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Abstract Spatio-temporal models have long been used to describe biological systems
of cancer, but it has not been until very recently that increased attention has been paid
to structural dynamics of the interaction between cancer populations and themolecular
mechanisms associated with local invasion. One system that is of particular interest is
that of the urokinase plasminogen activator (uPA) wherein uPA binds uPA receptors
on the cancer cell surface, allowing plasminogen to be cleaved into plasmin, which
degrades the extracellular matrix and this way leads to enhanced cancer cell migration.
In this paper, we develop a novel numerical approach and associated analysis for
spatio-structuro-temporal modelling of the uPA system for up to two-spatial and two-
structural dimensions. This is accompanied by analytical exploration of the numerical
techniques used in simulating this system, with special consideration being given to
the proof of stability within numerical regimes encapsulating a central differences
approach to approximating numerical gradients. The stability analysis performed here
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reveals instabilities induced by the coupling of the structural binding and proliferative
processes. The numerical results expound how the uPA system aids the tumour in
invading the local stroma,whilst the inhibitor to this systemmay impede this behaviour
and encourage a more sporadic pattern of invasion.

Keywords Cancer invasion · Structured cell population dynamics · Computational
modelling

Mathematics Subject Classification 22E46 · 53C35 · 57S20

1 Introduction

Over the past three decades or so, the processes involved in cancer growth and spread
received significant mathematical attention through novel and increasingly sophis-
ticated modelling approaches (Prigogine and Lefever 1980; Meinzer and Sandblad
1985; Murray and Oster 1984; Anderson et al. 2000; Galle et al. 2009), leading to a
deeper understanding of key cancer development aspects with potential therapeutic
importance (Dufau et al. 2012; Benzekry et al. 2014).

While being sometimes regarded as a paradigm of local tissue remodelling, cancer
invasion is a crucially important process in the overall cancer development where
complex heterotypic cell population processes combined with a cascade of molecular
signalling mechanisms lead to the degradation the healthy tissue and its concomitant
repopulation bymigratory cancer cells (Danø andRømer 1999;Hanahan andWeinberg
2011). This attracted a wide range of spatio-temporal modelling at either one spatial
scale (Anderson et al. 2000; Gatenby and Gawlinski 1996; Anderson and Chaplain
1998; Chaplain et al. 2001; Chaplain and Lolas 2005) or in a multiscale approach
(Trucu et al. 2013; Peng et al. 2017). It became increasingly apparent, however, that
the context of macro-scale spatio-temporal modelling was not sufficient to take into
account the intricate behaviour of cancer cell processes. To that end, with insights
from important concepts in structural modelling of biological systems (considering
age, size, etc.) (Diekmann et al. 1984; Kunisch et al. 1985; Metz and Diekmann 1986;
Clayton and Schifflers 1987; Diekmann and Metz 1994; Basse and Ubezio 2007), the
various spatio-temporal modelling approaches for cancer invasion have been recently
complemented by structural models (Chapman et al. 2007; Domschke et al. 2017),
which enable a more detailed description of the involved biological processes by
implicitly accounting for a certain extent of single cell-dynamics.

One biological system, important in cancer invasion, that has received increased
attention in recent years has been termed the urokinase plasminogen activator (uPA)
system (Peng et al. 2017; Smith and Marshall 2010; Persson et al. 2012). The uPA
protein has long been noted as a marker of various cancer types, such as colorectal,
gastric, oesophageal, lung, cervical, ovarian, renal, pancreatic, and hepatocellular, with
its greatest prognostic evidence being derived from strains of breast cancer (Duffy
et al. 1999). The reduction in uPA expression in peritumoural tissue also causes this
protein to be of great clinical significance, such that expression remains localised to
the cancerous tissue (Bhuvarahamurthy et al. 2005; Li and Cozzi 2007).
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Urokinase plasminogen activator receptor (uPAR) is a protein anchored to the cell
surface and, boundwith high affinity to uPA (Sugioka et al. 2013), aids the degradation
of the extracellular matrix (ECM) (Kondraganti et al. 2006; Liang et al. 2008). X-
ray analysis of the uPA–uPAR complex has revealed that uPA binds its receptor on a
subsurface encapsulated by all three of its major interactive domains (Huai et al. 2006;
Barinka et al. 2006). Neither uPAR nor unbound uPA is intrinsically active within
the human tissue due to their folding being unfavourable to binding plasminogen,
until formation of the uPA–uPAR complex (Ellis and Danø 1993). Regardless of the
biological paradigm, however, uPA retains its high specificity for plasminogen (Rijken
1995).

Further to this, the binding structure of these proteins allows the binding regions
of the uPAR protein to become available for plasminogen protein interactions. The
ability of the cell to advantageously manipulate its environment and achieve local
dominance is further altered by this chemical adaptation. This process is mediated
through changes to cellular capabilities when bound to activated uPA–uPAR com-
plexes, enabling greater survival, adhesion, and migration (Binder et al. 2007). It has
been shown that even modest increases in the presence of this surface bound com-
plex are sufficient to greatly increase the prolific and proteolytic activities of invasive
tumour cells (Stillfried et al. 2007). Moreover, bound uPA is susceptible to being fur-
ther bound by the class of inhibitory proteins referred to as uPA inhibitor-1 (PAI-1).

The cancer invasive process is further augmented through integrin-mediated sig-
nalling pathways utilised by the uPA–uPAR complex (Khanna et al. 2011). Perhaps
most significant is the activation of the protein class known as α5β1 integrin, which
actively recruits the epidermal growth factor receptor (EGFR), an upstream signalling
protein whose presence has been an indicator for high levels of extracellular signal-
regulated kinases (ERKs) (Liu et al. 2002). As an essential upregulator of mitotic
activity in cancerous cells, ERKs enhance the proteolytic dynamics of the cancer cell
population (Chaurasia et al. 2006).

Furthermore, the complex formed between uPA and uPAR also increases the avidity
of uPAR for vitronectin, an important protein for cell-ECM adhesion (Waltz et al.
1997). Vitronectin is a protein found primarily within plasma or deposited within the
ECM, where it weakly binds the intra-matrix vitronectin receptor (Wei et al. 1994).
The unbound receptor, uPAR, will further selectively bind vitronectin and increase
cellular adhesion to the ECM (Waltz and Chapman 1994), whereas bound uPAR is
an exceptionally high affinity receptor for vitronectin (Wei et al. 1994; Waltz and
Chapman 1994).

