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Abstract Cancer is a complex disease involving processes at spatial scales from sub-
cellular, like cell signalling, to tissue scale, such as vascular network formation. A
number of multiscale models have been developed to study the dynamics that emerge
from the coupling between the intracellular, cellular and tissue scales.Here,wedevelop
a continuum partial differential equation model to capture the dynamics of a particular
multiscale model (a hybrid cellular automaton with discrete cells, diffusible factors
and an explicit vascular network). The purpose is to test under which circumstances
such a continuummodel gives equivalent predictions to the original multiscale model,
in the knowledge that the system details are known, and differences in model results
can be explained in terms of model features (rather than unknown experimental con-
founding factors). The continuum model qualitatively replicates the dynamics from
the multiscale model, with certain discrepancies observed owing to the differences in
the modelling of certain processes. The continuummodel admits travelling wave solu-
tions for normal tissue growth and tumour invasion, with similar behaviour observed
in the multiscale model. However, the continuummodel enables us to analyse the spa-
tially homogeneous steady states of the system, and hence to analyse these waves in
more detail. We show that the tumour microenvironmental effects from the multiscale
model mean that tumour invasion exhibits a so-called pushed wave when the carrying
capacity for tumour cell proliferation is less than the total cell density at the tumour
wave front. These pushed waves of tumour invasion propagate by triggering apoptosis
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of normal cells at the wave front. Otherwise, numerical evidence suggests that the
wave speed can be predicted from linear analysis about the normal tissue steady state.

Keywords Multiscale · Continuum · Wave speed · Pushed waves

1 Introduction

Cancer is a complex disease not restricted to a single biological scale but involving
processes occurring over multiple spatial scales, ranging from the subcellular scale
(for example, progression through the cell cycle) to the tissue scale (for example,
angiogenesis, vascular remodelling), and temporal scales (for example, oxygen diffu-
sion on a relevant tissue length-scale occurs in minutes while the doubling time for
cells is usually in days/weeks).

Many models developed previously focused on a single aspect of tumour growth,
for example, cell cycle (Alarcón et al. 2004), cell apoptosis and necrosis (Byrne and
Chaplain 1998), diffusion of angiogenic factors (Chaplain and Stuart 1991) or tumour
angiogenesis (Balding and McElwain 1985). Although these models provide a good
insight into the underlying mechanisms of these processes, they fail to address issues
of how different phenomena occurring at different scales couple together to influence
tumour growth. Many have already developed models to address this issue of bridging
scales. To name a few, Ribba et al. (2006) presented a multiscale model including
key genes, cellular and tissue level dynamics and radiosensitivity dependence on cell
cycle phase to study tumour response to irradiation protocols, Anderson et al. (2007)
shows how threemultiscale individual cell-basedmodels emerging fromcancer related
processes at extracellular, cellular and subcellular scales are related to one another
and can be used to bridge the three spatial scales, Stolarska et al. (2009) developed
multiscale models incorporating the mechanical processes involved in cell and tissue
movement and studied them in the context of tumour growth, Alarcón et al. (2005)
developed a multiple scale model accounting for interactions between normal and
cancerous cells, cell division and apoptosis, transport of oxygen and VEGF, blood
flow and structural adaptation of vessels and coupling between these processes.

The multiple scale model from (Alarcón et al. 2005) was later extended to include
several features like cell movement (Betteridge et al. 2006), angiogenesis and vascular
remodelling (Owen et al. 2009) and macrophage-based gene therapy (Owen et al.
2011).

In this paper, we develop a model for vascular tumour growth, based on the multi-
scale model (MM) from (Owen et al. 2011), but consisting of only Partial Differential
Equations (PDEs). The purpose of developing this continuum model (CM) is to test
under which circumstances such a model will be equivalent to the multiscale model
and to highlight the advantages and the disadvantages of the two types of model.
Comparing models based on the same set of features is beneficial since in such cases
all the system details are known, and any differences in the simulation results can be
explained in terms of the model features. In contrast, differences in the simulation
results of a model and the corresponding experimental data can be difficult to explain
due to presence of several unknown factors. The process of developing a continuum
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model based on the dynamics observed in the multiscale model uncovers some impor-
tant but not apparent features of themultiscalemodel. Additionally, continuummodels
enable us to perform certain analyses, like determining the steady states of the system
and investigating the effect of model parameters and initial conditions on the evolution
of the model variables.

2 Model Development

The model we develop is a continuum model based on the multiscale model by Owen
et al. (2011). The multiscale model is based on a hybrid cellular automaton concept.
The model comprises three layers, the cellular layer, the diffusibles like oxygen and
growth factors (VEGF) and the vasculature describing the formation and function of
a vessel network. We illustrate the three layers, the coupling between them and the
order of computation of all the processes, occurring at various length scales, over a
time step in the simulation in the flowchart in Fig. 1. Note that, in this article, we

Fig. 1 Flowchart of the algorithm showing the order of computation of the processes, within each layer,
during one time step of the simulation of the model by Owen et al. (2011) (Color figure online)
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only study normal tissue expansion and tumour invasion. Hence, we do not include
macrophages and processes associated with it from Owen et al. (2011).

To account for the three layers of the multiscale model and the processes associated
with them, we define the following variables in the continuum model, as functions of
the vector of space co-ordinates x and time t ,

– Oxygen Concentration: C(x, t) mmHg
– VEGF Concentration: V (x, t) nM
– Normal Cell Density: n(x, t) cells/mm3

– Tumour Cell Density: r(x, t) cells/mm3

– Immature Tip Cell Density: e(x, t) cells/mm3

– Mature Tip Cell Density m(x, t) cells/mm3

– Blood Vessel Surface Density: b(x, t) mm2/mm3

In the remainder of this section, we will describe in detail the implementation of the
three layers in the multiscale model and the corresponding equations in the continuum
model.

2.1 Cell Population

The cellular layer in the multiscale model accounts for individual cells of different
types and certain subcellular processes associated with them. The layer is modelled as
a lattice in either two or three spatial dimensions. However, here we focus only on two
spatial dimensions. Each lattice site can hold a variable number of cells, depending
on the cell type. At each time step, the cells progress through their respective cell
cycles and divide into daughter cells if appropriate conditions are met, move within
the lattice and/or die depending on the external conditions, like nutrient availability.

In the continuummodel, we consider cell densities, which correspond to the number
of cells per unit volume in the multiscale model. The cell density changes according
to the rate of movement, proliferation and death of the cells.

Below, we discuss in detail the implementation of cell movement, proliferation and
death in the multiscale model and derive a general form for each of these processes
and for each cell type. The PDE for a given cell type will then be derived combining
all the corresponding relevant terms.

2.1.1 Cell Movement

In the multiscale model, cells perform a random walk within the lattice. Some cells,
like the tip cells sprouting from pre-existing blood vessels, move randomly, biased by
the VEGF gradient. This type of movement is termed as chemotaxis.

In 2D, the probability, P(x, y, t) of a cell moving from site x to site y, a site in
the Moore neighbourhood of x (i.e., the eight connected neighbours, including the
diagonal sites), in time Δt is given as

P(x, y, t) = DcellΔt

2d2x,y

(Ncell
m − N (y, t))

Ncell
m

(
1 + χcell

2Dcell
(V (y, t) − V (x, t))

)
, for x �=y

(1)
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where N (x, t) is the total number of cells at site x, V (x, t) is the VEGF concentration
at site x, Dcell is the random motility coefficient for cell type, Ncell

m is the carrying
capacity, χcell is the chemotactic sensitivity, and dx,y is the distance between sites x
and y. The probability of a cell not moving is one minus the sum of probabilities of
moving to the eight sites in the Moore neighbourhood. Equation (1) is used for all cell
types and the superscript cell denotes that the parameter value depends on the cell
type, like normal, tumour or tip cells, attempting to move. Also, random movement
without chemotaxis is obtained by setting χcell = 0 (e.g. for normal and tumour cells).
Note that, when N (y, t) > Ncell

m or VEGF gradients are sufficiently steep, Eq. (1) can
give negative values. In the former case, there is no space available at site y, and in
the latter case chemotaxis inhibits movement to that site, so we set the probability
P(x, y, t) to 0 in such cases.

When χcell = 0, a simple constraint on the time step, Δt ≤ Δx2/(3Dcell) (where
Δx is the lattice spacing), ensures that the sum of movement probabilities (and hence
all individual probabilities) cannot exceed one. However, whenχcell �= 0, steep VEGF
gradients can violate this. Thus, whenever the sum of the probabilities exceeds one, we
divide each probability by that sum. Correspondingly, the probability of not moving
becomes zero. We note that this requirement arises rarely in the multiscale model
simulations, and this normalisation was not previously implemented in, e.g. Owen
et al. (2011).

Equation (1) is similar to the volume filling model developed by Painter and Hillen
(2002) and its continuum limit, for cell density, u(x, t), is given as

∂u

∂t
= Dcell∇2u − χcell∇ ·

[
u
(
1 − u

Ncell
m

)
∇V

]
. (2)

Note that the linear form of the volume filling term means that it has no effect on the
diffusion term. Also, currently in the model, χcell is non-zero only for tip cells which
have the highest carrying capacity. Hence u ≤ Ncell

m .

2.1.2 Cell Proliferation

In the multiscale model, the phase φ of the cell cycle in each cell is modelled as an
ordinary differential equation (ODE)

dφ

dt
= f cell(C) = C

T cell
min (Ccell

φ + C)
, (3)

where Ccell
φ is the oxygen concentration at which the speed is half-maximal, and T cell

min
is the minimum period of cell cycle. Equation (3) is used for normal and tumour cell
proliferation.

φ is a number between 0 and 1, where 0 marks the beginning of the cell cycle and
1 marks the end of cell cycle after which the cell divides. Hence, when φ = 1, the cell
divides and φ is (re)set to zero for the parent and daughter cells.
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If C is constant, a new cell is born every T cell
min (Ccell

φ +C)/C min, as this is the time
taken by φ to go from 0 to 1. Thus, the cell density, u, increases as

u = u02
f cell (C)t = u0e

ln(2) f cell (C)t ,

where u0 is the cell density at t = 0.
Additionally, in the multiscale model, every cell type has a carrying capacity. This

means that the cells do not divide into the target site if the total number of cells there
is greater than the carrying capacity.

