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Abstract Many complex systems exhibit critical transitions. Of considerable interest
are bifurcations, small smooth changes in underlying drivers that produce abrupt shifts
in system state. Before reaching the bifurcation point, the system gradually loses
stability (‘critical slowing down’). Signals of critical slowing down may be detected
through measurement of summary statistics, but how extrinsic and intrinsic noises
influence statistical patterns prior to a transition is unclear. Here, we consider a range
of stochastic models that exhibit transcritical, saddle-node and pitchfork bifurcations.
Noise was assumed to be either intrinsic or extrinsic. We derived expressions for
the stationary variance, autocorrelation and power spectrum for all cases. Trends in
summary statistics signaling the approach of each bifurcation depend on the form
of noise. For example, models with intrinsic stochasticity may predict an increase in
or a decline in variance as the bifurcation parameter changes, whereas models with
extrinsic noise applied additively predict an increase in variance. The ability to classify
trends of summary statistics for a broad class of models enhances our understanding
of how critical slowing down manifests in complex systems approaching a transition.
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1 Introduction

Critical transitions are a feature of many complex natural systems, e.g., (Scheffer et al.
2009, 2012; Lenton 2011; Trefois et al. 2015; Quail et al. 2015). Examples of critical
transitions in environmental systems include eutrophication of lakes (Scheffer et al.
1993), collapse of pollinator communities (Lever et al. 2014), shifts in atmospheric
circulation (Lenton et al. 2008) and elimination of infectious diseases (Drake and
Hay 2017). Bifurcations, small smooth changes in system parameters that induce
sudden shifts in system behavior, are of considerable interest because they provide
mechanisticmodels for critical transitions that are driven by gradual directional change
in underlying drivers. A bifurcation of a system may be anticipated because prior to
reaching the dynamical threshold, the systemgradually loses stability (‘critical slowing
down’ (Wissel 1984; Strogatz 1994; Nes and Scheffer 2007)). Signatures of critical
slowing downmay be detectable throughmeasurement of temporal summary statistics,
such as variance, lag-1 autocorrelation and power spectrum (Scheffer 2009; Dakos
et al. 2012). Trends in summary statistics may indicate an impending bifurcation.

To anticipate tipping points in natural systems, typically dynamical models are
developed to produce predictions for leading indicator statistics (Scheffer et al. 2009;
Dakos et al. 2012; Dai et al. 2013; Carpenter and Brock 2006; Veraart et al. 2012;
Bauch et al. 2016). A common approach for generating leading indicator predic-
tions is to simulate a single stochastic model with a slowly changing forcing variable
through a bifurcation point and compare indicator predictions from the model with
those measured from data. This approach has been referred to as the use of “metric-
based indicators” (Dakos et al. 2012), where the expected statistical patterns produced
from a model are compared with patterns found in data, as opposed to fitting models
of critical transitions to data [use of a “model-based indicator” approach (Dakos et al.
2012; Boettiger and Hastings 2012; Lade and Gross 2012)]. Theory for leading indi-
cator patterns is often derived from simple one-dimensional stochastic models with
additive noise structure, where noise effects are superimposed on to the deterministic
growth rate of stochastic differential equation models (Gardiner 2004; Kuehn 2011;
Ditlevsen and Johnsen 2010; Nicolis and Nicolis 2014) or on to the return rate to
equilibrium in autoregressive models (Scheffer et al. 2009; Ives et al. 2003; Ives and
Dakos 2012). However, this approach does not specify the mechanisms behind the
stochastic variation. It only assumes that it is caused by external forces, making it a
form of process noise or environmental stochasticity. Alternatively, noise can affect
the system through external variations in the environment that affect a specific rate
of the system or a model parameter. In this case, the noise is applied in a multiplica-
tive fashion to the deterministic model equations, and in ecology, it is the standard
approach for modeling environmental stochasticity. Moreover, noise can be intrinsic
to the system (i.e., operate at the microscale). In ecology, this is referred to as demo-
graphic stochasticity, where random effects are due to the inherent randomness of
events such as births, deaths, immigration and emigration. What is unclear, however,
is how extrinsic and intrinsic noise influence statistical patterns in temporal data prior
to a bifurcation. For example, non-monotonic and decreasing patterns in variance prior
to bifurcations have been described before in some models [e.g., (O’Regan and Drake
2013; O’Regan et al. 2016; Kuehn 2011; Dakos et al. 2012)]. In particular, it is unclear
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1632 S. M. O’Regan, D. L. Burton

what role the form of stochasticity may play in the behavior of variability indicators,
such as variance and power spectrum, prior to a critical transition.

Here, we consider a broad class of minimal, one-dimensional stochastic differen-
tial equationmodels representing supercritical transcritical, saddle-node and pitchfork
bifurcations of natural systems. Each model represents collapse of a stable system
state. For example, we consider models of population extinction that are driven by
a gradually decreasing intrinsic population growth rate, which approaches zero over
a long time scale. The models are minimal in the sense that mechanistic, stochas-
tic normal-form bifurcation models are used to examine the effects of intrinsic and
external environmental noise on statistical patterns of variability. To show how critical
slowing down manifests in statistical patterns generated by the models, we derived
expressions for the stationary variance, autocorrelation and power spectrum for all
cases. To investigate the robustness of our predictions, we used models of infectious
disease elimination and overharvesting as case studies.We show that trends in variabil-
ity statistics prior to bifurcation depend on noise structure, and consequently, patterns
in certain indicators may not be generic.

2 Methods

2.1 Model Derivations

To mathematically describe system collapse in the simplest way possible, we write
down canonical models describing supercritical transcritical bifurcation, saddle-node
bifurcation and pitchfork bifurcations, respectively. All models can be transformed to
a normal form through an appropriate change of variables (Strogatz 1994),

dx

dt
= f (x, r), (1)

where x is the variable of interest and r is the bifurcation parameter. The critical point
in each model is r = 0, where a bifurcation occurs.