Cancer cell migration is enhanced through the downstream synthesis of matrix
metalloproteinases (MMPs), after the activation of conformal pro-MMP proteins by
locally activated plasminogen, which degrade the ECM and enable local tumour inva-
sion (Danø and Rømer 1999). The growth of the tumour, however, then activates
a negative feedback loop through the downstream upregulation of PAI-1 synthesis
(Godár et al. 1999; Leksa et al. 2002).

There is significant evidence that proteolytic enzymes (which degrade the collagen
of the ECM) can be activated by an increased presence of activated plasminogen
(Madsen et al. 2007; Danø et al. 1985). Primarily, the function of uPA is the conversion
of plasminogen to plasmin; known to be a key regulator of these proteolytic proteins
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(Danø et al. 1985). In this context, matrix metalloproteinase 2 (MMP2) is a major
target for plasmin, causing increased degradation of the ECM and incorporation of the
degraded collagen into localised plaques (Peng et al. 2006; Madsen et al. 2007).

Finally, a specifically prolific feature of the the uPA–uPAR complex (in relation to
its environment) is that in its active conversion of plasminogen to plasmin it encour-
ages the production of the proenzyme single-chain urokinase plasminogen activator
(scuPA). This scuPA protein is the precursor of uPA and therefore closes a positive
feedback loop which is integral to the success of cancer cells in their invasive pur-
suit (Binder et al. 2007). Plasmin is also capable of activating scuPA by cleaving a
bond named Lys158 (Rijken 1995), contributing to the feedback mechanism. There
is mounting evidence that the majority of these feedback mechanisms are localised to
the tumour’s invading edge (Waltz et al. 1997; Danø and Rømer 1999).

Based upon the biological evidence discussed so far, it is therefore crucially impor-
tant to account for the molecular binding of the uPA components in modelling cancer
dynamics. To that end, the general modelling approach introduced in Domschke et al.
(2017),where a novel spatio-temporal-structuralmodelwas derived for a general tissue
dynamics involving cells, ECM, and several accompanying populations of potentially
membrane binding molecules, therefore offers an appropriate framework.

The model proposed by Domschke et al. (2017) is a recent advancement within
the well established area of a structured population modelling, uniquely utilising the
structural dynamics to describe spatio-chemical-temporal processes in the tumour cell
population. With a history stretching over almost six decades, however, structured
population models address a whole range of research challenges arising across many
biomedical and ecological areas, including epidemiology, collective movement either
within cell population (such as those in cancer invasion or embryogenesis) or within
social crowd dynamics. Varying in scope and purpose, these range from temporal–
structural approaches (where space is ignored, and time is coupled for instance with
“age” or “size” structure) (Trucco 1965a, b; Sinko and Streifer 1967; Gyllenberg 1982;
Diekmann et al. 1984; Kunisch et al. 1985; Gyllenberg 1986; Gyllenberg and Webb
1987; Tucker and Zimmerman 1988; Diekmann et al. 1992; Diekmann and Metz
1994; Huyer 1994; Calsina and Saldaña 1995; de Roos 1997; Cushing 1998; Basse
and Ubezio 2007; Chapman et al. 2007), to spatio-structural models (where time
is ignored) (Gurtin and MacCamy 1981; MacCamy 1981; Diekmann and Temme
1982; Garroni and Langlais 1982; Huang 1994; Rhandi 1998; Langlais 1988; Langlais
and Milner 2003; Ayati 2006; Delgado et al. 2006; Allen 2009), and finally to more
complex approaches that couple time, space, and structure (Di Blasio 1979; Busenberg
and Iannelli 1983; Langlais 1988; Fitzgibbon et al. 1995; So et al. 2001; Al-Omari
and Gourley 2002; Cusulin et al. 2005; Deng and Hallam 2006; Domschke et al.
2017; Trucu et al. 2017). Specifically, important examples of structured approaches in
cancer modelling include size-structured models (Gyilenberg andWebb 1990) (which
account for cell size in order to understand cell cycle dynamics), age-structuredmodels
(Bertuzzi et al. 2004;Dyson andWebb2000a, b) (which account for the age distribution
of the population), as well as more specific models taking into account various other
aspects such as RNA content (Kimmel et al. 1984), mutational state (Delitala and
Lorenzi 2012; Lorz et al. 2013; Delitala et al. 2015), popular altruism (Hsieh 1991)
and more. For a more extensive introduction to and analysis of these structured cancer
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development models, one may refer to the review papers by Bellomo and Preziosi
(2000), Bellomo et al. (2008) as well as to a number of relevant books on this topic
(Adam and Bellomo 1996; Cushing 1998; Perthame 2007; Magal and Ruan 2008).

Thus, adopting here the notations from Domschke et al. (2017), in this paper we
propose appropriate computational approaches and resulting simulation alongside
associated analysis to explore the spatio-temporal-structural modelling of a cancerous
tissue consisting of:

– a structured cancer cell density c(t, x, y), with (t, x, y) ∈ I × D × P , where
I := [0, T ] is a time interval, D ∈ R

d , d = 1, 2, is the spatial tumour domain,
and P ⊂ R

p is a cone of appropriate dimension p ≤ 2 representing the set of all
admissible membrane binding structures for the uPA system;

– ECM density v(t, x), with (t, x) ∈ I × D;
– q ≤ 3 components of the uPA system (uPA, PAI-1, and plasmin), which are
appropriately grouped in binding and unbinding classes of molecular species
represented here by mb := [mb,1(t, x), . . . ,mb,p(t, x)]T ∈ R

p and m f :=
[m f,1(t, x), . . . ,m f,q−p(t, x)]T ∈ R

q−p, respectively.