Taking these factors into account, the rate of cell proliferation in the continuum
model is of the form,

ln(2) f cell(C)H (dcell − Stot , εd), (4)

where Stot = n + r + e +m + p1b is the total cell density and p1b is the endothelial
cell density corresponding to blood vessel surface density b, dcell is the carrying
capacity for given cell type andH (dcell − Stot , εd) is a continuous approximation of
the Heaviside function given as,

H (z, ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if z ≥ ε,

3

4

(
z + ε

ε

)2

− 1

4

(
z + ε

ε

)3

if |z| < ε,

0 otherwise.

(5)

Therefore, for (dcell − Stot ) ≥ εd , H (dcell − Stot , εd) is exactly equal to one, and
equal to zero for (dcell − Stot ) ≤ −εd . Also, the transition from 1 to 0 is smooth in
the interval |dcell − Stot | < εd .

2.1.3 Cell Apoptosis

In the multiscale model, normal cell apoptosis depends on the cell’s surroundings and
intracellular levels of p53, denoted as [p53], updated at each simulation time step,
by integrating the following ordinary differential equations (ODEs) for time Δt , with
parameter values given in Table 1.

d[p53]
dt

= k7 − k
′
7

C

Cp53 + C
[p53], (6a)

d[VEGF]
dt

= k8 − k
′′
8
[p53][VEGF]
J5 + [VEGF] − k

′
8

C

CVEGF + C
[VEGF], (6b)

It must be noted that, following Alarcón et al. (2005), k
′′
8 is positive for normal

cells and negative for cancer cells. This is because, in normal cells, p53 expression
downregulates VEGF production. However, mutations of p53 in cancer cells leads
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Table 1 Values of parameters used in the p53-VEGF subsystem given by Eq. (6)

Parameter Units Normal cells Tumour cells Description, references and comments

k7 min−1 0.002 0.002 Intracellular p53 production

k
′
7 min−1 0.01 0.01 Maximum rate of intracellular p53

degradation

Cp53 mmHg 4.44 4.44 Tissue oxygen concentration for
half-maximal intracellular p53
degradation

k8 min−1 0.002 0.002 Basal intracellular VEGF production

k
′′
8 min−1 0.002 −0.002 Effect of p53 on VEGF production

J5 – 0.04 0.04 Intracellular VEGF for half-maximal
VEGF-dependent intracellular
VEGF production

k
′
8 min−1 0.01 0.01 Maximum rate of intracellular VEGF

degradation

CVEGF mmHg 4.44 4.44 Tissue oxygen concentration for
half-maximal intracellular VEGF
degradation

[p53]highTHR – 0.8 0.8 [p53] threshold for apoptosis of
normal cells. When the p53-VEGF
system is at steady state, this
corresponds to oxygen at 1.5
mmHg

[p53]lowTHR – 0.08 0.08 [p53] threshold for apoptosis of
normal cells in a tumour
microenvironment. When the
p53-VEGF system is at steady
state, [p53] > [p53]lowTHR for all
positive oxygen concentrations, so
that apoptosis is triggered in any
normal cells in such an
microenvironment

[VEGF]THR – 0.27 0.27 Internal VEGF threshold for VEGF
release. Corresponds to VEGF
release at hypoxic oxygen levels of
3.8 mmHg

All the values are taken directly from Owen et al. (2011)

to cases where p53 upregulates VEGF production (Alarcón et al. 2005; Royds et al.
1998).

For normal cells, as seen from Eq. (6a), [p53] degradation decreases with decreas-
ing oxygen levels. If [p53] exceeds the threshold, [p53]THR, normal cells undergo
apoptosis. The threshold [p53]THR takes a higher value [p53]highTHR in the absence of
tumour cells and takes a lower value, [p53]lowTHR, for a normal cell in presence of suffi-
ciently many cancer cells, implying the assumption that the tumour microenvironment
is hostile to normal cells (Alarcón et al. 2003, 2005; Gatenby and Gawlinski 2001).
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Thus, the threshold [p53]THR is given as,

[p53]THR =
{

[p53]highTHR if ρ > ρa,

[p53]lowTHR if ρ ≤ ρa .
(7)

where ρ for a normal cell at site x is the proportion of normal cells defined by,

ρ =
∑

y∈θx
number of normal cells at site y∑

y∈θx
number of normal cells + number of tumour cells at site y

, (8)

where θx is simply the cell’s lattice site x if it containsmore than one cell, and otherwise
includes lattice sites from the Moore neighbourhood of x.

In the continuum model, we do not consider individual cells and their internal
properties. Hence, we model normal cell apoptosis as an oxygen-dependent rate, thus
bypassing its dependence on the cell’s internal p53 concentration.

Solving Eq. (6a) at steady state, we get

Cα
a = k7Cp53

k
′
7[p53]αTHR − k7

, (9)

where α denotes high or low and subscript a indicates apoptosis. Substituting the
parameter values given in Table 1 gives,

Chigh
a = 1.5 mmHg, (10a)

Clow
a = −7.4 mmHg. (10b)

As seen from Fig. 2a, [p53] exceeds [p53]highTHR at steady state if 0 ≤ C < Chigh
a .

Thus, in the absence of the tumour, normal cells undergo apoptosis when the oxygen
concentration drops below Chigh

a . Also, [p53] exceeds [p53]lowTHR if C < Clow
a or

C ≥ 0. Since C ≥ 0 in our model, in the tumour microenvironment, normal cells
undergo apoptosis irrespective of the oxygen concentration.

Thus, assuming that the [p53]-[VEGF] subsystem in Eq. (6) is in quasi-steady state,
βnorm is the rate of apoptosis, ρn is the ratio of normal cell density to the sum of normal
and tumour cell densities and following the above discussion, we conclude that the
total rate of normal cell apoptosis in the continuum model is given by,

− H (ρn − ρa, ερ) H (Chigh
a − C, εc) βnorm n︸ ︷︷ ︸

apoptosis in
normal microenvironment

−H (ρa − ρn, ερ) βnorm n,︸ ︷︷ ︸
apoptosis in

tumour microenvironment

(11)

where
ρn = n

n + r
. (12)
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(a) (b)

Fig. 2 Steady state [p53] and [VEGF] as a function of oxygen obtained from Eq. (6). a Dotted line:

[p53]lowTHR. Dot-dashed line: [p53]highTHR. Points A and B correspond to (Cα
a ,[p53]αTHR) where α denotes

high and low respectively. b Dot-dashed line: [VEGF]THR. Points C and D correspond to points at which
[VEGF] = [VEGF]THR (Color figure online)

Note that since Chigh
a denotes the oxygen concentration for normal cell apoptosis,

we will, henceforth, replace it by Cnorm
a for notational convenience.

Unlike normal cells, the tumour cells in the multiscale model are assumed to be
more resistant to adverse conditions, like lack of oxygen. It was shown in Alarcón
et al. (2004) that the plot of division times of tumour cells against varying oxy-
gen concentrations exhibits a vertical asymptote for a given oxygen concentration.
This behaviour was not observed in the normal cells. The authors further state that
such a behaviour of tumour cells is because of their ability of halting the cell cycle
by entering the G0 phase rather that merely delaying or arresting it in the G1/S
phase.

The cell cycle model used in Owen et al. (2011) is a simple phase model derived
from the cell cycle model developed in Alarcón et al. (2004). In Alarcón et al.
(2004), oxygen concentration affects the cell cycle via its regulation of p27 and
cancer cells are assumed to enter or leave quiescence at certain threshold values
of their p27 concentration. Since, Owen et al. (2011) uses a simplified model, the
p27 dependence is replaced with an equivalent dependence on the local oxygen
concentration.

Thus, in the multiscale model, tumour cells enter into an intermediate state of qui-
escence (dormancy), when the oxygen concentration drops below Center

quiesc. During
quiescence, they do not progress through the cell cycle and hence do not prolif-
erate. If the oxygen supply improves and the concentration rises above Cleave

quiesc,
they leave the state of quiescence and begin proliferating as usual. The quiescent
tumour cells die if they remain in the state of quiescence for a duration longer than
Tquiesc.

In the continuummodel, we account for quiescence bymultiplying the proliferation
ratewithH (C−Cq , εc),whereCq is themeanofCenter

quiesc andC
leave
quiesc.Additionally,we

assume that the cancer cells undergo apoptosis at a rate given byH (Ctum
a −C, εc)βtum

where Ctum
a = Cquiesc

enter and βtum = 1/Tquiesc.

123
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In summary, the equation for normal cell density is,

∂n

∂t
= Dnorm∇2n︸ ︷︷ ︸

random
motility

+ ln(2)

T norm
min

C

Cnorm
φ + C

H (dnorm − Stot , εd )n

︸ ︷︷ ︸
proliferation

− H (ρn − ρa, εc) H (Cnorm
a − C, εc) βnorm n︸ ︷︷ ︸

apoptosis in
normal microenvironment

−H (ρa − ρn, ερ) βnorm n,︸ ︷︷ ︸
apoptosis in

tumour microenvironment
(13)

where Dnorm is the random motility coefficient, T norm
min is the minimum period of nor-

mal cell proliferation,Cnorm
φ is the oxygen concentration at which the speed of normal

cell proliferation is half-maximal, dnorm is the carrying capacity for cell proliferation
and ρn is as defined in Eq. (12).

The equation for tumour cell density is

∂r

∂t
= Dtum ∇2r︸ ︷︷ ︸

random
motility

+ ln(2)

T tum
min

C

Ctum
φ + C

H (dtum − Stot , εd)H (C − Cq , εc)r

︸ ︷︷ ︸
proliferation

− H (Ctum
a − C, εc) βtum r,︸ ︷︷ ︸

apoptosis

(14)

where Dtum is the random motility coefficient, T tum
min is the minimum time of tumour

cell proliferation, Ctum
φ is the oxygen concentration at which the speed of tumour cell

proliferation is half-maximal and dtum is the carrying capacity for the tumour cell
density.