Using this framework, we consider three modes of system collapse. A supercritical
transcritical bifurcation, modeled using f (x, r) = r x − x2, describes the situation
where the extinction state and the positive steady state x∗ = r > 0 meet and exchange
stability at r = 0. For example, models representing elimination of infectious disease
may be reduced to this form. A catastrophic collapse is often modeled using a super-
critical saddle-node bifurcation, described by f (x, r) = r − x2, where the positive
supercritical state xs = √

r collides with the negative unstable state xu = −√
r , and is

annihilated at r = 0.Hysteretic processes in ecology, e.g., eutrophication of lakes (Car-
penter et al. 1999) or collapse of insect populations (Ludwig et al. 1978), can be reduced
to a saddle-node normal form. Finally, a pitchfork bifurcation, f (x, r) = r x − x3,
is a model of population collapse that occurs due to the meeting of two stable states,
xs = ±√

r , and becoming a single extinction state at r = 0. Switching between
two simultaneously stable climatic regimes or atmospheric states may be modeled by
a reduction to supercritical pitchfork bifurcation normal form (Nicolis and Nicolis
2014). Bifurcation diagrams for each model are shown in Fig. 1.
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Fig. 1 Bifurcation diagrams for normal-form models (Color figure online)

To understand the effects of intrinsic and extrinsic variability on leading indica-
tor patterns, we combine noise with the deterministic skeletons represented in Fig. 1
through development of three systems of stochastic differential equations for each
bifurcation. Firstly, the effect of environmental variations is modeled through stochas-
tic variation of the rate of change of the system variable, f (x, r). The assumption of
additive environmental noise on f (x, r) is often used as the baseline model for study-
ing the interplay between noise and behavior of a system approaching a bifurcation,
particularly where it is not clear what the relative strengths of each noisy process that
comprises f (x, r) are. Secondly, we develop models with a mechanistic representa-
tion of environmental stochasticity, by assuming that the bifurcation parameter is a
normally distributed random variable. Thirdly, we develop models that account for
intrinsic microscale variations in the system variable (demographic stochasticity).

2.2 Form I: Additive Environmental Noise

To model the effect of extrinsic perturbations on each system, we assume the state
variable X (t) is a random variable and the system variable rate of change f (X, r)
is a noisy process due to extrinsic perturbations. The external perturbations are non-
specific in nature, in that they are assumed to not mechanistically affect any particular
component of f (X, r). More precisely, in a small increment of time �t , the change
in the system variable �X = X (t + �t) − X (t) fluctuates randomly according to a
normal distribution with mean f (X, r)�t and constant variance σ 2�t . We can write
this assumption as an Itô stochastic differential equation, e.g., (Allen 2003),

dX = f (X, r)dt + σdW, (2)

where W (t) is a Wiener process with zero mean and variance �t . Table 1 shows the
models for each bifurcation, assuming additive environmental noise.

2.3 Form II: Mechanistic Environmental Noise

Alternatively, environmental noise may affect specific parameters of a system. In
each of the bifurcation models we consider, we assume the bifurcation parameter r is
influenced by environmental variations. In a small increment of time �t , we assume

r�t ∼ Normal(r�t, σ 2�t), (3)

123



1634 S. M. O’Regan, D. L. Burton

Table 1 Mechanistic normal-form supercritical bifurcation population models written as Itô stochastic
differential equations

Bifurcation Form of stochasticity Stochastic differential equation (SDE)

Transcritical bifurcation Additive environmental noise dX = (r X − X2)dt + σdW

Transcritical bifurcation Mechanistic environmental noise dX = (r X − X2)dt + σ XdW

Transcritical bifurcation Intrinsic noise dX = (r X − X2)dt +
√
r X + X2dW

Saddle-node bifurcation Additive environmental noise dX = (r − X2)dt + σdW

Saddle-node bifurcation Mechanistic environmental noise dX = (r − X2)dt + σdW

Saddle-node bifurcation Intrinsic noise dX = (r − X2)dt +
√
r + X2dW

Pitchfork bifurcation Additive environmental noise dX = (r X − X3)dt + σdW

Pitchfork bifurcation Mechanistic environmental noise dX = (r X − X3)dt + σ XdW

Pitchfork bifurcation Intrinsic noise dX = (r X − X3)dt +
√
r X + X3dW

or r�t is normally distributed with mean r�t and variance σ 2�t . Substituting in the
normally distributed random variable r�t into the equation �X = f (X, r)�t corre-
sponding to each bifurcation and letting �t → 0, we obtain Itô stochastic differential
equations in Table 1 that model mechanistic environmental noise. By assuming this
form of mechanistic noise, the random perturbations scale with the state variable x in
the models representing transcritical and pitchfork bifurcations, but they do not in the
saddle-node bifurcation model (Table 1).

2.4 Form III: Intrinsic Noise

To model the effects of microscale noise, we derive stochastic differential equations
from a Markov process. We consider two events: recruitment into the system, which
increases the state variable X by a single unit in a small increment of time �t , and
removal from the system, which decreases the state variable by a single unit. Each
event occurs according to a Poisson process and the transition probability of each
event occurring in a short time period �t is proportional to �t . The probability of
more than one event occurring during this time period is negligibly small (of order
�t). Table 2 shows the events and transition probabilities for each model. We apply
a diffusion approximation to derive stochastic differential equations corresponding to
the events in Table 2 (Allen 2003). Table 1 shows the stochastic differential equations
representing intrinsic noise.Note that these events and rates are one choice representing
intrinsic noise; alternative stochastic differential equations could be written depending
on different underlying microscopic stochastic processes.

2.5 Obtaining Early Warning Signals

Each of the equations in Table 1 may be expressed in the general form
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Table 2 Transition probabilities associated with changes in the state variable X

i Transcritical bifurcation Saddle-node bifurcation Pitchfork bifurcation (�X)i
Transition probability pi Transition probability pi Transition probability pi

1 r X�t r�t r X�t 1

2 X2�t X2�t X3�t −1

3 1 − (r X + X2)�t 1 − (r + X2)�t 1 − (r X + X3)�t 0

dX = f (X, r)dt +
√
g(X, r)2dW. (4)

The functions f and g2, respectively, represent the drift and diffusion coefficients of the
forward Kolmogorov equation associated with equation (4) (Allen 2007). To quantify
the behavior of small perturbations from the positive supercritical equilibrium state,
we linearize the drift and diffusion coefficients of the forward Kolmogorov equation
around the supercritical steady state xs > 0. Letting ˆX (t) = X (t) − xs represent
deviations from the equilibrium and retaining leading order terms in the expansions,
the stochastic differential equation for their evolution is anOrnstein–Uhlenbeck (O–U)
process,

d X̂ = f ′(xs, r)X̂dt +
√
g(xs, r)2dW. (5)

Consequently, the dynamics of perturbations from equilibrium are governed byEq. (5).
The linearized drift term is the eigenvalue of the correspondingdeterministicmodel (1),
and the magnitude of the linearized drift term | f ′(xs, r)| is the asymptotic decay rate
of a perturbation, known as engineering or asymptotic resilience in ecology (Pimm
1984; Holling 1996), or simply resilience. Depending on the nature of the system
noise, the variance g(xs, r)2 of the O–U perturbation process (hereafter referred to as
O–U variance) may depend on the steady state xs , which is decreasing to zero in the
supercritical models.

