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Abstract Distances between sequences based on their k-mer frequency counts can be
used to reconstruct phylogenies without first computing a sequence alignment. Past
work has shown that effective use of k-mer methods depends on (1) model-based
corrections to distances based on k-mers and (2) breaking long sequences into blocks
to obtain repeated trials from the sequence-generating process. Good performance of
such methods is based on having many high-quality blocks with many homologous
sites, which can be problematic to guarantee a priori. Nature provides natural blocks of
sequences into homologous regions—namely, the genes. However, directly using past
work in this setting is problematic because of possible discordance between different
gene trees and the underlying species tree. Using the multispecies coalescent model as
a basis, we derive model-based moment formulas that involve the species divergence
times and the coalescent parameters. From this setting, we prove identifiability results
for the tree and branch length parameters under the Jukes–Cantor model of sequence
mutations.

Keywords k-mer method · Coalescent · Algebraic geometry

1 Introduction

Phylogenetic tree reconstructionmethods that compare character states at homologous
sites of molecular sequences require sequence alignment methods that identify the
homologous sites. Many sequence alignment methods are progressive—that is, they
first compute alignments for sequences from a subset of closely related taxa and then
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assemble these results to generate an alignment for all of the taxa. In this context, a
guide tree provides the information about relatedness which is used to control the order
in which alignments are assembled. Phylogenetic reconstruction methods which do
not rely on aligned sequences are needed to construct such guide trees. Even methods
that simultaneously produce an alignment and phylogeny benefit from having a good
starting tree, which can make alignment-free tree constructing methods useful in that
context as well.

Although multiple sequence alignment algorithms have been designed to reflect
an insertion and deletion process that occurs along a phylogenetic tree, most current
methods for constructing the guide tree itself are not based on any explicit models of
evolution. We therefore aim to develop methods based on widely used evolutionary
modeling assumptions that can be used in the context ofmultiple sequence alignment to
reconstruct a phylogenetic tree. A natural approach is to record the k-mer frequencies
of sequences and to assess relatedness among taxa by computing distances based on
these frequencies.

For example, the guide trees computed in MUSCLE (Edgar 2004a, b) and Clustal
Omega (Blackshields et al. 2010; Sievers et al. 2011) are based on using k-mer frequen-
cies. However, those k-mer methods are ad hoc, in the sense that they are not derived
based on any evolutionary modeling assumptions. We take the point of view that a
desirable property of any phylogenetic method is that it should be statistically consis-
tent under widely used phylogenetic modeling assumptions. That is, if the method is
applied to data from a standard model, the method should reconstruct the correct tree
with probability tending to 1 as the amount of data increases.

In past work, Allman, Rhodes and the second author (Allman et al. 2017) devised
a statistically consistent k-mer method for phylogenetic tree reconstruction based
on models for point substitutions only, and without an insertion and deletion (indel)
process. This method utilizes amodel-based correction to the k-mer distances between
pairs of sequences. A key idea in Allman et al. (2017), originating in the work of
Daskalakis and Roch (2013), is to break sequences into blocks to get a distribution of
k-mer distances. From this distribution, various features of the underlying substitution
process can be extracted. More specifically, to compute a k-mer distance between two
sequences S1 and S2, we subdivide each sequence into r subsequences S11, . . . , S1r ,
and S21, . . . , S2r , respectively. The subdivision is chosen so that, for each i , S1i and
S2i consist of mostly orthologous sites. (Why this is possible is explained in the next
paragraph.) Then, to each pair of subsequences S1i and S2i , we compute k-mer vectors
X1i and X2i , compute the appropriate k-mer distance between X1i and X2i and average
the results from i = 1, . . . , r .

This procedure greatly increases the accuracy of the k-mer method if we assume
all sequences are drawn from the same underlying phylogenetic process, because the
average of independent draws from the same underlying process converges to the true
underlying parameter being estimated, by the law of large numbers. Since we do not
know a priori exactly when parts of the sequence are orthologous, a subdivision into
a small number of parts r of roughly equal lengths guarantees that most sites in the
two sequences S1i and S2i are orthologous. Heuristic modification of this procedure is
used in the case when the sequences are generated from amodel with an indel process.
Even with a moderate indel process at work, the number of blocks used cannot be too
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big without running into trouble, since the number of orthologous sites within each
block becomes insufficient.

Fortunately, nature provides blocks that automatically correspond one to another—
namely, the genes. However, comparing sequences frommany different genes requires
the analysis of more complex probabilistic models, describing how the evolutionary
histories of genes are related to the history of the species from which they are derived.
The phylogenetic history of a set of species and the history of any given set of orthol-
ogous genes from those species are represented by a species tree and a gene tree,
respectively. In particular, it is well known that gene trees need not be the same and
that gene trees need not be equal to the underlying species tree (Pamilo and Nei 1988).
The simplest model to handle this discrepancy is the multispecies coalescent model.
Given a species tree with branch lengths, the multispecies coalescent gives a probabil-
ity distribution on gene trees (Takahata et al. 1995). With such a gene tree, we can then
use a standard model of sequence evolution to describe the probability distribution of
gene sequences.

Our goal in this paper is to extend the results of Allman et al. (2017) to the
more general setting from the previous paragraph where blocks correspond to gene
sequences, generated by a mutation process on gene trees that come from the multi-
species coalescent. While this generalization is not likely to be useful for guide tree
construction, it does provide a potential alternate method for species tree construction
that is alignment-free. As in Allman et al. (2017), our derivations are based on models
without an insertion/deletion process. This is a natural starting point in the derivation of
many phylogenetic methods. Simulations in Allman et al. (2017) showed that the for-
mulas based on k-mers derived without an insertion/deletion process can be employed
on data that is generated with a moderate indel process and still successfully recover
the underlying phylogenetic tree.

In Sect. 2, we derive a generalization of themain formula fromAllman et al. (2017),
which is a calculation of the expected squared Euclidean distance between k-mer
vectors of sequences, when the underlying gene trees are generated randomly from the
coalescent process. Using this formula, in Sects. 3 and 4we prove identifiability results
on the underlying model parameters (unrooted species tree and numerical parameters)
which is the first step toward developing a statistically consistent method based on
k-mers. Section 5 contains some further identifiability results where combinations of
k-mer vectors of different sizes are used. We conclude in Sect. 6 with a discussion
of further directions and ideas about how our identifiability results might lead to new
algorithms for constructing trees from k-mer data.