2 Structured Model for Cancer Modelling Exploring the uPA Binding
Dynamics

Using the theoretical framework derived in Domschke et al. (2017), we explore the
dynamics of a cancerous tissue of the resulting spatio-temporal-structural uPA mod-
elling system, which we briefly describe here as follows. Per unit time, under the
presence of a cell proliferation law, we generally assume that the spatial dynamics
of the cancer cell population is dictated by diffusion, chemotaxis, haptotaxis, and
cell-adhesion. The molecular binding and unbinding of the uPA components (uPA or
PAI-1) are accounted for in this framework (Domschke et al. 2017) in terms of an
appropriately derived structural cone P (detailed on specific cases in the following
sections), and the resulting dynamics leads not only to a spatio-temporal migration
but also to a structural evolution of the cancer population c(t, x, y). The influence
of cell-adhesion over the spatial dynamics at x is considered here in non-structured
fashion and, similar to other previous approaches (Domschke et al. 2014; Gerisch and
Chaplain 2008), this is captured via a non-local term that represents the cell-cell and
cell matrix adhesion interactions within a sensing region of radius R. This non-local
term is of the form

A(t, x, y,u(t, ·)) = 1
R

∫

B(0,R)

n(x̃)K(‖ x̃ ‖2)g(t, y,u(t, x + x̃))χD(x + x̃) dx̃ (1)

where, for any x̃ ∈ B(0, R), n(x̃) represents the unit vector pointing from x to x + x̃ ,
K(·) is a smooth spatial kernel, and the adhesion function g(t, y,u(t, x+ x̃)) accounts
for the cell-cell and cell-matrix adhesion strengths Scc and Scv , respectively, this being
given by

g(t, y,u) =
[

Scc(t)
∫

P
c dy + Scv(t)v

]

· (1 − ρ(u))+, (2)
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with the convenient vector notation

u(t, x) :=
[ ∫

P
c(t, x, y)dy, v(t, x)

]T

and (·)+ := max{0, ·}. Furthermore, as the ECM density v(t, x) is only diminished
and remodelled by the cancer cells and that the unbound (free) part of the considered
components of the uPA system that are produced by the cancer cells are only diffusing
in the tumour domain, the structured system that is obtained via the general modelling
framework from Domschke et al. (2017) is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c
∂t = ∇x ·

[

Dc∇xc − c(1 − ρ(u))

( q∑

k=1
ξk∇xmk + ξv∇xv

)

+ cA
]

−∇y · [(b(y,m) − d(y))c]
+2p+1φ(2y, c, v)c(t, x, 2y) − φ(y, c, v)c(t, x, y)

∂v
∂t = −γ T

v rv + ψv(t,u)
∂m
∂t = ∇x · [Dm∇xm] − ∫

P

(
b̂(y,m) − d̂(y)

)
εc(t, x, y) dy

+ψm(u, r) − diag (γm)m,

(3)

where the bold vector notations are used here to represent

– The molecular population of unbound (free) part of the considered components of
uPA system via m := [mT

b ,mT
f ]T;

– The total molecular population (both bound and unbound part) of the considered

components of uPA system via r :=
[ ∫

P
yεc(t, x, y) dy, m(t, x)

]T
,

and ε stands for the ratio between cell surface density and cancer cell density. Fur-
thermore, to simplify the context, the cell cancer proliferation law φ(y, c, v) is chosen
here to be of a non-structured logistic form, namely

φ(y,u) = μc(1 − ρ(u)) (4)

where ρ(u) quantifies the space occupied by the ECM and total cancer cell density

C(t, x) :=
∫

P
c(t, x, y) dy, (5)

and is defined by
ρ(u(t, x)) := vcC(t, x) + vvv(t, x) (6)

with vc and vv denoting the volume fraction for c and v at the same spatio-temporal
point (t, x), respectively. Moreover, the ECM remodelling termψv(t,u) assumes here
the volume filling form

ψv(t,u) := μv(1 − ρ(u))+. (7)
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Finally, for the uPA binding components given by mb := [mb,1, . . . ,mb,p]T, the
cell surface binding and unbinding rates are represented here by b(y,m) and d(y),
respectively. Therefore, since for the free componentsm f we do not have any binding
or unbinding, to unify the notation, we use here the extended binding and unbinding
rates vectors b̂(y,m) and d̂(y) in Rq given by

b̂(y,m) := [(b(y,m))T, 0, . . . , 0]T and d̂(y) := [(d(y))T, 0, . . . , 0]T.

The molecular sourceψm is assumed to depend here only on u and the total molecular
population r while the constant vector γm ∈ R

q represents the natural degradation
rate of m.

2.1 The Dynamics of uPA System with and Without PAI-1

Assuming that a total amount M of uPAR receptors is uniformly distributed on the
surface of each cancer cell, in the following we explore the form and dynamics of the
spatio-temporal-structural system (3) when considering uPA binding and unbinding
to uPAR both in the presence and in the absence of binding PAI-1 inhibitor molecules.
These will result in different structural dimensionalities that will be addressed below
as appropriate.

2.1.1 uPA System in the Absence of PAI-1

The first case that we consider here accounts only for the uPA binding and unbinding
molecules while ignoring the presence of PAI-1. In this context, the total number of
considered uPA system components is q = 2 and consists of

– A binding molecular species (i.e., uPA) represented by mb(t, x):= mb,1(t, x);
– A free molecular species (i.e., plasmin) represented by m f (t, x):= m f,1(t, x).

The amount of those uPA molecules among mb,1(t, x) that are exercising binding
to the available uPAR receptors is denoted here with y and represents the binding
structure of the cancer cell population distributed at the spatio-temporal node (x, t).
Thus, under the assumption of a certain level of membrane binding saturation, after
eventual normalisation, the collection of all the binding structures P is given here by
the interval [0, 1], so the dimension of P is in this case p = 1. Furthermore, after a
brief calculation (Domschke et al. 2017), the uPA binding rate b(y,m) is given by

b(y,m) = (1 − y)mb,1, (8)

while the uPA unbinding rate d(y) has a form

d(y) = dmb,1 y. (9)

Furthermore, assuming that the unbound uPA is produced by the cancer cells C(t, x)
at the rate αmb,1 and that plasmin is produced only by those cells which are bound by
uPA at a rate αm f,1 , the molecular source term ψm(C, r) is given here by
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ψm(C, r) =
[

αmb,1C
αm f,1

∫

P
yεc(t, x, y) dy

]

. (10)

2.1.2 uPA System in the Presence of PAI-1

Building on the first modelling case assumed in Sect. 2.1.1, we consider now a second
situation in which, besides the binding of uPA, the inhibitor PAI-1 is brought into the
picture; this being able to bind to cell surface-bound uPA molecules, inhibiting their
action. In this new context, the total number of molecular species in the uPA system
considered is q = 3, this consisting of

– Two binding molecular species (uPA and PAI-1) represented by mb(t, x) :=
[mb,1(t, x),mb,2(t, x)]T, with mb,1(t, x) standing for the unbound uPA density
and mb,2(t, x) denoting the unbound PAI-1 inhibitor density;

– A free molecular species (i.e., plasmin) represented by m f (t, x):= m f,1(t, x).