2.2 Diffusibles

This layer accounts for diffusiblemolecules such as oxygen and the angiogenic growth
factor VEGF. In the multiscale model, the diffusibles are modelled as continuous
functions of space and time. As in Alarcón et al. (2006) and subsequent articles,
they are assumed to be in quasi-steady state since the timescale for their diffusion
on relevant tissue length-scales (minutes) is much shorter than the tumour doubling
time (days/weeks). The general form of the equation describing the evolution of a
diffusible, U , given in Owen et al. (2011), is

0 = Du∇2U + ρuψu(Ublood −U ) + Su − δuU, (15)

where Du is the diffusion coefficient of U in the extracellular space, ψu(x, t) is the
vessel permeability to U , Ublood is the concentration of U in the blood, Su(x, t)
denotes the cell and environment dependent production/removal rate of U , δu is the
rate of decay of U and ρu(x, t) denotes the vascular surface density at x defined as
the surface area of the cylindrical vessel of radius R(x, t) and length L(x, t), divided
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by the volume of the lattice site with sides Δx. If no vessel is present at a lattice site,
ρu is set to zero. A finite difference approximation, on the same lattice as the cells, is
used to approximate solutions to Eq. (15).

For oxygen, in the multiscale model, vessels act as sources and deliver oxygen to
the surrounding tissue. Cells consume oxygen thus acting as sinks. Also, oxygen does
not decay naturally implying δc = 0. If two or more cells are present at the same
lattice site, each cell makes a contribution to Sc(x, t). The uptake/secretion rates are
given as rates per cell.

For VEGF in the multiscale model, the level of VEGF in the blood is assumed to
be negligible, Vblood = 0. Also, VEGF decays naturally at a rate given by δv . Normal
cells secrete VEGF when the intracellular VEGF level, [VEGF], updated by solving
the ODEs in Eq. (6), exceeds the threshold [VEGF]THR . Since intracellular processes
are not included in the continuum model, we replace the [VEGF] dependence with an
equivalent dependence on local oxygen concentration. As seen from Eq. (6b), oxygen
promotes degradation of intracellular VEGF. Hence, as done for normal cell apoptosis,
solving the [p53]-[VEGF] subsystem in Eq. (6) at steady state, for C, with [VEGF] =
[VEGF]THR and other parameter values as given in Table 1, we getC = 1.7 and 3.8. It
can be also seen from Fig. 2, that for C between 1.7 and 3.8, [VEGF] > [VEGF]T H R

at steady state. Since cells die when the oxygen concentration drops below the lower
threshold, 1.7 mmHg, we assume that normal cells secrete VEGF when C < Cnorm

v ,
where Cnorm

v = 3.8 mmHg is the upper threshold identified above.
Additionally, it is assumed in the multiscale model that tumour cells secrete VEGF

when in a quiescent state. Since, in the continuum model, Cq denotes the oxygen
concentration below which tumour cells enter quiescence, we use the same threshold
to model VEGF secretion by tumour cells.

Thus, in the continuum model, we model the diffusibles as Eq. (15). The uptake
and secretion rates per cell from the multiscale model are converted to rates per unit
cell density.

The equation for oxygen concentration is therefore,

0 = Dc ∇2C︸ ︷︷ ︸
diffusion

+ Pc b (Cblood − C)︸ ︷︷ ︸
delivery from blood

− knormc n C︸ ︷︷ ︸
consumption by
normal cells

− ktumc r C︸ ︷︷ ︸
consumption by
tumour cells

− kvessel
c (p1 b) C︸ ︷︷ ︸
consumption by
vessel cells

− ktipc (e + m) C︸ ︷︷ ︸
consumption by

tip cells

, (16)

where Dc is the diffusion coefficient, Pc is the permeability of vessels to oxygen,
Cblood is the oxygen tension in the blood, and kcellc is the rate of oxygen consumption
by cell of type cell.
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The equation for VEGF concentration is,

0 = Dv ∇2V︸ ︷︷ ︸
diffusion

+ Pv b (Vblood − V )︸ ︷︷ ︸
delivery from blood

+ H (Cnorm
v − C, εc) k

norm
v n︸ ︷︷ ︸

secretion by
hypoxic normal cells

+ H (Ctum
v − C, εc) k

tum
v r︸ ︷︷ ︸

secretion by
quiescent tumour cells

− δv V︸ ︷︷ ︸
decay

, (17)

where Dv is the diffusion coefficient, Pv is the permeability of vessels to VEGF, kcellv

is the rate of VEGF secretion by cell of type cell, and δv is the rate of VEGF decay.

2.3 Vasculature

The vascular layer represents the blood vessel network. In the multiscale model, at
each time step, each vessel segment can undergo structural adaptation: changes in
the vessel radius, blood flow and pressure, and vessel pruning in response to stimuli
including hemodynamic and metabolic effects. A detailed description of the stimuli
and the process of adaptation can be found in Owen et al. (2009, 2011). It is far from
clear how to include such local dynamics in a continuum model. Hence, for the first
approximation, we assume fixed vessel radii in all the simulations for simplicity and
ease of comparison.

Additionally, this layer also accounts for angiogenesis, the process of formation
of new blood vessels. In the multiscale model, endothelial tip cells sprout from pre-
existing blood vessels, in a time step of length Δt , with a probability

Psprout (x, t) = Δt
Pmax
sprout V (x, t)

Vsprout + V (x, t)
, (18)

where x denotes the lattice site at which the vessel cell is currently located, Pmax
sprout

is the maximum probability of sprouting per unit time, and Vsprout is the VEGF
concentration at which the probability is half-maximal. Also, tip cells cannot sprout
if the number of cells at x exceed the carrying capacity dtip.

Thus, in the continuum model, we model the rate of tip cell generation as

Pmax
sprout

V

Vsprout + V
H (dtip − Stot , εd).

Tip cell movement, in the continuum model is given as

De∇2e︸ ︷︷ ︸
random motility

− χe ∇
[(

1 − Stot
dtip

)
S (dtip − Stot )e∇V

]
,

︸ ︷︷ ︸
chemotactic response in the direction of increasing VEGF
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which is similar to Eq. (2), the continuum limit of Eq. (1), the probability of cell
movement in the multiscale model. We multiply the chemotaxis flux term by S ,
which is zero when Stot > dtip and one otherwise, to ensure that, in the numerical
simulations, the flux is zero when Stot > dtip.

Since in the multiscale model, the tip cells can form connections only after having
moved a certain distance away from the parent blood vessel, we assume that in the
continuum model, the tip cells, e(x, t), sprouting from the pre-existing vessels are
immature and convert into mature tip cells, m(x, t), at a constant rate. These mature
tip cells are capable of forming new connections with other mature tip cells and pre-
existing vessels. The tip kinetics of forming new vessels are modelled as

λ1m
2 + λ2mb,

where the first term describes the formation of loops created by two capillary tips
(tip-tip anastomosis) at a rate λ1, while the second term describes the joining of a
tip to the side of a capillary (tip-capillary anastomosis) at a rate λ2 (Edelstein-Keshet
and Ermentrout 1989; Balding and McElwain 1985; Gaffney et al. 2002; Aubert et al.
2011).

Without structural adaptation and vessel pruning, and assuming fixed vessel radii,
the blood vessel density, in the multiscale model, changes only as a result of new
connections formed through angiogenesis.

Thus, in the continuummodel, the evolution equations for immature tip cell density
e, mature tip cell density m, and vessel density b are given by

∂e

∂t
= De∇2e︸ ︷︷ ︸

random
motility

− χe ∇
[(

1 − Stot
dtip

)
S (dtip − Stot )e∇V

]

︸ ︷︷ ︸
chemotactic response in the direction

of increasing VEGF

+ Pmax
sprout

V

Vsprout + V
H (dtip − Stot , εd)(p1b)

︸ ︷︷ ︸
generation
of new tips

− α1e,︸︷︷︸
conversion
to mature
tip cells

(19)

∂m

∂t
= De ∇2m︸ ︷︷ ︸

random
motility

− χe ∇
[(

1 − Stot
dtip

)
S (dtip − Stot )m∇V

]

︸ ︷︷ ︸
chemotactic response in the direction

of increasing VEGF

+ α1 e︸︷︷︸
conversion

from immature
tip cells

− λ1 m
2

︸ ︷︷ ︸
tip-tip

anastomosis

− λ2 m b,︸ ︷︷ ︸
tip-capillary
anastomosis

(20)

∂b

∂t
= 1

p1
(λ1m

2 + λ2mb)
︸ ︷︷ ︸

tip-tip and
tip-capillary anastomosis

, (21)
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where De is the diffusion coefficient, χe is the chemotactic coefficient, dtip is the
carrying capacity for tip cell movement and sprouting, α1 is the rate of conversion of
immature tip cells to mature ones, and p1 is endothelial cells per unit vascular surface
area used to convert endothelial cell density blood vessel surface density.

A detailed discussion of the parameter values can be found in Appendix A. Some
of the parameter values, for instance the diffusion coefficients and permeability of
VEGF, were taken directly from Owen et al. (2011). Others, like carrying capacity
with units of number of cells, and oxygen consumption rate and VEGF secretion rate
with units of per cell per unit time, from Owen et al. (2011), had to be converted into
suitable units, like number of cells per unit volume or per unit cell density per unit
time, for use in the continuum model.

The multiscale model is implemented in C++ using CVODE to integrate sub-
cellular ODEs, and SuperLU to solve linear systems for flow calculations and
reaction-diffusion equations. Other computational details can be found in the Supple-
mentary material of Owen et al. (2011). To solve the system of PDEs representing the
continuum model, we use the D03PCF routine from the NAG library which employs
the method of lines to reduce the PDEs to a system of ODEs and solve the resulting
system using a backward differentiation formula method.

3 Simulation of a Normal Vascular Tissue

In the absence of tumour cells, the continuum model equations reduce to Eq. (32)
given in Appendix B.