2 Expected k-mer Distances

In this section, we give a derivation of the expected Euclidean distance between k-mer
vectors of sequences when their gene tree is generated by the coalescent model and
mutations arise via any stationary Markov model. We also present the special form
of this distance in the case of the Jukes–Cantor substitution model, from which we
derive our later results.

We first define what we mean by the k-mer vector of a sequence. As mentioned
above, the k-mers of a given sequence are the subsequences of length k. We form a k-
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mer vector by recording the number of times each k-mer occurs in the given sequence.
More precisely, let S = s1s2 . . . sm ∈ [L]m be a sequence of length m in the alphabet
[L] = {1, . . . , L}. For k ≤ m, a k-mer is a subsequence spsp+1 . . . sp+k−1 for some
starting position p ∈ {1, . . . , m − k + 1}. The k-mer count vector X , associated with
the sequence S, is the vector of length Lk whose coordinates are indexed by the words
W ∈ [L]k , and where the component X W , corresponding to word W , records the
number of times W appears as a subsequence in S.

We next consider two sequences S1 and S2 descended from a common ancestor, and
we define a k-mer distance between them as follows. First, we assume that each site in
each sequence is generated independently by a Markov mutation process and that the
distribution at each site is stationary. Let Q be the rate matrix of the mutation process,
and let π be the associated stationary distribution. By stationarity, the probability of a
k-mer in either sequence is (πW )W∈[L]k , where πW = ∏

i∈[k] πwi . The k-mer distance

between sequences S1 and S2 is then
∑

W∈[L]k
1

πW (X W
1 − X W

2 )2. Allman, Rhodes, and
the second author previously derived the expected value of this k-mer distance for a
pair of orthologous sequences with divergence time τ under such a mutation process.

Proposition 2.1 (Allman et al. 2017) Let S1 and S2 be two sequences of length m
generated from an indel-free Markov model with transition matrix M = exp(Qτ),
where Q is the rate matrix, and stationary initial distribution π . Let X1 and X2 be the
resulting k-mer count vectors. Then

E

⎡

⎣
∑

W∈[L]k

1

πW

(
X W
1 − X W

2

)2
⎤

⎦ = 2(m − k + 1)
(

Lk − (tr M)k
)

.

If λ1, . . . , λL are the (not necessarily distinct) eigenvalues of Q, then the trace of
the transition matrix M = exp(Qτ) can be computed from these eigenvalues:

tr M =
L∑

l=1

eλlτ .

Note that, to useProposition 2.1 in practice,we estimate the expected k-mer distance
by dividing the sequence into blocks and computing an average over the blocks, as
discussed in the introduction. However, to discuss the value of the expectation, we only
work with a single sequence (or, equivalently, a single block) here and throughout.
Thus, we have suppressed the index i that we used in the introduction to refer to
individual blocks.

We next generalize the expected k-mer distance formula of Proposition 2.1 by
allowing the divergence times of the sequences to vary according to the multispecies
coalescent.We startwith a brief overviewof the coalescent andmultispecies coalescent
models. For our purposes, it is sufficient to consider a special case of the multispecies
coalescent model, consisting of only two species. We thus describe the two-species
coalescent model in detail, and we use this to derive our coalescent-based k-mer
distance formula.
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Fig. 1 The two-species coalescent model. The quantity δ is introduced solely for the purpose of illustrating
that the species tree is not ultrametric. The species divergence time t represents the total evolutionary time
separating species 1 and 2. The sequence divergence time T represents the total evolutionary time separating
a pair of orthologous sequences fromspecies i and j . The timebetween speciation and coalescence is denoted
by s. In the coalescent model, the distribution of s depends on the ancestral population size N

The original n-coalescent, as formulated by Kingman (1982), is a stochastic
(Markov) process that represents the hierarchical history of family relationships of
a set of n objects. These objects are said to coalesce when two blocks of the partition
merge to form a single larger block. In the context of this paper, the coalescent process
provides a stochastic model of the genealogical history of n molecular sequences. A
realization of the coalescent process gives a gene tree, which represents the pattern of
the coalescence events among the lineages as they extend back in time to their most
recent common ancestor. The n-coalescent is commonly used to model gene trees
of sequences, based on the assumption that they are sampled from a single, large,
randomly mating population. In this model, all possible coalescence events (associ-
ated with all pairs of distinct lineages) occur at the same rate, which depends on the
population size.

The multispecies coalescent model with n species extends Kingman’s n-coalescent
model. In the multispecies coalescent process, coalescence events are constrained
according to a species tree parameter, so that the process only generates gene trees
that are consistent with the phylogenetic relationships given by the species tree.
Specifically, genes derived from two taxa cannot coalesce more recently than the
taxa themselves diverged, as delineated by the species tree. To represent this pictori-
ally, the branches of the species tree are drawn with thick branches, and gene trees are
drawn embedded within the species tree, as in Fig. 1. We will assume, for simplicity,
that there is a one-to-one correspondence between the leaves of the species tree and
the leaves of any embedded gene tree.

Once a population size is assigned to each ancestral taxon in the species tree, the
multispecies coalescent model determines a probability distribution on the gene trees.
The full probability distribution of gene trees under the n-species coalescent model
has been described by Rannala and Yang (2003), but the 2-species case is sufficient for
our purposes, since we only calculate expected values of k-mer distances for one pair
of species at a time. The basic structure of the two-species coalescent model, showing
the gene tree embedded within a species tree with two taxa, is illustrated in Fig. 1.

The expected k-mer distance between two orthologous sequences from two species
only depends on the species divergence time for the corresponding two-leaf gene trees.
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We thus use the distribution of the species divergence time, based on the two-species
coalescent model, along with Proposition 2.1 to derive our generalized expected k-mer
distance. After computing the expected k-mer distance for each species pair, we will
assemble these pairwise distances together to obtain a collection of expected k-mer
distances, which we would like to use to estimate phylogenetic parameters.

