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Abstract We focus on discrete-time infectious disease models in populations that
are governed by constant, geometric, Beverton–Holt or Ricker demographic equa-
tions, and give a method for computing the basic reproduction number, R0. When
R0 < 1 and the demographic population dynamics are asymptotically constant or
under geometric growth (non-oscillatory), we prove global asymptotic stability of the
disease-free equilibrium of the disease models. Under the same demographic assump-
tion, when R0 > 1, we prove uniform persistence of the disease. We apply our
theoretical results to specific discrete-time epidemic models that are formulated for
SEIR infections, cholera in humans and anthrax in animals. Our simulations show
that a unique endemic equilibrium of each of the three specific disease models is
asymptotically stable whenever R0 > 1.

Keywords Asymptotically constant growth ·Discrete-time epidemic model ·Disease
extinction or persistence · Geometric growth

1 Introduction

The basic reproduction number (or basic reproductive number or basic reproduc-
tive ratio), R0, is the average number of secondary cases produced by an infected
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individual introduced into a population of susceptible individuals, where an infected
individual has acquired the disease, and susceptible individuals are healthy but are at
risk of acquiring the infectious disease, see for example Diekmann et al. (1990). In a
recent paper, van den Driessche (2017) reviewed the next-generation method of find-
ing R0 for continuous-time (ODE) infectious disease models and demonstrated how
this and other reproduction numbers can be used to guide disease control strategies. A
next-generation method for computingR0 for discrete-time compartmental epidemic
models was developed by Allen and van den Driessche (2008) in Theorem 3. The
next-generation method entails a specification of what events are considered as “new
infections” and what events are considered as “transition states.” Cushing and Diek-
mann (2016) used discrete-time models to show that several next-generation method
“splittings” are possible and that the corresponding R0 expressions need not be the
same.

By the next-generation method, ifR0 < 1 then the disease-free equilibrium (DFE)
is locally asymptotically stable (LAS) and the disease dies out if the initial number of
infected individuals is small. However, the DFE is unstable and the disease persists if
R0 > 1 (Allen and van den Driessche 2008; Cushing and Diekmann 2016; van den
Driessche 2017). For many compartmental epidemic models, the basic reproduction
number R0 gives a sharp threshold that completely determines their global dynam-
ics. That is, for these epidemic models, the DFE is globally asymptotically stable
(GAS) when R0 < 1 and unstable when R0 > 1. In Theorem 2.1, Shuai and van
den Driessche (2013) provided a method for constructing a Lyapunov function for
continuous-time (ODE) infectious disease models, and in Theorem 2.2 of Shuai and
van den Driessche (2013) they used a matrix-theoretic method that is based on the
Perron eigenvector to prove GAS of the DFE of some ODE disease models.

In this paper, we focus on discrete-time infectious disease models in populations
that are governed by constant, geometric, Beverton–Holt or Ricker demographic equa-
tions. That is, our discrete-time epidemicmodel framework allows for the demographic
population dynamics to be either asymptotically constant or under geometric growth
(Castillo-Chavez and Yakubu 2001; Yakubu 2010). Others have studied discrete-time
epidemic models without demographic dynamics, for example see Allen (1994) and
Brauer et al. (2010). In Sect. 2, we first review the next-generation method for com-
puting R0 for discrete-time models (Allen and van den Driessche 2008). Secondly,
we use the methods in Shuai and van den Driessche (2013) to obtain a Lyapunov
function for discrete-time epidemic models (Theorem 2). Also in Sect. 2, as in Shuai
and van den Driessche (2013), we use a similar matrix-theoretic method that is based
on the Perron eigenvector to obtain verifiable conditions for GAS of the DFE of the
discrete-time disease models (Theorem 3). The results of Sect. 2 serve as background
for later sections.

To demonstrate how the results of Sect. 2 can be applied to study specific discrete-
time infectious diseases, we introduce discrete-time SEIR, cholera and anthrax
epidemic models in Sects. 3, 4 and 5, respectively. For each of these models, we com-
puteR0 and prove GAS of the DFE whenR0 < 1. That is, we prove that independent
of initial population densities, the SEIR, cholera or anthrax disease dies out whenever
R0 < 1 and the demographic population dynamics is asymptotically constant or under
geometric growth. Also, under this demographic assumption whenR0 > 1, we prove
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that the disease persists, and show the existence of a unique endemic equilibrium
(EE) for the SEIR and cholera models. Our simulations illustrate that the EE of each
of the three specific disease models is asymptotically stable whenever R0 > 1. We
summarize our results in Concluding Remarks section.

2 Next-Generation Method for R0 Computation

A next-generation method for computing R0 for discrete-time compartmental epi-
demic models was developed by Allen and van den Driessche (2008) in Theorem 3.
To describe the method, we write a general discrete-time compartmental infectious
disease model in the form

x (t + 1) = F (x (t) , y (t)) + T (x (t) , y (t))

y (t + 1) = G (x (t) , y (t)) , (1)

where

x (t) = (x1 (t) , x2 (t) , . . . , xn (t))T ∈ R
n+

and

y (t) = (y1 (t) , y2 (t) , . . . , ym (t))T ∈ R
m+,

respectively, represent the population sizes in the disease and non-disease compart-
ments. Here, F = (F1,F2, . . . ,Fn)

T and T = (T1, T2, . . . , Tn)T where for each
i ∈ {1, 2, . . . , n}, Fi represents the density of new infections that appear in com-
partment i , and Ti represents the population size of individuals that transition between
compartment i and other compartments. Also, G = (G1,G2, . . . ,Gm)T where for each
i ∈ {1, 2, . . . ,m}, Gi represents the population size in non-disease compartment i .

To ensure well-posedness of Model (1) and guarantee the existence of a DFE,
we assume that for each i ∈ {1, 2, . . . , n}, Fi (0, y (t)) = Ti (0, y (t)) = 0,
Fi (x (t) , y (t)) � 0 and Ti (x (t) , y (t)) � 0. For each i ∈ {1, 2, . . . ,m} , we assume
that Gi (x (t) , y (t)) � 0. Furthermore, we assume that the disease-free system

y (t + 1) = G (0, y (t))

has a unique equilibrium point, y (t) = y∞, that is locally asymptotically stable (LAS)
in the disease-free space. Details of the underlying assumptions are given in Allen and
van den Driessche (2008).

Model (1) predicts the vectors of population sizes in the disease and non-disease
compartments, x (t + 1) and y (t + 1), at time (t + 1) from knowledge of vectors of
population sizes in the disease and non-disease compartments, x (t) and y (t), at time
t , where t = 0, 1, 2, . . .. The unit of time depends on the specific model application.
For example, the unit of time could be a convenient time for a follow-up census. The
basic reproduction number, R0, the lifetime production of infections produced per
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infectious individual, is independent of the model’s timescale. We will use Model (1)
to compute R0.

Following Allen and van den Driessche (2008) and Shuai and van den Driessche
(2013), we define the two n × n matrices

F =
[
∂Fi (0, y∞)

∂x j

]
and T =

[
∂Ti (0, y∞)

∂x j

]
. (2)

Thus, F is the matrix of new infections that survive the time interval, and T is the
transition matrix. Since some of the population may die, ρ (T ) < 1, where ρ is the
spectral radius (Li and Schneider 2002). From the biological meanings of F and T ,
it follows that F is entrywise nonnegative and (I d − T ) is a non-singular M-matrix,
where I d is the identity matrix of order n. Since

(I d − T )−1 = I d + T + T 2 + · · · + T n + · · · ,

assuming that T ≥ 0 and ρ (T ) < 1 implies (I d − T )−1 is entrywise nonnegative.
Let ψ (0) be the number of initially infected individuals. Then, F(I d − T )−1ψ (0)
is an entrywise nonnegative vector that gives the expected number of new infections.
The matrix F(I d − T )−1 has (i, j) entry equal to the expected number of secondary
infections in compartment i produced by an infected individual introduced in com-
partment j . Consequently, the basic reproduction number for the discrete-time system
is

R0 = ρ (Q) ,

where Q = F(I d − T )−1 is the next-generation matrix. Using the above next-
generation matrix method notation and assumptions on F and T , we summarize the
relationship between the local stability of the DFE, (0, y∞), and R0 in the following
result of Allen and van den Driessche (2008) (see Theorem 3.2), a corollary of the
results of Cushing and Yicang (1994) and Li and Schneider (2002).

Theorem 1 (Allen and van den Driessche 2008) If (0, y∞) is a DFE of the system

x (t + 1) = F (x (t) , y (t)) + T (x (t) , y (t))

y (t + 1) = G (x (t) , y (t))

then (0, y∞) is locally asymptotically stable if

R0 = ρ
(
F (I d − T )−1

)
< 1,

but unstable if

R0 > 1.
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2.1 Global Stability of the DFE

For many continuous-time ODE disease models, the DFE is globally asymptotically
stable (GAS) whenever R0 ≤ 1. That is, LAS of (0, y∞) implies its GAS. Shuai and
van den Driessche (2013) use a matrix-theoretic method that is based on the Perron
eigenvector to prove the GAS of the DFE for continuous-time ODE disease models.
We use a similarmethod to provide a proof for GAS of the discrete-time diseasemodel,
Model (1).

Following Shuai and van den Driessche (2013), let

f (x(t), y(t)) := (F + T )x(t) − (F (x (t) , y (t)) + T (x (t) , y (t))) , (3)

and recall that f (0, y(t)) = 0. Then, the equations for the disease compartments of
the discrete-time disease model, Model (1), becomes

x(t + 1) = (F + T )x(t) − f (x(t), y(t)). (4)

For each t ∈ {0, 1, 2, . . .} and x(t), y(t) ≥ 0, we assume that f (x(t), y(t)) ≥ 0 so
that near the disease-free equilibrium, the nonlinear interactions are deleterious. That
is, f (x(t), y(t)) ≥ 0 implies that only negative feedbacks are present, and this forces
the absence of a backward bifurcation in the model.