While proceeding as in Sect. 2.1.1 and denoting amount of those uPAmolecules among
mb,1(t, x) that are exercising binding to the available uPAR receptors is denoted here
with y1, we denote with y2 the amount of PAI-1 ligands that bind bound uPA, causing
the inhibition of these uPA–uPAR complexes. Thus, given the binging possibilities
for PAI-1 onto receptor-bound uPA versus the binding possibilities of the free uPA
on the uPAR receptors, it is always the case that y2 ≤ y1, and so after an eventual
normalisation due to reaching saturation levels of cell surface uPA binding, we obtain
that that maximal set of binding structures P is two-dimensional in this case and is
given by P := {(y1, y2) ∈ R

2 | y1 ∈ [0, 1] and y2 ∈ [0, y1]}. Thus, using a measure
theoretical argument (Domschke et al. 2017) for the binding components for the uPA
and PAI-1, the vector of binding rates b(y,m) is given by

b(y,m) =
[

(1 − y1)β1mb,1
(y1 − y2)β2mb,2

]

(11)

and, similarly, we obtain that the vector of unbinding rates d(y) is

d(y) =
[

(y1 − y2)dy1
y2dy2

]

. (12)

Assuming that the uPA density mb,1 is produced in the presence of cells expressing
uPAR (namely the total cell densityC) at a rate αmb,1 ,mb,2 is produced in the presence
of activated plasminogen (namely the plasmin densitym f,1) at a rateαmb,2 , and plasmin
density m f,1 is activated by cells expressing uPA density mb,1 but not also inhibitor
PAI-1 density mb,2 at a rate αm f,1 , we obtain that the molecular source term ψm is
given by

ψm(C, r) =
⎡

⎢
⎣

αmb,1C
αmb,2m f,1

αm f,1

∫

P
(y1 − y2)εc(t, x, y) dy

⎤

⎥
⎦ . (13)
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3 Computational Approach and Analysis of the Discretisation of the
Spatio-Structural-Temporal Tumour Model

Throughout this section, we consider only the case of one dimension in both space
and structure for system (3). Thus, assuming equal spatial and structural step size
δx = δy and an equal number r ∈ N \ {0, 1, 2, 3} of collocation points in both x and
y dimensions, in the following we will proceed to discretise c, v, and m at any given
time node nδt , with n ∈ N. At each discretised spatial location in x , let cnx denote the
vector of the discretisation of the distribution of the cancer cell population over the
structural dimension y, explicitly given by cnx := [cnx,y1 , . . . , cnx,yr ]T. Likewise, at each
discretised structural location in y, let cny denote the vector of the discretisation of the
distribution of the cancer cell population over the spatial dimension x , explicitly given
by cny := [cnx1,y, . . . , cnxr ,y]T. In a similar way, the spatial discretisation of the ECM
concentration is denoted by vn := [vnx1 , . . . , vnxr ]T. Further, to simplify the notation
for the components ofm, in this section we will drop the indices b and f and orderly
relabel the involved molecular species simply upon their position in the vector m,
namely as m = [m1, . . . ,mq ]T. In this context, the discretisation of m is simply
denoted by mn := [(mn

1)
T, . . . , (mn

q)
T]T ∈ R

qr , with mn
i := [mn

i,x1
, . . . ,mn

i,xr
]T,

∀ i ∈ {1, . . . , q}.
Finally, for appropriately designed r × r diagonal matrices Γ (aimed to serve for

approximating expectations of the various structurally distributed variables that are
involved in system (3)), let us denote Cn(Γ ) := [Cn

x1(Γ ), . . . ,Cr
xr (Γ )]T ∈ R

r , with
each component defined by

Cn
xi (Γ ) := δy

2 [cnxi ]TΓ [1, 2, 2, . . . , 2, 2, 1]T, (14)

and note that for instance the total cell density is given by C(Ir ), where Ir is the r × r
identity matrix.

3.1 Discretisation of the 1D-Spatial 1D-Structural uPA Model

The iterative time step for the cancer population equation in (3) is then given by

cn+1 = cn + δnc with δnc = (Axcnx + (Ay + Aφ

)
cny) · δt (15)

where
Ax = 1

4δ2x
J 2 + 1

2δx
J f̃

f̃ := diag([ f1, . . . , fr ]),
(16)

with Jr being the r × r central difference derivative matrix given by
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Jr =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 2 0 . . . 0 0 0
−1 0 1 . . . 0 0 0

0 −1 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 1 0

0 0 0 . . . −1 0 1
0 0 0 . . . 0 −2 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (17)

and the components of f̃ being given by

fi := fi (cnxi , v
n
xi ,m

n
xi ) = (1 − ρ(cnxi , v

n
xi

)
(
∑

k
ξkrowi (J 2r )mn

k,xi
+ ξvrowi (J 2r )vnxi

)

,

(18)
where rowi (J 2r ) indicates the i th row of the matrix given by J 2r , for all i ∈ {1, . . . , r}.
Furthermore, we have that

Ay = − 1

2δy
Jr g̃

g̃ := diag([(b1 − d1), . . . , (br − dr )]), (19)

where bi := b(mn, yi ) and di := d(yi ), ∀i ∈ {1, . . . , r} stands for the discretised
binding and unbinding rates, and

Aφ = Aφy + Aφ2y (20)

with
Aφy

= −φ̃y Aφ2y
= 2P+1 ÎTφ̃2y Î

φ̃y = diag([φ1, . . . , φr ]) φ̃2y =
r∑

i=1
φ2i Ei,2i Î =

(
Ir
∅r
)

,
(21)

where ∅r is the r × r zero matrix, Ei,2i is the standard elementary matrix; φi :=
φ(yi , cnyi , v

n) and φ2i := φ(2yi , cn2yi , v
n),∀i ∈{1, . . . , r}.