We now formulate precisely the model that we use to derive the expected k-mer
distance between sequences when the gene tree varies according to the multispecies
coalescent. We consider two species, and we let t denote the speciation time, in true
time units (e.g., proportional to years). This time represents the total evolutionary time
separating the species. Thus, it is given by the sum of the branch lengths along the
species tree leading from the point where the species diverge to each of the two leaves
(see Fig. 1). The times along each of these branches are not assumed to be equal. In
other words, we do not assume that our species tree is ultrametric. We consider pairs
of orthologous sequences, where each pair consists of a sequence from one species
along with an ortholog from the other species. The divergence time of any pair of
orthologs will exceed the speciation time t by some amount 2s, representing twice
the time between speciation and coalescence (Takahata 1986). Thus, the sequence
divergence time is given by τ = t + 2s. The coalescence time s depends on the size
of the population ancestral to the two species, which we denote by N . Note that in
many implementations of themultispecies coalescent, variability of the population size
acrossmultiple populations is allowed. In this paper,we assume that the population size
N is fixed across all branches of the tree. A graphical representation of the quantities
in this model is shown in Fig. 1.

To generalize Proposition 2.1, we allow the gene trees of orthologous sequences to
vary according to the multispecies coalescent, so that the sequence divergence times
τ are realizations of a random variable T . Under this model, the sequence divergence
time is given by T = t +2s, where the coalescence time s is exponentially distributed.
Since the size of the ancestral population is N , the rate of coalescence is 1/N , and

s ∼ Exp(1/N ).

We compute the expected k-mer distance with respect to the distribution of T , by
interpreting Proposition 2.1 as the expected k-mer distance given that T = τ , and
using the law of total expectation:

E

⎡

⎣
∑

W∈[L]k

1

πW

(
X W
1 − X W

2

)2
⎤

⎦

= E

⎡

⎣E

⎡

⎣
∑

W∈[L]k

1

πW

(
X W
1 − X W

2

)2
∣
∣
∣
∣ T = t + 2s

⎤

⎦

⎤

⎦

= E

⎡

⎣2(m − k + 1)

⎛

⎝Lk −
(

L∑

l=1

exp(λl(t + 2s))

)k⎞

⎠

⎤

⎦
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= 2(m − k + 1)

⎛

⎝Lk −
∑

q1+···+qL=k

(
k

q1, . . . , qL

)

E
[
exp ((λ1q1 + · · ·

+λLqL)(t + 2s))
]
⎞

⎠

= 2(m − k + 1)

(

Lk −
∑

q1+···+qL=k

(
k

q1, . . . , qL

)

exp ((λ1q1 + · · · + λLqL)t)

· E [
exp(2(λ1q1 + · · · + λLqL)s)

]
)

= 2(m − k + 1)

(

Lk −
∑

q1+···+qL=k

(
k

q1, . . . , qL

)

exp((λ1q1 + · · · + λLqL)t)

·
∫ ∞

0
exp(2(λ1q1 + · · · + λLqL)s)

1

N
exp(−s/N )ds

)

= 2(m − k + 1)

⎛

⎝Lk −
∑

q1+···+qL=k

(
k

q1, . . . , qL

)
exp((λ1q1 + · · · + λLqL)t)

1 − 2N (λ1q1 + · · · + λLqL)

⎞

⎠.

The preceding calculation proves the following proposition.

Proposition 2.2 Let S1 and S2 be sequences of length m with divergence time dis-
tributed according to the multispecies coalescent process with population size N and
species divergence time t. Suppose S1 and S2 are generated from an indel-free Markov
model with transition rate matrix Q and stationary distribution π , and let λ1, . . . , λL

be the eigenvalues of Q. Let X1 and X2 be the resulting k-mer count vectors. Then,

E

⎡

⎣
∑

W∈[L]k

1

πW
(X W

1 − X W
2 )2

⎤

⎦

= 2(m− k+1)

⎛

⎝Lk −
∑

q1+···+qL=k

(
k

q1, . . . , qL

)
exp((λ1q1 + · · · + λLqL)t)

1 − 2N (λ1q1 + · · · + λLqL)

⎞

⎠.

In practice, in order to obtain precise estimates of the expected k-mer distance
of Proposition 2.2, we would like to compute an average k-mer distance over many
independently-generated sequences. We have in mind the context in which a sequence
(e.g., a genome) is divided into blocks corresponding to genes, and the expected k-mer
distance is estimated by taking the average k-mer distance over all blocks. Under our
model, the sequence data from distinct loci are independent if the gene trees for those
loci are independent, given the species tree. We expect this to be the case for unlinked
loci, but it may also hold for some linked loci if the population sizes, population
structure, and recombination rates are sufficient to decouple inheritance (Wakeley
2009; McVean 2002).

123



438 C. Durden, S. Sullivant

In order to use Proposition 2.2 to derive statistically consistent model-based cor-
rections to the k-mer distances, the map from parameter space to the collection of all
k-mer distances must be one-to-one. For the remainder of this paper, we study this
problem for the special case where L = 4 and Q is the Jukes–Cantor rate matrix

Q =

⎛

⎜
⎜
⎝

−μ μ/3 μ/3 μ/3
μ/3 −μ μ/3 μ/3
μ/3 μ/3 −μ μ/3
μ/3 μ/3 μ/3 −μ

⎞

⎟
⎟
⎠ .

The eigenvalues of Q are λ1 = 0 and λ2 = −4μ/3, with multiplicities 1 and 3,
respectively. The stationary distribution of the correspondingMarkov process isπW =
1
4k for all W ∈ [4]k . So, Proposition 2.2 reduces to the following:

Corollary 2.3 Let S1 and S2 be sequences of length m with divergence time distributed
according to the multispecies coalescent process with population size N and species
divergence time t. Suppose S1 and S2 are generated from an indel-free Jukes–Cantor
mutation model. Let X1 and X2 be the resulting k-mer count vectors. Then

E[‖X1 − X2‖22] = 2(m − k + 1)

(

1 − 1

4k

k∑

h=0

(
k

h

)

3h exp(−4hμt/3)

1 + 8hμN/3

)

.

To analyze the dependence of the expected k-mer distance on the parameters t, N ,

and μ, we define a function which maps these parameters to the expected k-mer
distance:

fk(t, N , μ) = 2(m − k + 1)

(

1 − 1

4k

k∑

h=0

(
k

h

)

3h exp(−4hμt/3)

1 + 8hμN/3

)

.

We note that

fk(αt, αN , μ/α) = fk(t, N , μ) (1)

for anyα > 0. This can be seen as a specific consequence of the fact that both themuta-
tion process and the coalescence process are invariant under similar transformations of
the parameters t, μ and N : These processes are unaffected by changing evolutionary
times from t to αt , while simultaneously changing the coalescence rate from 1/N to
1/θ = 1/Nα and the mutation from μ to μ/α. Thus, we have a fundamental inability
to determine the values of the parameters μ, N , and t from data generated by these
processes.