Standard approaches, e.g., (Gardiner 2004; Allen 2003; Nisbet and Gurney 1982),
yield expressions for key summary statistics. The lag-τ autocorrelation function is

a(r) = exp (−| f ′(xs, r)|τ). (6)

The lag-τ autocorrelation only depends on resilience | f ′(xs, r)|. In contrast, variance,
coefficient of variation and power spectrum all depend on the O–U variance g(xs, r)2.
The power spectrum of the fluctuations in terms of angular frequencies ω may be
determined through Fourier transformation of Eq. (5),

Sr (ω) = g(xs, r)2

(| f ′(xs, r |))2 + ω2)
. (7)
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1636 S. M. O’Regan, D. L. Burton

The stationary variance of the state variable

v(r) = g(xs, r)2

2| f ′(xs, r)| , (8)

may be found by either Fourier transforming Eq. (5) [e.g., (Nisbet and Gurney 1982)]
and through integrating the expression for the power spectrum, or directly by taking
expectations [e.g., (Allen 2003)]. Finally, the coefficient of variation is the standard
deviation

√
v(r) normalized by the steady state, xs ,

cv(r) =
√

v(r)

xs
. (9)

To examine how the summary statistics behave as the bifurcation point is approached,
we derived analytical expressions for each statistic using each of the models in Table 1
and examined their behavior in the limit r → 0 from the right.

3 Results

The expressions for variance, coefficient of variation and power spectrum differ
for each form of stochasticity, as these statistics depend on the noise mechanism
(Tables 3, 4, and 5). The autocorrelation function is the same for all stochasticity
types, as it depends only on the magnitude of the return rate to equilibrium. Three
limiting behavior outcomes for variance arise from the models of noise mechanism
and bifurcation combinations (Table 6). Variance approaches positive infinity, zero or
a nonzero constant. In all models, all variance quotients have a discontinuity at the
bifurcation point, and the denominator in the variance quotient tends to zero as the
bifurcation point is approached,

lim
r→0+ 2| f ′(xs, r)| = 0. (10)

For the models considered in Table 1, notice that the limit of the O–U variance
in each model, limr→0+ g2(xs, r), is either σ 2 or zero (Tables 3, 4, and 5). If
limr→0+ g2(xs, r) = σ 2, then the variance quotient v(r) will diverge. This outcome
is predicted if environmental stochasticity is assumed to affect the system growth rate
f (X, r) as a whole (additive noise). For example, in the simplest stochastic model for
a system approaching a critical transition, extrinsic noise is assumed to be additive,
and O–U variance is assumed to be independent of the bifurcation parameter. In this
model, the eigenvalue f ′(xs, r) shrinks relative to O–U variance, which stays con-
stant, and the stationary variance of the state variable X (t) blows up as r approaches
the bifurcation point.

A necessary condition for the variance of X (t) to approach zero is that the limit of
the O–U variance must approach zero. Canceling common factors in the variance quo-
tient (8) yields limits of zero in normal-formmodels of bifurcations with demographic
stochasticity, and in the transcritical bifurcationmodelwithmechanistic environmental

123



How Stochasticity Influences Leading Indicators… 1637

Ta
bl
e
3

Su
m
m
ar
y
st
at
io
na
ry

st
at
is
tic
s
de
ri
ve
d
fr
om

tr
an
sc
ri
tic
al
bi
fu
rc
at
io
n
no
rm

al
-f
or
m

SD
E
s
(T
ab
le
1)
,a
ss
um

in
g
r

>
0,

xs
=

r
is
st
ab
le
,a
nd

ei
ge
nv
al
ue

f′ (
xs

,
r)

=
−r

St
oc
ha
st
ic
ity

ty
pe

O
–U

va
ri
an
ce

A
ut
oc
or
re
la
tio

n
Po

w
er

sp
ec
tr
um

V
ar
ia
nc
e
of

X
(t

)
C
oe
ffi
ci
en
to

f
va
ri
at
io
n

g2
(x

s ,
r)

v
(r

)
cv

(r
)

A
dd
iti
ve

en
vi
ro
nm

en
ta
ln

oi
se

σ
2

ex
p(

−r
τ
)

σ
2

(r
2
+ω

2
)

σ
2

2r
σ

√ 2r
3 2

M
ec
ha
ni
st
ic
en
vi
ro
nm

en
ta
ln

oi
se

σ
2 r

2
ex
p(

−r
τ
)

(σ
r)
2

(r
2
+ω

2
)

σ
2
r

2
σ √ 2r

In
tr
in
si
c
no
is
e

2r
2

ex
p(

−r
τ
)

2r
2

(r
2
+ω

2
)

r
1 √ r

123



1638 S. M. O’Regan, D. L. Burton

Ta
bl
e
4

Su
m
m
ar
y
st
at
is
tic

s
de
ri
ve
d
fr
om

sa
dd

le
-n
od

e
bi
fu
rc
at
io
n
no

rm
al
-f
or
m
st
oc
ha
st
ic
di
ff
er
en
tia

le
qu

at
io
ns

(T
ab
le
1)
,a
ss
um

in
g
r

>
0,
xs

=
√ r

is
st
ab
le
,a
nd

ei
ge
nv
al
ue

f′ (
xs

,
r)

=
−2

√ r

St
oc
ha
st
ic
ity

ty
pe

O
–U

va
ri
an
ce

A
ut
oc
or
re
la
tio

n
Po

w
er

sp
ec
tr
um

V
ar
ia
nc
e
of

X
(t

)
C
oe
ffi
ci
en
to

f
va
ri
at
io
n

g2
(x

s ,
r)

v
(r

)
cv

(r
)