The multiscale model has been implemented in 2D (Owen et al. 2011) and 3D
(Perfahl et al. 2011). However, in this paper, we establish scenarios that enable com-
parison with the 1D continuum model. Therefore, we consider a rectangular domain
[0, Lx ] × [0, Ly] with Lx > Ly and take averages of the simulation results in the y
direction. Figure 3 shows the initial tissue configurations from the two models. The
multiscale model consists of one blood vessel situated close to the left boundary and
surrounded by only normal cells. No tip cells are present. Oxygen and VEGF are ini-
tialised to their respective quasi-steady states. The cell and vessel densities computed
from the multiscale model by averaging in the y direction are used to set correspond-
ing initial conditions for the continuum model. Oxygen and VEGF concentrations are
then calculated from Eqs. (32a) and (32b), respectively.

Figure 4 shows the spatio-temporal evolution of the variables from the multiscale
model, and from the continuum model given by Eq. (32). In both models, the oxygen
concentration is higher in regions of high vessel density owing to delivery of oxygen
from the vessels. Normal cells secrete VEGF in the hypoxic regions. VEGF promotes
sprouting of the tip cells. The tip cells form new vessels and the network expands into
the region with low vessel density.

As seen from Fig. 5, the density profiles for all the variables are comparable in the
two models. However, at t = 3 days, in the continuum model, the vessel density rises
only at the site of anastomosis (the small peak seen on the left of the pre-existing ves-
sel). However, themultiscale model uses a snail-trail approach wherein the endothelial
cells left behind by the moving tip cells also contribute to the vessel density on anas-
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(a)

(b)

Fig. 3 a 2D lattice from the multiscale model, with one initial vessel surrounded by normal cells. b 1D
profiles, from the multiscale model, for normal cell and vessel density, obtained by averaging along the y
direction. These profiles are used as initial conditions in the continuum model (Color figure online)

tomosis. Therefore, we see a continual change in the vessel density, starting from the
pre-existing vessel towards x = 0. Also, at these sites of anastomosis, the oxygen
concentration rises above Cnorm

v , the threshold for VEGF secretion by normal cells.
Hence, tip cell sprouting in this region reduces, as seen from Fig. 5. The tip cells
already present in the tissue move chemotactically in the direction of hypoxia (up the
VEGF gradient). Therefore, at t = 5 days, in the continuum model the vessel density
to the left of the pre-existing vessel remains almost unchanged. However, in the multi-
scale model, we notice a small rise owing to the endothelial cells forming new vessels.
The continuum model seems to agree well with the multiscale model, except for the
discrepancies seen in vessel density and consequently in oxygen concentration. We
believe that the snail-trail approach from the multiscale model is not accounted for in
the continuum model and might be the cause of these differences.
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Fig. 4 Spatio-temporal evolution ofmodel variables fromone realisation of themultiscalemodel simulation
(Owen et al. 2011) (left column) and the simulation of the continuummodel given byEq. (32) (right column).
Sprout density in the continuum model is the sum of immature and mature tip cell densities (Color figure
online)

4 Steady States of the Spatially Homogeneous Normal Tissue Submodel

As seen from Fig. 4, the normal cell density, in the continuum model, exhibits a
travelling wave moving from the healthy and well vascularised part of the tissue to a
part of the tissue without any cells and blood vessels. Since travelling wave solutions
connect two spatially homogeneous steady states, we determined such steady states
of the system given by Eq. (32). The analysis also enables us to understand which of
these steady states connect to form the waves seen in the simulations and investigate
the wave speed and its dependence on the model parameters and initial conditions of
model variables.

Based on the analysis detailed in Appendix C, we list below four types of spatially
homogeneous steady state of Eq. (32).
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Fig. 5 Results from the simulation of the continuum model defined by Eq. (32), 10 realisations of the
multiscale model and the mean of those 10 realisations, at two different early times. The total length of
the domain in the continuum model is [0, 8]. The simulations in the multiscale model are performed on a
rectangular domain with dimensions [0, 8] × [0, 2]. Here, we plot the averages taken in the y direction, to
enable comparison with the 1D simulations of the continuum model. Note that the plots do not show the
entire length of the domain, but only the non-empty region between [0, 2] (Color figure online)
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1. m = 0, e = 0, V = 0, n = 0, b = 0, C = C∗.
This trivial steady state represents a tissue with no cells, no blood vessels and an
arbitrary oxygen concentration C∗ ≥ 0.

2. m = 0, e = 0, V = 0, n = 0, b = b∗ > 0, C = Pc Cblood

kvessel
c p1 + Pc

.

Another trivial steady state representing a tissuewith only bloodvessels of arbitrary
density, b∗ > 0 and oxygen supplied and consumed by those vessels.

3. m = 0, e = 0, V = 0, n = n∗, b = b∗ such that

n∗ + (p1 b∗) > dnorm + εd , C = Pc Cblood b∗

knormc n∗ + kvessel
c (p1b∗) + Pcb∗ , and

C > Cnorm
v + εv.

Anon-trivial steady state representing a tissue with normal cells, blood vessels and
oxygen. The sum of normal cell density and vessel density exceeds the carrying
capacity for normal cells thus blocking normal cell proliferation. Also the vessel
density is such that it supplies enough oxygen (C > Cnorm

v +εv > Cnorm
a +εa), so

that there is no normal cell death, noVEGFproduction, and hence no angiogenesis.
4. m = 0, e = 0, n = n∗, b = b∗ such that n∗ + (p1 b∗) > dtip + εd ,

V = knormv n∗

Pv b∗ + δv

, C = Pc Cblood b∗

knormc n∗ + kvessel
c (p1 b∗) + Pc b∗ , and

Cnorm
a + εa < C < Cnorm

v + εv.

This steady state, also non-trivial, represents a tissue with normal cells, blood ves-
sels, oxygen and VEGF but no tip cells. Oxygen attains a certain level dictated
by the blood vessel density and the normal cell density. This oxygen level, being
below the threshold Cnorm

v + εv , causes hypoxic normal cells to secrete VEGF.
However, the normal cells and the blood vessels occupy the entire space in the
tissue thus preventing any further sprouting from the blood vessels in response to
the VEGF signals. Similar to the oxygen concentration, the VEGF concentration
reaches a certain steady concentration depending on the normal cell density and
the blood vessel density.

The non-trivial steady states suggest that n and b span a family of steady states such
that n + (p1b) > dnorm + εd . The steady state oxygen concentration, given by Eq.
(44b), is a function of the normal cell density and the blood vessel density. Tip cell
densities are zero at steady state, and VEGF concentration is also zero in all cases,
except when n + (p1b) > dtip + εd and Cnorm

a + εa < C < Cnorm
v + εv .

To illustrate how different initial conditions lead to different steady states, we sim-
ulated the system of DAEs given by Eq. (33) in Appendix C, using the MATLAB
routine ode15s, with different initial values of n and b and

m = 0, e = 0, V = knormv n

Pvb + δv

, C = PcCbloodb

knormc n + kvessel
c (p1b) + Pcb

,

for the parameter values given in Appendix A. The time-dependent solutions for each
of these initial configurations projected on the (n, b) plane are shown in Fig. 6.

As seen from Fig. 6, the (n, b) space can be divided in nine different regions
depending on the thresholds of oxygen for normal cell apoptosis and VEGF secretion

123



Capturing the Dynamics of a Hybrid Multiscale Cancer Model… 1453

Fig. 6 Course of the solutions of Eq. (33), projected on the (n, b) plane, for nine different initial configu-
rations of n and b with m = 0, e = 0 and C and V obtained from Eqs. (33a) and (33b), respectively. The
red dashed line shows the trajectory starting at a for a value of βnorm = 1.66×10−4, different from that in
Table 2. The plane is divided into nine different regions defined by the thresholds for normal cell apoptosis,
VEGF secretion, normal cell proliferation and tip cell production. The black line shows n+(p1 b) = dnorm .
The green line represents n = I (Cnorm

a )b, and the blue line represents n = I (Cnorm
v )b, where I (X) is as

defined in Eq. (45). Dotted lines represent n = I (X ± εc)b where εc is the length of the interval of smooth
transitioning of the function given by Eq. (5) (Color figure online)

and of total cell density for normal cell proliferation and tip cell production. In Fig. 7,
we show the temporal evolution of all variables for trajectory a, which traverses the
largest number of regions in Fig. 6.

We will now discuss how the path of the trajectory and hence the steady state
configuration attained by the system varies for initial conditions lying in each of these
regions.
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Fig. 7 Temporal evolution, of all variables, along trajectory a as it traverses through the different regions
shown in Fig. 6. Parameter values are given in Appendix A. Dashed line: mature tip cell density (Color
figure online)

I Apoptosis, VEGF secretion - Stot > dtip + εd, C < Cnorm
a + εa

The initial VEGF concentration is non-zero, since C < Cnorm
a + εa < Cnorm

v +
εv . However, since the total cell density exceeds the carrying capacity for tip
cell sprouting, no new tips are formed. Normal cells undergo apoptosis due to
hypoxia. Trajectories from this region (e.g. trajectories a and b) enter region II.
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II Apoptosis, VEGF secretion, angiogenesis - dnorm + εd < Stot < dtip + εd,

C < Cnorm
a + εa

In this region too, since C < Cnorm
a + εa initially, the normal cell density drops

due to cell apoptosis. Tip cells are formed in response toVEGF.However, normal
cells do not proliferate since the total cell density exceeds its carrying capacity.
Depending on the vessel density, the trajectory enters region III (trajectory a)
or V (trajectory b).

III Apoptosis, proliferation, VEGF secretion, angiogenesis - Stot < dnorm + εd,

C < Cnorm
a + εa

Following trajectory a through this region, we see that the normal cell density
continues to drop due to hypoxia. However, since the total cell density is less
than the carrying capacity for tip cell sprouting, new tip cells form in response
to VEGF. This leads to an increase in the blood vessel density followed by
an increase in the oxygen concentration. This rise in oxygen and availability
of space, since Stot < dnorm + εd , promotes normal cell proliferation. Once
the oxygen concentration rises beyond Cnorm

a + εa , apoptosis stops and the
trajectory enters region IV.