We use a standard approach of adjusting time units to suppress the invariance
described by Eq. 1: We assume that time is measured in substitution units—that is,
time units in which μ = 1. Then, t represents time in units of the expected number
of substitutions. In these time units, the rate of coalescence is 1/Nμ. We let θ denote
the quantity Nμ in the denominator. With respect to the new time units, we obtain the
expected k-mer distance as a function of t and θ :
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fk(t, θ) = 2(m − k + 1)

(

1 − 1

4k

k∑

h=0

(
k

h

)

3h exp(−4ht/3)

1 + 8hθ/3

)

.

To facilitate an algebraic analysis of model identifiability, we reparameterize fk

by introducing a quantity x , which we call the transformed species divergence time,
defined by the following equation:

x = exp(−4t/3),

where the species divergence time t is given in substitution units, as mentioned pre-
viously. With this change of variables, the expected k-mer distance of Corollary 2.3
can be written as a rational function of x and θ :

fk(x, θ) = 2(m − k + 1)

(

1 − 1

4k

k∑

h=0

(
k

h

)

3h xh

1 + 8hθ/3

)

. (2)

The parameterization of the expected k-mer distance in Eq. 2 depends continuously
on two parameters, so these parameters are not identifiable from a single expected k-
mer distance between one pair of species. We thus consider a situation in which we
have n species (n > 2). For any two distinct species, labeled by i, j ∈ [n], we consider
k-mer vectors Xi and X j generated by the coalescent andmutation processes.We let ti j

denote the species divergence time, and we let xi j be the corresponding transformed
species divergence time. We suppose that the

(n
2

)
k-mer distances between pairs of

species are parameterized by a common set of parameters which, taken together,
describe the evolutionary history of these species. The simplest assumption which
provides a model that is potentially identifiable—having fewer than

(n
2

)
independent

parameters—is that the species divergence times ti j are distances among the leaves of
a species tree, and all of the ancestral populations have the same size N (and therefore
the same value of θ ). Under these assumptions, we can parameterize all

(n
2

)
pairs of

expected k-mer distances by 2n − 2 parameters: 2n − 3 parameters giving the branch
lengths of the species tree, and one θ parameter.

We now describe this parameterization. Suppose T is a species tree with leaves
labeled by the taxa [n], and let {we ∈ R≥0 : e ∈ E(T )} be an edge weighting of T , giv-
ing evolutionary times along edges of T . If the species divergence times (ti j )1≤i< j≤n

are the distances between leaves i and j of T , then they are obtained by summing
edge weights along paths in T :

ti j =
∑

e∈P(i, j)

we, (3)

where P(i, j) is the set of edges of the unique path in T connecting leaves i and j . The
transformed species divergence times (xi j )1≤i< j≤n can then be expressed analogously:
For each edge e ∈ E(T ), we define a transformed edge weight ae = exp(−4we/3).
Then, the transformed species divergence times are obtained by multiplying branch
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lengths along corresponding paths in T :

xi j =
∏

e∈P(i, j)

ae.

Sincewe ≥ 0, we have ae ∈ (0, 1]. In the analyses which follow, we will parameterize
the expected k-mer distance between species i and j using these transformed edge
weights: E[‖Xi − X j‖22] = fk(

∏
e∈P(i, j) ae, θ).

We note that Proposition 2.2 gives a k-mer distance formula that depends on the total
evolutionary distance between the species, and not on the individual branch lengths
leading to their common ancestor. Thus, the k-mer distances of Proposition 2.2 do not
depend on the choice of a root for the tree T . The following observations clarify why
this is true. First, the distribution of the distances between the leaves of the gene tree
does not depend on where the species tree is rooted. This can be seen by observing that
changing the root is equivalent to varying the quantity δ in Fig. 1, which does not affect
any of the divergence times. Second, the expected k-mer distances, for a fixed gene
tree, as given by Proposition 2.1 also do not depend on the choice of a root for the gene
tree. In fact, by the stationarity of the Markov mutation process, the joint distribution
of the sequences also does not depend on the root. Together, these observations imply
that the rooted tree is not identifiable from k-mer distances under our model. Thus,
we will consider only the unrooted tree when we formulate our identifiability results.

For a given n-leaf binary tree T and for each k ∈ N, we construct a rational
map whose inputs are the parameter θ and the transformed branch lengths ae =
exp(−4μwe/3), and which maps to the

(n
2

)
expected k-mer distances between pairs

of species. This map, denoted by φk,T , has the following form:

φk,T : R2n−2 → R
n(n−1)/2

(ae : e ∈ E(T ), θ) 	→
⎛

⎝ fk

⎛

⎝
∏

e∈P(i, j)

ae, θ

⎞

⎠

⎞

⎠

1≤i< j≤n

.

The parameters ae = exp(−4we/3) are restricted to lie in (0, 1], and the parameter
θ = μN is positive. The parameter space of φk,T is thus 	T = (0, 1]2n−3 ×R>0. We
note that the smallest n for which the dimension of the image is at least the number of
parameters is n = 4. For n = 4, φk,T : (0, 1]5 × R>0 → R

6, so that it is in principle
possible for the parameters to be identifiable. We will see in the next section that the
parameters are in fact locally identifiable in this case if k > 1.