A
dd
iti
ve

en
vi
ro
nm

en
ta
ln

oi
se

σ
2

ex
p(

−2
√ rτ

)
σ
2

(4
r+

ω
2
)

σ
2

4√ r
σ

2r
3 4

M
ec
ha
ni
st
ic
en
vi
ro
nm

en
ta
ln

oi
se

σ
2

ex
p(

−2
√ rτ

)
σ
2

(4
r+

ω
2
)

σ
2

4√ r
σ

2r
3 4

In
tr
in
si
c
no
is
e

2r
ex
p(

−2
√ rτ

)
2r

(4
r+

ω
2
)

√ r 2
1

√ 2r
1 4

123



How Stochasticity Influences Leading Indicators… 1639

Ta
bl
e
5

Su
m
m
ar
y
st
at
is
tic

s
de
ri
ve
d
fr
om

pi
tc
hf
or
k
bi
fu
rc
at
io
n
no

rm
al
-f
or
m

st
oc
ha
st
ic

di
ff
er
en
tia

l
eq
ua
tio

ns
(T
ab
le

1)
,
as
su
m
in
g
r

>
0,

xs
=

√ r
is
st
ab
le
,
ei
ge
nv
al
ue

f′ (
xs

,
r)

=
−2

r

St
oc
ha
st
ic
ity

ty
pe

O
–U

va
ri
an
ce

A
ut
oc
or
re
la
tio

n
Po

w
er

sp
ec
tr
um

V
ar
ia
nc
e
of

X
(t

)
C
oe
ffi
ci
en
to

f
va
ri
at
io
n

g2
(x

s ,
r)

v
(r

)
cv

(r
)

A
dd
iti
ve

en
vi
ro
nm

en
ta
ln

oi
se

σ
2

ex
p(

−2
rτ

)
σ
2

(4
r2

+ω
2
)

σ
2 4r

σ 2r

M
ec
ha
ni
st
ic
en
vi
ro
nm

en
ta
ln

oi
se

σ
2 r

ex
p(

−2
rτ

)
σ
2
r

(4
r2

+ω
2
)

σ
2 4

σ
2√ r

In
tr
in
si
c
no
is
e

2r
3/
2

ex
p(

−2
rτ

)
2r

√ r
(4
r2

+ω
2
)

√ r 2
1

√ 2r
1/
4

123



1640 S. M. O’Regan, D. L. Burton

Table 6 Limiting behavior of stationary variance v(r) and coefficient of variation cv(r) of state variable
X (t)

Bifurcation Stochasticity type Variance limiting behavior CV limiting behavior
(limr→0+ v(r)) (limr→0+ cv(r))

Transcritical Additive environmental noise +∞ +∞
Transcritical Mechanistic environmental noise 0 +∞
Transcritical Intrinsic noise 0 +∞
Saddle-node Additive environmental noise +∞ +∞
Saddle-node Mechanistic environmental noise +∞ +∞
Saddle-node Intrinsic noise 0 +∞
Pitchfork Additive environmental noise +∞ +∞
Pitchfork Mechanistic environmental noise σ 2/4 +∞
Pitchfork Intrinsic noise 0 +∞

noise. In each model, limr→0+ g2(xs, r) = 0. Additionally, O–U variance declines to
zeromore rapidly than resilience in a neighborhood of the bifurcation point [Fig. 2a–c,
compare blue dashed lines, representing O–U variance due to intrinsic noise, to thick
black line (resilience)]. Notice that in these cases, simplification is not needed to eval-
uate the limit of the variance quotient; rather, L’Hospital’s rule may be used, since the
numerator and denominator both approach zero, yielding an indeterminate form.When
L’Hospital’s rule is applied to evaluate the variance limits in these models, the limit of
the derivatives of the numerator and the denominator is zero. The exceptional case is
the pitchfork bifurcationmodel with mechanistic environmental noise, where it is easy
to see that L’Hospital’s rule yields a nonzero limit. Although limr→0+ g2(xs, r) = 0
in this model, simplification of the variance expression yields constant variance of
σ 2/4 as r approaches zero from the right. This occurs because O–U variance and
resilience both scale with r (Fig. 2c). Taken together, these observations suggest that
that there are two key ingredients required for variance of one-dimensional stochas-
tic supercritical bifurcation systems to approach zero: on approaching the bifurcation
point, the limit of O–U variance must approach zero, and O–U variance must vanish
more rapidly than resilience. We establish this statement formally in “Appendix A.”

The argument in “Appendix A” can be generalized to the coefficient of variation,
cv(r), by replacing v(r) with cv(r), g(xs, r)2 with v(r) and 2| f ′(xs, r)| with xs . The
coefficient of variation will blow up near criticality when the magnitude of the steady
state becomes less than the standard deviation of the perturbation process (i.e., the
steady state approaches zero from the right faster than the standard deviation). This is
true as each bifurcation is approached under all noise regimes, because the standard
deviation also depends on the steady state.

The power spectrum depends on the variance of the Ornstein–Uhlenbeck perturba-
tion process (Tables 3, 4 and 5). As r approaches zero from the right, the graph of the
power spectrum stretches vertically, and consequently, lower angular frequencies ω

dominate the spectrum. Comparing across noise types, the power spectrum changes in
the vertical direction (i.e., strength of the signal). Although all power spectra have the
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Fig. 2 Magnitude of the mean
(resilience | f ′(xs , r)|) and
variance g2(xs , r) of the
Ornstein–Uhlenbeck
perturbation process for each
normal-form bifurcation model.
The terms comprise the
denominator and numerator of
the state variable stationary
variance quotient (8),
respectively. Bold lines show
resilience as a function of the
bifurcation parameter r . Dashed
lines describe O–U variance as a
function of r (purple dashed
lines: additive environmental
noise, σ 2 = 1; blue dashed
lines: intrinsic noise; red dashed
lines: mechanistic environmental
noise). As the critical threshold
r∗ = 0 (dotted vertical line) is
approached from the right, either
resilience dominates O–U
variance in the variance quotient
v(r) (i.e., resilience graph lies
above O–U variance graph), or
the O–U variance dominates the
effect of the resilience on the
variance quotient (O–U variance
graph lies above resilience).
Resilience and O–U variance
functions for each model are
listed in Tables 3, 4 and 5 (Color
figure online)
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same functional form with respect to angular frequency ω, the vertical scaling factors
differ and so the normalized area under the curve (stationary variance or fluctuation
intensity) is different for each noise form. In general, less power will be observed in
the signal (i.e., fluctuation intensity will be weaker) if O–U variance depends on the
bifurcation parameter (e.g., compare power spectra expressions derived from bifurca-
tion models with intrinsic stochasticity with those from additive environmental noise
in Tables 3, 4 and 5).

