (a2 + a3)

a2a1β

(
R0 − a2

(a2 + a3)

)
= a0

a1
+ a1(1 − σ) − 1

a1β
. (44)

It is worth observing that for a2
a2+a3

≤ R0 < 1, C1 ≥ a0
a1

> 0 and so m∗
2 ≥ a0

a1
. Next,

we easily establish by implicit differentiation of (40) with respect to R0 that

dm∗

dR0
=
(

a2 + a3
(2m∗ − C1)a1a2β

)(
m∗ − a0

a1

)
. (45)

Notice that 2m∗ − C1 = ±
√
C2
1 − 4C0 with

√
C2
1 − 4C0 > 0 as earlier established.

So, for 0 < m∗ < a0
a1
, from the sign of the computed derivative in (45), m∗

2 in (41) is a
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decreasing and continuous function of R0, while m∗
1 is an increasing and continuous

function of R0. Thus, for R0 < 1, m∗
2 attains its minimum near R0 = 1, which we

have shown is greater than a0
a1

following the recognition of the form of C1 given by
(44). Thus, we have established that for all values of R0 < 1, the positive solution

m∗
2 = 1

2 (C1 +
√
C2
1 − 4C0) > a0

a1
and must not be seen as a feasible mathematical

equilibrium solution for our model whenever the restriction on m∗ given by (34) is in
place. We next examine the case R0 > 1.

For R0 > 1, C1 > 0 and C0 > 0 and the two solutions of (40), m∗
1,m

∗
2 of (42),

namely m∗
1,2 = 1

2 (C1 ±
√
C2
1 − 4C0), are both real and positive since C2

1 − 4C0 > 0

so that
√
C2
1 − 4C0 < C1, establishing that there are two positive solutions of m∗.

However, for these two positive m∗ solutions to produce two possible positive steady-
state solutions of Eqs. (28)–(32), we require that both solutions be bounded above by
a0
a1

(so that 0 < rh ≤ 1). From (45), we established that m∗
2 in (41) is a decreasing and

continuous function of R0, while m∗
1 is an increasing and continuous function of R0.

Since m∗
1 ≤ C1 < a0

a1
+ 1−σ

β
, following the recognition of the form of C1 given by

(44), it increases from 0 (when R0 = 1) to its maximum which cannot surpass a0
a1
. On

the other hand, m∗
2 decreases from its value when R0 = 1 to some value L > a0

a1
, an

unrealistic value sincewe expect 0 < m∗ < a0
a1
. To see that indeedm∗

2 is unrealistic, we
will regard R0 as a function of a1. Notice from (37) that although R0 depends as well
on the parameters a2, a3 and σ , R0 is bounded above by a1, since

a2(1−σ)
a2+a3

∈ [0, 1]. So,
increases in R0 for values much larger than unity can be thought of as a corresponding
linear increase in a1. With this in mind, using the definition of D0, D1, D2 from (43)
and that of R0 of Eq. (37), it is quickly verifiable that2 Eq. (43) reduces to

C2
1 − 4C0 = (1 − σ)2

β2 − 2a0
a1

(1 − σ)

β
− 2 (1 − σ)

β2a1
+ (βa0 + 1)2

β2a21
+ 4a0a3

βa21a2
. (46)

By using the form of C1 in Eq. (44), it can be shown that

lim
a1→∞

⎛
⎝C1 +

√
C2
1 − 4C0

2
− a0

a1

⎞
⎠

= lim
a1→∞

⎛
⎝1

2

(
1 − σ

β
− 1

βa1

)
+
√
C2
1 − 4C0

2
− 1

2

a0
a1

⎞
⎠ .

= 1

2

(
1 − σ

β

)
+ 1

2

√
(1 − σ)2

β2 = 1 − σ

β
> 0.

(47)

2 C2
1 −4C0 =

(
D2R

2
0 − D2D1R0 + D2D0

)
, where D2R

2
0 = (1−σ)2

β2 , D2D1R0 = 2a0
a1

(1−σ)
β

+ 2(1−σ)

β2a1

and D2D0 = a22 (βa0+1)2+4βa0a2a3
β2a21a

2
2

.
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Since the just computed limit is a positive quantity, we have thus shown that there
exists Na1 > 0 such that (m∗

2− a0
a1

)will have the same sign as 1−σ
β

whenever a1 > Na1 .

That is there exists Na1 > 0 such that 0 < m∗
2 − a0

a1
< 21−σ

β
whenever a1 > Na1 .

Thus, m∗
2 is bounded below by a0

a1
for large values of a1 and hence for large values of

R0. We therefore conclude that system (28)–(32) under study has a unique parasitized
equilibrium solution where m∗ �= 0 given by m∗ = m∗

1 as defined in (41) which is
positive and bounded above by a0

a1
for R0 > 1 or a1 > a2+a3

a2(1−σ)
and coexists with the

trivial and parasite-free steady states. This completes the proof of the theorem. �
Remark 1 (i) The foregoing discussion shows that the steady-state solutions of the

system (28)–(32) are uniquely determined and depend on R0 as well as on the size
of the quantity a0

a1
, as provided by the delimitation set by (34). That is, realistic

nonzero solutions are those for which m∗ and r∗
h remain bounded and are given

by m∗ = m∗
1 and exists only when R0 > 1 or a1 > a2+a3

a2(1−σ)
.

(ii) From (46), given the form of C1 in (44), we easily establish that

lim
a1→∞

⎛
⎝C1 −

√
C2
1 − 4C0

2
− a0

a1

⎞
⎠ = 1

2

(
1 − σ

β

)
− 1

2

√
(1 − σ)2

β2 = 0, (48)

showing that m∗
1 asymptotically approach its upper bound a0

a1
.

(iii) Implicit differentiation of Eq. (40) with respect to R0 yields,

d2C0

dR2
0

− C1
d2m∗

dR2
0

− dC1

dR0

dm∗

dR0
− dm∗

dR0

dC1

dR0

− m∗ d2C1

dR2
0

+ 2
dm∗

dR0

dm∗

dR0
+ 2m∗ d2m∗

dR2
0

= 0,

for any m∗. From (42), dC0
dR0

= a0(a2+a3)
βa21a2

⇒ d2C0
dR2

0
= 0, dC1

dR0
= a2+a3

βa1a2
⇒ d2C1

dR2
0

= 0,

which when substituted into the last equation yields

(
2m∗ − C1

) d2m∗

dR2
0

− 2
dm∗

dR0

(
dC1

dR0
− dm∗

dR0

)
= 0,

upon simplification. Furthermore, substituting Eq. (45) into the last expression and
simplifying further leads to

d2m∗
1

dR2
0

= a2 + a3
βa1a2

2
dm∗

1
dR0(

2m∗
1 − C1

)
(
1 − m∗

1 − a0
a1

2m∗
1 − C1

)

= −2

(
a2 + a3
βa1a2

)2
⎛
⎝
(
m∗

1 − a0
a1

) (
m∗

2 − a0
a1

)
(
2m∗

1 − C1
)3

⎞
⎠ ,
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when m∗ = m∗
1. But, m

∗
1 < a0

a1
, m∗

2 > a0
a1

and
dm∗

1
dR0

> 0 which implies that
d2m∗

1
dR2

0
< 0. Thus, m∗

1 increases at a decreasing rate, asymptotically approaching its

upper bound a0
a1
.

Remark 2 R0 determined and defined in (37) is the unique threshold parameter for
the system when the conditions of the theorem are satisfied. Its value is uniquely
determined by the parameters a2, a3 and σ , and represents an invasion criterion as we
introduce infection in the system. It is directly proportional to a1, with proportionality
constant a2(1−σ)

a2+a3
< 1; thus, it is bounded above by a1, i.e. R0 ≤ a1. Therefore, R0

increaseswith increasing a1, and sowe regard an increase in R0 fromone as an increase
in a1, since R0 can never grow beyond a1. However, a decrease in R0 towards zero is
not as simple, since the path R0 → 0 could be along a2 → 0, or a3 → ∞ or along
the path σ → 1.

Remark 3 Notice that in non-dimensional form, the parasitemia reproduction number
defined in Eq. (37) has the same expression for both choices of g(rh), either g(rh) =
1 − rh or g(rh) = rh(1 − rh). However, in the original parameters, that is not the
case. Using the original parameters to rewrite this reproduction number, we see that
the parasitemia reproduction number is:

(i) for g(rh) = 1 − rh,

R0 = a1a2(1 − σ)

a3 + a2
= β1rγp�(1 − σ)

(β2� + μhμm)(γp + μp)
, (49)

(ii) for g(rh) = rh(1 − rh),

R0 = a1a2(1 − σ)

a3 + a2
= β1rγp(� − μh)(1 − σ)

(β2(� − μh) + μ̃hμm)(γp + μp)
. (50)

We now graphically illustrate the results of Theorem 4 when g(rh) = rh(1 − rh),
i.e. item 2 of the theorem. We will also describe the biological implications associated
with the results with regard to the onset and existence of a parasitized steady state.
The proof of the case when g(rh) = 1− rh was straight forward and does not warrant
attention at this point.