IV Proliferation, VEGF secretion, angiogenesis - Stot < dnorm + εd,

Cnorm
a + εa < C < Cnorm

v + εv
In this region, where C > Cnorm

a + εa , there is no apoptosis and normal cells
proliferate thus increasing the cell density. The cells also secrete VEGF since
C < Cnorm

v + εv . New tip cells are formed leading to an increase in the
blood vessel density and thus oxygen concentration within the tissue. This
rise in oxygen promotes further normal cell proliferation until Stot crosses
dnorm + εd . Trajectories from this region (e.g. trajectories a and d) enter
region V

V VEGF secretion, angiogenesis - dnorm + εd < Stot < dtip + εd,

Cnorm
a + εa< C < Cnorm

v + εv
As seen from trajectory c and the continuation of trajectory a in this region,
normal cells do not proliferate as the total density exceeds their carrying
capacity. Since C < Cnorm

v + εv , VEGF is secreted by the normal cells and
new tip cells are formed leading to a further rise in blood vessel density and
the oxygen concentration. This process continues until the oxygen concen-
tration exceeds Cnorm

v + εv , VEGF secretion stops, and the trajectory enters
region VIII.

VI VEGF secretion - Stot > dtip + εd, Cnorm
a + εa < C < Cnorm

v + εv
For initial conditions in this region (e.g. trajectory g), there is enough oxygen for
normal cells to survive since C > Cnorm

a + εa . However, they do not proliferate
due to lack of space. Thus the normal cell density remains unchanged. Normal
cells secrete VEGF since C < Cnorm

v + εv , but no new tip cells can be formed
due to unavailability of space. Hence, new blood vessels cannot be formed and
the blood vessel density also remains unchanged. All variables are in a steady
state with non-zero VEGF concentration.

VII Proliferation - Stot < dnorm + εd, C > Cnorm
v + εv

SinceC > Cnorm
v +εv > Cnorm

a +εa , normal cells do not secrete VEGF and do
not undergo apoptosis. NoVEGF implies the vessel density remains unchanged.
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However, normal cells proliferate and hence their cell density increases until
Stot crosses dnorm + εd , proliferation stops, and the trajectory (e.g. trajectory e)
enters region VIII.
However, in cases like trajectory d with low blood vessel density and hence
low oxygen concentration, the increase in consumption of oxygen, due to the
increase in normal cell density, causes the oxygen concentration to drop below
the threshold Cnorm

v + εv . In this case, the trajectory traverses through regions
IV and V before entering region VIII.

VIII Steady state - dnorm + εd < Stot < dtip + εd, C > Cnorm
v + εv

In this region, normal cells do not proliferate due to lack of space. No VEGF
is secreted by the normal cells since C > Cnorm

v + εv . Hence, angiogenic
sprouting does not occur. For initial conditions in this region (e.g. trajectory f),
the variables are already in the steady state and hence the trajectory does not
move at all.
For trajectories entering from region V or VII (e.g. trajectories a to e), the tip
cells already present within the tissue continue to mature and form connections
via anastomosis. Hence, the blood vessel density continues to rise until all the
tip cells form connections. Once this process ends, all the variables attain a
steady state and the trajectory stops.

IX Steady state - Stot > dtip + εd, C > Cnorm
v + εv

For initial conditions starting in this region (e.g. trajectory h), the variables are
already in steady state since cells do not proliferate due to lack of space and
also do not secrete VEGF or promote angiogenesis due to sufficient availabil-
ity of oxygen. No trajectory starting in any other region can enter this region
since it will eventually enter region VIII and attain a steady state as described
earlier.

Since any initial configuration of n and b would lie in one of the nine regions men-
tioned above, the course of the solution will qualitatively follow the course of one
of the trajectories shown in Fig. 6. However, it must be noted that the simulations
in this section were performed with parameter values corresponding to the published
multiscale model simulations as given in Appendix A. Changing the parameter values
changes the behaviour of the system.

For instance, as seen from trajectory a, we see a rapid drop in the normal cell
density. This is because the rate of normal cell death (βnorm = 1 min−1) is much

higher than the rate of tip cell sprouting
(
Pmax
sprout

V

Vsprout + V
= 1.67×10−4 min−1

)
,

with V = 1 nM, the typical VEGF concentration assumed in the model. For βnorm <

Pmax
sprout

V

Vsprout + V
trajectory a follows an altered path shown by the red dashed line

in Fig. 6. In this case, because tip cells and eventually blood vessels are formed at a rate
faster than normal cell apoptosis, the oxygen concentration rises beyond Cnorm

a + εa
before trajectory a enters region III. As a result, trajectory a continues from region II
into region V.
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5 Wavespeed of Normal Tissue Expansion for Different Initial
Conditions

We now seek for an estimate of the wavespeed of a travelling wave solution to Eq.
(32) given in Appendix B. As x → ∞, we have n → 0 b → bss , C → Css , V → 0,
e → 0 and m → 0. Linearising Eq. (32c) around this state, we obtain

∂n

∂t
= Dnorm∇2n +

(
ln(2)

T norm
min

Css

Cnorm
φ + Css

)
H (dnorm − Ssstot , εd)n

− H (Cnorm
a − Css, εa)βnormn. (22)

Equation (22) is qualitatively similar to the Fisher-KPP equation, linearised at the
leading edge, given as,

∂u

∂t
= αu + D

∂2u

∂x2
, (23)

where α is the growth rate and D is the diffusion coefficient.
Previous studies (Fisher 1937; McKean 1975; Mollison 1977; Larson 1978) have

shown that Eq. (23) admits a travelling wave solution of the form u(x, t) = f (x−ct),
for some function f , where c denotes the speed of the wave. Additionally, for initial
conditions satisfying u = O(e−μx ) as x → ∞ the travelling wave evolves with a
speed given as

c =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Dμ + α

μ
if 0 < μ <

√
α

D
,

2
√

αD if μ ≥
√

α

D
.

(24)

By analogy with Eq. (24), we expect that a travelling wave whose normal cell density
profile decays as e−μx as x → ∞ has the approximate wavespeed

aμ = Dnorm μ + αnorm(Css)

μ
if 0 < μ <

√
αnorm(Css)

Dnorm
, (25a)

amin = 2
√

αnorm(Css) Dnorm if μ ≥
√

αnorm(Css)

Dnorm
. (25b)

where

αnorm(Css) = ln(2)

T norm
min

Css

Cnorm
φ + Css

H (dnorm − Ssstot , εd)

− H (Cnorm
a − Css, εa)βnorm . (25c)
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Fig. 8 Wave speed for the normal cell density obtained from Eq. (32) for initial conditions given in Eq.
(26) for different values of the initial condition decay rate, μ. b = 20, e = m = 0. The simulated speed

decreases with increasing μ and attains the minimum speed when μ crosses

√
αnorm (Css )

Dnorm
= 38.7 for

Css given in Eq. (27a). Black circle: aμ given by Eq. (25a), the speed associated with the initial condition
decay rate μ. Blue cross: amin , the predicted minimum speed given by Eq. (25b). Red cross: simulated
wave speed (Color figure online)

To test how the wavespeed for normal cell density varies with μ, the rate at which
n → 0, we ran simulations with initial condition of normal cell density given as

n(x, 0) = dnorm
1

1 + e(μ(x−x0))
, (26)

where x0 = 1 mm.
The blood vessel density was set to 20 mm2/mm3 homogeneously, tip (immature

and mature) cell density was zero. Solving Eqs. (32a) and (32b), at the leading edge
of the wave where nss → 0, ess = mss = 0, and bss = 20, we get

Css = Pc Cblood

kvessel
c p1 + Pc

, (27a)

Vss = 0. (27b)

Also note that at the leading edge,H (dnorm − Ssstot ) = 1 since Ssstot = p1bss < dnorm .
Thus, by substituting C from Eq. (27a) in Eq. (25c), we can determine aμ, amin

and μ0, the value of μ such that the wavespeed is minimum for μ ≥ μ0.
As seen from the Fig. 8, for smaller values of μ, the simulated speed equals aμ,

given by Eq. (25a). However, as μ exceeds

√
αnorm(Css)

Dnorm
= 38.7 for Css obtained

from Eq. (27a), the normal cell density wave attains the minimum speed given by
Eq. (25b).

Note that Css given by Eq. (27a) remains constant when ess = mss = 0, nss → 0
and bss is any arbitrary non-zero value less than dnorm . Consequently, anorm is constant
for such a setup implying that the speed for normal cell density wave depends only
on μ.

If the initial vessel density is such that p1bss ≥ dnorm , then Css is still given by Eq.
(27a). However, anorm will be zero sinceH (dnorm − Ssstot , εd) = 0 andH (Cnorm

a −
C, εa) = 0. Thus, the normal cell density wave does not move in such a case. In our
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Fig. 9 Setup for simulation of tumour growth in a normal vascular tissue. a Top: initial normal tissue
in the multiscale model consisting of one blood vessel surrounded by normal cells. Bottom: tumour cells
introduced in the simulated well vascularised normal tissue. This configuration is used as initial condition
for tumour growth simulation. Note that we ran 10 such realisations of a well vascularised normal tissue,
which were then used as initial configurations for 10 realisations of the tumour growth simulation. bDensity
profiles of tumour cells, normal cells and blood vessel used for simulation of tumour growth in the continuum
model. Red line: initial conditions for continuum model. Blue dashed lines: 1D profiles of 10 realisations
of the well vascularised tumour tissue simulation of the multiscale model (one such shown in a), obtained
by averaging in the y direction. Blue solid line: mean of the 1D profiles of 10 realisations of the multiscale
model simulation (Color figure online)

model simulations, we observe only a small change in the initial normal cell density
profile owing to diffusion by random motility (result not shown).

6 Tumour Growth within a Normal Vascular Tissue

In this section, we perform simulations of a tumour tissue. Henceforth, we will use
the term continuum model for the full system given by Eqs. (13), (14), (16), (17), (19)
and (21).

To study tumour growth, we first simulate a well vascularised normal tissue, in the
multiscale model, starting with the same setup described in Sect. 3. The initial and
the final configuration (850 days) of the lattice is presented in Fig. 9a. Tumour cells
are introduced to the final configuration and the simulation is continued, similar to
simulations done in Owen et al. (2009, 2011).