Clearly, the behavior of the variance of the Ornstein–Uhlenbeck perturbation pro-
cess (5) close to the critical point influences the behavior of the statistics prior to the
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bifurcation and subsequent detection of critical slowing down. This observation has
been made before in the context of ecological models for overharvesting (Dakos et al.
2012) but not in the context of generic models for critical transitions. Moreover, here
we establish a mechanism for state variable variance blow-up vs. variance decay: how
the relative magnitudes of the noise component and the deterministic component of
the Ornstein–Uhlenbeck perturbation process change with respect to the bifurcation
parameter. In sum, if resilience declines to zero more quickly than O–U variance,
noise will dominate dynamics prior to bifurcation, and state variable variance will
diverge, whereas if O–U variance declines to zero more quickly (e.g., if it scales with
system size), then the deterministic return to equilibrium will dominate dynamics and
variance will approach zero.

It is crucial to note that the long-term behavior of the statistics prior to the critical
transition depends on the mechanistic assumptions we have made to derive normal-
form stochastic models. Normal-form models are generic, and it is possible, under
suitable transformations, towrite anyone-dimensionalmodel in the appropriate normal
form (Strogatz 1994).However, transforming amodel into normal form is a specialized
mathematical technique (Guckenheimer and Holmes 1983), which becomes difficult
when the system under consideration is multidimensional. To test the robustness of the
theory, we relax the use of the minimal normal-form model framework. Next, we use
mechanistic epidemiological and ecological models approaching critical transitions
as case studies.

4 Testing the Theory: SIS Model as a Case Study

In Sect. 3 we observed that trends in variance prior to critical transitions are especially
affected by noise mechanism. To investigate the robustness of the predictions for
variance obtained from the mechanistic normal-form models, we derived statistics for
a suite of stochastic epidemiological models approaching elimination (a supercritical
transcritical bifurcation) under multiple sources of noise, without transforming the
models to a normal form.Specifically,we examinedvariance predictions obtained from
mechanistic, stochastic susceptible–infectious–susceptible (SIS) models. Emergence
of zoonotic diseases (Karesh et al. 2012; Han and Drake 2016), and global eradication
of smallpox (Drake andHay 2017) are examples of critical transitions in epidemiology.
Indicators of critical slowing downmay be useful for obtaining ameasure of how close
a disease system is to elimination (Drake and Hay 2017).

Assuming a well-mixed population that is closed and has population size N and
infectious individuals become susceptible on recovery, the deterministic SIS model is

dS

dt
= γ I − βSI

N
(11)

dI

dt
= βSI

N
− γ I.
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As the population size is constant and S = N − I , model (11) is equivalent to a single
equation for the rate of change of infectious individuals only,

dI

dt
= β(N − I )I

N
− γ I,

which can be written as,

dI

dt
= (β − γ )I − β I 2

N
. (12)

Equation (12) has two steady states: the endemic equilibrium I ∗ = N (1 − γ /β) and
the disease-free equilibrium I0 = 0. The basic reproduction number for model (11) is
R0 = β/γ . The SIS model has a transcritical bifurcation point at R0 = 1, where the
endemic equilibrium and the disease-free equilibrium meet and exchange stability. At
R0 = 1, the transmission rate equals the recovery rate, β∗ = γ ∗. Equation (12) can be
expressed in the normal form for a transcritical bifurcation, by using the transformation
x = β I

N and setting r = β − γ .
A supercritical SIS model, where R0 > 1 is gradually decreasing to the critical

threshold at unity, is representative of an SIS epidemic system forced through elim-
ination due to changes in epidemiological processes (model parameters) that occur
over long time scales. For example, reduction in the per-capita transmission rate can
result from reduction in contact with other individuals through the use of protective
measures such as wearing masks or using antibacterial agents. Reduction in transmis-
sion rate reduces R0. On the other hand, R0 may be reduced by increases in per-capita
recovery rate, e.g., through shortening of the infectious period of the disease resulting
from provision of drugs or other therapeutic treatments that quicken recovery.

4.1 Stochastic Models

Models (a), (b) and (c) in Table 7 assume SIS processes that are driven by environ-
mental stochasticity (e.g., variation in environmental conditions such as temperature,
humidity etc.) In these models, the effects of environmental stochasticity on per-capita
transmission and recovery rates, respectively, dominate any effects of variation arising
from infection and recovery events. Model (a) assumes the growth rate of infectious
individuals fluctuates randomly due to normally distributed environmental drivers.
Model (b) assumes that the per-capita transmission rate β fluctuates randomly due to
external environmental forces, whereas model (c) assumes that the per-capita recovery
rate γ experiences noisy perturbations from the external environment. Model (a) is
an additive noise model, and model (c) bears a close resemblance to the normal-form
model approaching a transcritical bifurcation subject to a mechanistic noise regime
(Table 1). Model (c) can also represent an SIS system exhibiting fluctuations in intrin-
sic growth rate r = β − γ , which are driven by variability in recovery rate.

Additionally, we derived two models driven by demographic stochasticity (models
(d) and (e) in Table 7). Events are infection (transmission of the infection from infec-
tious to susceptible individuals) and recovery of infectious individuals. Each event
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Table 7 Stochastic SIS models

Model Stochasticity type Equations

(a) Additive environmental noise dI =
(

β(N − I )I

N
− γ I

)
dt + σdW1

(b) Mechanistic environmental noise (i) dI =
(

β(N − I )I

N
− γ I

)
dt + σ

(N − I )I

N
dW2

(c) Mechanistic environmental noise (ii) dI =
(

β(N − I )I

N
− γ I

)
dt + σ IdW3

(d) Mechanistic demographic noise (i) dI =
(

β
(N − I )I

N
− γ I

)
dt +

√
β(N − I )I

N
+ γ IdW4

(e) Mechanistic demographic noise (ii) dI =
(

(β − γ )I − β I 2

N

)