Figures 2 and 3 show the behaviours of the steady-state solution m∗
1 and m∗

2 (see
Eqs. (41) and (40)) as well as the threshold parameter R0 and the bound

a0
a1
, in relation

to changes in the size of a1, for different choices of parameters that are related to these
functions, when the recruitment function is g(rh) = rh(1−rh). In both figures, them∗

1
curve is always below the a0

a1
curve, while them∗

2 curve is always above. Moreover, the
point of intersection between the linear R0 curve and the horizontal green line occurs
at R0 = 1. This is also the point at which the steady state m∗

1 is zero. These results
corroborate the proof of item 2 in Theorem 4 as we now describe. If R0 ≤ 1 (i.e. the R0
curve is below the horizontal green line or intersects it), there is a unique real positive
merozoite steady-state solution for m∗, which is m∗

2 (the red curve), but it does not
yield a real positive parasitized equilibrium solution within the bounds of Eq. (34). For
this case, the only steady-state solution of system (28)–(32) will be the parasite-free
steady state, xp f . At R0 = 1 (the intersection point),m∗

1 is zero, with the emergence of
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(a) (b) (c)

Fig. 2 Plots of the steady-state solutions, m∗
1 (the blue dashed curve) and m∗

2 (the red dashed curve), and
of R0 (the black dotted linear curve) and the bound

a0
a1

(the solid black decaying curve), plotted against a1,
showing their profiles as well as limiting behaviours for large values of a1. For all the graphs, a, b and c,
feasible parameter values are chosen with a2 = 0.5 and a3 = 2, while allowing for β, σ and a0 to vary for
values within their range as given in Eq. (33). a Plots for β = 0.75, σ = 0.05, a0 = 0.3 and a2 = 0.5. b
Plots for β = 0.75, σ = 0.05, a0 = 4 and a2 = 0.5. c Plots for β = 0.55, σ = 0.45, a0 = 4 and a2 = 0.5
(Color figure online)

(a) (b) (c)

Fig. 3 Plots of the steady-state solutions, m∗
1 (the blue dashed curve) and m∗

2 (the red dashed curve), and
of R0 (the black dotted linear curve) and the bound

a0
a1

(the solid black decaying curve), plotted against a1,
showing their profiles as well as limiting behaviours for large values of a1. For all the graphs, a, b and c,
feasible parameter values are chosen with, feasible parameter values are chosen with a2 = 0.1, less than
the value used in Fig. 2 while a3 = 2 remains unchanged; meanwhile, we allow β, σ and a0 to vary for
values within their range as given in Eq. (33). a Plots for β = 0.75, σ = 0.05, a0 = 0.3 and a2 = 0.1. b
Plots for β = 0.75, σ = 0.05, a0 = 4 and a2 = 0.1. c Plots for β = 0.55, σ = 0.45, a0 = 4 and a2 = 0.1
(Color figure online)

a positive parasitized steady state form∗
1, bounded above by

a0
a1

as R0 increases beyond
1. That is, for R0 > 1, there are two real positive merozoite steady-state solutions for
m∗, (here bothm∗

1 andm
∗
2 are positive) but only one (m

∗
1) leads to a unique real positive

parasitized equilibrium solution within (0, a0
a1

), the bounds as defined in Eq. (34). The
other, m∗

2, is bounded below by the a0
a1

curve and falls outside the bounds of Eq. (34).
We note that we have graphically shown scenarios where the m∗

1 curve goes negative
in order to showcase the instance when a non-trivial m∗

1 solution emerges (which can
be thought of as the emergence of parasitemia). Biologically, however, the negative
m∗

1 values are unrealistic. It basically implies there is not a realistic m∗
1 solution and

the only steady state in this case is the parasite-free steady state, xp f .
We next discuss the role parameter changes have in Figs. 2 and 3. To do so, we first

convert to original variables. In terms of the original variables, a1 = β1rγp
β2(μp+γp)

<
β1
β2
r ,

β = β3
β2

≤ 1 and a3 = μm
μp+γp

> 1, all positive. For g(rh) = rh(1 − rh), a0 = �−μh
μp+γp

and a2 = β2(�−μh)
μ̃h(μp+γp)

, both positive, and with R0 as defined in Eqs. (37) and (50). By

rewriting a1 = β1rγpa0
β2(�−μh)

, a2 = β2a0
μ̃h

and also R0 (see Eq. (37)) in terms of a0, we
see that there are parameter regimes for which we can vary a0 while allowing both
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a1 and a2, as well as R0 to take a desired form, by adjusting the other parameters not
associated with a0. By comparing graphs (a) and (b) of Figs. 2 and 3, we see that for
a fixed β and σ , increasing the size of a0 with the other parameters chosen such that
a2 is fixed as shown in the figures, results in a larger a1 value. This makes sense in
that an increase in a0 as described above will likely be as a result of an increase in
the growth term � − μh , of the recruitment function of the healthy red blood cells. A
larger�−μh value implies more HRBCswill be available for potential parasitization.
This increase in a0, however, does not yield a large noticeable increase in the size of
R0 because in Eq. (50), the term μ̃hμm , which is fixed, dominates in the expression
β2(� − μh) + μ̃hμm , since the death rate of free floating merozoites has a dominant
effect (see Table 3 and the discussion in Sect. 4.1).

Next, if we select parameters that allow for a lower a2 value, with all other expres-
sions remaining unchanged, we see that the rates of decay ofm∗

2 and the rate of growth
of m∗

1, both with respect to changes in a1, decrease (compare graphs (a) and (b) of
Fig. 2 to graphs (a) and (b) of Fig. 3, respectively). A decrease in a2 as described is
likely the result of an increase in the additional death rate, μ̃h , of healthy red blood
cells. Here, however, the impact of reducing a2 as a result of a likely increase in μ̃h , is
noticeable on the size of R0. This is reasonable because from Eq. (50), an increase μ̃h

increases the dominant term μ̃hμm , and as a result produces a larger effect on slowing
the increase of R0 to values bigger than 1. Hence, a larger a1 value, which will likely
be due to a larger β1 (contact rate between HRBCs and free floating merozoites) value
or a larger r (number of parasites released per bursting IRBCs) value, will be needed
for parasitemia to commence.

The factor σ ∈ [0, 1], which is the proportion of infected red blood cells that
continue towards the path of gametocytogenesis, does not directly influence the size
of a0, a1 or a2 but has a strong influence on the size of the parasitized steady states as
well as the threshold parameter R0 (compare graphs (b) to (c) for both Figs. 2 and 3).
In particular, for all other parameters held fixed, as σ increases towards 1 (meaning
more parasitized red blood cells continue the path towards gametocytogenesis and
hence an expectation of a higher gametocyte load), R0 → 0. Thus, a larger a1 value
will be required for the onset of parasitemia. The implication here is that, for larger
values of σ , there will be fewer parasitized red blood cells continuing the cyclical
path towards producing more merozoites. Upon bursting then, fewer merozoites will
be available to infect HRBCs, unless the number of merozoites produced per bursting
red blood cell is large enough (equivalent to a larger r and hence a larger a1 value).
This, nonetheless, does not imply the individual is less infectious. On the flip side,
that may not be the case, especially if there is no interference with the developmental
and maturation process of early-state gametocytes. If we assume a positive correlation
between the size of the gametocyte load and infectiousness to mosquitoes as assumed
in Teboh-Ewungkem et al. (2010) and further discussed in Teboh-Ewungkem and
Yuster (2010), then this scenario depicts a more infectious individual even though the
merozoite load may not be as high.

A similar discussion can be given for the parameter β. In conclusion, an increase
in a1 leads to a linear increase in R0, while m∗

1 → a0
a1

from below and m∗
2 → M > a0

a1

from above. From Eq. (47), the lim
a1→∞

(
m∗

2 − a0
a1

)
= 1−σ

β
> 0, which gives a measure
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of the limiting distance between the a0
a1

curve and the m∗
2 curve in Figs. 2 and 3. This

distance will be large for small β values as well as for small σ values (i.e. σ values
closer to zero), as highlighted in the figures. Smaller sigma values also correspond to
larger values of R0 for all other parameters held fixed.On the other hand, fromEq. (48),

the lim
a1→∞

(
m∗

1 − a0
a1

)
= 0 which indicates that for fixed parameters, the size of m∗

1 is

bounded above by a0
a1
, which in terms of the original variables gives a0

a1
= β2(�−μh)

β1rγp
.

Thus, for largea1 values, correspondingmore to either a large r value (moremerozoites
released per bursting red blood cells), or large β1 value (higher contact rate between
freemerozoites andHRBCs) and smallβ2 (less freefloatingmerozoites being absorbed
by IRBCs), the bound a0

a1
will be small, if � − μh is relatively small, corresponding

to a small a0 value (see graph (a) of Figs. 2 and 3). That is, the merozoite load would
not be expected to be high. The rational is that although the scenarios described (large
r , large β1 and small β2) correspond to situations where HRBCs should have higher
opportunities to interact and be infected by free floating parasites, the HRBC load is
not high enough because of the small recruitment term � − μh leading to the overall
low small bound. On the other hand, if � − μh is larger, corresponding to a large
a0 value (see graphs (b) and (c) of Figs. 2 and 3), we will expect a higher bound for
smaller a1, with the bound decreasing with increasing a1, for a0 fixed. Here, since
� − μh is large, the density of HRBCs would be expected to be higher contributing
to the increase in the size of the bound, especially for smaller a1.

4.2.2 Stability of Steady States

The next result concerns the local stability of the identified steady-state solutions.

Theorem 5 Let the condition of Theorem 4 continue to hold, and let R0 be as defined
in (37). Then,

1. The trivial steady state x0 = (0, 0, 0, 0, 0), which always exist for g(rh) = rh(1−
rh), is locally unstable for all values of R0.

2. The parasite-free state x p f = (1, 0, 0, 0, 0), which always exists for both forms
of g(rh), is locally and asymptotically stable whenever R0 ≤ 1 and unstable
otherwise.

3. When g(rh) = 1 − rh, the non-trivial parasitized steady state, which only exists
and is uniquely determined for all R0 > 1 is locally and asymptotically stable.

4. When g(rh) = rh(1 − rh), the non-trivial parasitized steady state, which in this
case only exists and is uniquely determined for R0 > 1 with m∗ < a0

a1
, is locally

and asymptotically stable to small perturbations.

Proof Let x∗
0 = (0, 0, 0, 0, 0) be the trivial steady state, x∗

p f = (1, 0, 0, 0, 0) be the
parasite-free state and x∗

e = (r∗
h , r∗

p,m
∗, g∗

e , g
∗
l ) be the non-trivial parasitized steady

statewhen R0 > 1 and the respective values are given byTheorem4. Then, the stability
of any steady state x∗ = (r∗

h , r∗
p,m

∗, g∗
e , g

∗
l ) is determined by the eigenvalues of the
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Jacobian matrix at the steady state x∗. Let J (x∗) be the Jacobian matrix at the steady
state x∗. Here,

J (x∗) =

⎛
⎜⎜⎜⎜⎝

a0g′(r∗
h ) − m∗a1 0 −r∗

h a1 0 0
m∗a1 −1 r∗

h a1 0 0
−m∗a2 (−m∗β − σ + 1)a2 −(r∗

h + r∗
pβ)a2 − a3 0 0

0 σa4 0 −a4 0
0 0 0 a5 −a5

⎞
⎟⎟⎟⎟⎠ .