In the continuum model, we set the normal cell density, homogeneously, equal to
its carrying capacity, dnorm , and the vessel density, homogeneously, to the average
vessel density calculated from the multiscale model at the end of 850 days. No tip
cells, mature or immature are present at the start of the simulation. All the parameter
values are as defined in Appendix A. The density of tumour cells obtained from the
multiscale model, by averaging in the y direction, is used as initial condition in the
continuum model. The initial densities of tumour cells, normal cells and the blood
vessels, in both the models, are presented in Fig. 9b.

Figure 10 shows the spatio-temporal evolution of the normal and tumour cells.
Tumour cells create a microenvironment that is hostile to normal cells and triggers
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Fig. 10 Spatio-temporal evolution of normal and tumour cell densities fromone realisation of themultiscale
model simulation (left column) and the simulation of the continuum model (right column). The continuum
model is able to well replicate the dynamics observed in the multiscale model. In both simulations, the
tumour cells invade the healthy tissue by triggering normal cell apoptosis (Color figure online)

their apoptosis. This creates space for tumour cell proliferation and invasion of the
healthy tissue. In this particular simulation setup, the tissue is already sufficiently well
vascularised to supply enough nutrients for tumour growth. Hence, no new vessels are
formed.

6.1 Wavespeed of Tumour Invasion for Different Initial Conditions

The linearised form of Eq. (14) about the leading edge of the tumour invasion wave,
where r → 0, n → nss , b → bss , C → Css , V → 0, e → 0, m → 0, (nss , bss and
Css are values attained by n, b and C as x → ∞), is given by

∂r

∂t
= Dtum∇2r + ln(2)

T tum
min

Css

Ctum
φ + Css

H (dtum − Ssstot , εd) H (Css − Cq , εq) r

− H (Ctum
a − Css, εa)βtumr. (28)
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Thus, as done for normal tissue expansion, the wave speed for tumour cell density
with initial conditions that decay as e−μx as x → ∞ is given by

atumμ = Dtum μ + αtum(C)

μ
, if 0 < μ <

√
αtum(C)

Dtum
(29a)

atummin = 2
√

αtum(C) Dtum, if μ ≥
√

αtum(C)

Dtum
, (29b)

where

αtum(C) = ln(2)

T tum
min

Css

Ctum
φ + Css

H (dtum − Ssstot , εd)H (Css − Cq , εq)

− H (Ctum
a − Css, εa)βtum . (29c)

To test how the initial condition decay rate, μ, affects the wave speed, we ran
simulations for tumour invasion of a normal vascular tissue with initial tumour cell
density given as

r(x, 0) = dnorm
1

1 + e(μ(x−x0))
, (30)

where x0 = 1mm.Additionally, n(x, 0) = dnorm , b(x, 0) = 20 mm2/mm3, e(x, 0) =
m(x, 0) = 0. Similar to normal tissue expansion, the oxygen and VEGF concentration
at the leading edge of the tumour wave are given by

Css = Pc Cblood bss
bss (kvessel

c p1 + Pc) + knormc nss
(31a)

Vss = 0 (31b)

Also,H (dtum − Ssstot , εd) = 1 since Ssstot < dtum . We can hence determine atum , atumμ ,
atummin and μ0, the value of μ after which the tumour wave attains the minimum speed.

Figure 11 shows the tumour cell density wave speed for different values of μ.
The simulated speed of the wave decreases with increasing μ. For μ smaller than the

threshold
√

αtum (C)
Dtum

, determined to be 35.2 for Css given by Eq. (31a), the wave speed

equals atumμ given by Eq. (29a) and attains the predicted minimum speed, atummin given
by Eq. (29b) as μ exceeds the threshold.

Unlike the case of normal tissue expansion, Css , given by Eq. (31a), depends on
the normal cell and vessel densities at the leading edge of the tumour cell density
wave. Thus, the wave speed for tumour cell density depends not just on μ, the initial
condition decay rate for tumour cell density, but also on the normal cell and vessel
densities at the leading edge of the tumour wave. Thus, the speed of invasion of the
normal tissue by the tumour cells depends on the configuration of the normal tissue.
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Fig. 11 Wave speed for the tumour cell density, obtained from the simulation of the continuum model for
initial condition given in Eq. (30) for different values of initial condition decay rate μ. The simulated speed

decreases with increasing μ. The simulated speed equals atumμ until it crosses the threshold
√

αtum (C)
Dtum

,
determined for Css given by Eq. (27a). For μ higher than the threshold, the simulated speed attains the
predicted minimum speed, atummin . Black circles: a

tum
μ , given by Eq. (29a), the speed associated with initial

condition decay rate,μ. Blue crosses: atummin given by Eq. (29b) is the predictedminimum speed. Red crosses:
simulated tumour cell density wave speed (Color figure online)
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Fig. 12 Wave speed for the tumour cell density for different values of dtum obtained as the mean of 10
realisations of the multiscale model (black circles) and from the simulation of the continuum model (red
crosses). Blue crosses: minimum speed predicted from Eq. (29b). Green dashed line: Ssstot = dtum + εd , the
point of transition from pushed to pulled waves. For dtum < Ssstot − εd , the tumour wave is a pushed wave
since the speed of the tumour cell density wave depends on the whole wave front rather than the leading
edge of the wave. Consequently, the (minimum) simulated speed of the wave is greater than the predicted
minimum speed of zero (Color figure online)

6.2 Dependence of Wavespeed on the Carrying Capacity of Tumour Cell Density

As mentioned in Sect. 6.1, the oxygen concentration at the leading edge of the tumour
cell density wave does not depend on the densities of other model variables. Hence, the
wave speed for tumour cell density given by Eq. (29), depends only on the decay rate,
μ, and the availability of space given by H (dtum − Ssstot , εd). For S

ss
tot ≥ dtum + εd ,

the minimumwave speed predicted by Eq. (29b) is zero. To determine the dependence
of the wavespeed on the carrying capacity, we ran simulations of both the continuum
and the multiscale models for different values of dtum . The initial conditions in the
continuummodel were as described in Sect. 6.1. We choose μ = 105 since it approxi-
mates to the step function initial conditions used in the multiscale model and the wave
associated with it attains the minimum speed.

As seen from Fig. 12, the wave speed decreases as the carrying capacity of the
tumour cell density decreases (i.e. as dtum − Ssstot decreases). Note that, for dtum ≤
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Ssstot + εd , the simulated speed is not equal to the predicted minimum speed of zero.
Stokes (1976) refers to such waves as pushed waves since their speed of propagation
is determined by the whole wave front and not by the leading edge, as in the case
of pulled waves. In our model simulation, the tumour cells at the wave front create
a hostile environment for the normal cells there, thus triggering their apoptosis. As
the normal cells die, Stot drops below dtum + εd consequently enabling tumour cell
proliferation and progression of the wave. Thus, when Stot > dtum + εd , the speed of
the wave for the tumour cell density does not depend on the leading edge of the wave
but on the whole wave front of the tumour cell density.

7 Discussion

The focus of this work has been to develop a continuummodel based on the multiscale
model given in Owen et al. (2011) for growth of a vascular tumour tissue. Both the
models account for evolution of normal and tumour cells and formation of vessels in
response to surrounding conditions like availability of oxygen and secretion of VEGF.
The results from the 1D continuum model were compared to the averaged density
profiles obtained from a long 2D strip in the multiscale model. As seen from the
density profiles in Figs. 4 and 10, the model results are qualitatively similar. However,
in Fig. 4, the vessel density away from the parent vessel is low (5 mm2/mm3) in
the continuum model compared to that in the multiscale model (20 mm2/mm3). One
plausible reason for the difference in the vessel density could be the use of the snail-
trail approach for movement of tip cells in the multiscale model. In this approach, it
is assumed that the tip cells leave a trail of endothelial cells while moving within the
tissue. On anastomosis, the entire trail forms a new vessel thus adding to the vessel
density.We believe that we do not account for the snail-trail approach in the continuum
model. However, we could extend the model to account for the snail-trail approach as
done in Balding andMcElwain (1985); Byrne and Chaplain (1995); Spill et al. (2015);
Connor et al. (2015).

Moreover, not all processes from the multiscale models can be translated into rates
in the continuum model. For instance, in the multiscale model, normal cell death and
VEGFsecretion depend on the intracellular p53 andVEGFconcentrationwhich evolve
over time according to the local oxygen supply. We bypassed this subcellular depen-
dence in the continuum model by assuming that the p53-VEGF subsystem attains a
quasi-steady state, so the thresholds in terms of p53 and VEGF become thresholds in
terms of local oxygen concentration. A parameter sensitivity analysis, where parame-
ters in the continuum model, not directly taken from the multiscale model, are varied
within physiological ranges, could provide additional information about the relative
impact of individual parameters on the continuum model dynamics.

A drawback of the continuummodel is that it is not clear how to include certain local
dynamics like blood flow and adaptation of vessel radius to the microenvironment.
However, with the continuum model, it was possible to analyse the steady states of
the system, learn about wave speeds and their dependence on the model parameters
and initial conditions. We determined that n and b span a family of steady states and
showed that the steady state attained by the system depends on initial conditions of
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the model variables. As seen from Fig. 6, the n − b plane is divided into nine distinct
regions by the thresholds of oxygen for normal cell apoptosis and VEGF secretion
and of total cell density for normal cell proliferation and tip cell sprouting. Any initial
condition for n and b will lie in one of these regions and thus qualitatively follow the
course of the solutions shown in Fig. 6.

The system given by Eqs. (13), (14), (16), (17), (19) and (21) admits travelling
waves for normal tissue expansion and tumour invasion into normal tissue. In the
case of normal tissue expansion, the oxygen concentration at the leading edge of the
wave remains constant for any non-zero value of the blood vessel density. Thus, the
speed of the wave depends only on the decay rate of the initial profile of normal
cell density. The wave for tumour invasion also depends on decay rate of the initial
profile of tumour cell density. Additionally, it can be seen from Eq. (31a) that the
oxygen concentration at the leading edge of the wave depends on the normal cell
and vessel densities there. Thus, the speed at which the tumour invades a normal
vascularised tissue depends on the configuration of that tissue. We also showed that
the speed of the invading tumour wave varies with dtum , the threshold of total cell
density for tumour cell proliferation and changes from a pulled to a pushed wave
if dtum is less than the total cell density at the leading edge of the wave. These
pushed waves of tumour invasion propagate by creating a microenvironment that is
hostile for normal cell survival, thus triggering apoptosis of normal cells at the wave
front.