�t +
√

(β − γ )I + β I 2

N
dW5

Table 8 SIS stochastic
processes

Event i �Ii Model (d) pi Model (e) pi

Infection +1 β(N−I )I
N �t (β − γ )I�t

Recovery −1 γ I�t β I2

N �t

occurs according to a Poisson process and the transition probability of each event
occurring in a short time period �t is proportional to �t . Changes in the infectious
population are denoted by �I = I (t + �t) − I (t). Table 8 shows the events and
transition probabilities pi for the two processes; notice that the transition probabilities
for processes (d) and (e) differ. Model (d) is a realistic representation of an SIS epi-
demiological process, whereas model (e) represents the epidemiological process as a
logistic growth process, and was developed to have a similar structure to the normal-
form model of a transcritical bifurcation under demographic noise in Table 1. Using a
diffusion approximation leads to stochastic differential equations for these processes
(Allen 2003). The stochastic processes governing changes in infectious individuals
(d) and (e) have the same mean but the variance for the two processes differ.

4.2 Stationary Variance Predictions as R0 → 1

Even for simple one-dimensional models, various limiting behaviors for the station-
ary variance of the infectious population are possible, depending on the mechanisms
behind the stochastic SIS process (Table 9). The expressions for stationary variance
depend on the underlying form of stochasticity and the interplay between O–U vari-
ance and system resilience. Linearizing the models in Table 7 yields the magnitude
of the mean of the Ornstein–Uhlenbeck process; the resilience for models (a)–(e) is
|− (β −γ )|, and therefore, the lag-τ autocorrelation function is exp(−|− (β −γ )|τ).
Resilience appears in the numerator of the variance quotient, rather than the denomina-
tor, undermechanistic environmental noisemodels (b) and (c). Consequently, variance
approaches zero as R0 approaches unity. Stationary variance equals the mean of the
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demographic SIS stochastic process (e), and thus, variance declines to zero as the crit-
ical threshold is approached. Alternatively, an increase in variance is observed under
the more realistic demographic noise regime (d).

The opposing patterns in stationary variance can also be explained by the behavior of
the equilibrium susceptible and infectious populations. Notice that for models (b), (c)
and (e), O–U variance is positively correlated with the equilibrium or quasi-stationary
mean of the infectious population, I ∗, and thus, the variance of the perturbation process
declines with the mean I ∗. Stationary variance of the infectious population eventually
declines to zero. On the other hand, in model (d), O–U variance is positively cor-
related with the equilibrium or quasi-stationary mean of the susceptible population,
N − I ∗, rather than the infectious population, and therefore the variance of the pertur-
bation process increases with the increasing susceptible population as elimination of
infectious individuals becomes more imminent. Consequently, the stationary variance
increases.

Moreover, in some cases, stationary variance is a non-monotonic function of the
bifurcation parameter. This prediction is in contrast to the monotonic (in intrinsic
growth rate r ) variance predictions for transcritical bifurcations under different noise
types, in Table 3. For example, variance is non-monotonic with respect to β for model
(b) in Table 7. To see this, we calculate the first derivative of the variance v(β) with
respect to β,

dv(β)

dβ
= (σNγ )2

4β4

(
4γ

β
− 3

)
(13)

Setting expression (13) to zero and solving for β yields a single critical point at
β = 4γ /3. The first derivative test shows the variance is monotonically increasing
to the left as β approaches γ and is decreasing to the right. The variance declines
as β decreases to γ (as R0 approaches 1). Model (b) variance v(γ ) is also non-
monotonicwith respect to the bifurcationparameterγ (Table 9). Solving the expression
dv(γ )

dγ
= 0 yields a single relevant critical point at γ = 2β/3. (The critical point at

γ = 0 is not relevant for this model.) Variance increases to the left of the critical
point and decreases to the right, and consequently, the variance decreases as R0 tends
to unity. Moreover, variance is a unimodal function of β, with a peak occurring at
β = 2γ , assuming β is the bifurcation parameter in model (c). The variance decreases
to the left of 2γ as β decreases to the bifurcation point at β = γ . Clearly, trends in
variance prior to the bifurcation depend strongly on the underlying model structure.

To test the predicted relationships in Table 9 as a bifurcation parameter approaches
the critical threshold,we conducted a simulation study.We examined trends in variance
prior to the bifurcation point at R0 = 1 as transmission rate β was decreased from 2 to
1.05 in increments of 0.05. For each value of the bifurcation parameter, we simulated
each of the models over 1000 time steps, and calculated the stationary variance over
the time series. The mean of the stationary variance, for each bifurcation parameter
value,was obtained from1000 simulations.All simulationswere run using the package
‘sde’ in R v.3.3.1 andwere initialized at the deterministic steady state corresponding to
each value of transmission rate. Figure 3 compares the theoretical predictions for the
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Fig. 3 Type of stochasticity affects trends in variance as transcritical bifurcations in stochastic SIS systems
are approached. The dashed vertical line represents the critical threshold at R0 = 1. Closed black circles
represent theoretical predictions (Table 9), whereas open red squares represent the mean of the variance
obtained from 1000 simulations of each model in Table 7. Black open circles represent 95% prediction
intervals for variance calculated from simulations. Peaks in variance occur at β = 4γ /3 = 4/3 in b and at
β = 2γ = 2 in c. Parameter values for simulations: N = 10,000, γ = 1, σ = 50 [additive noise model
(a)], σ = 0.05 [mechanistic environmental noise models (b) and (c)] (Color figure online)

variance with variance predictions obtained from 1000 simulations of each model. As
predicted by the theory in Table 9, variance increases as transmission rate β decreases
in simulations of models (a) and (d), whereas realizations of models (b), (c) and (e)
have decreasing variance as the critical threshold at R0 = 1 (vertical line in each figure)
is approached. Therefore, the predicted relationships with the bifurcation parameter
of each model and the predicted limiting behavior are robust.

5 Testing the Theory: Saddle-Node Bifurcation Model with Decreasing
Variance

Our analysis so far indicates that decreasing variance may be expected (and most
likely) in systems where the bifurcation point is located at zero. Here we highlight a
theoretical example where decreasing variance is the outcome prior to a saddle-node
bifurcation that occurs at a nonzero bifurcation point.