(51)

Now, if λ is an eigenvalue of J (x∗), then λ satisfies the equation

|λI − J (x∗)| = (λ + a5)(λ + a4)P3(λ, x∗) = 0, (52)

where P3(λ, x∗) is the third-degree polynomial

P3(λ, x∗) =
∣∣∣∣∣∣
λ − a0g′(r∗

h ) + m∗a1 0 r∗
h a1−m∗a1 λ + 1 −r∗

h a1
m∗a2 (m∗β + σ − 1)a2 λ + (r∗

h + r∗
pβ)a2 + a3

∣∣∣∣∣∣ .

Expansion of P3 defined in (52) yields

P3(λ, x∗) = λ3 + P(x∗)λ2 + Q(x∗)λ + R(x∗), (53)

where

P(x∗) = −a0g
′(r∗

h ) + a1m
∗ + a2(r

∗
h + βr∗

p) + a3 + 1

Q(x∗) = −a0g
′(r∗

h )
(
a2(r

∗
h + βr∗

p) + a3 + 1
)

+ a1
(
a2(r

∗
h (βm∗ + σ − 1) + βm∗r∗

p) + a3m
∗ + m∗)+ a2r

∗
h + a2βr

∗
p + a3

R(x∗) = a1
(
a2
(
βm∗r∗

p − a0r
∗
h g

′(r∗
h )(βm∗ + σ − 1)

)
+ a3m

∗)

− a0g
′(r∗

h )
(
a2(r

∗
h + βr∗

p) + a3
)

.

Wenow consider several possibilities.When g(rh) = rh(1−rh), then g′(rh) = 1−2rh
and at the trivial steady state x0 = (0, 0, 0, 0, 0), which always existwhenever g(rh) =
rh(1 − rh), the coefficients of the cubic (53) take the form

P(x0) = −a0 + a3 + 1, Q(x0) = a3 − a0 (a3 + 1) , R(x0) = −a0a3,

so that (53) factorizes into P3(λ, x∗
0) = (λ − a0)(λ + a3)(λ + 1) indicating the

presence of exponentially growing perturbations with positive eigenvalue a0. Hence,
that steady-state solution is unstable to small perturbations. This establishes part one
of the theorem.

Next,we establish the stability of the parasite-free steady state x p f = (1, 0, 0, 0, 0).
Notice that for both forms of g(rh) in (26), g′(1) = −1. Hence, the stability matrices
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at this steady state, which always exist for both forms of g(rh), coincide, and the
coefficients of the cubic (53) take the form

P(x∗
p f ) = a0 + a2 + a3 + 1, Q(x∗

p f ) = a0 (a2 + a3 + 1) − (a2 + a3) (R0 − 1) ,

R(x∗
p f ) = −a0 (a2 + a3) (R0 − 1)

so that (53) factorizes into P3(λ, x∗
p f ) = (λ + a0)(λ2 + Tλ + S) where T = a2 +

a3 + 1 and S = (a2 + a3)(1− R0). It then becomes immediately clear that whenever
R0 < 1, there are no solutions with positive real part that will signify exponentially
growing perturbations in the linear regime, and the parasite-free steady state is always
locally and asymptotically stable whenever R0 < 1. On the other hand, if R0 >

1 there is at least one real and positive solution of (52) signifying exponentially
growing perturbations in the linear regime and the merozoite-free state is unstable.
This establishes the proof or part two of the theorem.

To proof part three of the theorem, for the casewhere g(rh) = 1−rh , the equilibrium
point xe, where all cell types are positive, is uniquely determined and the coefficients
of the polynomial (53) take the form

P(xe) = p2(R0 − 1)2 + p1(R0 − 1) + p0
p3 + p4(R0 − 1)

,

Q(xe) = q2(R0 − 1)2 + q1(R0 − 1) + q0
q3 + q4(R0 − 1)

,

R(xe) = r0 (R0 − 1) , (54)

where

p1 = (a2 + a3) (a0a2β + a3) (a0 (a2β + 2) + a3 + 1) , r0 = a0 (a2 + a3)

p0 = (a0 + a2 + a3 + 1) (a0a2β + a3)
2, p2 = a0 (a2 + a3)

2

p4 = (a2 + a3) (a0a2β + a3) , p3 = (a0a2β + a3)
2

q2 = a0 (a2 + a3)
2 (a0a2β + a3 + 1) , q3 = (a0a2β + a3)

2

q1 = a0 (a2 + a3) (a0a2β + a3) ((a0 + 1) a2β + 2 (a3 + 1)) ,

q0 = a0 (a2 + a3 + 1) (a0a2β + a3)
2 , q4 = (a2 + a3) (a0a2β + a3)

Clearly, P, Q, R in (54) are all positive when R0 > 1. Thus, there is no sign change in
the sequence of coefficients for the characteristic polynomial indicating the absence
of positive real roots of (53). To be assured that equilibrium is indeed locally and
asymptotically stable, we use the Routh–Hurwitz stability criteria and verify that
P(xe)Q(xe) − R(xe) > 0. On expanding this quantity out, we find that it can be
written in the form

d4(R0 − 1)4 + d3(R0 − 1)3 + d2(R0 − 1)2 + d1(R0 − 1)

+ d0 > 0 whenever R0 > 1. (55)
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Here,

d4 = p2q2, d3 = p2q1 + p1q2 − r0 p4q4, d2 = P2q0 + p1q1 + p0q2 − r0(p3q4 + p4q3)

d1 = p1q0 + p0q1 − r0 p3q3, d0 = p0q0,

which on simplification yields,

d4 = a20 (a2 + a3)
4 (a0a2β + a3 + 1)

d3 = a0 (a2 + a3)
3 (a0a2β + a3)

(
a2a

2
0β (a2β + 3)

+2 (a3 + 1) a0 (a2β + 2) + a23 + a3 + 1
)

d2 = a0 (a2 + a3)
2 (a0a2β + a3)

2 (A1 + A2)

d1 = a0 (a2 + a3) (a0a2β + a3)
3 (A3 + A4)

with

A1 = a2a
2
0β (a2β + 3) + a2 (a3 + 1) (β + 1) + a3 (3a3 + 4) + 3,

A2 = a0 (a2 (a2(β + 1)β + 4a3β + 4β + 1) + 6 (a3 + 1))

A3 = a2a
2
0β + a22β + a2 (a3 + 1) (β + 3) + a3 (3a3 + 5) + 3

A4 = 2a0 (a2 ((a2 + a3) β + β + 1) + 2 (a3 + 1)) .

This clearly demonstrates thatwhen the non-trivial steady state is uniquely determined,
it is locally and asymptotically stable to small perturbations. This completes the proof
of part three of the theorem.

For the case where g(rh) = rh(1 − rh), as shown by the proof of Theorem 4, the
steady-state solution where all cell types are nonzero is xe, and now exist only under
certain restrictions and so its stability properties are no longer as straight forward.
We start by noting that for the steady state r∗

h (m∗) defined by (39) to be realistic in
the context of the scaling in this manuscript, the solution m∗ delimited by the bounds

(34) must satisfy the Eq. (40) and when the solution m∗
1 = 1

2 (C1 −
√
C2
1 − 4C0) is

substituted into the polynomial (53), we obtain expressions which are essentially very
complicated to be useful, given the restrictions needed in each case. Nevertheless, we
can say something about the stability of the steady state in this case by noting the
following: At the equilibrium point, using the relations (39) along side the original
equations for the steady states, we have the following relationships between the steady
states: a1m∗ = a0(1−r∗

h ), a3+a2(rh+βrp) = a1a2(1−σ)rh = (a2+a3)R0r∗
h so that

we canuse these togetherwith the fact thatwhen g(rh) = rh(1−rh),a0g′(r∗
h )−a1m∗ =

−a0r∗
h , in the coefficients of characteristic polynomial to have

P(xe) = 1 + p1a0r
∗
h , Q(xe) = a0r

∗
h (q0 + q1a0r

∗
h ),

R(xe) = a20r
∗
h (1 − r∗

h )(r0 + r1(a0r
∗
h )) (56)
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where

p1 =
(
a0+(a2+a3)R0

a0

)
, q0 = 1 − a2(1 − β), q1 = a2(1−β)+(a2+a3)R0

a0

r0 = a2(R0−(1+a0β))+a3R0
a0

, r1 = 2βa2
a0

}
(57)

Notice that p1 > 0 and so P is always positive. Furthermore, Q and R will also be
positive whenever q0 > 0, r0 > 0 and r∗

h < 1. Now, positivity of q0 is guaranteed

whenever a2 < 1
1−β

while the positivity of r0 is guaranteed if R0 >
a2(1+a0β)
a2+a3

. When
these conditions, which are sufficient but may not be necessary, are satisfied, we are
sure that there are no positive real roots for the polynomial (53) which will signify
exponentially growing perturbations in linear regime. Again to be certain that the
steady state will indeed be stable when these conditions hold we apply the Routh–
Hurwitz condition to have

P(xe)Q(xe) − R(xe) = a0r
∗
h

(
a20c2(r

∗
h )2 + c1a0r

∗
h + c0

)
,

where from (56) and (57),

c2 = p1q1 + r1, c1 = q1 + p1q0 + r0 − a0r1, c0 = q0 − a0r0.