Since ρ (T ) < 1 and Q = F(I d − T )−1 is the next-generation matrix,

Q = F(I d + T + T 2 + · · · ).

Now, let x(0) be the initial vector of the population sizes of the infectious individuals,
then

Qx(0) = F(x(0) + T x(0) + T 2x(0) + · · · )

is the distribution of all infections accumulated during the life span of the infec-
tious population (Allen and van den Driessche 2008). Let ωT ≥ 0 be the left
eigenvector of the nonnegative matrix (I d − T )−1 F corresponding to the eigenvalue
R0 = ρ

(
(I d − T )−1 F

) = ρ
(
F (I d − T )−1 ). In the following result, we provide a

general method for constructing a Lyapunov function for the GAS of the disease-free
equilibrium of the discrete-time disease model, Model (1), when R0 ≤ 1.

Theorem 2 Let the n × n matrices F, T and the function f (x(t), y(t)) be as defined
in (3) and (4). If f (x(t), y(t)) ≥ 0 in � ⊂ R

n+m+ , F ≥ 0, T ≥ 0, ρ (T ) < 1 and
R0 ≤ 1, then the function

L : � ⊂ R
n+m+ → R+

defined by

L(x(t)) = ωT (I d − T )−1x(t)
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is a Lyapunov function for Model (1), where � is an open subset of Rn+m+ containing
(0, y∞).

Proof L is a continuous function, L(0) = 0 and L(x(t)) ≥ 0 for all x(t) �= 0 ∈ R
n+.

Consider L along solutions of Model (1). Then,

L(x(t + 1)) = ωT (I d − T )−1x(t + 1)

= ωT (I d − T )−1(F + T )x(t) − ωT (I d − T )−1 f (x(t), y(t))

= ωT (I d − T )−1(T − I d + F + I d)x(t)

− ωT (I d − T )−1 f (x(t), y(t))

= ωT (−1 + R0) x(t) + L(x(t)) − ωT (I d − T )−1 f (x(t), y(t)).

Since ωT ≥ 0, f (x(t), y(t)) ≥ 0, (I d − T )−1 ≥ 0 and R0 ≤ 1, it follows that
ωT (−1 + R0) x(t) ≤ 0 and ωT (I d − T )−1 f (x(t), y(t)) ≥ 0. Consequently,

L(x(t + 1)) ≤ L(x(t)) f or all x(t) �= 0 ∈ �.

Hence, L is a Lyapunov function for Model (1) on � ⊂ R
n+m+ . 	


As in continuous-time ODE compartmental disease models (see Shuai and van den
Driessche 2013), in applications to discrete-time infectious disease models, all non-
negative population orbits are bounded under iterations. As a result, we will typically
choose� in Theorem 2 so that closure of�,�, is a compact positively invariant (with
respect to Model (1)) subset ofRn+m+ with the unique DFE, (0, y∞), in�. This choice
of � allows us to construct the Lyapunov function L of Theorem 2 and to prove the
uniform persistence result of Theorem 3.

Using the results of Cushing and Yicang (1994) and Li and Schneider (2002), Allen
and van den Driessche (2008) (see Theorem 2.1) established a relationship between
ρ (F + T ) = r and R0, where F + T is irreducible. The relationship between r and
R0 satisfies one of the following inequalities (Allen and van den Driessche 2008; Li
and Schneider 2002):

r = R0 = 1, 1 < r ≤ R0 or 0 ≤ R0 ≤ r < 1.

In the following result,we establish conditions for uniformpersistence of the infectious
disease (see Franke and Yakubu 1996; Hofbauer and So 1987).

Theorem 3 Let the n× n matrices F, T and the function f (x(t), y(t)) be as defined
in (3) and (4), and let � be a compact positively invariant (with respect to Model 1)
subset of Rn+m+ with the unique DFE, (0, y∞), in �. Suppose that f (x(t), y(t)) ≥ 0
with f (0, y∞) = 0 in �, F ≥ 0, T ≥ 0, ρ (T ) < 1 and (I d − T )−1F is irreducible.
Assume that the disease-free system, y(t + 1) = G(0, y(t)), has a unique equilibrium
point, y = y∞ > 0, that is GAS inRm+. Then, the following results hold for Model (1):
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1. IfR0 < 1, then the DFE (0, y∞) is GAS in the interior of �.
2. If R0 > 1, then the DFE (0, y∞) is unstable, Model (1) is uniformly persistent,

and the disease is endemic.

Proof From Theorem 2, R0 < 1 implies that L(x(t)) = ωT (I d − T )−1x(t) is a
Lyapunov function of Model (1). Since (I d − T )−1F is irreducible and nonnegative,
it follows by Perron–Frobenius theory that ωT > 0. Recall that

L(x(t + 1)) − L(x(t)) = ωT (−1 + R0)x(t) − ωT (I d − T )−1 f (x(t), y(t)).

Hence, L(x(t + 1)) − L(x(t)) = 0 and R0 < 1 imply that x(t) = 0. Using the GAS
assumption on the DFE, (0, y∞), and the fact that f (0, y∞) = 0, the only invariant
set in R

n+m+ where x(t) = 0 is the singleton {(0, y∞)}. By the Lyapunov function
Theorem of La Salle (see Elaydi 2000; La Salle 1976), {(0, y∞)} is GAS in �.

If R0 > 1, then ωT (−1 + R0)x(t) > 0 provided x(t) > 0. Furthermore,
f (x(t), y(t)) ≥ 0 with f (0, y∞) = 0 in �, and ωT (I d − T )−1 f (x(t), y(t)) ≥ 0. By
continuity of f , given any ε > 0, there exists δ > 0 such that 0 �= x(t) < δ implies
that f (x(t), y∞) < ε. Hence, there exists δ1 > 0 such that L(x(t +1))− L(x(t)) > 0
for any x(t) > 0 in δ1-neighborhood of (0, y∞). Thus, initial conditions (x(t), y(t))
with x(t) �= 0 in the positive cone and sufficiently close to (0, y∞) move away from
(0, y∞) under iterations. That is, (0, y∞) is unstable. By a uniform persistence result
from Hofbauer and So (1987) and an argument as in the proof of Proposition 1 of
Franke and Yakubu (1996), we obtain that instability of (0, y∞) implies Model (1) is
uniformly persistent whenever R0 > 1. As in Shuai and van den Driessche (2013),
in Model (1), the instability of (0, y∞) in R

n+m+ , uniform persistence and positive
invariance of � imply that the disease is endemic whenever R0 > 1. 	


The assumption that (I d − T )−1F is irreducible is a technical assumption that
ensures that ωT > 0. In some epidemic models, the matrix (I d −T )−1F is reducible,
so Theorem 3 cannot be used directly. However, it may still be possible to use the
Lyapunov function L as defined in Theorem 2. In the next section, we formulate
an SEIR discrete-time epidemic model to illustrate the next-generation method for
computingR0, andwe use Theorem 3 to understand disease extinction and persistence
in this SEIR model.

3 SEIR Model

Susceptible–Exposed–Infectious–Recovered (SEIR) disease epidemic models have
been used to study childhood diseases including chicken pox (varicella) and for the
host population in the study of vector-borne diseases (for example, malaria). To intro-
duce a SEIR disease epidemic model, we assume that at each time t ∈ {0, 1, 2, · · · },
each member of a population is either susceptible (St ), exposed (individuals who have
the disease and are mildly infectious, Et ), infectious (infected with the disease, It ) or
recovered from the disease with lifelong immunity (Rt ), where the total population is
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Nt = St + Et + It + Rt .

That is, we let St , Et , It , Rt and Nt , respectively, denote the population density of
susceptible, exposed, infectious, recovered and total population of individuals at time
t ∈ {0, 1, 2,···}.

Following Yakubu (2010) and the references therein, we assume that a fraction
θ ∈ (0, 1) of susceptible individuals who interact with the infectious become exposed

with probability ϕ̂
(

It
Nt

)
=
(
1 − ϕ

(
It
Nt

))
and remain susceptible with probability

ϕ
(

It
Nt

)
per the time interval, where the “escape” function

ϕ : [0,∞) → [0, 1]

is a nonlinear decreasing smooth concave-up function with ϕ(0) = 1. That is, ϕ′(x) <

0 and ϕ′′(x) > 0 for all x ≥ 0. For example, when infections are modeled as Poisson

processes, then ϕ
(

It
Nt

)
= exp

(
−β It

Nt

)
and

d

dIt
ϕ

(
It
Nt

)∣∣∣∣
(S0,0,0)

= ϕ′ (0) = − β

S0
(([6], [7], [29])) .

Since exposed individuals are mildly infectious, we assume that a fraction (1 − θ) ∈
(0, 1) of susceptible individuals who interact with the exposed become exposed with

probability ψ̂
(
ε Et
Nt

)
=
(
1 − ψ

(
ε Et
Nt

))
and remain susceptible with probability

ψ
(
ε Et
Nt

)
per the time interval, where the “escape” function

ψ : [0,∞) → [0, 1]

is a nonlinear decreasing smooth concave-up function withψ(0) = 1, and 0 < ε < 1.
The probability that an exposed individual progresses to the infectious class is the

constant κ ∈ (0, 1) per time interval and remains in the exposed class with probability
(1−κ). Furthermore, we assume that infectious individuals recover from the infection
with constant probability γ ∈ (0, 1) and remain infectious with constant probability
(1 − γ ) per time interval. We assume that the probability of natural death for each
individual in the population is d ∈ (0, 1) per the time interval, and probability of
staying alive per time interval is (1 − d).