Consider the following simple model for a logistically growing population subject
to harvesting at constant rate h,

dx

dt
= ax(1 − x) − h. (14)
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Equation (14) has two steady states (Meiss 2007), which collide and disappear in a
saddle-node bifurcation at x∗ = 1/2. The harvest rate h is the bifurcation parameter,
and the saddle-node bifurcation point occurs at h∗ = a/4. In this model, population
collapse is caused by increasing harvest rate h to the critical threshold h∗.

A decreasing trend in variance to zeromay seem counterintuitive prior to population
collapse through overharvesting, since the critical population level x∗ is located at a
nonzero value. Here we show that a declining variance pattern is at least theoretically
possible.Consider the analogous stochastic differential equation for a population X (t),

dX = (aX (1 − X) − h) dt +
√
a

2
− aX (1 − X) − h dW. (15)

Equation (15) can be written in normal form, using the transformation (Meiss 2007),

τ = at, x = X − 1

2
, r = 1

4
− h

a
.

This transformation yields the supercritical saddle-node bifurcation model driven by
demographic stochasticity (Table 1). Using Eq. (8) to obtain the variance v(h) of the
fluctuations of model (15) yields the expression,

v(h) =
1
2 (a − 4h)

2
√
a(a − 4h)

, (16)

which is a decreasing function of h. It is easy to show using L’Hospital’s rule that
expression (16) approaches zero as h → h∗ from the left.

An alternative stochastic model with same mean change in population size but
different standard deviation is

dX = (aX (1 − X) − h) dt + σ X (1 − X) dW. (17)

This model assumes that the intrinsic growth rate, a�t , is driven by environmental
stochasticity, specifically, it is normally distributedwithmean a�t and variance σ 2�t .
The expression for variance of the fluctuations is

v(h) = σ 2h

2a
√
a(a − 4h)

. (18)

Notice that the numerator increases and approaches σ 2h∗, whereas the denominator
approaches zero, and thus, expression (18) for variance blows up as h → h∗ from the
left. This example is consistent with the idea that saddle-node bifurcations are usually
preceded by increasing variance.
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6 Discussion and Conclusions

Critical slowing down is a generic phenomenon of systems approaching a bifurca-
tion because the magnitude of the real part of the dominant eigenvalue approaches
zero. Therefore, it is often assumed that patterns in leading indicators are also generic,
because they should depend on the dominant eigenvalue. Until now, how extrinsic and
intrinsic sources of noise interact with the deterministic dynamics of critical slowing
down, manifested via system resilience, has been unclear. Our study aimed to eluci-
date how extrinsic and intrinsic noise (environmental and demographic stochasticity)
affect leading indicators of critical transitions. We derived summary statistics for a
broad class of bifurcations, under three noise regimes: additive noise, mechanistic
environmental noise and intrinsic noise. Prior to a critical transition, trends in sum-
mary statistics of variability, such as variance and power spectrum, are sensitive to
the underlying noise structure. In particular, variance may exhibit a wide range of
limiting behavior prior to a critical transition, due to the interplay between system
resilience and O–U variance of perturbations. Nonetheless, increasing trends in auto-
correlation and coefficient of variation, together with shift of the power spectrum to
lower frequencies, are patterns that are robust for all forms of stochasticity considered
here.

Variance is usually expected to increase prior to a critical transition (Scheffer et al.
2009; Carpenter and Brock 2006; Ditlevsen and Johnsen 2010), but this expectation
assumes that the system may be adequately represented by a model with additive
noise. Use of this simple model, ubiquitous in the critical transitions literature, has
promoted the expectation that variance will be amplified before a tipping point. Con-
sidering alternative noise mechanisms can result in different predictions for variance
patterns, such as decreasing variance, or even no change in variance, e.g., prior to a
pitchfork bifurcation in a multiplicative environmental noise regime. We have shown
that variance patterns are due to the interaction between the deterministic compo-
nent and the noise component of the perturbation decay process. Amplification of
stochastic perturbations results from the perturbation process being dominated by its
variance as its mean (resilience) shrinks to zero, and the stochastic process resembles
a random walk. On the other hand, decreasing variance results from the variance of
the perturbation decay process shrinking to zero and consequently, the perturbation
process becomes dominated by the deterministic dynamics. Which of these patterns
are more common in nature is unknown, but potentially, either of these patterns is pos-
sible. For example, decreasing variance might be expected in childhood immunizing
disease systems (Keeling and Grenfell 1999), where the mean and the variance of the
infectious population are correlated (O’Regan and Drake 2013; Keeling and Rohani
2008) or in ecological systems where the mean scales with variance according to a
power-law relationship (Keeling 2000).

Dakos et al. (2012) used anoverharvestingmodelwith various formsof environmen-
tal noise to show that variance may increase or decrease prior to population collapse.
The outcome depended on how environmental noise occurred in model parameters.
For their particular models, variance declined but subsequently increased in the vicin-
ity of the critical point. We expanded their results by considering a suite of models
representative of the three supercritical bifurcations that can occur in one-dimensional
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systems and by considering models with demographic noise. We show that the mech-
anisms behind the stochastic processes in the system determine the limiting behavior
of variance prior to bifurcation.

The SIS models with demographic stochasticity explored in this paper [models (d)
and (e) in Table 7] exhibit opposite trends in variance prior to elimination of disease.
These models have the same mean return rate (resilience) but have different O–U
variance, as a consequence of disparate assumptions about the nature of the processes
driving dynamics. The O–U variance in model (d) is correlated with equilibrium num-
ber of susceptibles, resulting in increasing variance of the infectious population, since
the number of susceptibles increases as the bifurcation point at R0 = 1 is approached.
The O–U variance in model (e) is correlated with equilibrium number of infectious
individuals, which are declining to extinction, and hence variance of I (t) declines in
tandem with the number of infectious individuals. Similarly, the stochastic overhar-
vesting models driven by two forms of stochasticity predicted opposing patterns in
variance. Our analysis suggests that opposing patterns in indicators could be obtained
from models of other systems approaching critical transitions that have the same
deterministic representation, but invoke alternative representations of stochasticity.
This makes it crucial to explore alternative mechanistic models for the system at hand.