Example 2.4 Figure 2 shows the set of edge length parameters (ae)e∈P(i, j) arising
from a particular labeling of the 5 edges of a 4-taxon tree. Suppose that k = 2. Then,
φk,T takes the following form:
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1
a1

2

a2

a5

3

a3

4

a4

Fig. 2 Example labeling of a 4-taxon tree with transformed edge weight parameters (ae)e∈P(i, j). The
parameters are defined by ae = exp(−4we/3) where we represents the evolutionary time along edge e in
substitution units. In the parameterization of our model, the transformed species divergence time for taxa 1
and 3, for example, is x13 = a1a5a3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1
a2
a3
a4
a5
θ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

	→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f2,T (a1a2, θ)

f2,T (a1a5a3, θ)

f2,T (a1a5a4, θ)

f2,T (a2a5a3, θ)

f2,T (a2a5a4, θ)

f2,T (a3a4, θ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2(m − 1)(1 − 1
16 (1 + 18a1a2

3+8θ + 27a21a22
3+16θ )

2(m − 1)(1 − 1
16 (1 + 18a1a5a3

3+8θ + 27a21a25a23
3+16θ )

2(m − 1)(1 − 1
16 (1 + 18a1a5a4

3+8θ + 27a21a25a24
3+16θ )

2(m − 1)(1 − 1
16 (1 + 18a2a5a3

3+8θ + 27a22a25a23
3+16θ )

2(m − 1)(1 − 1
16 (1 + 18a2a5a4

3+8θ + 27a22a25a24
3+16θ )

2(m − 1)(1 − 1
16 (1 + 18a3a4

3+8θ + 27a23a24
3+16θ )

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3 Local Identifiability from k-mer Distances

In this section, we prove our first main identifiability result. We show that the map
φk,T is generically finite-to-one if n ≥ 4 and k > 1. In other words, both θ and the
branch length parameters of the phylogenetic tree are locally identifiable from k-mer
distances provided k > 1 and there are at least 4 species. This is proven in Theorem 3.3
and Corollary 3.4.Wewill use this result in the next section to show that the (unrooted)
tree parameter is identifiable.

Definition 3.1 Amapφ : S → R
d defined on an open set S ⊂ R

n is called generically
finite-to-one if there exists a proper algebraic subset S̃ ⊂ R

n such that the fiber

Fφ(s′) = {s ∈ S | φ(s) = φ(s′)}

is finite for all s′ ∈ S\S̃.

The following folklore result is the standard tool to prove local identifiability. A
recent proof can be found in Leung et al. (2016):

Lemma 3.2 If φ : S → R
d is a polynomial or rational map defined on an open set

S ⊂ R
n then φ is generically finite-to-one on S if and only if the Jacobian matrix of

φ generically has full column rank.
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Theorem 3.3 For k > 1 and n = 4, the map φk,T : R6 → R
6 is generically finite-

to-one. In particular, it is generically finite-to-one on 	T = (0, 1]5 × R>0.

Proof We show that the Jacobian matrix of φk,T has full column rank. We first write
φk,T as a composite map and use the chain rule to write the Jacobian matrix as a
product of matrices: φk,T can be expressed as the composition φk,T = Fk,T ◦ ξT

where

Fk,T = ( fk (x12, θ) , fk (x13, θ) , fk (x14, θ) , fk (x23, θ) , fk (x24, θ) , fk (x34, θ)),

ξT (a, θ) = (a1a2, a1a3a5, a1a4a5, a2a3a5, a2a4a5, a3a4, θ) .

(here we have identified the input vector (x12, x13, x14, x23, x24, x34, θ) of Fk,T with
the output vector of ξT ).

The Jacobian matrix of the outer function Fk,T is

d(x,θ)Fk,T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

D12 0 0 0 0 0 B12
0 D13 0 0 0 0 B13
0 0 D14 0 0 0 B14
0 0 0 D23 0 0 B23
0 0 0 0 D24 0 B24
0 0 0 0 0 D34 B34

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)

where

Di j (x, θ) = ∂ fk

∂xi j
(xi j , θ) = −2(m − k + 1)

1

4k

k∑

h=1

(
k

h

) 3hhxh−1
i j

1 + 8θh/3
, and

Bi j (x, θ) = ∂ fk

∂θ
(xi j , θ) = 2(m − k + 1)

1

4k

k∑

h=1

(
k

h

) 3h xh
i j8h/3

(1 + 8θh/3)2
.

The Jacobian matrix of ξT is:

d(a,θ)ξT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2 a1 0 0 0 0
a3a5 0 a1a5 0 a1a3 0
a4a5 0 0 a1a5 a1a4 0

0 a3a5 a2a5 0 a2a3 0
0 a4a5 0 a2a5 a2a4 0
0 0 a4 a3 0 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

If we use block notation to express matrices (4) and (5) as [D B] and
[

E 0
0 1

]

(where D

is 6×6, B is 6×1, and E is 6×5), then the Jacobian determinant of Fk,T ◦ξT : R6 → R
6

is
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det(d(a,θ)(Fk,T ◦ ξT )) = det(dξT (a,θ)Fk,T · d(a,θ)ξT )

= det

(

[D B] ·
[

E 0
0 1

])

= det ([DE B])

=4D12

(

a1a2
2a3a2

4a2
5 B13D14D23D24

− a1a2
2a2

3a4a2
5 D13B14D23D24

− a2
1a2a3a2

4a2
5 D13D14B23D24

+ a2
1a2a2

3a4a2
5 D13D14D23B24

)

D34.

To prove that det(d(a,θ)(Fk,T ◦ ξT )) is not the zero function, it suffices to collect
terms and show that there is a nonzero term in this expression. Here, we think of
det(d(a,θ)(Fk,T ◦ ξT )) as an element of the ring R(θ)[a1, a2, a3, a4, a5]. Ignoring the
common factor of 4D12D34a1a2a3a4a2

5 , we need to show that

a2a4B13D14D23D24 − a2a3D13B14D23D24 − a1a4D13D14B23D24

+ a1a3D13D14D23B24

is not the zero polynomial. Expanding this as an element of R(θ)[a1, a2, a3, a4, a5],
and ignoring the common factor of

(
2(m − k + 1) 1

4k

)4
, we see that the lowest order

term in the lexicographic order with a1 > a2 > a3 > a4 > a5 when k ≥ 2 is

−a1a2
2a3a2

4a2
5

648k4(k − 1)

(1 + 8θ/3)3(1 + 16θ/3)2
.

The coefficient of this monomial is a nonzero function of θ , so for k > 1 the Jacobian
determinant of Fk,T ◦ ξT is nonzero generically, and thus d(a,θ)Fk,T ◦ ξT has full
column rank. By Lemma 3.2, the map φk,T = Fk,T ◦ ξT is generically finite-to-one
on R6. Therefore, φk,T is generically finite-to-one on 	T = (0, 1]5 × R>0. �

The preceding theorem shows that φk,T is generically finite-to-one for n = 4 leaf
trees. This easily extends to arbitrary trees with n ≥ 4 leaves.

Corollary 3.4 For k > 1 and n ≥ 4, the map φk,T : R
2n−2 → R

n(n−1)/2

is generically finite-to-one. In particular, it is generically finite-to-one on 	T =
(0, 1]2n−3 × R>0.