To include simple demography, we let

g : [0,∞) → [0,∞)

denote the recruitment (birth or immigration) function of individuals to the susceptible
class per the time interval. Below, we list examples of four recruitment functions for
this study.
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• Constant recruitment function,

g(Nt ) = � > 0.

• Geometric recruitment function,

g(Nt ) = r Nt ,

where the proportionality constant r > 0.
• Beverton–Holt recruitment function,

g(Nt ) = r
Nt

1 + bNt
,

where the intrinsic growth rate r > 0 and the scaling parameter b > 0.
• Ricker recruitment function,

g(Nt ) = r Nte
−bNt ,

where the intrinsic growth rate r > 0 and the scaling parameter b > 0.

We assume that a susceptible individual has to be in the exposed class before
becoming infectious. Similarly, an exposed individual must be in the infectious class
before recovering, and we assume that recovered individuals have lifelong immunity.
That is, we consider a disease that is not fatal so we ignore death to the disease. The
flow diagram for the disease dynamics with compartments S, E , I and R is shown in
Fig. 1.

Our frequency-dependent discrete-time SEIR model with ϕ
(

It
Nt

)
and ψ

(
ε Et
Nt

)
implicitly assumes three distinct temporal phases. At the end of each time interval,
susceptibles become exposed and exposed become infectiouswhile infectious recover;
a fraction of each class is removed; then, susceptibles, exposed, infectious and recov-
ered reproduce into the susceptible class. These important assumptions distinguish
our discrete-time SEIR epidemic model from a similar continuous-time differential
equation model. Typically, continuous-time differential equation models with similar
well-defined distinct temporal phases are non-autonomous. Taking into account the
temporal ordering of events, we derive our SEIR model in the following three steps:

Fig. 1 Flow diagram for the SEIR model showing inflow terms
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1. Disease Transmission and Recovery:

S(1) = θ Stϕ
(

It
Nt

)
+ (1 − θ) Stψ

(
ε Et
Nt

)
E(1) = θ St ϕ̂

(
It
Nt

)
+ (1 − θ) St ψ̂

(
ε Et
Nt

)
+ (1 − κ) Et

I(1) = κEt + (1 − γ ) It
R(1) = γ It + Rt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

That is, after disease transmission and recovery, S(1), E(1), I(1) and R(1) denote
densities of susceptibles, exposed, infectious and recovered individuals, respec-
tively.

2. Natural Death (Survival):

S(2) = (1 − d) S(1)
E(2) = (1 − d) E(1)
I(2) = (1 − d) I(1)
R(2) = (1 − d) R(1)

⎫⎪⎪⎬
⎪⎪⎭

That is, after disease transmission, recovery and natural death, S(2), E(2), I(2) and
R(2) denote densities of susceptibles, exposed, infectious and recovered individu-
als, respectively.

3. Reproduction (S, E , I and R into S):

S(3) = g (Nt ) + S(2)
E(3) = E(2)
I(3) = I(2)
R(3) = R(2)

⎫⎪⎪⎬
⎪⎪⎭

That is, after disease transmission, recovery, natural death and reproduction, S(3),
E(3), I(3) and R(3) denote densities of susceptibles, exposed, infectious and recov-
ered individuals, respectively.

These assumptions and notation lead to the following discrete-time SEIR epidemic
model:

St+1 = g (Nt ) + (1 − d) St
(
θϕ
(

It
Nt

)
+ (1 − θ)ψ

(
ε Et
Nt

))
Et+1 = (1 − d) St

(
θϕ̂
(

It
Nt

)
+ (1 − θ) ψ̂

(
ε Et
Nt

))
+ (1 − κ) (1 − d) Et

It+1 = κ (1 − d) Et + (1 − γ ) (1 − d) It
Rt+1 = γ (1 − d) It + (1 − d) Rt ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5)

where t = 0, 1, 2, . . .. We study Model (5) with initial conditions (S0, E0, I0, R0) ∈
([0,∞) × [0,∞) × [0,∞) × [0,∞)) \ {(0, 0, 0, 0)} .

Summing all the four equations of Model (5), at each time t ∈ {0, 1, 2, . . .}, the
total population is governed by the equation

Nt+1 = g (Nt ) + (1 − d) Nt . (6)
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In Model (5) , we assume that events happen in the following order: disease trans-
mission and recovery, survival (death) and reproduction. However, in real biological
systems, these three events may happen in different orders. Cyclic permutations of
the three distinct temporal phases may lead to models that are topologically con-
jugate to Model (5), while non-cyclic permutations of the three temporal phases
typically lead to models that are not topologically conjugate to Model (5). When
the exposed class is ignored (that is, κ = θ = 1) and there is neither recruitment nor
death (that is, g (Nt ) = d = 0), then Model (5) reduces to a simple SIR model as
studied by Brauer et al. (2010) and Martcheva (2015) (see Chapter 16).

Allen and van den Driessche (2008) studied a discrete-time SI Hantavirus model
(see Model (9) in Allen and van den Driessche 2008), with separate compartments
for males and females. Unlike Model (5), in the SEIR model of Allen and van den
Driessche (2008) specific g (·) and ϕ (·) functions are taken, and the E class is not
infectious.

3.1 Asymptotically Constant Growth Recruitment

For three of the four recruitment functions specified in the previous section, in Model
(5) the total population Nt tends to a positive constant, denoted by S∞, as t → ∞.
The constant values are found from (6) and are given in Table 1 withRd = r

d , and all

parameters are positive. For the Ricker recruitment, if Rd > e
2
d , then demographic

equation (6) undergoes period-doubling bifurcations route to chaos (Elaydi 2000;
Yakubu 2010).

Equation (6), the demographic equation, is a single-variable equation of the total
population. To reduce the number of variables inModel (5) by one, we assume that the
total population is asymptotically constant and limt→∞ Nt ≡ S∞ > 0. Then, Model
(5) reduces to the following “limiting” system (see Best et al. 2003; Zhao 2003 for
theorems on “limiting” systems).

St+1 = g (S∞) + (1 − d) St
(
θφ
(

It
S∞

)
+ (1 − θ)ψ

(
ε Et
S∞

))
Et+1 = (1 − d) St

(
θϕ̂
(

It
S∞

)
+ (1 − θ) ψ̂

(
ε Et
S∞

))
+ (1 − κ) (1 − d) Et

It+1 = κ (1 − d) Et + (1 − γ ) (1 − d) It
Rt+1 = γ (1 − d) It + (1 − d) Rt ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

Table 1 Asymptotically
constant total population for
different recruitment functions
g (Nt )

Recruitment g (Nt ) limt→∞ Nt ≡ S∞
Constant � �

d

Beverton–Holt r Nt
1+bNt

0 if Rd < 1

Beverton–Holt r Nt
1+bNt

(Rd−1)
b ifRd > 1

Ricker r Nt e−bNt 0 if Rd < 1

Ricker r Nt e−bNt lnRd
b if 1 < Rd < e

2
d .
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where time t = 0, 1, 2, . . .. The qualitative asymptotic dynamics of Model (5) and
that of Model (7) are topologically conjugate when limt→∞ Nt ≡ S∞ > 0 (Best et al.
2003).

In this case of asymptotically constant growth, limt→∞ Nt = S∞ > 0 and Nt+1 =
g(Nt ) + (1 − d) Nt imply that

g (S∞) = dS∞.

To consider proportions, let

st = St
S∞

, et = Et

S∞
, it = It

S∞
, and rt = Rt

S∞
.

Since st = 1 − et − it − rt , Model (7) reduces to the following system of three
equations:

et+1 = (1 − d) st
(
θϕ̂ (it ) + (1 − θ) ψ̂ (εet )

)+ (1 − κ) (1 − d) et
it+1 = κ (1 − d) et + (1 − γ ) (1 − d) it
rt+1 = γ (1 − d) it + (1 − d) rt ,

⎫⎬
⎭ (8)

with DFE (e, i, r) = (0, 0, 0).
To compute the basic reproduction number,R0, we use the next-generation matrix

method. To choose the matrix of new infections, F , we assume that a “new infection”
means entry into the mildly infectious exposed class (Cushing and Diekmann 2016).
As a result,

F =
[− (1 − d) (1 − θ) εψ ′ (0) − (1 − d) θϕ′ (0)

0 0

]
,

the transition matrix,

T =
[

(1 − κ) (1 − d) 0
κ (1 − d) (1 − γ ) (1 − d)

]
,

giving

R0 = ρ
(
F (I d − T )−1

)
= R0E + R0I ,

where

R0E = − (1 − d) (1 − θ) εψ ′ (0)
1 − (1 − κ) (1 − d)

and

R0I = −κ (1 − d)2 θφ′ (0)
(1 − (1 − γ ) (1 − d)) (1 − (1 − κ) (1 − d))

.
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The first term of R0 gives contributions from the mildly infectious compartment E ,
whereas the second termgives contributions from the infectious compartment I . There-
fore, mild infections from the exposed class increase the value ofR0. By Theorem 1,
under the asymptotically constant growth inModel (5), the DFE, (1, 0, 0, 0), is locally
asymptotically stable when R0 < 1 and unstable when R0 > 1. When κ = θ = 1
(no E class) and d = 0 (no death) in Model (5), it becomes a simple SIR model, and
R0 reduces toR0 = −ϕ′(0)

γ
.

Theorem 4 If R0 < 1, then the DFE of Model (8) is globally asymptotically stable.
However, if R0 > 1 then the DFE is unstable and Model (8 ) is uniformly persistent
and has a unique endemic equilibrium.