To the best of our knowledge, a model as complex as the multiscale model
from Owen et al. (2011) has not been compared to an equivalent continuum model
before. We remark that the focus of this paper was on the published multiscale
model from Owen et al. (2011). However, it would be interesting to consider dif-
ferent models for the cell cycle, alternative rules for cell apoptosis and entry to/exit
from quiescence, in the multiscale model and then correspondingly in the continuum
model.

The multiscale model from Owen et al. (2011) also includes conventional drug
therapy and amacrophage-based gene therapy. In themultiscalemodel, the chemother-
apeutic drug is assumed to be a continuous variable and its evolution is given by Eq.
(15). It would thus be straightforward to include a chemotherapeutic drug as an addi-
tional variable in the continuum model. Cells, in the multiscale model, with local
drug concentration higher than a prescribed threshold intercalate the drug and die
on attempting to divide. This effect of the drug on the cell densities in the contin-
uum model can be modelled using H given by Eq. (5). For the macrophage-based
gene therapy in the multiscale model, macrophages are assumed to extravasate from
the pre-existing blood vessels at a certain probability, similar to tip cell extrava-
sation. Hence, as done for tip cell sprouting, we can readily model macrophage
extravasation in the continuum model. The extended continuum model could then
be used to analyse the impact of drug and macrophages on the speed of the tumour
invasion wave. Such analysis might further help in designing novel therapeutic
strategies to reduce the speed at which the tumour invades a normal vascularised
tissue.
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Appendix A Parameter Values

In the multiscale model by Owen et al. (2011), a lattice site corresponds to a cube with
length of each side equal to Δx = 40μm = 0.04 mm. Let us denote the volume of
one lattice site by Vsite = 6.4 × 10−5 mm3. For the remainder of this section, lattice
site has the same meaning as above unless stated otherwise.

A.1 Estimation of Pc

We ran simulations of the multiscale model for different vessel densities on a 1 × 1
square lattice with only one normal cell. The simulations were run only for one time
step, and the oxygen concentrationwas noted. Since the lattice dimensions are 1×1,we
can assume that the system is spatially homogeneous and thus obtain Pc by substituting
the values of n, b and C in Eq. (16). The value is given in Table 3.

A.2 Estimation of kcel lc , kcel lv

In the multiscale model, for one cell in one lattice site, the rate of oxygen consumption
by cell type cell, kcellc min−1, represents the rate of consumption for one cell per Vsite.

Therefore, to obtain the rate in units of per cell density per min ((cell/mm3)
−1

min−1), suitable for the continuum model, we multiply kcellc by Vsite.
The rate of VEGF secretion by cell type cell, kcellv , is also obtained similarly. The

values used in the continuum model are given in Table 2.

A.3 Estimation of dcel l

In the multiscale model, the carrying capacity of a cell at lattice site x is defined as the
maximum number of cells that can be present at x . Therefore, we obtain the carrying
capacity for the continuum model as number of cells per unit volume (cells/mm3) by
dividing the carrying capacity by Vsite. The value is given in Table 2.

A.4 Estimation of Dcell

In the multiscale model, apart from random movement, normal and tumour cells also
spread by via cell division by placing their daughter cells in neighbouring sites if the
number of cells in the parent cell’s site exceeds its carrying capacity. A cell of type
cell takes at least T cell

min minutes to divide. On division, the new cell is placed in one of
Moore neighbourhood sites. Thus, the mean squared displacement of the cell in T cell

min
min is of the order of Δx mm.

For normal cells, the random motility coefficient, in the multiscale model, is zero.
We thus estimate the value of Dnorm using the mean squared displacement estimated
above. For tumour cells, the randommotility coefficient in themultiscalemodel is non-
zero. Thus, starting with the estimate obtained from the mean squared displacement
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Table 3 Parameters for oxygen and VEGF

Parameter Units Value Description, references and comments

Pc mm min−1 2.8 Vessel permeability to oxygen. Refer to Sect. A.1

Cblood mmHg 20 Concentration of oxygen in blood

Dc mm2 min−1 0.145 Oxygen diffusion

Pv mm min−1 10−4 Vessel permeability to VEGF

Vblood nM 0 Concentration of VEGF in blood

Dv mm2 min−1 10−3 VEGF diffusion

δv min−1 0.01 VEGF decay

All of these parameters are taken or derived directly from Owen et al. (2011). Oxygen consumption rates
and VEGF secretion rates can be found in Table 2

Table 4 Parameters in the continuum model, Eqs. (13), (14), (16), (17), (19) and (21), that can be taken or
derived directly from the multiscale model (Owen et al. 2011) and are related to cell proliferation (sprouting
for tip cells), apoptosis, movement, oxygen consumption and VEGF secretion

Parameter Units Normal cells Tumour cells Tip cells Description, references and
comments

Dcell mm2 min−1 1.33 × 10−7 3.2 × 10−7 10−6 Random motility coefficient.
Estimation of Dnorm and
Dtum is discussed in Sect.
A.4

χcell mm2 nM−1 min−1 – – 2 × 10−2 Chemotaxis coefficient

T cell
min min 3000 1600 – Minimum time for cell

proliferation

Ccell
φ mmHg 3 1.4 – Oxygen concentration at

which cell cycle rate is
half-maximal

ρa 0.75 – – Threshold of ratio of normal
cell density to the sum of
normal and tumour cell
density for normal cell
apoptosis in tumour
microenvironment

Pmax
sprout min−1 – – 2.5 × 10−4 Maximum rate of endothelial

sprouting

Vsprout nM – – 0.5 VEGF concentration at which
the rate of endothelial
sprouting is half-maximal

Dash indicates that the parameter is not defined for that cell type

of tumour cells, we simulate the continuum model for different values of Dtum and
compare the distance covered in unit time with the simulation from the multiscale
model. The best fit thus obtained was chosen as the value for Dtum .

All the values of Dcell are given in Table 4.
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Table 5 Other parameters of the continuum model

Parameter Units Value Description, references and
comments

p1 cells/mm2 663 Number of vessel cells per unit
vascular surface area. Refer to Sect.
A.5

α1 min−1 4.17 × 10−4 Rate of tip cell maturity. Tip cells, in
the multiscale model, can form
connections only after having
moved at least 2 lattice sites. For
Dtip given in Table 4, it takes
approx 3000 mins for a mean
squared displacement equal to 2
lattice sites

λ1 (cells/mm3)
−1

min−1 4.86 × 10−7 Rate of tip-tip anastomosis (Schnepf
et al. 2008)

λ2 (mm2/mm3)
−1

min−1 2.8 × 10−3 Rate of tip-vessel anastomosis. Refer
to Sect. A.6

εc mm Hg 0.15 Half-width of the switching interval
for oxygen-dependent switches
using Eq. (5)

ερ – 0.15 Half-width of the switching interval
for the normal cell fraction-
dependent switch using Eq. (5)

εd cells/mm3 5 Half-width of the switching interval
for cell density-dependent switches
using Eq. (5)

A.5 Estimation of p1

In all simulations of the multiscale model presented in this paper, all vessels have a
fixed radius R = 0.006 mm and typical length L = Δx . Also, in themultiscale model,
all blood vessels in a lattice site are associated with one endothelial cell. Therefore, in
a lattice site with volume Vsite, each vessel with surface density of 2πRΔx/Vsite =
23.56 mm2/mm3 has an endothelial cell density of 1/Vsite = 15,625 cells/mm3

associated with it. Therefore, p1, defined as the number of endothelial cells per unit
vascular surface area is obtained by dividing the endothelial cell density by the vessel
surface density. Thus p1 = 663 cells/mm2, as given in Table 5.

A.6 Estimation of λ2

Estimating the rates of tip-tip and tip-vessel anastomosis from the multiscale model
is difficult. We thus use the values given in Schnepf et al. (2008). To convert λ2 from
units of per unit capillary length density per unit time to the units of per unit capillary
surface density per unit time, we multiply λ2 from Schnepf et al. (2008) with the
surface area of a vessel with radius 0.006 mm and unit length. The values of λ1 and
λ2 are given in Table 5.
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Appendix B Normal Vasculature Tissue Model

Oxygen

0 = Dc∇2C︸ ︷︷ ︸
diffusion

+ Pcb(Cblood − C)︸ ︷︷ ︸
delivery from blood

− knormc nC︸ ︷︷ ︸
consumption by
normal cells

− kvessel
c (p1b)C︸ ︷︷ ︸
consumption by
vessel cells

− ktipc (e + m)C︸ ︷︷ ︸
consumption by

tip cells

,

(32a)

VEGF

0 = Dv∇2V︸ ︷︷ ︸
diffusion

+ Pvb(Vblood − V )︸ ︷︷ ︸
delivery from blood

+H (Cnorm
v − C, εv)k

norm
v n︸ ︷︷ ︸

secretion by normal cells

− δvV︸︷︷︸
decay

, (32b)

Normal Cell Density

∂n

∂t
= Dnorm∇2n︸ ︷︷ ︸

random
motility

+ ln(2)

T norm
min

C

Cnorm
φ + C

H (dnorm − Stot , εd)n

︸ ︷︷ ︸
proliferation

− H (Cnorm
a − C, εa)βnormn︸ ︷︷ ︸

apoptosis

, (32c)

Immature Tip Cell Density

∂e

∂t
= De∇2e︸ ︷︷ ︸

random
motility

−χe∇
[(

1 − Stot
dtip

)
S (dtip − Stot )e∇V

]

︸ ︷︷ ︸
chemotactic response in the direction

of increasing VEGF

+ Pmax
sprout

V

Vsprout + V
H (dtip − Stot , εd)(p1b)

︸ ︷︷ ︸
generation
of new tips

− α1e︸︷︷︸
conversion
to mature
tip cells

, (32d)