If the coefficients c2, c1 and c0 are also positive, then we are certain that the steady
state is locally stable to small perturbations. Now, when the conditions a2 < 1

1−β

and R0 >
a2(1+a0β)
a2+a3

continue to hold, we quickly establish that the positivity of c1 is

guaranteed if a3 >
2a2a0β
1+a0β

and that c0 = 1 + (a0 + 1) a2β − (a2 + a3) R0 is positive

whenever R0 <
1+a2(1+a0β)

a2+a3
. This leads to the establishment of a stability window

delimited by the inequalities

R0 > 1,
a2(1 + a0β)

a2 + a3
< R0 <

1 + a2(1 + a0β)

a2 + a3
, a2 <

1

1 − β
, a3 >

2a2a0β

1 + a0β
,

which are sufficient, but may not be necessary, for the stability of the steady state in
the logistic case. This completes the proof of the theorem. �

We have thus established that the stability properties for all the steady states of
the system, under the restricted condition of immunity suppression, can be and have
been characterized. The analysis shows that any oscillatory solutions must be damped
oscillations in time, for all types of birth rate functions studied. We shall illustrate
these results numerically, in Sect. 5.

The next result concerns the global stability of the identified parasite-free steady-
state solution, xp f , when R0 ≤ 1.

Theorem 6 For the immune-suppressed system, Eqs. (28)–(32), the parasite-free
steady state x p f = (1, 0, 0, 0, 0) is globally asymptotically stable for both forms
of g(rh) when R0 ≤ 1. That is, the parasite-free steady state attracts all solution of
the system in R5+ for R0 ≤ 1.
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Proof (i) g(rh) = 1− rh . The proof is immediate since for this form of g(rh), x p f =
(1, 0, 0, 0, 0) is the only steady state when R0 ≤ 1.
(ii) g(rh) = rh(1 − rh). Let us define the compact region

D0 =
{(
rh, rp,m, ge, gl

) ∈ R
5 : ε ≤ rh ≤ 1, 0 ≤ rp ≤ r∞

p ,

0 ≤ m ≤ m∞, 0 ≤ ge ≤ g∞
e , 0 ≤ gl ≤ g∞

l

}
,

where 0 < ε � 1 and r∞
p ,m∞, g∞

e , g∞
l are the respective standardized upper bounds

of the associated variables obtained from the upper bounds R∞
p , M∞,G∞

e ,G∞
l as

proved in Theorem 2 in Sect. 2.3, under the assumptions of the immune-suppressed
model. Then, system (28)–(32) has a unique steady state in D0 when R0 ≤ 1, and it
is x p f . Next, define the Lyapunov function

V : (rh, rp,m, ge, gl) ∈ (0, 1] × R
4+ → R,

where

V (rh, rp,m, ge, gl) = A (rh − 1 − ln rh) + Brp + Cm + Dge + Egl . (58)

The coefficients A, B, C, D and E are positive constants to be chosen such that
the time derivative of V is negative definite (i.e. V ′ < 0) for all x �= xp f , whenever
R0 ≤ 1. In particular, if we choose C to be any constant greater than 1, and define

D = (C − 1) (a3 + a2)
(1 − R0)

a1a4σ
, E = D

a4
a5

, A = (C − 1)
a3
a1

;
B = Ca2 (1 − σ) + Da4σ , (59)

then A > 0 and B, C , D and E are all non-negative whenever R0 ≤ 1. Moreover,
from Eq. (59), it is easily seen that

Da4 − Ea5 = 0, Ca2 (1 − σ) − B + Da4σ = 0 and Aa1 − Ca3 = −a3,

and it can be verified that

−Aa1 + Ba1 − Ca2 = a1a2 (1 − σ) − a2 = (a3 + a2) R0 − a2.

Additionally, since rh < 1 ⇒ −m < −mrh and we have that

V ′ = A

(
1 − 1

rh

)
r ′
h + Br ′

P + Cm′ + Dg′
e + Eg′

l

= A

(
1 − 1

rh

) [
a0rh (1 − rh) − a1rhm

]+ B
[
a1rhm − rp

]

+ C[a2 (1 − σ) rp − a2rhm − a2βrpm − a3m] + Da4[σrp − ge] + Ea5[ge − gl ]
= −Aa0 (1 − rh)2 + [

Aa1 (1 − rh)m + Ba1rhm
]− Brp + Ca2 (1 − σ) rp

− Ca2rhm − Ca2βrpm − Ca3m + Da4σrp − Da4ge + Ea5ge − Ea5gl
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Table 4 Stability properties of the steady states x0 = (0, 0, 0, 0, 0), x p f = (1, 0, 0, 0, 0) and xe =
(r∗
h , r∗

p,m
∗
1, g

∗
e , g∗

l ) of system (28)–(32) for the two forms of the recruitment function g(rh) as prescribed
by Theorem 4

g(rh) Type of steady state Existence Stability Restriction

1 − rh Trivial, x0 DNE – –

Parasite-free (PFSS), x p f Always exists GAS 0 ≤ R0 ≤ 1

Always exists Unstable R0 > 1

Non-trivial, xe (ESS) Exists LAS R0 > 1

rh(1 − rh) Trivial, x0 Always exists Unstable R0 ≥ 0

Parasite-free (PFSS), x p f Always exists GAS 0 ≤ R0 ≤ 1

Always exists Unstable R0 > 1

Non-trivial (ESS), xe Exists LAS R0 > 1, m∗
1 <

a0
a1

The non-trivial steady state, xe , when it exists, is uniquely determined and is locally and asymptotically
stable, while the parasite-free steady state, xp f , which always exists, is globally and asymptotically stable
whenever 0 ≤ R0 ≤ 1 and unstable for R0 > 1

= −Aa0 (1 − rh)2 + [−Aa1 + Ba1 − Ca2] rhm + [Ca2 (1 − σ) − B + Da4σ ] rp

− Ca2βrpm + [Aa1 − Ca3]m − [
Da4 − Ea5

]
ge − Ea5gl

= −Aa0 (1 − rh)2 + [a1a2 (1 − σ) − a2] rhm − Ca2βrpm − a3m − Ea5gl

≤ −Aa0 (1 − rh)
2 + [a1a2 (1 − σ) − a2] rhm − Ca2βrpm − a3mrh − Ea5gl ,

= −Aa0 (1 − rh)2 − (a2 + a3)

[
1 − a1a2 (1 − σ)

a2 + a3

]
rhm − Ca2βrpm − Ea5gl ,

= −Aa0 (1 − rh)2 − (a2 + a3) [1 − R0] rhm − Ca2βrpm − Ea5gl . (60)

Notice that the last term is negative whenever R0 ≤ 1. In all we have the following:
(i) V ′ < 0 if R0 ≤ 1, for all t and ∀x ∈ D0 \{(1, 0, 0, 0, 0)}; (ii) V (x) = 0 at x = x p f

and (iii) V (x) > 0,∀x ∈ D0 with x �= x p f . Thus, V is a positive definite function
and {x p f } is the largest invariant compact subset in {x ∈ D0|V ′ = 0} containing
only the equilibrium x p f when R0 ≤ 1, then by LaSalle’s invariance principle, the
parasite-free steady-state solution x p f = (1, 0, 0, 0, 0) of system (28)–(32) is globally
asymptotically stable whenever R0 ≤ 1. This ends the proof. �

We note that the same function as defined in Eq. (58) with coefficients (59) would
also suffice for the case where g(rh) = 1 − rh . However, a slight change would be
required for the derivative of V 3, and with the compact region D0 redefined as

D0 =
{(
rh, rp,m, ge, gl

) ∈ R
5 : 0 ≤ rh ≤ 1, 0 ≤ rp ≤ r∞

p , 0 ≤ m ≤ m∞,

0 ≤ ge ≤ g∞
e , 0 ≤ gl ≤ g∞

l

}
.

The stability properties of the steady-state solutions of our system can be summa-
rized as shown in Table 4.

3 Here, V ′ = −Aa0 (1 − rh)2 1
rh

+ (−Aa1 + Ba1 − Ca2) rhm + (Ca2 (1 − σ) − B + Da4σ) rp .
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(a) (b)

Fig. 4 Bifurcation plots of m∗ (graph (a)) as defined in (39) and r∗
h (graph (b)) as defined in (38) against

R0 showing regions of existence and stability of the steady states for when g(rh)) = 1 − rh . Solid lines
indicate stability and dash lines instability, determined by the size of R0. The parasite-free steady state
(PFSS) in the variables (rh , rp,m, ge, gl ) is xp f = (1, 0, 0, 0, 0), and it always exist. It is stable (globally
asymptotically) for R0 ≤ 1 and unstable for R0 > 1. The parasitized steady state (ESS), xe defined in (36)
and (38), only exist for R0 > 1, and when it does, it is stable. As we traverse from the zone R0 < 1 to the
zone R0 > 1, there is a forward bifurcation occurring at R0 = 1 (Color figure online)

Next, we characterize the existence and stability of the steady-state solutions as a
function of R0 in bifurcation diagrams. Figure 4 summarizes the results of the existence
and stability of the steady states for the model with linear growth, g(rh) = 1 − rh ,
showing a forward bifurcation point occurring at R0 = 1. The plots are for the steady
state m∗ and r∗

h of Eq. (38). Notice that the function m∗ is a linear function of R0,

while r∗
h is of the form Ã

Ã+B̃(R0−1)
, a decreasing and concave up function, with Ã and

B̃ positive constants.
On the other hand, Fig. 5 summarizes the results of the existence and stability of the

steady states for the recruitment function g(rh) = rh(1− rh), also showing a forward
bifurcation point occurring at R0 = 1. The plots are for the steady state variables r∗

h of
Eq. (39) andm∗ = m∗

1 of Eqs. (40) and (41). In the proof of the existence of the steady
state in Theorem 4 in Sect. 4.2.1, it was established that m∗

1 increases with increase in
R0 from 1, at a decreasing rate, to its upper bound a0

a1
. This produces a corresponding

decrease in r∗
h .