Proof To prove the global stability of the DFE, we will show that all the hypotheses of
Theorem 3 are satisfied. Matrices F , T are nonnegative and ρ (T ) < 1. Furthermore,

(I d − T )−1F =
⎡
⎣

−(1−d)(1−θ)εψ ′(0)
1−(1−κ)(1−d)

−(1−d)θφ′(0)
1−(1−κ)(1−d)

−κ(1−d)2(1−θ)εψ ′(0)
(1−(1−κ)(1−d))(1−(1−γ )(1−d))

−κ(1−d)2θφ′(0)
(1−(1−κ)(1−d))(1−(1−γ )(1−d))

⎤
⎦

is irreducible. Let

x (t) =
[
et
it

]
and y (t) =

[
st
rt

]
∈ [0, 1] × [0, 1],

and

f (x (t) , y (t)) =
[− (1 − d)

(
st� (et , it ) + (1 − θ) εψ ′ (0) et + θϕ′ (0) it

)
0

]
,

where � (et , it ) = θϕ̂ (it ) + (1 − θ) ψ̂ (εet ). Then,

x (t + 1) = (F + T ) x (t) − f (x (t) , y (t)) .

Moreover,

f1 (x (t) , y (t)) ≥ (1 − d) (θ (ϕ (it ) − 1)

+ (1 − θ)
(
(ψ (εet ) − 1) − εψ ′ (0) et

)− θϕ′ (0) it
)
.

Using the Mean Value Theorem, for all et , it ∈ [0, 1], gives

0 ≤ 1 − ϕ (it ) ≤ −ϕ′ (0) it and
0 ≤ 1 − ψ (εet ) ≤ −εψ ′ (0) et .

Hence, (1 − d) θ
(
ϕ (it ) − 1 − ϕ′ (0) it

) ≥ 0 and (1 − d) (1 − θ) (ψ (εet ) − 1−
εψ ′ (0) et

) ≥ 0, thus f (x (t) , y (t)) ≥ 0.
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The disease-free system,

st+1 = d + (1 − d) st
rt+1 = (1 − d) rt ,

has a unique equilibrium point, y∞ = (s∞, r∞) = (1, 0) that is GAS in [0, 1]×[0, 1],
and f (0, y∞) = 0. By Theorem 3, ifR0 < 1, then the DFE is GAS in the interior of
� = [0, 1] × [0, 1] × [0, 1] × [0, 1]. Furthermore, ifR0 > 1, then by Theorem 3, the
DFE is unstable, Model (8) is uniformly persistent, and the disease is endemic.

Next, we establish that Model (8) has a unique endemic equilibrium whenR0 > 1.
Let (e∗, i∗, r∗) denote an endemic equilibrium point of Model (8). Then,

e∗ = (1 − d)
(
(1 − e∗ − i∗ − r∗)

(
θϕ̂ (i∗) + (1 − θ) ψ̂ (εe∗)

)+ (1 − κ) e∗
)

i∗ = (1 − d) (κe∗ + (1 − γ ) i∗)
r∗ = (1 − d) (γ i∗ + r∗) .

(9)

The last two equations of (9) reduce to

e∗ = (1 − (1 − γ ) (1 − d))

(1 − d) κ
i∗

r∗ = (1 − d) γ

d
i∗.

Substituting for e∗ and r∗ in the first equation of (9) gives the equation

M1 (i∗) = M2 (i∗) ,

where

M1 (i) = (1−(1−γ )(1−d))(1−(1−κ)(1−d))
(1−d)κ

i

M2 (i) = (1 − d)
(
1 −

(
1 + (1−(1−γ )(1−d))

(1−d)κ
+ (1−d)γ

d

)
i
) (

θϕ̂ (i) + (1 − θ) ψ̂ (̂εi)
)

and

ε̂ = ε (1 − (1 − γ ) (1 − d))

(1 − d) κ
.

The endemic equilibrium exists whenever the graphs of the two smooth functions,
M1 (i) and M2 (i), intersect at i∗ ∈ (0, 1).

The graph of M1 (i) is a line through the origin with positive slope

(1 − (1 − γ ) (1 − d)) (1 − (1 − κ) (1 − d))

(1 − d) κ
.
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The graph of M2 (i) passes through the origin. Notice that

1 −
(
1 + (1 − (1 − γ ) (1 − d))

(1 − d) κ
+ (1 − d) γ

d

)
i ≥ 0

implies for i ≥ 0 that

i <
1

1 + (1−(1−γ )(1−d))
(1−d)κ

+ (1−d)γ
d

≤ 1.

Also, M2 (i) ≥ 0 for all i ∈ [0, 1
1+ (1−(1−γ )(1−d))

(1−d)κ
+ (1−d)γ

d

] and limi→1− M2 (i) < 0.

Consequently, Model (8) has at least one endemic equilibrium whenever

M ′
1 (0) = (1 − (1 − γ ) (1 − d)) (1 − (1 − κ) (1 − d))

(1 − d) κ

< M ′
2 (0) = − (1 − d)

(
θϕ′ (0) + (1 − θ) ε̂ψ ′ (0)

)
.

That is,R0 > 1 implies thatModel (8) has at least one endemic equilibrium i∗ ∈ (0, 1)
with M1 (i∗) > 0. For uniqueness of the endemic equilibrium, notice that M ′′

2 (i) < 0
for all i ∈ [0, 1

1+ (1−(1−γ )(1−d))
(1−d)κ

+ (1−d)γ
d

] implies that the graph of M2 (i) is concave down

andM ′
2 (i) is decreasing on this interval. This establishes the uniqueness of the endemic

equilibrium in the interior of � = [0, 1] × [0, 1] × [0, 1] × [0, 1]. 	


When the E compartment is not infectious and θ = 1, then ε = 0 and Model (5)
reduces to

St+1 = g (S∞) + (1 − d) Stϕ
(

It
S∞

)
Et+1 = (1 − d) St

(
1 − ϕ

(
It
S∞

))
+ (1 − κ) (1 − d) Et

It+1 = κ (1 − d) Et + (1 − γ ) (1 − d) It
Rt+1 = γ (1 − d) It + (1 − d) Rt .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10)

Using proportions, Model (10) becomes the following system of four equations:

st+1 = d + (1 − d) stϕ (it )
et+1 = (1 − d) (st (1 − ϕ (it )) + (1 − κ) et )
it+1 = (1 − d) (κet + (1 − γ ) it )
rt+1 = (1 − d) (γ it + rt ) ,

⎫⎪⎪⎬
⎪⎪⎭

(11)

with DFE (s, e, i, r) = (1, 0, 0, 0), where

st + et + it + rt = 1.
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The basic reproduction number for Model (11) is

R0 = ρ
(
F (I d − T )−1

)
= −κ (1 − d)2 ϕ′ (0)

(1 − (1 − γ ) (1 − d)) (1 − (1 − κ) (1 − d))
,

where

F =
[
0 − (1 − d) ϕ′ (0)
0 0

]

and the transition matrix, T , remains unchanged. As inModel (5), under the asymptot-
ically constant growth in Model (11), the DFE, (1, 0, 0, 0), is locally asymptotically
stable when R0 < 1 and unstable when R0 > 1. However, unlike in Model (5), in
this case the matrix

(I d − T )−1F =
[
0 −(1−d)ϕ′(0)

1−(1−κ)(1−d)

0 R0

]

is reducible, so we cannot apply Theorem 3. In the next result, we establish the GAS
of the DFE of Model (11).

Theorem 5 IfR0 < 1, then the DFE of Model (11) is globally asymptotically stable.
However, ifR0 > 1, then the DFE is unstable, Model (11) is uniformly persistent and
has a unique endemic equilibrium.

Proof To prove the global stability of the DFE, note that F and T are nonnegative
and ρ (T ) < 1. However, (I d − T )−1F is reducible, so we cannot use Theorem 3
directly. Instead, we use the Lyapunov function given in Theorem 2 to establish GAS.
Since this is a special case of Model (5) when θ = 1 and ε = 0, as in the proof of
Theorem 4,

f (x (t) , y (t)) =
[

(1 − d)
(− (1 − et − it − rt ) (1 − ϕ (it )) − ϕ′ (0) it

)
0

]
.

Moreover,

f1 (x (t) , y (t)) ≥ (1 − d)
(
ϕ (it ) − 1 − ϕ′ (0) it

) ≥ 0,

since by the Mean Value Theorem,

0 ≤ 1 − ϕ (it ) ≤ ϕ′ (0) it for all it ∈ [0, 1].

Thus, by Theorem 2, L (x (t)) = ωT (I d − T )−1x (t) is a Lyapunov for Model (11) if
R0 < 1, where ωT = (0, 1) is the left eigenvalue of (I d − T )−1F . Explicitly,

L (x (t)) = κ (1 − d) et
(1 − (1 − γ ) (1 − d)) (1 − (1 − κ) (1 − d))

+ it
1 − (1 − γ ) (1 − d)

.

123



4428 P. van den Driessche, A.-A. Yakubu

Computing L (x (t + 1)), it follows that L (x (t + 1)) = L (x (t)) implies that et =
it = 0. The only invariant set where et = it = 0 is the DFE. Therefore, by La Salle’s
invariance principle, the DFE is GAS if R0 < 1. By arguments as in the proof of
Theorem 3 , if R0 > 1 the DFE is unstable and Model (11) is uniformly persistent
and the disease persists. The proof of the existence of a unique endemic equilibrium
of Model (11) is similar to that of Model (5) and is omitted. 	


Next, we consider an extension of Model (10). Suppose that a fraction p of indi-
viduals are vaccinated at recruitment into the susceptible population, where the E
compartment is not infectious. This is an approximation for vaccination of babies
against childhood diseases. In addition, suppose that the vaccine is perfectly effec-
tive, so everyone receiving the vaccine is protected from the disease. With constant,
Beverton–Holt or Ricker recruitments, the total population is asymptotically constant
and limt→∞ Nt ≡ S∞ > 0. We assume that (1 − p)g(S∞) enter the S compartment
and the remaining pg(S∞) enter the R compartment. The DFE becomes

(S, E, I, R) = ((1 − p)g(S∞), 0, 0, pg(S∞)),

and the vaccination reproduction number also called a control reproduction number,
denoted by RV , is given by

RV = −κ (1 − d)2 ϕ′ (0) (1 − p)

(1 − (1 − γ ) (1 − d)) (1 − (1 − κ) (1 − d))
.