Proof We argue by induction. Suppose that φk,S is generically finite-to-one for every
n − 1-leaf subtree S of T . Let i be a leaf from a cherry of T , and let j be a leaf which
does not form a cherry with i . Then, every metric of T in the fiber Fφk,T (a, θ) =
φ−1

k,T (φk,T (a, θ)) is determined by its induced metrics on the subtrees T \i and T \ j .
(Here, we use T \i to denote the binary phylogenetic tree obtained by deleting leaf
vertex i , and then suppressing the remaining vertex of the edge incident to i .) Since
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φk,T \i and φk,T \ j are finite-to-one generically, φk,T is finite-to-one generically. The
result follows by induction, starting from the 4-leaf subtrees Q of T , for which φk,Q

is finite-to-one generically by Theorem 3.3. �
Note that for a 4 leaf tree with k = 1 the Jacobian determinant is just zero, and so

the model is not locally identifiable in this case. In fact, for monomers, and any tree,
the model φ1,T is never identifiable. This can be seen from the special form of the
function f1 which is

f1(x, θ) = 2m

(

1 − 1

4

(

1 + 9x

3 + 8θ

))

.

From this, we see that for a given vector (ae : e ∈ E(T ), θ) and a given θ0, if we can

replace all leaf edge parameters with be =
√
3+8θ0√
3+8θ

ae, and make be = ae for internal
edges, then

φ1,T (a, θ) = φ1,T (b, θ0).

In particular, this shows that the dimension of the image of φ1,T is strictly less than
2n − 2, so the parameters could not be locally identifiable.

The following example shows that φk,T it is not one-to-one generically on 	T for
k = 2 and n = 4.

Example 3.5 This example shows that for k = 2, n = 4 the numerical parameters are
not generically identifiability. Let T = 12|34. Then φ2,T (a1, θ1) = φ2,T (a2, θ2) for
the following values of (a1, θ1) and (a2, θ2):

(a1, θ1) = (a1,1, a1,2, a1,3, a1,4, a1,5, θ1)

≈ (0.7199, 0.6687, 0.9623, 0.9950, 0.9907, 0.9146)

(a2, θ2) = (a2,1, a2,2, a2,3, a2,4, a2,5, θ2)

≈ (0.5624, 0.5202, 0.7642, 0.7916, 0.9902, 0.3400)

By direct computation, the Jacobian has full rank at (a1, θ1) and (a2, θ2). By the
Implicit Function Theorem, in a union of small open neighborhoods of (a1, θ1) and
(a2, θ2), φ2,T will be 2-to-1. This shows that the numerical parameters are not gener-
ically identifiable in this case.

4 Identifiability of the Tree Topology

In this section, we provide a proof of the generic identifiability of the unrooted tree
topology from Jukes–Cantor k-mers distances for all binary trees with n ≥ 5 leaves.
The proof is based on applying some ideas from algebraic statistics together with tools
from combinatorial phylogenetics.

To discuss identifiability of the tree parameter, we need to work explicitly with the
image of φk,T , that is, the set of pairwise k-mer distances that are compatible with our
model assumption and the underlying tree topology T . We denote this set Mk,T .
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Definition 4.1 The tree parameter of the multispecies coalescent model is generically
identifiable from k-mer distances on trees with n leaves if for all (unrooted) binary
trees T, T ′ on n leaves with T �= T ′, we have

dim(Mk,T ∩ Mk,T ′) < min(dim(Mk,T ), dim(Mk,T ′)).

An interpretation of the definition is that if we sample a point p ∈ ∪TMk,T , then
with probability one, there is a unique binary tree T such that p ∈ Mk,T . So, generic
identifiability of the tree topology means that with probability one, if we have a point
p that came from some tree and some choice of continuous parameters, we can tell
which tree it came from. One approach to prove the dimension inequality is by using
the vanishing ideals of the setsMk,T .

Definition 4.2 Let S ⊆ R
d and let R[p1, . . . , pd ] be the polynomial ring in indeter-

minates p1, . . . , pd with real coefficients. The vanishing ideal of S is the set

I (S) = { f ∈ R[p1, . . . , pd ] : f (a) = 0 for all a ∈ S}.

For example, if S = {(t, t2) ∈ R
2 : t ∈ R}, then I (S) = 〈p21 − p2〉 ⊆ R[p1, p2].

The polynomial p21 − p2 is called a generator of the ideal I (S). We refer the reader to
Cox et al. (2015) for more background on the necessary algebra, and (Allman et al.
2011) for an example of how this approach is used in studying the identifiability under
the coalescent model in other contexts.

In our case, we will look at the vanishing ideals of the sets Mk,T ⊆ R
n(n−1)/2

and so the appropriate polynomial ring is R[pi j : 1 ≤ i < j ≤ n]. The following
proposition is the key general result about vanishing ideals that is often used to prove
identifiability.

Proposition 4.3 Suppose that S1 and S2 ⊆ R
d are two parameterized sets such that

there are nonzero polynomials f1 ∈ I (S1) \ I (S2) and f2 ∈ I (S2) \ I (S1). Then

dim(S1 ∩ S2) < min(dim S1, dim S2).

When the trees have 4 leaves, the model has 6 parameters and there are
(4
2

)
pairwise

distances. Since the numerical parameters are generically locally identifiable in this
case when k ≥ 2, the vanishing ideals will all be the zero ideals. This suggests that the
tree parameters might not be generically identifiable when n = 4 and k ≥ 2, though
we have not been able to find specific parameter values realizing this. On the other
hand, when k = 1 and n = 4, the numerical parameters are not identifiable and the
tree parameters are identifiable.

Proposition 4.4 Let k = 1 and n = 4, and T and 4-leaf binary tree. Then, the
vanishing ideal of I (M1,T ) is a principal ideal, and the generator can be used to
distinguish between the different trees.
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Proof Fix the specific tree T = 12|34. The parameterization in the k = 1 case has
the following form:

p12 = 2m

(

1 − 1

4

(

1 + a1a2
9

3 + 8θ

))

p13 = 2m

(

1 − 1

4

(

1 + a1a3a5
9

3 + 8θ

))

p14 = 2m

(

1 − 1

4

(

1 + a1a4a5
9

3 + 8θ

))

p23 = 2m

(

1 − 1

4

(

1 + a2a3a5
9

3 + 8θ

))

p24 = 2m

(

1 − 1

4

(

1 + a2a4a5
9

3 + 8θ

))

p34 = 2m

(

1 − 1

4

(

1 + a3a4
9

3 + 8θ

))

.