We used the normal-form representation to develop minimal models for critical
transitions. These models are minimal for the deterministic dynamics, but noise can
be represented in multiple ways. It is important to point out that these models do not
encompass all possible noise mechanisms; rather, the models represent thought exper-
iments to explore some of the possibilities that could arise in reality. For example, the
normal-form transcritical bifurcation model with intrinsic noise is not representative
of all SIS models with demographic stochasticity [e.g., model (d) predicts increasing
variance prior to bifurcation, rather than decreasing variance, which is predicted by the
more general normal-form model]. What is clear is that different assumptions about
noise mechanisms result in different predictions for variance trends.

We restricted our analysis to one-dimensional systems. We expect that the inter-
action between stochasticity and critical slowing down will be more complex in
higher-dimensional systems, where statistics are likely to be nonlinear functions of
multiple eigenvalues and the form of noise [e.g., (O’Regan and Drake 2013; Boerli-
jst et al. 2013)]. Our analysis additionally did not account for interactions between
intrinsic and environmental stochasticity, or other sources of noise [e.g., correlated
environmental noise (Sharma et al. 2014), measurement error (Ives et al. 2003), or
demographic heterogeneity in ecological systems (Melbourne and Hastings 2008)].
To classify trends and limiting behavior of the leading indicators, we evaluated them
about the steady state. We chose to simplify the analysis by not investigating trends in
summary statistics obtained from stochastic fast-slow models because by Fenichel’s
theorem (Fenichel 1979), the dynamics of fast–slowmodels will approach those of the
models where the bifurcation parameter is constant in the limit of the slow parameter
approaching zero. Consequently, our results will hold when the bifurcation parameter
changes over a long time scale. Moreover, we did not write our stochastic normal-
formmodels formally [e.g., (Arnold 1998)], which usually leads to the noise appearing
multiplicatively in the stochastic normal-formmodels (Nicolis and Nicolis 2014). Our
development of stochastic normal-form models was inspired by the work of Boettiger
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and Hastings (2012), who first described the detection of early warning signals based
on critical slowing down as a model selection problem, and the approach of Kuehn
(2011), which developed a multi-scale theory for critical transitions. Our approach
compares multiple routes in which noise can affect dynamics to investigate how dif-
ferent noise representations affect trends in leading indicators of bifurcations.

The model analysis in this paper relies upon linearization of the stochastic differ-
ential equations about the steady state, which yields an Ornstein–Uhlenbeck process.
If alternative attractors are present, perturbations from the steady state may grow
large in the vicinity of the bifurcation point, e.g., via flickering between basins of
attraction of alternative stable states (Dakos et al. 2013), and consequently, the error
of the linear approximation of the true state of the system will grow. This could be
particularly problematic if the transition is due to a saddle-node bifurcation, where
stochastic switching between attractors is a common phenomenon (Wang et al. 2012).
On the other hand, if the bifurcation point has been crossed, solutions may remain in
the vicinity of the old or ‘ghost’ attractor, and potentially, the error obtained through
the use of a first-order approximation could affect predictions for trends in leading
indicators. More research is needed to establish how the error through the use of a lin-
ear approximation, rather than higher order approximations, affects leading indicator
patterns in the neighborhood of the critical point, and to quantify sensitivity of leading
indicators to this truncation error.

We assume that stochastic differential equations are an appropriate model for sys-
tems on the verge of transition because they provide a flexible framework for modeling
a range of critical transitions and noise regimes, and analytical expressions for early
warning signs are additionally straightforward to obtain. However, stochastic differ-
ential equations might not always be an appropriate model, particularly if the change
in an integer state variable is very small. For example, a stochastic differential equa-
tion for the change in a integer state variable represents a normal approximation to a
Poisson random variable if the change in the state variable is sufficiently large at each
time step and its mean and variance are equal (Gillespie 2009). If the change in state
variable is small enough such that the normal approximation is no longer valid, then
an alternative stochastic modeling approach could be used, such as a continuous-time
Markov chain, to obtain analytical expressions for summary statistics, e.g., (Brett et al.
2017).

In conclusion, patterns in autocorrelation, coefficient of variation and power spec-
trum are robust to the form of stochasticity prior to system collapse. However, variance
behavior prior to bifurcations may not follow any particular rules of thumb, but rather,
be model or process-specific. We recommend that scientists and modelers carefully
account for sources of noisewhen buildingmodels for systems on the verge of a tipping
point. For example, at the scale of a laboratory microcosm experiment, it may be pos-
sible to write down a mechanistic model accounting for various sources of noise. We
recommend developing alternative mechanistic models, using the models to obtain
predictions for leading indicators, and then testing their predictions experimentally
when possible. There are extensively documented ways of obtaining indicators from
simulations [e.g., (Dakos et al. 2012; Kéfi et al. 2014)] and various toolboxes specific
to early warning systems are available [e.g.,(Dakos et al. 2012; Boettiger and Hastings
2012; Ives and Dakos 2012)]. Nonetheless, our results support the baseline prediction
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of increasing variance prior to a critical transition. We expect that prediction to hold
if it is reasonable to assume that noise is external and affects a system as a whole, or
if there is no clear description of how noise affects specific processes in a large-scale
system.
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Appendix A: Variance Approaches Zero from the Right

Since v(r) is always positive, by definition lim
r→0+ v(r) = 0 if and only if for all ε > 0

there exists some δ > 0 so that g(xs ,r)2

2| f ′(xs ,r)| < ε for each r ∈ (0, δ). This can be restated
as: lim

r→0+ v(r) = 0 if and only if for all ε > 0 there is δ > 0 so that for each r ∈ (0, δ)

we have

g(xs, r)2 < 2ε| f ′(xs, r)|. (19)

Consequently, if inequality (19) holds in some neighborhood of the bifurcation point
for every ε > 0, then the variance will approach 0 as r approaches the bifurcation
point. Since we already have (10), inequality (19) implies that lim

r→0+ g(xs, r)2 = 0 and

that g(xs, r)2 approaches 0 more rapidly than 2| f ′(xs, r)|. When (10) holds, both of
these conditions on g are necessary conditions for lim

r→0+ v(r) = 0, but inequality (19)

is both necessary and sufficient. Comparing Fig. 2 with Table 6, we see that for models
with intrinsic noise, the O–U variance curve declines to zero faster than the resilience
term, and in each of these cases lim

r→0+ v(r) = 0. The other case where lim
r→0+ v(r) = 0

is with mechanistic environmental noise for the transcritical bifurcation case, where
the O–U variance term also approaches zero more rapidly than the resilience term.
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