That is,

RV = (1 − p)R0.

To bring RV below the threshold value 1, the fraction that needs to be vaccinated to
give herd immunity is p > 1 − 1

R0
, where either S∞ = �

d (constant recruitment,

� > 0) or S∞ = (Rd−1)
b (Beverton–Holt recruitment, Rd > 1) or S∞ = lnRd

b

(Ricker recruitment, 1 < Rd < e
2
d ).

3.2 Geometric Growth Recruitment

When the recruitment function is proportional to the total population, then g (Nt ) =
r Nt and the demographic equation (6) reduces to

Nt+1 = (r + (1 − d)) Nt .

Hence,

Nt = (r + (1 − d))t N0

for time t = 1, 2, 3, . . .. WhenRd < 1, the total population goes extinct at geometric
rate. However, when Rd > 1 the total population grows at a geometric rate.
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Under the geometric recruitment function, to study the disease transmission dynam-
ics in Model (10) for Rd > 1, we let

st = St
Nt

, et = Et

Nt
, it = It

Nt
, and rt = Rt

Nt
,

where

Nt+1 = (1 + d (Rd − 1)) Nt

for t = 0, 1, 2, 3, . . . . Since st = 1− et − it −rt , Model (10) reduces to the following
system of three equations:

et+1 = η ((1 − et − it − rt ) (1 − ϕ (it )) + (1 − κ) et )
it+1 = η (κet + (1 − γ ) it )
rt+1 = η (γ it + rt ) ,

⎫⎬
⎭ (12)

where

η = 1 − d

1 + d (Rd − 1)
.

WhenRd = 1, then η = 1− d and Model (12) reduces to Model (11). In fact, Model
(12) is exactlyModel (11) when η is replaced by (1 − d). Consequently,R0 forModel
(12) is

R0 = −κη2ϕ′ (0)
(1 − (1 − γ ) η) (1 − (1 − κ) η)

.

By Theorem 1, under geometric growth in Model (10), the DFE, (1, 0, 0, 0), is locally
asymptotically stable when Rd > 1 and R0 < 1 and unstable when Rd > 1 and
R0 > 1. Proceeding exactly as in the case of asymptotically constant recruitment
function withRd > 1, the following result is immediate.

Theorem 6 LetRd > 1. IfR0 < 1, then the DFE of Model (12) is globally asymptot-
ically stable. However, if R0 > 1, then the DFE is unstable, Model (12) is uniformly
persistent and has a unique endemic equilibrium.

3.3 Illustrative Example

R0 for the 1913–1917 chicken pox epidemics in Maryland, USA, was estimated to
be between 7 and 8 (see Chapter 4 of Barton 2016). Barton used an SIR discrete-time
epidemicmodel with vital dynamics to obtainR0 = 8.960 for the chicken pox disease,
where β = 0.896, γ = 0.1, S0 = 4, 995, I0 = 5 and R0 = 0 (see Example 4.9 of
Barton 2016). Recall thatModel (11) reduces to a SIRmodel when the exposed class is
ignored and κ = 1. To use Model (11) to computeR0 for the 1913–1917 chicken pox
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Fig. 2 Numerical simulation ofModel (11):With 0.1% of the population as the initial number of infectious
individuals at the onset of the epidemic in 1913, less than 7% of the susceptibles were infected by 1923

epidemics inMaryland, USA, we assume that the SEIR disease infections aremodeled
as Poisson processes and ϕ (it ) = e−βit , where κ = 0.99, d = 0.015, β = 0.896,
γ = 0.1 and the model’s unit of time is a year (Barton 2016).

With our choice of parameters R0 = R0I = 7.658, where t = 0 corresponds to
1913 (the year of the initial chicken pox infection inMaryland) and t = 9 corresponds
to 1922 (5 years after the 1913–1917 chicken pox epidemics). With 0.1% of the
population as the initial number of infectious individuals at the onset of the epidemics
in 1913, Fig. 2 shows that less than 7% of the susceptibles were infected in less
than 10 years of the infection. The inclusion of the exposed class and natural death
rate in Model (11) resulted in a smaller value of R0 = 7.658 than R0 = 8.960
calculated in Barton (2016) with an SIR model. Our computed value of R0 = 7.658
is consistent with the estimated R0 between 7 and 8 for the 1913–1917 chicken pox
epidemics in Maryland. Using the above parameter values and initial condition, as
predicted by Theorem 5, Fig. 2 shows that the DFE (s∞, e∞, i∞, r∞) = (1, 0, 0, 0) is
unstable and the uniformly persistent Model (11) has a unique asymptotically stable
endemic equilibrium at (s∗, e∗, i∗, r∗) = (0.137, 0.013, 0.112, 0.738) that is reached
at approximately t = 100 years (not shown in Fig. 2).

4 Cholera Model

Cholera, an infectious disease of the small intestine, is caused by some strains of
the bacterium Vibrio cholerae. In most cases, cholera infection causes mild diarrhea.
However, some infection cases develop to severe diarrhea and vomiting, which if not
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properly treated lead to death within a few hours. Cholera can be transmitted indirectly
to susceptible humans via water infected with the bacterium that is shed by infected
humans, or directly from infected humans to susceptible humans. Continuous-time
ODE models of cholera have been used to illustrate the relative importance of the two
cholera transmission pathways in designing control strategies; see for example Tien
and Earn (2010).

4.1 Direct and Indirect Cholera Transmission Pathways

We use the same notation as used previously, augmented by a variable Bt denoting
the concentration of bacterium in the water at each time t ∈ {0, 1, 2, . . .}, with the
probability of bacterium that is removed from the water (death) per the time interval
denoted by the constant δ ∈ (0, 1), where cholera-infected humans shed bacterium
into thewater at a positive per capita rate ξ per the time interval. At the end of each time
interval, a fraction of susceptible individuals, θ St , become infected via direct contact

with cholera-infected humans with probability ϕ̂1

(
It
Nt

)
=
(
1 − ϕ1

(
It
Nt

))
, and a

fraction of susceptible individuals, (1 − θ) St , become infected via indirect contact

with cholera-infected water with probability ϕ̂2

(
Bt
Nt

)
=
(
1 − ϕ2

(
Bt
Nt

))
, where the

constant θ ∈ [0, 1] and the total human population at time t is Nt = St + It + Rt .
The “escape from direct infection” and “escape from indirect infection” functions
are, respectively, the nonlinear decreasing smooth concave-up functions

ϕ1 : [0,∞) → [0, 1]

and

ϕ2 : [0,∞) → [0, 1],

where ϕ1 (0) = ϕ2 (0) = 1. That is, for each i ∈ {1, 2}, ϕ′
i < 0 and ϕ′′

i > 0. These
assumptions and notation lead to the following discrete-time choleramodel with direct
and indirect disease transmission pathways:

St+1 = g (Nt ) + (1 − d) St
(
θϕ1

(
It
Nt

)
+ (1 − θ) ϕ2

(
Bt
Nt

))
It+1 = (1 − d) St

{
θϕ̂1

(
It
Nt

)
+ (1 − θ) ϕ̂2

(
Bt
Nt

)}
+ (1 − γ ) (1 − d) It

Rt+1 = γ (1 − d) It + (1 − d) Rt

Bt+1 = ξ (1 − d) It + (1 − δ) Bt

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

for time t ∈ {0, 1, 2, . . .}. We studyModel (13) with initial conditions (S0, I0, R0, B0)

∈ ([0,∞) × [0,∞) × [0,∞) × [0,∞))\{(0, 0, 0, 0)}.
When the fraction θ = 0,Model (13) captures onlywater-to-human indirect cholera

transmission pathway (as assumed in some cholera models, see for example Codeço
2001), whereas θ = 1 implies themodel captures only human-to-human direct cholera
transmission pathway, and θ ∈ (0, 1) implies the model captures both direct and
indirect cholera transmission pathways.
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Summing the first three equations of Model (13), at each time t ∈ {0, 1, 2,···}, the
total population is governed by the human demographic equation

Nt+1 = g(Nt ) + (1 − d)Nt .

4.2 Asymptotically Constant Growth Recruitment

When the total population is asymptotically constant, as in the SEIRmodel, we assume
that limt→∞ Nt = S∞ > 0. Then, Model (13) reduces to the “limiting system”

St+1 = g (S∞) + (1 − d) St
(
θϕ1

(
It
S∞

)
+ (1 − θ) ϕ2

(
Bt
S∞

))
It+1 = (1 − d) St

{
θϕ̂1

(
It
S∞

)
+ (1 − θ) ϕ̂2

(
Bt
S∞

)}
+ (1 − γ ) (1 − d) It

Rt+1 = γ (1 − d) It + (1 − d) Rt

Bt+1 = ξ (1 − d) It + (1 − δ) Bt .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(14)

To consider proportions, let

st = St
S∞

, it = It
S∞

, rt = Rt

S∞
and bt = Bt

S∞
.

Then, Model (14) becomes the following system of four equations:

st+1 = d + (1 − d) st {θϕ1 (it ) + (1 − θ) ϕ2 (bt )}
it+1 = (1 − d) st {θϕ̂1 (it ) + (1 − θ) ϕ̂2 (bt )} + (1 − γ ) (1 − d) it
rt+1 = (1 − d) (γ it + rt )
bt+1 = ξ (1 − d) it + (1 − δ) bt ,

⎫⎪⎪⎬
⎪⎪⎭

(15)

with DFE (s, i, r, b) = (1, 0, 0, 0), where st + it + rt = 1. Notice that in Model (15),
0 ≤ st , rt , it ≤ 1 implies the concentration of bacterium in the water is bounded.