These expressions satisfy the single relation:

(

p13 − 3m

2

) (

p24 − 3m

2

)

−
(

p14 − 3m

2

)(

p23 − 3m

2

)

.

As the indeterminates that appear in this equation are different from the ones that occur
in the analogous equation for one of the other trees on 4 leaves, this shows that we can
apply Proposition 4.3 to deduce that the tree parameters are generically identifiable in
this case. �

Now, we show the analogous result for n = 5 leaf trees and for k ≥ 2.

Proposition 4.5 Let k ≥ 2 and consider the five leaf tree T with nontrivial splits
12|345 and 123|45. Then, none of the generators of the vanishing ideal I (Mk,T )

involve the indeterminates p12 and p45. Furthermore, there are generators of I (Mk,T )

that involve the other indeterminates of R[p] in a nontrivial way.

Proof First of all, let us make sense of the statement that “none of the generators
of the vanishing ideal I (Mk,T ) involve the indeterminates p12 and p45”. This is
equivalent to saying that if (p12, p13, . . . , p35, p45) is a generic point in Mk,T then
so is (p12 + ε1, p13, . . . , p35, p45 + ε2) for small ε1 and ε2.

First, we consider a simplified version of the parameterization where

x12 = a1a2, x13 = a1a3a6, x14 = a1a4a6a7, x15 = a1a5a6a7,

x23 = a2a3a6, x24 = a2a4a6a7, x25 = a2a5a6a7, x34 = a3a4a7, x35
= a3a5a7, x45 = a4a5.
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This is the parameterization of a certain toric ideal associated with initial ideals of the
Grassmannian (Speyer and Sturmfels 2004), and it is known that the vanishing ideal
is generated by the following polynomials:

x13x24 − x14x23, x13x25 − x15x23, x14x25 − x15x24, x15x34
− x14x25, x25x34 − x24x35.

It is directly seen that none of these polynomials involve either of the variables x12 or
x45; in particular, these coordinates can be moved freely while staying in the variety
defined by these equations. Let I be the ideal defined by these equations andMT the
resulting image of the parameterization for all ai parameters in (0, 1].

Now, our model Mk,T is obtained from MT by applying the function

fk(y, θ) = 2(m − k + 1)

(

1 − 1

4k

k∑

h=0

(
k

h

)

yh 3h+1

3 + 8θh

)

simultaneously to each coordinate while letting θ range over (0,∞). Since fk(y, θ)

is not the zero function and depends nontrivially on y, we can see that if we want to
make a small perturbation to the value p12 = fk(x12, θ), without changing any of the
other pi j values, we can do this by perturbing x12 and leaving all the other xi j ’s fixed.
This is possible because no ideal generators of I involved the variables x12. A similar
argument holds with respect to the coordinate p45 which proves the first part of the
proposition.

To see that there are equations in I (Mk,T ) that do involve all the other variables,
we make two observations. First, the natural symmetry group of the tree T , translates
into symmetries of the ideal I (Mk,T ). In particular, the variables fall into 3 orbits
under this symmetry group {p12, p45}, {p14, p15, p24, p25}, and {p13, p23, p34, p35}.
The set Mk,T has dimension 8, by local identifiability of parameters when k ≥ 2.
There cannot be any equation involving only the variables {p14, p15, p24, p25}, since
such equations would already by implied when looking at 4 leaf trees (since only 4
indices are involved) and we know there are no such relations. There also cannot be
any relations involving only the variables {p13, p23, p34, p35}, because if there were,
we could also find such a relation in the ideal I associated with the parameterization
in the xi j . But there is clearly no such equation. Since Mk,T has dimension 8, there
must exist some equation, any such equation must involve some variables from the set
{p14, p15, p24, p25} and some from the set {p13, p23, p34, p35}. Then, taking the orbit
of such an equation and adding the equations together (with some random coefficients
if necessary) will produce an equation in I (Mk,T ) involving all of the variables except
p12 and p45, as desired. �
Theorem 4.6 For k = 1, the tree parameter of the 1-mer multispecies Jukes–Cantor
coalescent model is identifiable for all trees on n ≥ 4 leaves. For k ≥ 2, the tree
parameter of the k-mer multispecies Jukes–Cantor coalescent model is identifiable
for all trees on n ≥ 5 leaves.
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Proof For k = 1, Proposition 4.4 shows that we can distinguish between 4 leaf trees
using the invariants. Then, we use the basic fact that if we know the subtrees on all
4-leaf subsets, we can recover the underlying tree (that is, the quartets in the tree
determine the tree, see, e.g., Semple and Steel 2003).

For k ≥ 2, Proposition 4.5 shows that we can distinguish between 5 leaf trees using
the invariants of the tree. Indeed, for each 5 leaf tree T there will be a distinct set of
pair of variables which are the ones that do not appear in any generator of I (Mk,T ).
This guarantees that for any T , T ′ that are different 5 leaf trees that there are nontrivial
polynomials in I (Mk,T )\ I (Mk,T ′), guaranteeing identifiability of the tree parameter
from Proposition 4.3. Once 5 leaf trees are identified, this tells us all 4 leaf subtrees in
our underlying tree, which identifies the tree for an arbitrary number of leaves ≥ 5. �

An anonymous referee suggested that an alternate approach to proving a variation
on Theorem 4.6 is to connect 1-mer frequency correlations to the p-distance between
aligned sequences, and then use the results of Dasarathy et al. (2015).

5 Identifiability from Combinations of k-mer Distances

In previous sections, we studied the identifiability of parameters from the expected
k-mer distances assembled for multiple pairs of taxa. Here, we consider a single pair
of taxa, and we instead assemble expected k-mer distances for two distinct values of
k, which we denote k and l. In this section, we show that numerical parameters are
identifiable in this context for any set of two or more taxa, when the data consist of
both pairwise k-mer distances and pairwise l-mer distances for l �= k.

Theorem 5.1 Let 1 ≤ k < l and let φ : (0, 1] × R>0 → R
2 be the map given by

φ(x, θ) = ( fk(x, θ), fl(x, θ)), where fk is defined by Eq. 2. Then, φ is one-to-one.