4.3 Parasitemia Reproduction Number Using the Next-Generation Approach

In populationmodels involving disease transmission, the termbasic reproduction num-
ber, denoted by R0, is the average number of secondary infections produced by one
primary infectious individual in a totally susceptible population during that infectious
individual’s period of infectiveness. In a population involving both susceptible and
non-susceptible individuals, the term effective reproductive number, denoted Reff , is
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(a) (b)

Fig. 5 Bifurcation plots of m∗ = m∗
1 (graph (a)) defined in (42) and r∗

h (graph (b)) as defined in (39)
against R0 showing regions of existence and stability of the steady states for g(rh)) = rh(1 − rh).
Solid lines indicate stability and dash lines instability, determined by the size of R0. The parasite-free
steady state (PFSS) in the variables (rh , rp,m, ge, gl ) is xp f = (1, 0, 0, 0, 0) always exists and is sta-
ble (globally asymptotically) for R0 ≤ 1 and unstable for R0 > 1. The parasitized steady state (ESS),
xe = (r∗

h (m∗
1), r

∗
p(m

∗
1),m

∗
1, g

∗
e (m∗

1), g
∗
l (m∗

1)) defined in (39) and (42), only exist for R0 > 1, and when it
does, it is stable. A forward bifurcation occurs at R0 = 1 as we traverse from the R0 < 1 to R0 > 1 (Color
figure online)

used to describe the average number of secondary cases produced per infectious case in
this population (Ngonghala et al. 2015; Rothman et al. 2008), and it is bounded above
by R0. In our current framework, the basic reproduction number, termed here, para-
sitemia reproduction number, quantifies the expected number of newly infected red
blood cells produced by a single infected red blood cell at the onset of parasitemia. We
will denote it byR0, and it determines whether parasitemia persists or not. IfR0 < 1,
each IRBC produces on average, less than one new IRBC, indicating the possibility of
controlling parasitemia at some point. However, if R0 > 1, then there is persistence
of parasitemia. Mathematically, it is the spectral radius of the next-generation matrix
FV−1 (Driessche and Watmough 2002), where F is the matrix representing newly
parasitized red blood cells and V is the matrix representing transfer terms, accounting
for progression of IRBCs through the different stages of parasitemia.

To obtain the next-generationmatrix, we first identify terms representing new infec-
tions in system (28)–(32) and separate them from the transfer terms. Let Fi be the
rate of appearance of new IRBCs in compartment i , and let V−

i be the rate of trans-
fer of parasitized cells or free floating parasites out of compartment i and V+

i be
the rate of transfer into compartment i . Then, we can rewrite system (28)–(32) as
x′ = F − V = [x ′

i ], where x = (x1, x2, x3, x4, x5)T = (rh, rp,m, ge, gl)T , is the
vector of state variables, x ′

i = Fi − Vi , i = 1, 2, 3, 4, 5, F = [Fi ], and V = [Vi ]
with Vi = V−

i − V+
i . Evaluating these matrices at the parasite-free steady state,

x p f = (1, 0, 0, 0, 0) yields F =
[

∂Fi
∂x j

]
and V =

[
∂Vi
∂x j

]
for i, j = 1, 2, · · · , 5. Then,

the next-generation matrix is FV−1 and R0 = ρ(FV−1). Applying this to system
(28)–(32), in the variables (rh, rp,m, ge, gl), we have
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F =

⎡
⎢⎢⎢⎢⎣

0
a1rhm
0
0
0

⎤
⎥⎥⎥⎥⎦ and V =

⎡
⎢⎢⎢⎢⎣

a1rhm − a0g(rh)
rp
−a2(1 − σ)rp + a3m + a2(rh + rp)m
−a4σrp + a4ge
−a5ge + a5gl

⎤
⎥⎥⎥⎥⎦ .

Then, their corresponding Jacobianmatrices evaluated at the parasite-free steady state,
x p f = (1, 0, 0, 0, 0) yield F and V , where

F =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 a1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ and V =

⎛
⎜⎜⎜⎜⎝

a0 0 a1 0 0
0 1 0 0 0
0 −a2(1 − σ) a2 + a3 0 0
0 −a4σ 0 a4 0
0 0 0 −a5 a5

⎞
⎟⎟⎟⎟⎠ ,

since g′(1) = −1 at the parasite-free steady state for both forms of g(rh). Hence,

V−1 =

⎛
⎜⎜⎜⎜⎜⎝

1
a0

− a1a2(1−σ)
a0(a2+a3)

− a1
a0(a2+a3)

0 0
0 1 0 0 0
0 a2(1−σ)

a2+a3
1

a2+a3
0 0

0 σ 0 1
a4

0
0 σ 0 1

a4
1
a5

⎞
⎟⎟⎟⎟⎟⎠

and FV−1 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 a1a2(1−σ)

a2+a3
a1

a2+a3
0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

The dominant eigenvalue for FV−1 is the spectral radius ρ(FV−1) = R0 =
a1a2(1−σ)
a2+a3

= R0.

Remark 4 The within-human–host malaria parasitemia reproduction number R0
obtained using the next-generation matrix matches the threshold value obtained in
(37) that determined the existence and stability of the steady-state solutions in Theo-
rems 4 and 5.

5 Numerical Simulation and Results

In this section, we carry out numerical simulation of the immune-suppressed model.
The initial conditions used in the simulations are presented in Table 5. The initial
number of HRBCs are based on estimates in Dean and National Center (2005), Hetzel
and Anderson (1996), McKenzie and Bossert (1997), and we assume there are no
IRBCs nor gametocytes to begin with. The initial number of merozoites is based on
estimates of the number of hepatic schizonts produced per microlitre of blood, and
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Table 5 Initial conditions

Variable Description
(Initial)

Range of values Unit Base value References

Rh(0) HRBC density [2 × 105, 1 × 107] C 2 × 106 Dean and National
Center (2005),
Hetzel and
Anderson (1996)
and McKenzie and
Bossert (1997)

Rp(0) IRBC density 0 C 0 Anderson et al. (1989)
and Hetzel and
Anderson (1996)

M(0) Merozoite
density

[5 × 10−3, 4 × 103] M 100 Baron (1996), Hetzel
and Anderson
(1996) and
McKenzie and
Bossert (1997)

Ge(0) Immature
gametocyte
density

0 G 0 Bousema and
Drakeley (2011) and
Talman et al. (2004)

Gl (0) Mature
gametocyte
density

0 G 0 Bousema and
Drakeley (2011) and
Talman et al. (2004)

The units of measurements are as earlier defined with C = Cell density ×µl−1, M = Merozoite density
×µl−1 and G = gametocyte density ×µl−1s

taking into account the proportion that survive at about 80% (McKenzie and Bossert
1997).

Using the parameters as stated in Table 3, we numerically simulate the model
described by system (28)–(32), presenting the graphs in terms of the original variables.
First, we present the results for the model in the absence of parasitemia, for both cases
when theHRBCpopulation ismodelled by the linear growth function, g(rh) = (1−rh)
and the logistic growth function, g(rh) = rh(1−rh). Parameter values utilized are the
base values stated in Table 3, with the parameter common to both models given by

μh = 1/120, β1 = β2 = 6.5 × 10−7, β3 = 0.75β2, μp = 0.0091, γp = 0.5,

r = 16, s = 1, σ = 0.1, μm = 48, μe = 0.28, γl = 0.15, μl = 0.28.

Additionally, parameters specific to the choice of growth functions are� = 4.15×104,
for the linear growth function with non-dimensional form g(rh) = (1 − rh) and for
the logistic growth function, g(rh) = rh(1− rh), we have ω = � − μh = 0.25 where
μh = 1/120 as defined above and μ̃h = 5× 10−8. Using these parameters, we obtain
the basic reproduction numbers in the absence of parasitemia asR0 ≈ 0.894 < 1 for
the linear growth function and R0 ≈ 0.897 < 1 for the logistic growth function.

With the base initial conditions, Rh(0) = 2 × 106, Rp(0) = 0, M(0) =
100, Ge(0) = 0, Gl(0) = 0, (see Table 5), we obtain the profiles of the trajec-
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(a) (b)

Fig. 6 Plots of HRBCs versus time showing the dynamics in the absence of Parasitemia. a Plots showing
the trajectorieswhen the linear growth function F(Rh) = �−μh Rh is used.bPlots showing the trajectories
when the logistic growth function F(Rh) = (� − μh)Rh − μ̃h R

2
h is used (Color figure online)

(a) (b)

Fig. 7 Plots of free floating Merozoites versus time showing the dynamics in the absence of Parasitemia. a
Plot showing the trajectories when the linear growth function F(Rh) = � − μh Rh is used. b Plot showing
the trajectories when the logistic growth function F(Rh) = (� − μh)Rh − μ̃h R

2
h is used (Color figure

online)

tories in the absence of parasitemia presented in Figs. 6, 7 and 8 below. The profiles,
plotted for the first 100 days, are very similar for both models. The solution curves
converge to the parasite-free steady states xp f = ( �

μh
, 0, 0, 0, 0) for the case when the

non-dimensional linear growth function defined by F(Rh) = � − μh Rh is used to
model HRBCs recruitment, and xp f = (

�−μh
μ̃h

, 0, 0, 0, 0) for the case when a logistic

growth function defined by F(Rh) = (� − μh)Rh − μ̃h R2
h is used. However, the

decay to zero for all disease-related state variables is faster for the linear model when
compared with the logistic cases (see Fig. 8). Upon release from the liver, the effective
initial released number of merozoites released infect HRBCs. However, the invasion
is not sustainable as the merozoite density declines sharply leading to the eventual
decay of the density of the IRBCs and gametocytes. Thus, the parasite is not able to
establish parasitemia within the infected human. We note that similar profiles, just
scaled appropriately, are obtained if a lower initial merozoite size is used.