The DFE is

(S, I, R, B) = (S∞, 0, 0, 0) .

We now use the next-generation matrix to computeR0 for Model (13). Assuming that
bacteria shedding is not a new infection, and proceeding exactly as before we obtain
that at the DFE, the matrix of new infections that survive the time interval is

F =
[− (1 − d) θϕ′

1 (0) − (1 − d) (1 − θ) ϕ′
2 (0)

0 0

]

and the transition matrix is

T =
[

(1 − γ ) (1 − d) 0
ξ (1 − d) (1 − δ)

]
,
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F , T are nonnegative matrices, ρ (T ) < 1, and

R0 = ρ
(
F (I d − T )−1

)
= − (1 − d) θϕ′

1 (0)

(1 − (1 − γ ) (1 − d))

+− (1 − d)2 (1 − θ) ξϕ′
2 (0)

δ (1 − (1 − γ ) (1 − d))
.

As in the continuous-timeODEcholeramodels, the direct and indirect routes of cholera
transmission enter R0 in an additive way. Therefore,

R0 = R0I + R0B,

where

R0 = − (1 − d) θϕ′
1 (0)

(1 − (1 − γ ) (1 − d))
and R0B = − (1 − d)2 (1 − θ) ξϕ′

2 (0)

δ (1 − (1 − γ ) (1 − d))
.

As in Model (5), under the asymptotically constant growth in Model (15), the DFE,

(1, 0, 0, 0), is locally asymptotically stable whenR0 < 1 and unstable whenR0 > 1.
If either direct reproduction number, R0I , or indirect reproduction number, R0B , is
greater than 1, thenR0 > 1. As in the ODEmodels, when we assume that shedding is
not a new infection, the discrete-time model confirms that both cholera transmission
routes must be controlled to successfully eliminate the disease (Tien and Earn 2010;
van den Driessche 2017).

If shedding is regarded as a new infection, i.e., put in matrix F instead of T , then
in this case, R̂0 is the positive root of the quadratic equation,

p(z) ≡ z2 − R0I z − R0B = 0.

From the signs of the coefficients, this quadratic equation has a unique positive root,
R̂0. If R̂0 < 1, then p(1) > 0 andR0 = R0I +R0B < 1. Similarly, if R̂0 > 1, then
p(1) < 0 and R0 = R0I + R0B > 1. Moreover, p(1) = 1 − R0, thus R̂0 gives the
same threshold as derived for R0.

For GAS of the DFE, observe that when shedding is not regarded as a new infection,
then the matrices F and T are nonnegative with ρ (T ) < 1. Furthermore,

(I d − T )−1F =
⎡
⎢⎣

−(1−d)θϕ′
1(0)

1−(1−γ )(1−d)

−(1−d)(1−θ)ϕ′
2(0)

1−(1−γ )(1−d)

−(1−d)2θϕ′
1(0)

δ(1−(1−γ )(1−d))

−(1−d)2(1−θ)ϕ′
2(0)

δ(1−(1−γ )(1−d))

⎤
⎥⎦

is irreducible. Let

x (t) =
[
it
bt

]
and y (t) =

[
st
rt

]
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and

f (x (t) , y (t)) =
[− (1 − d) st�(it , bt ) − (1 − d)

(
θϕ′

1 (0) it + (1 − θ) ϕ′
2 (0) bt

)
0

]
,

where �(it , bt ) = θϕ̂1 (it ) + (1 − θ) ϕ̂2 (bt ). Then,

x (t + 1) = (F + T ) x (t) − f (x (t) , y (t)) ,

and as in the proof of Theorem 4, f (x (t) , y (t)) ≥ 0.
The disease-free system

st+1 = d + (1 − d) st
rt+1 = (1 − d) rt

}

has a unique equilibrium point, y∞ = (s∞, r∞) = (1, 0) that is GAS in [0.1] × [0.1],
and f (0, y∞) = 0. By Theorem 3, ifR0 < 1, then the DFE is GAS in the interior of
� = [0, 1] × [0, 1] × [0, 1] × [0, 1]. Furthermore, ifR0 > 1, then by Theorem 3, the
DFE is unstable and Model (15) is uniformly persistent and the disease is endemic.

Next, we establish the existence of a unique endemic equilibrium. Let (i∗, r∗, b∗)
denote an endemic equilibrium point of Model (15). Then,

i∗ = (1 − d) ((1 − i∗ − r∗) (θϕ̂1 (i∗) + (1 − θ) ϕ̂2 (b∗)) + (1 − γ ) i∗)
r∗ = (1 − d) (γ i∗ + r∗)
b∗ = ξ (1 − d) i∗ + (1 − δ) b∗.

⎫⎬
⎭ (16)

The last two equations of (16) reduce to

r∗ = γ (1−d)
d i∗

b∗ = ξ(1−d)
δ

i∗.

Substituting for r∗ and b∗ in the first equation of (16) gives the equation

M1 (i∗) = M2 (i∗) ,

where

M1 (i) = (1 − (1 − d) (1 − γ )) i

M2 (i) = (1 − d)
(
1 −

(
1 + γ (1−d)

d

)
i
) (

θϕ̂1 (i) + (1 − θ) ϕ̂2

(
ξ(1−d)

δ
i
))

.

Proceeding exactly as in the proof of Theorem 4, the following result is immediate:

Theorem 7 If R0 < 1, then the DFE of cholera Model (15) is globally asymptoti-
cally stable. However, if R0 > 1, then the DFE is unstable, Model (15) is uniformly
persistent and has a unique endemic equilibrium.
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4.3 Geometric Growth Recruitment

Under the geometric recruitment function, to study cholera disease transmission
dynamics in Model (13), for Rd > 1 let

st = St
Nt

, it = It
Nt

, rt = Rt

Nt
and bt = Bt

Nt
,

where

Nt+1 = (1 + d (Rd − 1)) Nt

for t = 0, 1, 2, 3, . . . . Since st = 1 − it − rt , Model (13) reduces to the following
system of three equations:

it+1 = η ((1 − it − rt ) {θϕ̂1 (it ) + (1 − θ) ϕ̂2 (bt )} + (1 − γ ) it )
rt+1 = η (γ it + rt )

bt+1 = η
(
ξ it + (1−δ)

(1−d)
bt
)

,

⎫⎪⎬
⎪⎭ (17)

where η = 1−d
1+d(Rd−1) . Since Rd > 1, 0 < η < 1 and 0 <

η(1−δ)
(1−d)

< 1. Proceeding
exactly as before, at the DFE (i, r, b) = (0, 0, 0) the matrix of new infections that
survive the time interval is

F =
[−ηθϕ′

1 (0) −η (1 − θ) ϕ′
2 (0)

0 0

]

and the transition matrix is

T =
[

η (1 − γ ) 0
ηξ

η(1−δ)
(1−d)

]
.

F , T are nonnegative matrices, ρ (T ) < 1, and

R0 = ρ
(
F (I d − T )−1

)
= −ηθϕ′

1 (0)

(1 − η (1 − γ ))

+−η2 (1 − θ) ξ (1 + d (Rd − 1)) ϕ′
2 (0)

(1 − η (1 − γ )) (δ + d (Rd − 1))
.

As in the case of constant recruitment, when the total population is under geometric
growth, the direct and indirect routes of cholera transmission enter R0 in an additive
way. Therefore,

R0 = R0I + R0B,
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where

R0I = −ηθϕ′
1 (0)

(1 − η (1 − γ ))
and R0B = −η2 (1 − θ) ξ (1 + d (Rd − 1)) ϕ′

2 (0)

(1 − η (1 − γ )) (δ + d (Rd − 1))
.

By Theorem 1, under geometric growth in Model (13), the DFE, (1, 0, 0, 0), is locally
asymptotically stable when Rd > 1 and R0 < 1 and unstable when Rd > 1 and
R0 > 1.

For GAS of the DFE, observe that in this case the matrices F and T are nonnegative
with ρ (T ) < 1. Furthermore, (I d − T )−1 F is irreducible, and

f (x (t) , y (t)) =
[−ηst�(it , bt ) − η

(
θϕ′

1 (0) it + (1 − θ) ϕ′
2 (0) bt

)
0

]
,

where �(it , bt ) = θϕ̂1 (it ) + (1 − θ) ϕ̂2 (bt ). Proceeding exactly as in the case of
asymptotically constant growth with (1 − d) ∈ (0, 1) replaced by η ∈ (0, 1), the
following result is immediate.

Theorem 8 Let Rd > 1. If R0 < 1, then the DFE of cholera Model (17) is globally
asymptotically stable. However, if R0 > 1, then the DFE is unstable, Model (17) is
uniformly persistent and has a unique endemic equilibrium.

4.4 Illustrative Example

The basic reproduction number for the 2006 cholera outbreak in Angola, as reported
in Eisenberg et al. (2013), is R0 = 5.89. Assuming asymptotically constant growth,
to numerically show an asymptotically stable endemic equilibrium in Model (15),
we assume that cholera infections are modeled as Poisson processes and ϕ1(it ) =
exp(−βI it ), ϕ2(bt ) = exp(−βBbt ), where βB = 1.209, βI = 0.263, d = 0.01,
δ = 0.196, ξ = 0.744, γ = 0.18, θ = 0.8 and the model’s unit of time is a year.

With our choice of parameters, R0B = 4.780, R0I = 1.107 and so R0 = 5.887
(Eisenberg et al. 2013). With 1% of the population as the initial number of infectious
individuals at the onset of the epidemic in 2006, Fig. 3 shows that less than 20% of
the susceptibles were infected in 10 years of the infection. Using the above param-
eter values and initial condition, as predicted by Theorem 7, Fig. 3 shows that the
DFE (s∞, i∞, r∞, b∞) = (1, 0, 0, 0) is unstable, and the uniformly persistent Model
(15) has a unique asymptotically stable endemic equilibrium at (s∗, i∗, r∗, b∗) =
(0.184, 0.043, 0.773, 0.163) that is reached at approximately t = 200 years (not
shown in Fig. 3). SinceR0I ≈ 1, the proportion of directly infected humans is small.