Mature Tip Cell Density

∂m

∂t
= De∇2m︸ ︷︷ ︸

random
motility

−χe∇
[(

1 − Stot
dtip

)
S (dtip − Stot )m∇V

]

︸ ︷︷ ︸
chemotactic response in the direction

of increasing VEGF

+ α1e︸︷︷︸
conversion

from immature
tip cells

− λ1m
2

︸ ︷︷ ︸
tip-tip

anastomosis

− λ2mb︸ ︷︷ ︸
tip-capillary
anastomosis

, (32e)

123



1470 T. V. Joshi et al.

Blood Vessel Density

∂b

∂t
= 1

p1
(λ1m

2 + λ2mb)
︸ ︷︷ ︸
tip-tip and tip-capillary

anastomosis

. (32f)

Appendix C Steady State Analysis

Assuming all the variables to be spatially homogeneous, we obtain the following set
of differential algebraic equations (DAEs),

0 = Pcb(Cblood − C)︸ ︷︷ ︸
delivery from blood

− knormc nC︸ ︷︷ ︸
consumption by
normal cells

− kvessel
c (p1b)C︸ ︷︷ ︸
consumption by
vessel cells

− ktipc (e + m)C︸ ︷︷ ︸
consumption by

tip cells

, (33a)

0 = Pvb(Vblood − V )︸ ︷︷ ︸
delivery from blood

−H (Cnorm
v − C, εv)k

norm
v n︸ ︷︷ ︸

secretion by normal cells

− δvV︸︷︷︸
decay

, (33b)

dn

dt
= ln(2)

T norm
min

C

Cnorm
φ + C

H (dnorm − Stot , εd)n

︸ ︷︷ ︸
proliferation

−H (Cnorm
a − C, εa)βnormn︸ ︷︷ ︸

apoptosis

,

(33c)

de

dt
= Pmax

sprout
V

Vsprout + V
H (dtip − Stot , εd)(p1b)

︸ ︷︷ ︸
generation of new tips

− α1e,︸︷︷︸
conversion
to mature
tip cells

(33d)

dm

dt
= α1e︸︷︷︸

conversion
of immature
tip cells

− λ1m
2

︸ ︷︷ ︸
tip-tip

anastomosis

− λ2mb,︸ ︷︷ ︸
tip-capillary
anastomosis

(33e)

0 = 1

p1
(λ1m

2 + λ2mb)
︸ ︷︷ ︸

tip-tip and
tip-capillary anastomosis

. (33f)

To determine the steady states of Eq. (33), we set d/dt = 0 for all variables.
Equation (33f) holds only if m = 0. Substituting m = 0 in Eq. (33e) gives

0 = α1e. (34)

implying e = 0. Substituting e = 0 in Eq. (33d) gives

0 = Pmax
sprout V

Vsprout + V
H (dtip − Stot , εd) (p1 b). (35)
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Note In the remainder of this section, Stot = n + (p1b), since e = 0 and m = 0.
Equation (35) holds if, either

• b = 0, or

• V

Vsprout + V
= 0 �⇒ V = 0, or

• H (dtip − Stot , εd) = 0 �⇒ Stot > dtip + εd ,

where H (z, ε) is as defined in Eq. (5). The smoothness of transition from 0 to 1 is
given by the value of ε. As the value of the function is zero for z ≤ −ε, steady state will
only be attained when z ≤ −ε. For ε = 0, the function reduces to the discontinuous
Heaviside function reflecting the dynamics observed in the multiscale model.

We now analyse the possible cases leading to steady states of Eq. (33).

Case 1 Let us assume that b = 0. Substituting the values of e and b in Eq. (33a)
gives

knormc n C = 0. (36)

Equation (36) is satisfied if either n = 0 or C = 0.

Case 1.1 If n = 0, thenC = C∗, whereC∗ is arbitrary, satisfies Eq. (36). Also, Eq.
(33b) becomes δvV = 0 which implies V = 0. Thus, the first possible
steady state configuration is

m = 0, e = 0, V = 0, n = 0, b = 0, C = C∗. (37)

This steady state represents a tissue with no cells and no blood vessels
and an arbitrary oxygen concentration.

Case 1.2 If C = 0, Eq. (33c) reduces to βnorm n = 0 which implies n = 0 which
further implies V = 0 as in Case 1.1. Thus we have

m = 0, e = 0, V = 0, n = 0, b = 0, C = 0. (38)

This state is thus a special case of Case 1.1 representing a tissue with no
cells, no blood vessels and no oxygen.

Case 2 When V = 0, Eq. (33b) reduces to

H (Cnorm
v − C, εv) k

norm
v n = 0. (39)

It must be noted that we have assumed Vblood = 0. This leads to two
possibilities, either C > Cnorm

v + εv or n = 0.

Case 2.1 If n = 0, Eq. (33a) becomes

Pc b (Cblood − C) − kvessel
c (p1 b) C = 0, (40)
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which implies C = Pc Cblood

kvessel
c p1 + Pc

. Also n = 0 satisfies Eq. (33c).

Thus, the next possible steady state configuration is given by

m = 0, e = 0, V = 0, n = 0, b = b∗ > 0, C = Pc Cblood

kvessel
c p1 + Pc

. (41)

This represents a tissue with only blood vessels of arbitrary density, b∗ >

0 and oxygen supplied and consumed by those vessels.

Case 2.2 Let us now consider the other possibility,C > Cnorm
v +εv . SinceCnorm

v +
εv > Cnorm

a + εa , we have C > Cnorm
v + εv > Cnorm

a + εa . Hence, Eq.
(33c) reduces to

ln(2)

T norm
min

C

Cnorm
φ + C

H (dnorm − Stot , εd)n = 0. (42)

For Eq. (42) to be true, either n = 0 or Stot > dnorm + εd .

Case 2.2.1 Let n = 0. This leads us back to Case 2.1, implying that the steady state
configuration is given by Eq. (41).

Although for the given parameter set,C = Pc Cblood

kvessel
c p1 + Pc

> Cnorm
v +

εv holds, the inequality is irrelevant in this case because, irrespective of the
oxygen concentration, there will be no VEGF production in the absence
of normal cells (n = 0).

Case 2.2.2 Next, let us assume, Stot = n + (p1 b) > dnorm + εd . From Eq. (33a) we
get,

Pc b (Cblood − C) − knormc n C − kvessel
c (p1 b) C = 0. (43)

Thus, another possible steady state configuration is given by

e = 0, V = 0, (44a)

C = Pc Cblood b

knormc n + kvessel
c (p1b) + Pcb

, (44b)

n + (p1 b) > dnorm + εd , (44c)

C > Cnorm
v + εv �⇒ n < I (Cnorm

v + εv)b, (44d)

where

I (X) = Pc Cblood − X kvessel
c p1 − X Pc

X knormc
. (45)
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This state represents a tissue with normal cells, blood vessels and oxygen.
The sum of normal cell density and vessel density exceeds the carrying
capacity for normal cells thus blocking normal cell proliferation. Also the
vessel density is such that it supplies enough oxygen (C > Cnorm

v + εv >

Cnorm
a +εa), so that there is no normal cell death and noVEGF production

leading to angiogenesis.

Case 3 In this case, Stot = n+ (p1 b) > dtip +εd . Since dtip +εd > dnorm +εd ,
Eq. (33c) reduces to

H (Cnorm
a − C, εa) βnorm n = 0,

which holds either if n = 0 or C > Cnorm
a + εa .

Case 3.1 Let n = 0. Equation (33b) reduces to δvV = 0 implying V = 0. These
conditions lead to the steady state configuration given in Case 2.1 with
an added condition, Stot = p1b > dtip + εd . However, V = 0 satisfies
Eq. (33d) irrespective of the value of Stot . Hence, the extra condition is
irrelevant.

Case 3.2 Let C > Cnorm
a + εa . From Eq. (43), we get

C = Pc Cblood b

knormc n + kvessel
c (p1 b) + Pc b

.

Rearranging the inequality C > Cnorm
a + εa , we can obtain a relation

between n and b, as follows,

n < I (Cnorm
a + εa)b, (46)

where I (Cnorm
a + εa) is defined in Eq. (45). Also, from Eq. (33b), we

obtain

V = H (Cnorm
v − C, εv) knormv n

Pv b + δv

. (47)

Case 3.2.1 Thus, if C > Cnorm
v + εv , the steady state configuration becomes

e = 0, V = 0, (48a)

C = Pc Cblood b

knormc n + kvessel
c (p1 b) + Pc b

, (48b)

n + (p1 b) > dtip + εd , (48c)

C > Cnorm
v + εv �⇒ n < I (Cnorm

v + εv) b, (48d)

where I (X) is defined in Eq. (45).
However, it is worth noting that when e = 0 and C > Cnorm

v + εv ,
Eq. (33d) holds irrespective of Stot = n + (p1b) > dtip + εd . Hence,
the condition given in Eq. (48c) is irrelevant. However, on omitting this
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condition, Eq. (33c) holds either if n = 0, which leads to Case 2.1, or if
Stot = n + (p1b) > dnorm + εd , which leads to Case 2.2.2. Thus, the
configuration obtained in Eq. (48) is not a new configuration.

Case 3.2.2 Next, when C < Cnorm
v + εv , we get

e = 0, (49a)

V = knormv n

Pv b + δv

, (49b)

C = Pc Cblood b

knormc n + kvessel
c (p1 b) + Pc b

, (49c)

n + (p1 b) > dtip + εd , (49d)

Cnorm
a + εa < C < Cnorm

v + εv (49e)

�⇒ I (Cnorm
v + εv) b < n < I (Cnorm

a + εa) b,

where I (X) is defined in Eq. (45).
This steady state represents a tissue with normal cells, blood vessels, oxy-
gen and VEGF but no tip cells. The oxygen attains a certain concentration
dictated by the blood vessel density and the normal cell density. This value
of the concentration being below the thresholdCnorm

v +εv , causes hypoxic
normal cells to secrete VEGF. However, the normal cells and the blood
vessels occupy the entire space in the tissue thus preventing any further
sprouting from the blood vessels in response to the VEGF signals. Similar
to the oxygen concentration, the VEGF concentration reaches a certain
steady concentration depending on the normal cell density and the blood
vessel density.
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