In the presence of parasitemia, we maintain the same base parameters as in the
parasite-free simulations, only changing σ (the proportion of infected red blood cells
committed to gametocytogenesis), μp the death rate of infected red blood cells, β1
(which in turn affects β2 and β3), the transmission rates. When β1, hence β2, is
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(a) (b)

Fig. 8 Plots of infected red blood cells (IRBCs), early-state (immature) gametocytes and late-state (mature)
gametocytes versus time in the absence of parasitemia. a Plot of trajectories when the linear growth function
F(Rh) = � − μh Rh is used. b Plots of trajectories when the logistic growth function F(Rh) = (� −
μh)Rh − μ̃h R

2
h is used (Color figure online)

(a) (b)

Fig. 9 Plots of HRBCs and IRBCs versus time showing the dynamics in the presence of parasitemia. a
Plots showing the trajectories when the linear growth function F(Rh) = �−μh Rh is used. b Plots showing
the trajectories when the logistic growth function F(Rh) = (� − μh)Rh − μ̃h R

2
h is used (Color figure

online)

increased from 6.5 × 10−7 to 6.0 × 10−6, σ reduced from 0.1 to 0.0064, and μp

increased from 0.0091 to 0.07, with all other parameters kept unchanged, the parasite
succeeds to invade the human system and establishes itself within an infected human.
The corresponding basic reproduction numbers in the presence of parasitemia are now
R0 ≈ 5.350 > 1 for the linear growth function and R0 ≈ 5.364 > 1 for the logistic
growth function. Starting with an initial merozoite density of 10 per µL of blood, and
maintaining the other base initial conditions the same as in the parasite-free model,
we obtain the profiles of the trajectories in the presence of parasitemia, plotted for 140
days and presented in Figs. 9, 10 and 11. We note that the effect of a larger merozoite
initial number (say 100 per µL ), with all other parameters and initial conditions held
fixed were very minimal and not noticeable.

Figures 9, 10 and 11 show oscillatory dynamics reminiscent of malaria parasitemia
in humans. The oscillations approach a stable parasite steady state. These oscillatory
trajectories are likely due to the cyclic pattern in the within-human–host parasite life
cycle that results in the periodic destruction of healthy red blood cells, eventually
replenished from the bone marrow. This destruction is as a result of merozoites infect-
ing the healthy red blood cells resulting in a dwindling in their numbers and that of
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(a) (b)

Fig. 10 Plots of free floating Merozoites vs time showing the dynamics in the presence of parasitemia. a
Plot showing the trajectories when the linear growth function F(Rh) = � − μh Rh is used. b Plot showing
the trajectories when the logistic growth function F(Rh) = (� − μh)Rh − μ̃h R

2
h is used (Color figure

online)

(a) (b)

Fig. 11 Plots of early-state (immature) and late-state (mature) gametocytes vs. time in the presence of
parasitemia. a Plots showing the trajectories when the linear growth function F(Rh) = � − μh Rh is used.
b Plots showing the trajectories when the logistic growth function F(Rh) = (� − μh)Rh − μ̃h R

2
h is used

(Color figure online)

the healthy red blood cells. However, it leads to an increase in the parasitized red
blood cells. After a few days, the parasitized red blood cells, not committed to the
gametocyte path, rupture releasing more free floating merozoites, thereby increasing
the number of free floating merozoites available to infect more healthy red blood cells.
This increase–decrease is captured by the oscillatory dynamics in our result.

Comparing the profiles from the linearmodel (Figs. 9, 10 and 11 graphs (a)) to those
corresponding to the logistic model (Figs. 9, 10 and 11 graphs (b)), we see that the
oscillatory trajectories for the logistic model occur more frequently than those from
the linear model, when the same parameter sets are used, except the net recruitment
terms. The first peak occurred some more than 10–12 days after the initial invasion of
health red blood cells by merozoites.

We note that the total gametocyte densities (see Figs. 11a, b), determined by the area
under the gametocyte density curves, are much higher than what has been reported to
be observed in malaria patients in nature. The gametocyte density in patients has been
observed to fall in the range 2–60 gametocytes per µL in asymptomatic infections
and up to 1000 gametocytes per µL of blood in symptomatic infections (see Baton
and Ranford-Cartwright (2005), Mitri et al. (2009) and Teboh-Ewungkem and Yuster
(2010) with the references therein. This value can increase or decrease depending on
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the transmission season, the age of the malaria patient and the transmission region,
whether a low or high transmission region. The latter two conditions are correlated
with the level of immunity by the individuals living in a region. Since our analysis
was carried out for the immune-suppressed model, one would expect higher overall
gametocyte densities in this case as the natural control factor, the immune system is
absent. We are currently investigating the role of immunity, innate and adaptive, in
reducing the size of this gametocyte load.

Our numerical simulationswhen R0 > 1 (Figs. 10 and 11) indicate that it is possible
to have long-term endemic parasitemia. This is because there are no controls in the
model. One would expect fadeout with the inclusion of immunity and/or the use of
prophylaxes. To destroy the stable steady state and lower parasite loads or achieve
control of the malaria disease with an infected patient, immediate intervention would
be necessary, especially in the naive immune individuals, the limiting case with no
immunity analysed in this manuscript.

6 Discussion and Conclusion

In this manuscript, we have developed a model for the dynamics of the malaria para-
sites within the human–host. Our model takes into account both innate and adaptive
immunity and views the process of gametocytogenesis as a developmental pathway
through the formation of early-state gametocytes through maturation to the late-state
gametocytes.We hypothesized that it is these late-state gametocytes that can be picked
up by the female Anopheles spmosquito when it takes a blood meal from the infected
human host. Now, an assumption often made in the analyses of the dynamics of many
epidemic models is that the duration of immunity is independent of exposure to infec-
tion (Anderson and May 1979, 1991; Hethcote et al. 1982). However, the immunity
to malaria has, for sometime now, been known to be sustained by continuing exposure
(Aron 1983, 1988a), and that as far asmalaria is concerned, the conventional definition
of immunity as absolute refractoriness to infection may be restrictive, as immunity
may confer protection against severe clinical illness without eliminating chronic, mild
infections (Aron 1988b). That is, asymptomatic immune malaria carriers can be infec-
tive. This phenomenon of incomplete immunity permitting disease transmission is
known to exist for malaria and complicates disease control strategies as the reservoir
of infection now includes symptomatic and asymptomatic infected individuals. To
address this issue of incomplete immunity in our model, we considered two types
of immune responses: the innate and adaptive immune response of the system to the
infection. These two types of immune responses are modelled on the assumption that
the innate immune state of the human individual is always available and serves as the
first line guard against all types of infections that invade the human body. Thus, its
effect on the system is more permanent. On the other hand, it is assumed that the adap-
tive immune response is predicated on the fact that the additional immunity to malaria
is sustained by continuing exposure to the malaria infection, so that this adaptive-type
immunity is triggered by onset of the infection in the body and wanes away over
time in the absence of the infection. We have hypothesized that it is the interplay
between adaptive and innate immunity that work together in the human leading to the
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phenomenon where asymptomatic immune individuals are protected against severe
morbidity and illness due to infection by malaria, but allows the individual to harbour
parasite loads that permit transmission. The result of the interplay between innate and
adaptive immunity in the presence of a infection and red blood cell growth is captured
in a nonlinear system of autonomous ordinary differential equations, whose form and
provenance are carefully explained and displayed in Sect. 2 of the manuscript. The
model addressed aspect of malaria parasitemia and gamete formations in a manner
which we believe is simple and revealing. To the best of our knowledge, we think this
is probably the only ordinary differential equations within-host malaria model thus
far that explicitly incorporates the late-state gametocytes, the actual transmissible and
infectious forms of the parasites, as well as incorporate both the innate immune effects
and the adaptive immune effects in the model development in the way it has been done
in the current manuscript.

Mathematically, the analyses to establish the well-posedness, boundedness and
positivity of the general model equations with innate and adaptive immune effects
incorporated were carried out. Subsequently, a complete analysis of the model under
the simplifying assumption of immune suppression has been presented. The main
objective of the current analysis was to understand the role that the choice of the
recruitment function plays on the within-human–host parasite dynamics. To achieve
this objective, two healthy red blood cell recruitment functions were considered: a
constant recruitment function and a logistic recruitment function. Our analysis indi-
cated the existence of a parasite threshold parameter, R0, whose size determined the
existence and stability of steady states. Regardless of choice of recruitment function,
the model admits a parasite-free steady state which exists for all R0 values, but is
globally stable for R0 ≤ 1, and is unstable when R0 > 1. However, the logistic model
also admits an additional trivial equilibrium which exists and is unstable for all R0
values. When R0 > 1, both models admit additional parasitized steady-state solu-
tions. The parasitized steady-state solutions in the case of the constant recruitment
model that exists, are unique and locally stable whenever R0 > 1. On the other hand,
for the logistic model, when R0 > 1, the mathematical equations point towards the
existence of two parasitized steady-state solutions, but with the required condition for
existence (and stability) of a biologically feasible solution being that the merozoite
steady-state population size be bounded by some threshold value, beyond which a
parasitized steady state no longer is realistic, in the sense that the healthy red blood
cells would have completely been depleted at this point. Therefore, only one of the par-
asitized steady state fulfils the feasibility criteria; the other results in a scenario where
the healthy red blood cells have undergone massive destruction leading to their total
elimination. The massive destruction of red blood cells can cause a malaria patient to
become severely anaemic which can lead to a malaria infection complication known
as blackwater fever, also called malarial haemoglobinuria. This is a severe, potentially
highly fatal, complication from Plasmodium falciparum malaria infection whereby
haemoglobin is released into the blood stream and can be found in urine and kidney
due to the massive and extensive destruction of the red blood cells as the parasites
progressively break down more healthy red blood cells.