5 Anthrax Model

Anthrax, an infectious disease that is known to infect both humans and animals, is
caused by Bacillus anthracis, a gram-positive sporulating bacterium (Friedman and
Yakubu 2013; Furniss and Hahn 1981; Hahn and Furniss 1983; Saad-Roy et al. 2017).
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Fig. 3 Numerical simulation of Model (15). With 1% of the population as the initial number of infectious
individuals at the onset of the epidemic in 2006, less than 20% of the susceptibles were infected by 2016

Anthrax infections can be cutaneous, gastrointestinal or by inhalation, and may be
deadly. Periodic anthrax disease outbreaks occur in animals and contact with anthrax-
infected animals, or infected carcassesmay spread the disease to susceptible animals or
humans. Several continuous-time ODE models have been used to study the transmis-
sion of anthrax in animal populations; see for example Friedman and Yakubu (2013),
Furniss and Hahn (1981), Hahn and Furniss (1983) and Saad-Roy et al. (2017).

5.1 Anthrax Epizootic

To introduce a discrete-time anthrax epidemicmodel in animal populations,we assume
that at each time t ∈ {0, 1, 2, · · · }, each live animal is either susceptible (St ) or infec-
tious (infected with anthrax disease, It ). That is, we let St , It and Nt = St + It ,
respectively, denote the population density of susceptible, infectious and total popu-
lation of live animals at each time t . Furthermore, at each time t , we let At denote the
grams of anthrax spores in the environment and let Ct denote the density of anthrax-
infected carcasses.

The animals’ intrinsic birth rate per time interval is denoted by r > 0, and d ∈ (0, 1)
is the fraction of animals that die “naturally” per the time interval. The total animal
population is assumed to follow the Beverton–Holt model. Consequently, assuming
all newborn animals are susceptible,

g(Nt ) = r
Nt

1 + bNt
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are born into the susceptible class per time interval, where the scaling parameter b > 0.
In the environment, anthrax spores grow on infected carcasses and decay or arewashed
away. Therefore, at each time t , we let β > 0 denote the constant per capita spore
growth rate per carcass, and α ∈ (0, 1) denote the fraction of spores that decay per
the time interval.

At time t , a fraction of live susceptible animals, θ1St , become infected from grazing
or inhaling anthrax spores in the environment with probability ϕ̂1 (At ) = (1−ϕ1(At )),
a fraction of live susceptible animals, θ2St , become infected via contact with anthrax-
infected carcasses with probability ϕ̂2 (Ct ) = (1−ϕ2(Ct )), and the remaining fraction
of live susceptible animals, θ3St , become infected via direct contact with anthrax-
infected live animals with probability ϕ̂3 (It ) = (1 − ϕ3(It )), where the constants θ1,
θ2, θ3 ∈ [0, 1] and θ1 + θ2 + θ3 = 1.

We assume that anthrax-infected live animals die from anthrax with constant prob-
ability μ ∈ (0, 1) per time interval. At each time t , the total live animal population
feeds on infected carcasses with probability (1− ϕ4(Nt )) ∈ [0, 1]. That is, ϕ4(Nt )Ct

gives the remaining carcasses not consumed by live animals per time interval. For
each i ∈ {1, 2, 3, 4}, we assume that each nonlinear probability function,

ϕi : [0,∞) → [0, 1],
is a decreasing smooth concave-up function with ϕi (0) = 1. That is, ϕ′

i < 0 and
ϕ′′
i > 0. Carcasses are organic matter and decay with probability κ ∈ (0, 1) per time

interval. Since some anthrax-infected animals recover from the disease, we let τ ∈
[0, 1] denote the probability of anthrax recovery per time interval. These assumptions
and notation lead to the following discrete-time anthrax epizootic model with three
disease transmission pathways.

St+1 = g (Nt ) + d̂ St (θ1ϕ1 (At ) + θ2ϕ2 (Ct ) + θ3ϕ3 (It )) + τ μ̂d̂ It
It+1 = d̂ St (θ1ϕ̂1 (At ) + θ2ϕ̂2 (Ct ) + θ3ϕ̂3 (It )) + τ̂ μ̂d̂ It
At+1 = (1 − α) At + βCt

Ct+1 = (d + μτ̂ d̂
)
It + (1 − κ) ϕ4 (Nt )Ct

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(18)

for time t = 0, 1, 2, 3, . . ., where d̂ = (1 − d), μ̂ = (1 − μ) and τ̂ = (1 − τ) .

Adding the equations for St+1 and It+1 results in

Nt+1 = r
Nt

1 + bNt
+ (1 − d) Nt − μ (1 − d) It ≤ r

Nt

1 + bNt
+ (1 − d) Nt .

The demographic threshold parameter is

Rd = r

d
.

Thus, Rd > 1 implies that

lim t→∞Nt ≤ (Rd − 1)

b
=S∞.
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Assuming 0 ≤ N0 ≤ S∞, ifRd > 1, the feasible region � (Rd > 1) is

� (Rd > 1)

=
{
(S, I, A,C) ∈ R

4+ | 0 ≤ S + I ≤ S∞, 0 ≤ A ≤ β

α
ρS∞, 0 ≤ C ≤ ρS∞

}
,

where ρ = (d+μ(1−τ)(1−d))
κ

. IfRd < 1, then

Nt+1 ≤ (r + 1 − d) Nt ≤ Nt

and Nt ≤ N0 for all t ≥ 0. The feasible region in this case is

� (Rd < 1)

=
{
(S, I, A,C) ∈ R

4+ | 0 ≤ S + I ≤ N0, 0 ≤ A ≤ β

α
ρN0, 0 ≤ C ≤ ρN0

}
.

5.2 Disease-Free Equilibria and R0

Model (18) has a trivial disease-free equilibrium, (S, I, A,C) = (0, 0, 0, 0). When
Rd > 1, the model exhibits two disease-free equilibria, the trivial equilibrium, P0−,
and the equilibrium inwhich every live animal is susceptible and there are no infectious
carcasses or spores, P0+, where

P0− = (0, 0, 0, 0) and P0+ = (S∞, 0, 0, 0) .

Note that P0− is also a trivial equilibrium of Model (18 ) whenever the animal popula-
tions are under geometric growth or Ricker model. The following theorem addresses
the stability of the trivial DFE, P0−.

Theorem 9 IfRd < 1 and the probability of death per time interval is greater than the
intrinsic per capita birth rate, then P0− is LAS.However, ifRd < 1andd ≤ μτ

1+μτ
, then

the probability of natural death is small and P0− is GAS in interior of � (Rd < 1) ;
thus, the total animal population goes extinct in Model (18). Otherwise, if Rd > 1
and the probability of death per time interval is less than the intrinsic per capita birth
rate, then P0− is unstable; thus, the total animal population persists in Model (18).

Proof For local stability, computing the Jacobian matrix of Model (18) about P0−
gives

⎛
⎜⎜⎝
r + 1 − d r + τ (1 − μ) (1 − d) 0 0

0 (1 − τ) (1 − μ) (1 − d) 0 0
0 0 1 − α β

0 d + μ (1 − τ) (1 − d) 0 1 − κ

⎞
⎟⎟⎠
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with eigenvalues λ1 = r + 1 − d, λ2 = (1 − τ) (1 − μ) (1 − d), λ3 = 1 − α and
λ4 = 1 − κ . Clearly, ifRd < 1, then 0 < λ j < 1 for each j ∈ {1, 2, 3, 4} and P0− is
LAS. However, ifRd > 1, then λ1 = r + 1 − d > 1 and P0− is unstable.

To prove GAS of P0− in Model (18) forRd < 1, we define the Lyapunov function

V : I nterior (� (Rd < 1)
)→ R+

by

V (St , It , At ,Ct ) = St + It + κ

β
At + Ct .

V is a continuous function, V (P0−) = 0, and V (S, I, A,C) > 0 for all
(S, I, A,C) �= P0− ∈ I nterior

(
� (Rd < 1)

)
.

To show that

V (St+1, It+1, At+1,Ct+1) < V (St , It , At ,Ct )

for all (St , It , At ,Ct ) �= P0− ∈ I nterior
(
�(Rd < 1)

)
, it is useful to note that since

by assumption d ≤ μτ
1+μτ

it follows that

{(1 − μ) (1 − d) + d + μ (1 − τ) (1 − d)} It ≤ (1 − d) It .

Hence, for all (St , It , At ,Ct ) �= P0− ∈ I nterior
(
� (Rd < 1)

)
,

V (St+1, It+1, At+1,Ct+1) ≤ (r + (1 − d)) (St + It ) + κ

β
(1 − α) At + Ct

< St + It + κ

β
At + Ct = V (St , It , At ,Ct ) .

Thus, for Rd < 1 GAS of P0− follows using the Lyapunov function theorem of La
Salle (Elaydi 2000; La Salle 1976). 	