Similarly iterative time step for the ECM equation in (3) is given by

vn+1 = vn + δnv with δnv = (Bxv
n + ψ̃v) · δt , (22)

where

Bx = −γv,cεdiag(Cn(ỹ)) −
q∑

i=1
γv,mi diag(m

n
i ), (23)

with ỹ := diag([y1, . . . , yr ]), the ECM degradation rates vector γv organised as
γv := [γv,c, γv,m1 , . . . , γv,mq ]T. Furthermore, ψ̃v denotes here the remodelling vector
given by

ψ̃v := [ψv,1, . . . , ψv,r ]T, (24)
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where we use the reduced notation ψv,i := ψv(cni , v
n
i ), ∀i ∈ {1, . . . , r}.

Finally, the iterative time step for uPA components equation in (3) is given by

mn+1 = mn + δnm with δnm = (Dx (mn) + Dφ) · δt , (25)

where we used the operator notation Dx (mn) :=[(Dm1 J
2
r m

n
1)

T, . . . , (Dmq J
2
r m

n
q)

T]T,
and

Dφi := ψmi − εCn(g̃) − γmim
n
i (26)

where ψmi := [ψmi (C
n
x1(Ir ),C

n
x1(ỹ)), . . . , ψmi (C

n
xr (Ir ),C

n
xr (ỹ))]T,∀i ∈ {1, . . . , q},

where we used the operator notation Dφ(mn) :=[DT
φ1

, . . . , DT
φq

]T.
Therefore, the first iteration of the resulting discrete global operator for an arbitrary

discrete spatio-structural points (x, y), and time node n = 0, which appears when
computing given by (c1, v1,m1)T, leads to the following relations:

δ0c =
(

1
4δ2x

J 2r c
0
y + 1

2δx
Jr f̃ c0y − 1

2δy
Jr g̃c0x +

(
2P+1 ÎTφ̃2y Î − φ̃y

)
c0y
)
δt

δ0v =
(

−γv,cεdiag(Cn(ỹ))v0 −
q∑

k=1
γv,mkdiag(m

n
k )v

0 + ψ̃v

)

δt

δ0mk
= (Dmk J

2
r m

n
k + ψmk − εC0(g̃) − γmkm

n
k

)
δt .

(27)

The stability of the primary term in these discrete time differences is dependent
upon the operator Jr whose analysis will be the focus of the following subsection.

3.2 Stability Analysis Considerations on the Central Difference Operator Jr

In order to assess the stability of the difference operator Jr involved in (43), in the
following we will prove a series of technical results that will ultimately completely
characterise the eigenvalues of Jr .

Lemma 1 Let Q be the following set of polynomials with real coefficients

Q :=
⎧
⎨

⎩
Pk(x) = akx

k + · · · + a1x + a0

∣
∣
∣
∣
∣
∣

k ≥ 4,

ak−1−2i = 0, ∀i ∈ 0, . . . ,

[
k−1
2

]
⎫
⎬

⎭
(28)

where by [·] we understand the usual integer part. Further, let PN−2, PN−1 ∈ Q
be polynomials of degree N − 2 and N − 1 respectively, then the iterative relation
PN = PN−2 − x PN−1 gives rise to a polynomial of degree N with PN ∈ Q.

Proof If one writes the considered polynomials as

PN−2 : aN−2xN−2 + aN−4xN−4 + · · · + max
i∈{0,...,[ k−1

2 ]}
aN−i−3xN−i−3 = 0

PN−1 : aN−1xN−1 + aN−3xN−3 + · · · + max
i∈{0,...,[ k−1

2 ]}
aN−i−2xN−i−2 = 0,

(29)
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then the proof is trivial. 
�
Theorem 1 Considering the set of polynomialsQ defined in (28), for any natural N ≥
6, let PN ∈ Q be a polynomial of degree N such that the polynomials PN−2, PN−1 ∈ Q
that give PN via the recurrence relation PN = PN−2 − x PN−1 satisfy the following
properties:

(1) denote {u1, u2, . . . , uN−2} and {v1, v2, . . . , vN−1} the ordered set of roots of the
polynomials PN−2 and PN−1, respectively

(2) the roots of these two polynomials are only imaginary, namely:

Re(ui ) = 0 ∀i ∈ {1, . . . , N − 2}
Re(v j ) = 0 ∀ j ∈ {1, . . . , N − 1}

(3) finally, the roots of these two polynomials satisfy the additional relations:

v2N−1 ≥ u2N−2
and

u2i ≥ v2i ≥ u2i−2 ≥ v2i−2, ∀i ∈
{
i = 2 j | j ∈

{
1, . . . ,

[ N−2
2

]}}
,

where for any i ∈ {i = 2 j | j ∈ {1, . . . , [ N−2
2

]}} we have that u j−1 := ū j and
v j−1 := v̄ j .

Then, if we let {w1, w2, . . . , wN } denote the ordered set of roots for PN , we have that
(i) all the roots of PN are imaginary, i.e.,

Re(wi ) = 0, ∀i ∈ {1 . . . N },

(ii) the roots of PN and PN−1 satisfy the relations:

w2
N−1 ≥ v2N−2

and
v2i ≥ w2

i ≥ v2i−2 ≥ w2
i−2, ∀i ∈ {i = 2 j

∣
∣ j ∈ {1, . . . , [ N−1

2

]}}
,

where for any i ∈ {i = 2 j | j ∈ {1, . . . , [ N−1
2

]}} we have that w j−1 := w̄ j .

Proof First, we notice that there are 2 different cases:

(1) N is even or
(2) N is odd.