In most mathematical models of the within-human–host dynamics of the malaria
parasite, analysis of the model usually indicates the existence of two or more steady
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states when R0 > 1. Our model’s dynamics indicate that this conclusion is not quite
trivial. We have analytically shown that although there may be situations pointing to
the existence of more than one parasitized steady states, further analysis is required
and may show otherwise. In particular, we showed in our model that for the logistic
model, although there were two positive parasitized steady states, one of them led to
the complete depletion of the healthy red blood cells, a parasite take-over scenario,
which is potentially fatal if no immediate and strict control measures are enacted in
the affected patients. This conditioned depletion of healthy red blood cells by malaria
parasitemia is predicted by our analysis of the immune-suppressedmodel (the scenario
that can arise in the first attack on an individual from a non-malaria zone to malarious
zone). We have therefore set the stage to investigate how the action of innate immunity
and the triggering of adaptive immune response will affect the within-human–host
dynamics of the malaria parasite. Thus, the analysis of the full model in the presence
of a functional innate and adaptive immune system is the subject of future work.
One would expect that immunity (innate and or adaptive) should lower parasitemia
loads and peaks as well as regulate the size of the parameter window within which
complete red blood cell depletion during malaria parasitemia is possible. Thus, the
effects of adaptive and innate immune responses on infected humans (symptomatic
or asymptomatic) and how they impact parasitemia and the size of the threshold
parameter, are currently being investigated. We have not yet presented a complete
sensitivity analysis of the effect of the different parameters in our model on the onset
of gametocytes as well as the build-up of adaptive immunity to malaria infections
in endemic areas. These and the other aspects discussed in our model including the
possibility whereby the magnitude of the effects of invasion of HRBCs by merozoites
may be different from the magnitude of the effects of absorption of the merozoites by
the HRBCs (different contact rates) are subject currently being investigated. Though
more biological investigation is needed for a full characterization of the phenomena
of gametocytogenesis and contact rates between different cell types in the body, we
are aiming at providing a mathematical and theoretical characterization.
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Appendix

Positivity and Positive Invariance Solution

Theorem 7 (Statement of the positivity and positive invariance of solution theorem)
Consider system (8)–(14)with initial conditions in (15) and under the conditions given
for ψ(Rh) and Hi (Ei ) as stated in Sect.2.2. Then, every solution of the system with
initial condition inR7+ remains inR7+. Additionally, if x(0) ≡ 0, the solution of system
(8)–(14) will remain zero (or positively bounded depending on the form of ψ(Rh)),
for all time t > 0 . That is, R7+ is positively invariant and attracting with respect to
the system. Furthermore, the system has a forward positive solution in R

7+ provided
that it starts in it.

Proof Weshow that the regionR7+ is positively invariant, that is, whenever x(0) ∈ R
7+,

x ∈ R
7+,∀t ≥ 0. It suffices to show that there is no solution of the system starting

in R
7+ which is non-positive. Thus, we are required to show that the rate of change

of each state variable, that is each φi , 1 ≤ i ≤ 7, is non-negative at the origin
0 = (0, 0, 0, 0, 0, 0, 0), and on each of the coordinate axis. Notice that at the origin 0, if
x0 = 0, then x′(0) = �(0) = 0 ifψ(Rh) = �−μ̃h Rh , or x′(0) = (�, 0, 0, 0, 0, 0, 0)
if ψ(Rh) = �

Rh
. Thus, if x(0) = 0, each component of x remains stationary at zero

or increases from zero depending on the form of ψ . On the other hand, if any one
of the components of x is zero, the rate of change of that component with time is
non-negative, showing that no trajectory of the system passes out of R7+ through that

component’s zero axes. For example, when Rp = 0, R′
p = β1RhM

1+ξ0Ea
≥ 0, since Rh

and M are non-negative for all time, showing that no solution of the system passes
out of R7+ through the Rp = 0 axis. This implies the vector field of the system is
inward pointing on the boundary of R7+. That is, if x0 ∈ R

7+, then x ∈ R
7+, ∀t ≥ 0.

Therefore, the region R
7+ is positively invariant and attracting.

Next to prove the positivity of the solution, we follow the steps in Ngwa et al.
(2016), Page 8. Suppose there exists t1 > 0 such that Rh(t1) = 0, R′

h(t1) < 0 and
Rh, Rp, M,Ge,Gl , Ei , Ea > 0 for all 0 < t < t1. Then

R′
h(t1) = Rh(t1)ψ(Rh(t1))︸ ︷︷ ︸

:=ψ0

− μh Rh(t1)︸ ︷︷ ︸
:=0

− β1Rh(t1)M(t1)

1 + ξ0Ea(t1)︸ ︷︷ ︸
:=0

=
{

� if ψ(Rh) = �
Rh

0 if ψ(Rh) = � − μ̃h Rh .

In either case, R′
h(t1) ≥ 0, leading to a contradiction to the assumption that R′

h(t1) < 0.
So, no such t1 exists, and hence Rh �= 0. Thus, Rh(t) > 0, ∀t ≥ 0.Next suppose that
there exists t2 such that Rp(t2) = 0, R′

p(t2) < 0 and Rh, Rp, M,Ge,Gl > 0 for all

0 < t ≤ t2. Then, R′
p(t2) = β1Rh(t2)M(t2)

1+ξ0Ea(t2)
− (γp + μp)Rp(t2)︸ ︷︷ ︸

:0
= β1Rh(t2)M(t2)

1+ξ0Ea(t2)
> 0,

which is a contradiction to the assumption that R′
p(t2) < 0. Hence, Rp(t) > 0, ∀t >

0. Similarly, one can show that M(t) > 0, Ge(t) > 0, Gl(t) > 0, Ei (t) > 0 and
Ea(t) > 0 for all t > 0. Therefore, any solution of the system with an initial condition
in R7+ is positive. �
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Boundedness of Solution

Theorem 8 (Statement of the boundedness of solution theorem)Consider system (8)–
(14) with initial conditions in (15) and under the conditions for ψ(Rh) and Hi (Ei )

as stated in Sect. 2.2. Then, every forward solution of the system in R
7+, with initial

condition in R
7+, is bounded. Moreover, the system is uniformly dissipative in R7+.

Proof To start the proof of boundedness,wefirst note the following about boundedness
of f (Rh) and Hi (Ei ).

1. For all values of Rh , we have

Rhψ(Rh) ≤ KR, where KR =
{

� if ψ(Rh) = �
Rh

�2

4μ̃h
if ψ(Rh) = � − μ̃h Rh .

(61)

We note that the requirement that ψ be monotone non-increasing tacitly comes
along with the requirement that Rhψ(Rh) be continuous from right at the origin. In
particular,ψ(Rh) satisfies conditions (1)–(3) of Sect. 2.2. Other examples, besides
the two studied in thismanuscript, of recruitment functionsψ(Rh) found in the bio-
logical literature that satisfy conditions (1)–(3) of Sect. 2.2 areψ(Rh) = �e−μ̃h Rh ,
Ricker recruitment function and ψ(Rh) = �

1+
(
Rh
L

)n , �, L , n, μ̃h > 0 which is the

Maynard–Smith–Slatkin function. Details on these types of recruitment functions
can be found in Brännström and Sumpter (2005) and Ngonghala et al. (2016).

2. Similarly, for all values of Ei we have

Hi (Ei ) ≤ Ki where Ki

=
⎧⎨
⎩

δi Ki
4 if H(Ei ) = δi Ei

(
1 − Ei

Ki

)
max(A1, A2, 0) if Hi (Ei ) = δi Ei

(
1 − Ei

Ki

) (
Ei
Mi

− 1
) (62)

where on setting B = −KiMi + K 2
i + M2

i = (
Mi − 1

2Ki
)2 + 3

4K
2
i > 0 we can

obtain

A1 =
δi

(
−√

B + Ki − 2Mi

) (
−√

B + Ki + Mi

) (√
B + 2Ki − Mi

)
27KiMi

A2 = −
δi

(√
B + Ki − 2Mi

) (√
B − 2Ki + Mi

) (√
B + Ki + Mi

)
27KiMi

.

Thus, the functions Hi and Rhψ defined are bounded.

Now to prove the boundedness of the Rh and Rp, let R(t) = Rh(t) + Rp(t) be the
total size of red blood cells within the human at time t , (healthy plus infected red
blood cells) with R(0) = Rh(0) + Rp(0) = R(0). Then, we have from the first two
equations of system (8)–(14)
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dR

dt
= Rhψ(Rh) − μh Rh − (γp + μp)Rp − (ρp + ρa Ea)RpEi

≤ f (Rh) − μR, where μ = min(μh, γp + μp),

where f (Rh) = Rhψ(Rh) with ψ : [0,∞) → R+ a monotone decreasing continu-
ously differentiable function. So, the function f : [0,∞) → R+ has amaximumvalue
which is either constant when f is the constant function, or that occurs at the point
R∗
h ∈ [0,∞), where R∗

h satisfies the equation f ′(R∗
h) = ψ(R∗

h) + R∗
hψ

′(R∗
h) = 0.

Set μ = min(μh, γp + μp) and suppose that the maximum value of f isKR , then we
have from above,

dR

dt
+ μR ≤ KR ⇒ R(t) ≤ KR

μ
+ Ae−μt ,

where A is an arbitrary constant that can be determined from initial data. Observe that
if the initial condition, R(0), is such that R(0) > KR

μ
, then A is always positive and

the bound for R(t) is decreasing with time. When R(0) = KR
μ
, then A is non-negative

and the bound for R(t) is non-increasing with time. Finally, if R(0) < KR
μ
, A can be

a negative number and the bound for R(t) will be an increasing function of t . If at any
of the instances we see that

lim
t→∞ sup R(t) ≤ KR

μ
. (63)

Thus, 0 ≤ Rh(t)+Rp(t) ≤ KR
μ

, ∀t ≥ 0. So there exist R∞
h and R∞

p with the property
that 0 ≤ Rh(t) ≤ R∞

h and 0 ≤ Rp(t) ≤ R∞
p , ∀t ≥ 0. Hence, Rh and Rp are bounded

solutions.
Next we consider the equation for M , namely,

dM

dt
= rγp(1 − σ)Rp

1 + ξ1Ea(t)
− μmM −

(
β2Rh

1 + ξ0Ea
+ β3Rp

1 + ξ0Ea
+ (ρm + ρn Ea)Ei

)
M,

and observe that when we take into consideration the fact that the quantity 1
1+ξ1Ea

is
largest when Ea = 0, we have that

dM

dt
≤ rγp(1 − σ)R∞

p − μmM ⇒ M(t) ≤ rγp(1 − σ)R∞
p

μm
+ Be−μmt ,

where B is an arbitrary constant. As above we arrive at the conclusion that there exist
M∞ such that 0 ≤ supM(t) ≤ M∞, ∀t ≥ 0. So M is bounded.