In all that follows, we assume thatRd > 1. Proceeding as in the previous sections,
for stability of the non-trivial DFE, P0+, we use the next-generation matrix method to
compute the basic reproduction number. The infected compartments are I , A and C .
Taking (d + μ (1 − τ) (1 − d)) and β as transfers, we obtain that

F =
⎡
⎣− (1 − d) S∞θ3ϕ

′
3 (0) − (1 − d) S∞θ1ϕ

′
1 (0) − (1 − d) S∞θ2ϕ

′
2 (0)

0 0 0
0 0 0

⎤
⎦

and

T =
⎡
⎣ (1 − τ) (1 − μ) (1 − d) 0 0

0 1 − α β

d + μ (1 − τ) (1 − d) 0 (1 − κ) ϕ4 (S∞)

⎤
⎦ .
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Here, F , T are nonnegative matrices, ρ (T ) < 1 and

R0 = ρ
(
F (I d − T )−1

)
= R0A + R0C + R0I ,

where

R0A = − (1 − d) S∞θ1ϕ
′
1 (0)

(1 − (1 − τ) (1 − μ) (1 − d))
· β (d + μ (1 − τ) (1 − d))

α (1 − (1 − κ) ϕ4 (S∞))

R0C = − (1 − d) S∞θ2ϕ
′
2 (0)

(1 − (1 − τ) (1 − μ) (1 − d))
· (d + μ (1 − τ) (1 − d))

(1 − (1 − κ) ϕ4 (S∞))

R0I = − (1 − d) S∞θ3ϕ
′
3 (0)

(1 − (1 − τ) (1 − μ) (1 − d))
.

Biologically, R0 is the sum of the number of anthrax infections transmitted to the
animal population from anthrax spores in the environment, R0A, from feeding on
anthrax-infected carcasses, R0C , and from direct contact with anthrax-infected ani-
mals,R0I .

The following result of the LAS of P0+ follows immediately from Theorem 1.

Theorem 10 Suppose Rd > 1 in Model (18). If R0 < 1, then P0+ is LAS; thus a
small anthrax outbreak is eradicated. However, ifR0 > 1, then P0+ is unstable; thus
anthrax persists.

For GAS of the DFE P0+, we note that we cannot use Theorems 2 and 3 since the
function f is not signed correctly.

5.3 Herbivore Model

Anthrax disease is primarily a disease of herbivores. Saad-Roy et al. (2017) introduced
a continuous-time ODE model of anthrax disease transmission in herbivores. Since
herbivores do not feed on carcasses, to reduce Model (18) to a discrete-time anthrax
model of only herbivores, we assume that ϕ2 (Ct ) = ϕ4 (Nt ) = 1. Also, since direct
anthrax infections between live animals are rare, we assume that ϕ3(It ) = 1. Sudden
death of an anthrax disease-infected animal is by far the most common clinical sign of
anthrax infection in animals, and as in Saad-Roy et al. (2017), we assume that τ = 0.
Consequently, ϕ2 (Ct ) = ϕ3(It ) = θ2 = θ3 = 0, θ1 = 1, and Model (18) simplifies to
the following discrete-time anthrax model of herbivores:

St+1 = g (Nt ) + (1 − d) Stϕ1 (At )

It+1 = (1 − d) St (1 − ϕ1 (At )) + (1 − μ) (1 − d) It
At+1 = (1 − α) At + βCt

Ct+1 = (d + μ (1 − d)) It + (1 − κ)Ct

⎫⎪⎪⎬
⎪⎪⎭

(19)

with DFE P0− and P0+. By Theorem 9, P0− is LAS whenRd < 1 and unstable when
Rd > 1.
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To compute the basic reproduction number for Model (19), we use that of Model
(18). By our simplification assumptions, we obtain that

R0 = − (1 − d) S∞ϕ′
1 (0) β (d + μ (1 − d))

ακ (1 − (1 − μ) (1 − d))
.

Consequently, ifRd > 1, then the DFE P0+ is LAS whenR0 < 1 and unstable when
R0 > 1.

In this case, the matrix

(I d − T )−1F =

⎡
⎢⎢⎢⎢⎣

0
−(1−d)S∞φ′

1(0)
1−(1−μ)(1−d)

0

0
−(1−d)S∞ϕ′

1(0)β(d+μ(1−d))

ακ(1−(1−μ)(1−d))
0

0
−(1−d)S∞ϕ′

1(0)(d+μ(1−d))

κ(1−(1−μ)(1−d))
0

⎤
⎥⎥⎥⎥⎦

is reducible, so Theorem 3 cannot be used directly to prove the GAS of the DFE P0+.
In the next result, we establish the GAS of the DFE P0+ of Model (19).

Theorem 11 Let Rd > 1. If R0 < 1, then the DFE P0+ of herbivore Model (19) is
GAS in the interior of� = [0,∞)×[0,∞×[0,∞)×[0,∞). However, ifR0 > 1, then
the DFE is unstable, Model (19) is uniformly persistent, and the disease is endemic.

Proof To prove the GAS of P0+, we note that F , T and (I d − T )−1 are nonnegative
matrices. We use the Lyapunov function given in Theorem 2 to establish GAS. Let

x (t) =
⎡
⎣ It
At

Ct

⎤
⎦ , y (t) = [ St ]

and

f (x (t) , y (t)) =
⎡
⎣ (1 − d)

(−St (1 − ϕ1 (At )) − S∞ϕ′
1 (0) At

)
0
0

⎤
⎦ .

Then,

x (t + 1) = (F + T ) x (t) − f (x (t) ,y (t)) .

Moreover,

f1 (x (t) , y (t)) ≥ (1 − d) (min {St ,S∞}) (ϕ1 (At ) − 1 − ϕ′
1 (0) At

) ≥ 0.

Thus, by Theorem 2, L(x(t)) = ωT (I d−T )−1x(t) is a Lyapunov function for Model
(19) ifR0 < 1, whereωT = (0, 1, 0) is a left eigenvector of (I d−T )−1F . Explicitly,
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L(x(t)) = β (d + μ (1 − d))

ακ (1 − (1 − μ) (1 − d))
It + 1

α
At + β

ακ
Ct .

Computing L(x(t +1)), it follows that L(x(t +1)) = L(x(t)) implies that It = At =
Ct = 0. The only invariant LAS set where It = At = Ct = 0 is P0+. Therefore, by
La Salle’s invariance principle, P0+ is GAS if R0 < 1. By arguments as in the proof
of Theorem 3 , if R0 > 1 the DFE is unstable, Model (19) is uniformly persistent,
and the disease is endemic. 	


5.4 Illustrative Example

As in the previous examples, in Model (19), we assume that anthrax infections in the
herbivores are modeled as Poisson processes and ϕ1 (At ) = e−σ At , where α = 0.997,
β = 0.1, b = 1, σ = 0.01, d = 0.004, r = 1, κ = 0.2, μ = 0.01, the model’s
unit of time is a year, and the total population of animals is 200. With our choice of
parameters, Rd > 1 and R0 = 1.244 > 1. With about 5% of the animal popula-
tion as the initial number of infectious animals at the onset of the epidemic, due to
the relatively small value of R0, Fig. 4 shows that less than 10% of the susceptible
animals are infected in 10 years of the anthrax infection. Using the above parame-
ter values and initial condition, as predicted by Theorem 11, Fig. 4 shows that the
DFE (S∞, I∞, A∞,C∞) = (249, 0, 0, 0) is unstable and the uniformly persistent
Model (19) has an asymptotically stable endemic equilibrium at (S∗, I∗, A∗,C∗) =

Fig. 4 Numerical simulation of Model (19). With about 5% of the population as the initial number of
infectious animals at the onset of the epidemic, less than 10% of the susceptible animals are infected in 10
years of the anthrax infection
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(200.298, 13.908, 0.097, 0.971) that is reached at approximately t = 600 years (not
shown in Fig. 4).

6 Concluding Remarks

We use the next-generation method of Allen and van den Driessche (2008) to compute
R0 for discrete-time epidemic models in populations that are governed by constant,
geometric, Beverton–Holt or Ricker demographic equations. When R0 < 1 and the
demographic population dynamics are asymptotically constant or under geometric
growth (non-oscillatory), we prove GAS of the DFE of the disease models. That is,
independent of initial population densities, the disease dies out wheneverR0 < 1 and
the demographic population dynamics are asymptotically constant or under geometric
growth. We apply our theoretical results to discrete-time epidemic models that are
formulated for SEIR infections, cholera in humans and anthrax in animals. Also,
under the demographic assumption when R0 > 1, we prove that the disease persists,
and show the existence of a unique endemic equilibrium (EE) for the SEIR and cholera
models. The proof of GAS of the unique EE of our discrete-time epidemic models is
an open question.

For any given disease, different models of the disease may not deliver the same
R0 expression. Thus, in using R0 to evaluate the effect of a disease control measure
on outbreaks it is necessary to link the R0 value directly to the model assumptions
(Lewis et al. 2006). Most infectious disease surveillance data are reported at discrete-
time intervals; see for example CDC malaria surveillance data in USA (Mace and
Arguin 2017). Our discrete-time epidemic models assume that populations are cen-
sored at discrete-time unit intervals, and reproduction occurs only once during the
time interval. Consequently, our R0 expressions typically differ from corresponding
R0 for continuous-time models.

Bacaer et al. computed R0 for time-periodic (non-autonomous) continuous-time
and discrete-time epidemicmodels; see Bacaer andAit Dads (2012) and the references
therein. Our discrete-time epidemic models for this study are not seasonal or time-
periodic models. However, due to density dependence of the recruitment function,
our model framework allows for the disease-free system to support cyclic and chaotic
dynamics. For example, the disease-free system undergoes period-doubling route to
chaos bifurcations when the recruitment function is the Ricker model with parame-
ters in the period-doubling bifurcation route to chaos regimes (Yakubu 2010). When
the equilibrium point of the disease-free system undergoes a period-doubling bifurca-
tion, then the demographic equation has a locally asymptotically stable period-2 orbit
coexisting with an unstable fixed point. In this case, since there is no asymptotically
stable DFE in the disease-free system, the next-generation matrix method of comput-
ing R0 for our discrete-time epidemic models is not applicable. Theorems 1–3 need
the disease-free system to have a LAS DFE. Constructing methods for computingR0
for autonomous infectious disease models when the disease-free systems have cyclic
or chaotic (oscillatory) dynamics and have no LASDFE are interesting open problems
that we are now considering.
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