Take case (1) and let N = 2n, n ∈ N. We can use the conjugate root theorem to write
the polynomials as

PN−2(x) = (x2 − u22
) (
x2 − u24

)
. . .
(
x2 − u2N−2

)

PN−1(x) = −x
(
x2 − v22

) (
x2 − v24

)
. . .
(
x2 − v2N−2

)
,

(30)
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where u2i−1 = u2i , u22i = u2i−1 · u2i and v2i−1 = v2i , v22i = −|Im(v2i )
2|. We then

have that PN can be written as

PN (x) =
(
x2 − u22

) (
x2 − u24

)
. . .
(
x2 − u2N−2

)

+x2
(
x2 − v22

) (
x2 − v24

)
. . .
(
x2 − v2N−2

)
. (31)

Now, by Descartes’ rule of signs and Lemma 1, we can say that none of the roots of
PN are positive and that at most N of these roots are negative.

Use the substitution z = x2, the initial polynomial PN induces

P̄N (z) = (z − u22
) (
z − u24

)
. . .
(
z − u2N−2

)+ z
(
z − v22

) (
z − v24

)
. . .
(
z − v2N−2

)
.

(32)
Evaluating P̄N (z) at ±∞ and at a selection roots of PN−1(x) given by

Sa :=
{
v22 j | j = 1, n − 1

}
,

we have two different cases:

(1a) n − 1 is odd or
(1b) n − 1 is even.

In case (1a), we have that

lim
z→±∞ P̄N (z) = +∞.

Further, as the elements of Sa are solutions of PN−1, using their properties that u22 j ≥
v22 j , j = 1, n, we obtain

P̄N
(
v22 j

)
= (−1) j

∣
∣v2i − u22||v2i − u24

∣
∣ · · · ∣∣v2i − uN−2

∣
∣ , j = 1, n − 1, (33)

and so

sign
(
P̄N (v22 j )

)
= (−1) j , j = 1, n − 1

Therefore, denoting S′
a := {−∞} ∪ Sa ∪ {+∞}, we have

sign(P̄N (S′
a)) = {+,−,+,−, · · · ,−,+}, (34)

which yields n intervals where the values of polynomial changes, and so by interme-
diate value theorem we must have n real non-positive roots for P̄N (z).
Thus, reversingnow the changeof variable z = x2,weobtain that the initial polynomial
PN (x) has only imaginary roots with

Re(wi ) = 0 wi th wi ≥ vi , i = 1, N
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For case (1b), we have that

lim
z→±∞ P̄N (z) = ±∞

Further, denoting by with Sb the following set of squares of the roots of PN−2(x),
namely

Sb := {u22 j | j = 1, n − 1},

sign(P̄N (u22 j )) = (−1)n− j , j = 1, n − 1

Therefore, denoting S′
b := {−∞} ∪ Sb ∪ {+∞}, we have

sign(P̄N (S′
b)) = {−,+,−,+, · · · ,−,+}, (35)

and by the intermediate value theorem, we again get Re(wi ) = 0 with wi ≥ vi .
For case (2), we consider odd values of N and let N = 2n + 1, n ∈ N such that

we again use the conjugate root theorem to write

PN−2(x) = −x
(
x2 − v22

) (
x2 − v24

)
. . .
(
x2 − v2N−2

)

PN−1(x) = (
x2 − u22

) (
x2 − u24

)
. . .
(
x2 − u2N

)

PN (x) = −x
(
x2−u22

) (
x2−u24

)
. . .
(
x2−u2n−2

)− x
(
x2−v22

) (
x2−v24

)
. . .
(
x2−v2N

)
.

(36)
Further, factoring out the common multiple −x and using the substitution z = x2 to
augment the remainder of the polynomial, we can now test the polynomial with the
set, S′, in the same way as in case (1). 
�
Theorem 2 Assuming that N is the number of discretisation points and N ≥ 6, the
characteristic polynomials PN (λ) of the central differences matrices JN satisfy the
following recurrence relation

PN (λ) = PN−2(λ) − λPN−1(λ).

Proof Let’s denote PN is the characteristic polynomial of the N × N dimensional
central differences matrix, JN , we observe first that desired the recurrence relation
PN = PN−2 −λPN−1 is trivially satisfied by the characteristic polynomials of J4, J5,
and J6, which are given by

P4 = λ4 + λ2

P5 = −λ5 − 2λ3

P6 = λ6 + 3λ4 + λ2.

(37)

To prove that this relation is satisfied in general for any natural number N ≥ 6, we
proceed as follows. First, ∀l ∈ N\ {0, 1, 2, 3}, for the matrix Ĵl := Jl −λIl , and let us
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denote by Ao
l and A′

l the following determinants of the (l − 1) × (l − 1) submatrices

of Ĵl , namely

Ao
l−1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ĵ2,2 Ĵ2,3 Ĵ2,4 . . . Ĵ2,l
Ĵ3,2 Ĵ3,3 Ĵ3,4 . . . Ĵ3,l
Ĵ4,2 Ĵ4,3 Ĵ4,4 . . . Ĵ4,l
...

...
... . . .

...

Ĵl,2 Ĵl,3 Ĵl,4 . . . Ĵl,l

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

A′
l−1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ĵ2,1 Ĵ2,3 Ĵ2,4 . . . Ĵ2,l
Ĵ3,1 Ĵ3,3 Ĵ3,4 . . . Ĵ3,l
Ĵ4,1 Ĵ4,3 Ĵ4,4 . . . Ĵ4,l
...

...
... . . .

...