Next to prove the boundedness of Ge and Gl , we set G(t) = Ge(t) + Gl(t) to be
the total size of gametocytes within the human and see that

dG

dt
= sσγp Rp

1 + ξ1Ea
− (γl + μe)Ge − (ρg + ρq Ea)GeEi + γlGe

1 + ξ1Ea
− μlGl − ρl EiGl

≤ sσγp R
∞
p − min(μe, μl )G.
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Thus

dG

dt
+ min(μe, μl)G ≤ rσγp,m R∞

p ⇒ G(t) ≤ rσγp,m R∞
p

min(μe, μl)
+ Ce−min(μe,μl )t .

Therefore, as before, there exist G∞
l and G∞

e with the property that for 0 ≤ Ge(t) ≤
G∞

e and 0 ≤ Gl(t) ≤ G∞
l , ∀t ≥ 0. SoGe andGl are boundedwhenever the preceding

variables are bounded.
To establish boundedness of the solutions for the equations of the innate and adaptive

immune responses, we proceed as follows. From the last two equations of the general
model, system (8)–(14), and using the above results, we get

dEi

dt
+
(
λ1R

∞
p + λ2M

∞) Ei ≤ Ki + ϑ1R
∞
p + ϑ2M

∞

dEa

dt
+
(
μa + θ1R

∞
p + θ2M

∞)
)
Ea ≤ �1R

∞
p + �2M

∞,

with the right hand side here being only constants and we can again argue as above to
come to the conclusion that each Ei will show bounded growth whenever M , Rh and
RP are bounded. This completes the prove for boundedness. So, if we let

B∞ = max{R∞
h , R∞

h , M∞,G∞
e ,G∞

l , E∞
i , E∞

a },

then each of Rh, Rp, M, Ge, Gl , Ei , Ea ≤ B∞. In the absence of disease, system
(8)–(14) reduces to the decoupled equations for the healthy red blood cell population
and for the immune cells as follows:

dRh

dt
= Rhψ(Rh) − μh Rh,

dEi

dt
= Hi (Ei ),

dEa

dt
= −μa Ea .

Note here that in the absence of Allee effect, Hi (Ei ) can have similar forms as F(Rh).

That is, we can write

Hi (Ei ) = Eiϕ(Ei ) − μi Ei ,

where ϕ : [0,∞) → R+ is a function defined similarly as ψ and satisfies the condi-
tions stated for ψ.

So, to prove the boundedness of these functions we observe that the equation for
the healthy red blood cell population then satisfies the relation

dRh

dt
= Rhψ(Rh) − μh Rh ⇒ t (Rh) =

∫
1

Rh(ψ(Rh) − μh)
dRh + C,

where C is an arbitrary constant of integration. For the functional forms of ψ used
here, if at time t = 0, Rh(t) = R0h , we have
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t (Rh) =
⎧⎨
⎩

1
μh

ln
(

�−μh R0h
�−μh Rh

)
if ψ(Rh) = �

Rh

1
ω
ln
(
Rh(R0h−K )
R0h(Rh−K )

)
if ψ(Rh) = � − μ̃h Rh

⎞
⎠ ,

where ω = � − μh and K = ω
μ̃h

. For both forms of recruitment, it is clear that
t (Rh) → ∞ when Rh → �/μh or Rh → K , respectively. So the solutions remain
bounded. Also, in the absence of disease, the expression for the innate immunity at
any time can be written as an exact integral. That is

dEi

dt
= Hi (Ei ) ⇒ t (Ei ) =

∫
1

Hi (Ei )
dEi + C, (64)

where C is a constant whose values can be determined by the initial conditions. So,

t (Ei ) =
⎧⎨
⎩

Ki (ln(Ei−Mi )−ln(Ei ))+Mi (ln(Ei )−ln(Ei−Ki ))
δi (Ki−Mi )

+ C if Hi (Ei ) = Ei δi

(
1 − Ei

Ki

) (
Ei
Mi

− 1
)

ln(Ei )−ln(Ei−Ki )
δi

+ C if Hi (Ei ) = Ei δi

(
1 − Ei

Ki

)
⎞
⎠ ,

so that if at time t = 0, Ei (0) = E0i , we have the implicit solution

t (Ei ) =

⎧⎪⎨
⎪⎩

1
δi (Ki−Mi )

ln

((
E0i (Ei−Mi )
Ei (E0i−Mi )

)Ki
(
Ei (E0i−Ki )
(Ei−Ki )E0i

)Mi
)

if Hi (Ei ) = Ei δi

(
1 − Ei

Ki

) (
Ei
Mi

− 1
)

1
δi
ln
(

Ei (E0i−Ki
E0i (Ei−Ki )

)
if Hi (Ei ) = Ei δi

(
1 − Ei

Ki

)

We then see clearly that for the logistic case, t → ∞ whenever Ei → Ki for any
starting value of E0i > 0. In the case with the Allee effect, if 0 < Mi < Ki then
0 < E0i < Mi , t (E) → ∞ as Ei → 0+, while if E0i > Mi , then again, t (E) → ∞
as Ei → Ki . This shows that in either case, the solutions remain bounded. The inverse
function theorem can be applied to obtain the solution Ei (t) in some special cases of
values of Mi and Ki . We have thus established boundedness of the solutions in all
cases in both the presence and absence of the infection. �

Uniqueness of Solution

Theorem 9 (Statement on the Uniqueness of Solution) The positive and bounded
solution for the system (8)–(14) whenever it exists, is unique.

Proof We show that the function � defined above is globally Lipschitz in R
7+ and

hence the equation x′(t) = �(x(t)), x(0) = x0 has a unique solution. It is clear
that R7+ is a convex set, � is continuously differentiable, since the partial derivatives
∂�
∂xi

, i = 1, 2, . . . , 7 exist, and are continuous. We show that these partial deriva-

tives are bounded in R
7+ : Since Rhψ(Rh) is monotone decreasing, continuously

differentiable function and each state variable Rh, Rp, M,Ge,Gl , Ei , Ea are con-
tinuously differentiable, then each component �i , i = 1, 2, 3 . . . , 7 of the vector
valued function � on right hand side of system (8)–(14) exists and are continuously
differentiable because they are rational functions of the state variables. It suffices to
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show that ‖ ∂�
∂xi

‖∞ i = 1, 2, · · · , 7 are bounded where (x1, x2, x3, x4, x5, x6, x7) =
(Rh, Rp, M,Ge,Gl , Ei , Ea). Observe, for example, that
∥∥∥∥ ∂�

∂Rh

∥∥∥∥∞
= max

{∣∣∣∣ ∂φi

∂Rh

∣∣∣∣ , i = 1, 2, . . . , 7

}

= max

{∣∣∣∣ψ(Rh) + Rhψ ′(Rh) − μh − β1M

1 + ξ0Ea

∣∣∣∣ ,
∣∣∣∣ β1M

1 + ξ0Ea

∣∣∣∣ , 0, 0, 0, 0, 0
}

≤ ∣∣ψ(Rh)| + Rh |ψ ′(Rh)
∣∣+

∣∣∣∣μh + β1M

1 + ξ0Ea

∣∣∣∣
≤ B1

for some B1, since M and Ea are bounded, and ψ is monotone decreasing so that |ψ ′|
is monotone increasing and bounded by say K where K is the carrying capacity for
Rh , so B1 exists. Similarly, there exists Bi < ∞, for i = 2, 3, · · · , 7 such that

∥∥∥∥ ∂�

∂Rp

∥∥∥∥∞
= B2 < ∞,

∥∥∥∥ ∂�

∂M

∥∥∥∥∞
= B3 < ∞,

∥∥∥∥ ∂�

∂Ge

∥∥∥∥∞
= B4 < ∞,

∥∥∥∥ ∂�

∂Gl

∥∥∥∥∞
= B5 < ∞,

∥∥∥∥ ∂�

∂Ei

∥∥∥∥∞
= B6 < ∞,

∥∥∥∥ ∂�

∂Ea

∥∥∥∥∞
= B7 < ∞.

We would have established that the partial derivatives are bounded and hence the
function �(x) defined by the right hand side of (8)–(14) is Lipschitzian. Now let
x1, x2 be two arbitrary points in R7+. Then define,

z(x1, x2; θ) = {x1 + θ(x2 − x1), 0 ≤ θ ≤ 1}.

Then, z(x1, x2; θ) is a line segment joining points x1 and x2 in R
7+ for θ ∈ [0, 1].

Furthermore, z(x1, x2; θ) is a convex function and since R
7+ is a convex set, then

z(x1, x2; θ) ∈ R
7+ for each θ ∈ [0, 1].

Using the mean value theorem for differentiable functions in R
n+, one can show

that

‖�(x1) − �(x2)‖∞ = ‖D�(c; x1 − x2)‖∞,

where c is themean value point and D� is the directional derivative of� at the point c in
the direction of the vector x1 − x2.Using the expression for the directional derivative,
as well as applying the triangle inequality and the Cauchy–Schwartz inequality, we
see that

‖D�(z; x1 − x2)‖∞ =
∥∥∥∥∥

7∑
k=1

∇�k(z) · (x1 − x2)ek

∥∥∥∥∥
∞

≤
∥∥∥∥∥

7∑
k=1

∇�k(z)

∥∥∥∥∥
∞

‖(x1 − x2)‖∞
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≤
7∑

k=1

‖∇�k(z)‖∞‖(x1 − x2)‖∞ ≤ L‖(x1 − x2)‖∞,

for some constant L = 7max{B1, B2, B3, B4, B5, B6, B7} where the last inequality
comes from the fact that each partial derivative of � is bounded and ek is the kth unit
vector in R7+. Hence, there exists a constant L > 0 such that

‖�(x1) − �(x2)‖∞ ≤ L‖(x1 − x2)‖∞.

Hence,� is Lipschitz continuous and therefore, by thePicard’s existenceandunique-
ness theorem, the system under study has a unique solution. �
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