Proof To simplify notation, we reparameterize fk of Eq. 2 as follows: Let y = 3x ,
ξ = 8θ/3, and define

gk(y, ξ) = 1 − 1

4k

k∑

h=0

(
k

h

)
yh

1 + ξh
.

Then, gk(y, ξ) = fk(x, θ). We consider the map ψ : R>0 × R>0 → R
2 defined by

ψ(y, ξ) = (gk(y, ξ), gl(y, ξ)). It suffices to show that ψ is one-to-one.
ByTheorem 7 ofGale andNikaido (1965), a function F : � → R

2 is one-to-one on
a rectangular region � if its partial derivatives are continuous and no principal minors
of its Jacobian vanish. The partial derivatives of ψ are continuous on the positive
orthant, by the following formulas:

∂gk

∂ξ
=

k∑

h=1

(
k

h

)
hyh

(1 + ξh)2

∂gk

∂y
= −

k∑

h=1

(
k

h

)
hyh−1

1 + ξh
.
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Thus, to show that ψ is one-to-one, it suffices to show that the principal minors of
the Jacobian matrix of ψ do not vanish on the positive orthant. This is clear for the
1×1 minors, so it suffices to show that the Jacobian determinant ofψ does not vanish.

det(dψ)(y, ξ) =∂gk

∂y

∂gl

∂ξ
− ∂gl

∂y

∂gk

∂ξ
= −∂gl

∂y

∂gk

∂ξ
+ ∂gk

∂y

∂gl

∂ξ

=
k∑

h=1

(
k

h

)
hyh

(1 + ξh)2

l∑

i=1

(
l

i

)
iyi−1

1 + ξ i

−
k∑

h=1

(
k

h

)
hyh−1

1 + ξh

l∑

i=1

(
l

i

)
iyi

(1 + ξ i)2

=
k∑

h=1

l∑

i=1

(
k

h

)(
l

i

)
hyh

(1 + ξh)2

iyi−1

1 + ξ i
− hyh−1

1 + ξh

iyi

(1 + ξ i)2

=
k∑

h=1

l∑

i=1

(
k

h

)(
l

i

)
(1 + ξ i) − (1 + ξh)

(1 + ξh)2(1 + ξ i)2
hiyi+h−1

=
k∑

h=1

l∑

i=1

(
k

h

)(
l

i

)
ξhi(i − h)

(1 + ξh)2(1 + ξ i)2
yi+h−1.

Let

ahi =
(

k

h

)(
l

i

)
ξhi(i − h)

(1 + ξh)2(1 + ξ i)2
.

Then, the coefficient of ym in det(dψ) is:

[ym] det(dψ) =
∑

i+h−1=m

ahi . (6)

To show that det(dψ) does not vanish on the positive orthant, it suffices to show
that the above sum is positive for all m and for all ξ > 0. To see this, we view the ahi

as the entries of a matrix (ahi )(h,i)∈[k]×[l]. For fixed m, any term ahi which appears in
(6), lies along the “cross-diagonal” h + i − 1 = m of A. The signs of the entries of
this matrix are

(sign(ahi ))(h,i)∈[k]×[l] =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 + + + + + · · · +
− 0 + + + + · · · +
− − 0 + + + · · · +
...

. . .
...

− − · · · − 0 + · · · +

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

From the pattern of signs, we see that if ahi is negative, then h > i . Since l > k, the
term aih is also a term in (6), and it is positive. Thus, it suffices to show that aih > −ahi

for h > i . By simple algebra, this is equivalent to the following inequality:
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(
k

i

)(
l

h

)

−
(

k

h

)(
l

i

)

> 0 for h > i.

This can be verified by expanding the binomial coefficients:
(

k

i

)(
l

h

)

−
(

k

h

)(
l

i

)

= k!
i !(k − i)!

l!
h!(l − h)! − k!

h!(k − h)!
l!

i !(l − i)!
= 1

i !h!
(

k!
(k − i)!

l!
(l − h)! − k!

(k − h)!
l!

(l − i)!
)

= 1

i !h! ((k)i (l)h − (k)h(l)i )

= (l)i (k)i

i !h! ((l − i)h−i − (k − i)h−i ) > 0

Thus, all principal minors of the Jacobian dψ are non-vanishing on the positive
orthant. Therefore, ψ is injective on the positive orthant by Theorem 7 of Gale and
Nikaido (1965). Thus, φ is injective. �
Corollary 5.2 Let k �= l be positive integers. Let T be an unrooted tree with n ≥ 2
leaves and m edges. The map φk,l,T : (0, 1]m × R>0 → R

n(n−1) with

φk,l,T (a, θ) = (φk,T (a, θ), φl,T (a, θ))

is one-to-one. In particular, the numerical parameters of the model a, θ are identifiable
given k-mer and l-mer distances between all pairs of taxa.

Proof From Theorem 5.1, we know that we can recover all the products xi j =∏
e∈P(i, j) ae for each pair of taxa i, j from the k-mer and l-mer vectors. Since none

of the ae are zero, none of the xi j are zero either. Taking logarithms, we have:

− log xi j = −
∑

e∈P(i, j)

log ae = 4

3

∑

e∈P(i, j)

we,

so the matrix of− log xi j is an additive tree distance. The branch lengths in an additive
tree can be recovered from the pairwise distances. �

6 Discussion

The expected k-mer distance derived here provides the basis for a statistically consis-
tent k-mer-based method which generalizes the method devised by Allman, Rhodes,
and the second author. This generalization extends the k-mer method to the case in
which sequence blocks correspond to genes, whose gene trees are modeling by the
coalescent. We have derived our results under a relatively simple setting where there is
a global unknown effective population size N that we use over the entire tree, and we
work with the Jukes–Cantor substitution model. It would be natural to try to extend
these results to more general settings with a more general substitution model and
allowing the effective population size to vary over branches of the species tree.
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Our identifiability resultsmake a first suggestion for an algorithm for reconstructing
the species tree based on k-mer distances from multiple genes. Namely, using the
results in Sect. 5, for distinct positive integers k and l, k-mer and l-mer frequency
distributions can be used to estimate the species divergence time between each pair of
taxa. These pairwise distances can be used in a distance-based method like Neighbor-
Joining to reconstruct an evolutionary tree. It remains to be seen how this methodology
will perform against other methods for reconstructing species trees. Our identifiability
results are the first step in showing that methods based on k-mers can be derived for
these problems.
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