Ĵl,1 Ĵl,3 Ĵl,4 . . . Ĵl,l

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

(38)

and let’s observe that these have the properties that

Ao
l−1 = −λAo

l−2 − A′
l−2

A′
i−1 = −Ao

l−2
(39)

Then, using (39) we have that

| ĴN−2| = (−2 − λ)Ao
N−3 − 2A′

N−3 (40a)

| ĴN−1| = (−2 − λ)Ao
N−2 − 2A′

N−2

= (−2 − λ)(−λAo
N−3 − A′

N−3) − 2(−Ao
N−3)

= (−2 − λ)(−λ)Ao
N−3 + (2 + λ)A′

N−3 + 2Ao
N−3

= ((−2 − λ)(−λ) + 2)Ao
N−3 + (2 + λ)A′

N−3

(40b)

| ĴN | = (−2 − λ)Ao
N−1 − 2A′

N−1

= (−2 − λ)(−λAo
N−2 − A′

N−2) − 2(−Ao
N−2)

= (−2 − λ)(−λ(−λAo
N−3 − A′

N−3) − (−Ao
N−3)) + 2Ao

N−2

= (−2 − λ)(−λ(−λAo
N−3 − A′

N−3) − (−Ao
N−3))

+ 2(−λAo
N−3 − A′

N−3)

= (−2 − λ)(−λ)2Ao
N−3 + (−2 − λ)(−λ)A′

N−3

+ (−2 − λ)Ao
N−3 − 2λAo

N−3 − 2A′
N−3

= ((−2 − λ)(−λ)2 + (−2 − λ) − 2λ)Ao
N−3 + ((−2 − λ)(−λ) − 2)A′

N−3
(40c)

From (40a)–(40c), we obtain immediately by direct calculation that

| ĴN | = | ĴN−2| − λ| ĴN−1| (41)
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which can finally be equivalently expressed as

PN (λ) = PN−2(λ) − λPN−1(λ). (42)


�
Therefore, we finally obtain the following central result for our analysis.

Theorem 3 The eigenvalues of the central differences matrix Jr are either 0 or imag-
inary.

Proof Using Theorem 2, we have that the characteristic polynomial of Jr is given by
Pr (λ) and thatu2i ≥ v2i ≥ u2i−2 ≥ v2i−2 for all i ∈ {i = 2 j | j ∈ {1, . . . , [ r−2

2

]}}. Then,
by invokingTheorem1,we immediately obtain by induction that the roots, denotedwi ,
of characteristic polynomial of Jr are imaginary with Re(wk) = 0, ∀k ∈ {1, . . . , r}.


�

3.3 Stability Analysis of the Global Numerical Scheme

Returning now to the stability analysis of the global numerical scheme associated with
1D-spatio-1D-structural case of (3), we will focus now only those operators occurring
in (43) that have eigenvalues Re(λ) > 0. Therefore, as Jr was proved to be stable, of
interest for the stability analysis remains the behaviour of the following remainders
of the operators from (43) without those terms involving Jr that we indicate with −,
namely:

δ̄0c =
(
2P+1 ÎTφ̃2y Î − φ̃y

)
c0yδt

δ̄0v =
(

− γv,cεdiag(Cn(ỹ))v0 −
q∑

k=1
γv,mkdiag(m

n
k )v

0 + ψ̃v

)
δt

δ̄0mk
=
(
ψmk − εC0(g̃) − γmkm

n
k

)
δt .

(43)

We begin by assessing the stability of the structural dimension by considering the
mitotic operator for the 2nd and 3rd such iterations on c, wherein we have:

δ̄1c =
(
Aφy

+ Aφ2y

)
c0yδt +

(
Aφy

+ Aφ2y

)2
c0yδ

2
t , (44)

δ̄2c =
(
Aφy

+ Aφ2y

)
c0yδt +

(
Aφy

+ Aφ2y

)2
c0yδ

2
t

+
(
Aφy

+ Aφ2y

)3
c0yδ

3
t ,

(45)

such that the nth iteration is given by

δ̄nc =
n+1∑

i=1

(
Aφy

+ Aφ2y

)i
δit c

0
y . (46)
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The basic criterion for stability is that a small perturbation in the solution will
decrease or remain constant in value through time, t → ∞. Now, since in the above
sum, the order of the terms (with respect to δt ) increases with i , we can form a
preliminary estimate of the perturbation’s growth using only the first i = 1 terms,
namely

c1xi ,y j = c0xi ,y j +
(
−φy j c

0
xi ,y j + 2P+1φ2y j c

0
xi ,2y j

)
· δt (47)

and so we get the following condition for stability

φy j c
n
xi ,y j ≥ 2P+1φ2y j c

n
xi ,2y j

. (48)

Given that 0 ≤ φ ≤ 1, we have that for stability

lim
δy j →0

lim
y j→0

cnxi ,y j = ∞, ∀n ∈ [0, N ),

lim
δy j →0

lim
y j→∞ cnxi ,y j = 0, ∀n ∈ [0, N ).

(49)

Further, concerning the structural dynamics, denoting now by ¯̄δnc;xi ,y j the change in
the cancer cell distribution c due to the y-flux of the system at a given spatio-structural
position (xi , y j ) during a time interval [nδt , (n + 1)δt ], we have that

¯̄δ0c;xi ,y j := Ayc0y · δt =
(

1
2δy

(by j−1 − dy j−1)c
0
xi ,y j−1

− 1
2δy

(by j+1 − dy j+1)c
0
xi ,y j+1

)
· δt .

(50)
Therefore, if we have that b, d are proportional to y, then we can extract the modified
binding and unbinding rates b̆ and d̆ as

bny j (y j ,m
n) = b̆(mn) · y j and dy j (y) = d̆ · y j , (51)

and so we can then write

¯̄δ0c;xi ,y j =
(
y j−1c0xi ,y j−1

− y j+1c0xi ,y j+1

)
· 1
2δy

(b̆0 − d̆0) · δt , (52)

whose stability is ensured by having either

b̆ ≤ d̆, (53a)

or

c0xi ,y j−1
≤ yy j+1

yy j−1

c0xi ,y j+1
, ∀xi , y j . (53b)

Thinking biologically about the ramifications of the former constraint, (53a), this
would mean that the unbinding of the molecular species involved was more frequent
than the binding of these species which would imply a relationship of affinity that
approaches 0. Although these exist biologically, the considered system is one in which
the binding of molecular species plays a major role in the metabolic processes of the
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cell and one can thusly disregard (53a) from consideration as trivial. Therefore, we
consider here only (53b) as viable.

From (48), (49), and (53b), however, we have a contradiction and therefore, the
systemmust be unstablewith neither an absolute nor a convective instability. The insta-
bility present is absolute in its source but convective in its requirement and behaviour.

For the stability of the equation in v of the discretised 1D-spatio-1D-structural
system (3), from (43) we observe first that 0 ≤ cnxi ,y j ≤ 1 and 0 ≤ mn

k;xi ,y j , ∀k ∈
{1, . . . , q}. It is then trivial to show the following eigenvalues relations

λdiag(cnxi ,y j )
= cnxi ,y j ≥ 0,

λdiag(mn
k;xi )

= mn
k;xi ≥ 0, ∀k ∈ {1, . . . , q},

λBx ≤ 0

(54)

whereλdiag(cnxi ,y j )
denote the eigenvalues of diag(cnxi ,y j ),λdiag(mn

k;xi )
are the eigenvalues

of diag(mn
k;xi ), and λBx represent the eigenvalues of Bx . Therefore, using a similar

notation, since for the eigenvalues of Bφ , we have thatλBφ ≥ 0, given smooth solutions
for cnx andm

n
x , we finally obtain that the solutions for v

n
x will remain smooth and stable.

Finally, using the similar eigenvalue notation, for the stability in the equations for
m, we obtain that the eigenvalues for Cn(g̃), δm and ψ̃m have the properties

λCn(g̃) ≥ 0,
λδm = γm,

λψ̃m
≥ 0.

(55)

Moreover, we can also observe that eigenvalues of Dφ have the property that

λDφ ≤ 0 iff λψ̃m
≤ γm + ελCn(g̃). (56)

where for convenience we used the vector convention in writing the above inequality,
which simply means that the inequality is respected per each component. Thus, we
have that either (1) ψ̃m is proportional to εCn(g̃) or (2) ψ̃m is proportional to Cn(Ir ).
For case (1), if we let kψ,1 be the proportionality constant within the relation ψm, then
we can write that there must exist some values for Cn

x (g̃) at which

kψ,1ελCn(g̃) ≤ γm + ελCn(g̃)

(kψ,1 − 1)ελCn(g̃) ≤ γm

(kψ,1 − 1)εCn(g̃) ≤ γm, (57)

where we used the same vector convention as in (56). Thus, using integration by parts,
we can write

(kψ,1 − 1)ε
(
g̃Cn(I ) − (b̆ − d̆)yrCn(Ir )

)
≤ γm. (58)

123



Computational Approaches and Analysis for a Spatio… 719

For case (2), if we let kψ,2 be the proportionality constant within the relation ψm then
we can write that there must exist some values for Cn(Ir ) at which

kψ,2λCn(Ir ) ≤ γm + ελCn(g̃)

kψ,2C
n(I ) ≤ γm + ε

(
g̃Cn(I ) − (b̆ − d̆)yrC

n(Ir )
)

kψ,2C
n(Ir ) ≤ γm + ε

(
g̃ − (b̆ − d̆)yr

)
Cn(Ir ) (59)

where g̃ ≥ (b̆ − d̆)yr . Therefore, given sufficiently large values for Cn(Ir ), given by

Cn(Ir ) ≤ γm

kψ,2 − ε
(
g̃ − (b̆ − d̆)yr

) , (60)

the solutions for mn
i will be unstable with

lim
n→∞mn

i = ∞ ∀i where ψmi = ψmi (c
n
x , ·). (61)

For sufficiently low values of Cn(Ir ), given by the contrary argument to (60), the
solutions for mn

i will be stable with mn
i = 0.

4 Numerical Results and Simulations in 1D-Spatial Case

The parameters considered throughout this work are chosen to be consistent with those
set out in Domschke et al. (2017), and other previous models Gerisch and Chaplain
(2008), and are detailed in Appendix A.

Numerical results generated by running the test case, and finite difference scheme
for the system, through MATLAB are given below (Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9).
Several different cases are simulated in order to numerically verify the validity of
proposed changes to the system and in order to perform analyses of the system using
numerically generated graphic results:

For the 1D-spatial, 1D-structural case the associatedmodel (3) was explored numer-
ically in the presence of initial conditions for c(t, x, y) for t = 0, given by

c0(x, y) := c(0, x, y) = exp
[−100

(
x2 + 4(y − 1

4 )
2
)]

, (62)

and the homogeneous ECM conditions

v0(x) := v(0, x) = 1 − ∫
P
c(0, x, y) dy. (63)
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Fig. 1 Numerical 1D-spatial 1D-structural results generated from simulation of the system (3), with c
plotted in the x- and y-dimension (top), with values for C (black), v (blue), mb,1 (green dashed), and m f,1
(red dashed) plotted spatially (bottom) (Color figure online)
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Fig. 2 Numerical 2D-spatial 1D-structural results for (3) for homogeneous ECM, plotted at times t ∈
{3, 15}: mb,1 (row 1), m f,1 (row 2) v (row 3), C (row 4), and c (row 5) as an isosurface on the 2D x-plane
(Color figure online)
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Fig. 3 Numerical 2D-spatial 1D-structural results for (3) for homogeneous ECM, plotted at times t ∈
{35, 50}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane (Color figure online)

4.1 uPA in the Absence of PAI-1: 1D-Spatial 1D-Structural Results

One characteristic of the numerical solution, which has not previously been observed,
is that of the partial travelling wave translation in the structural dimension (Fig. 1).
That is to say that the proliferative terms lead to the travelling wave being depleted and
replaced, to a greater extent at a lower value for y. These features shall be henceforth
referred to as structural “y-waves” and is an essential feature in understanding the
dynamics of such systems, given their recurrence in all domains. There is not sufficient
evidence in the biological literature to verify that this is the case or to contradict this
result.

The hyper-affinity binding also results in the behaviour of “replicative y-trapping”
(referring to the behaviour of c collection at the upper y boundary as y-trapping and the
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Fig. 4 Numerical 2D-spatial 1D-structural results for (3) for heterogeneous ECM, plotted at times t ∈
{3, 9}: mb,1 (row 1), m f,1 (row 2) v (row 3), C (row 4), and c (row 5) as an isosurface on the 2D x-plane
(Color figure online)
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Fig. 5 Numerical 2D-spatial 1D-structural results for (3) for heterogeneous ECM, plotted at times t ∈
{15, 20}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane (Color figure online)

proliferative duplication at 1
2 y as replicative of this y-trapping) behaviour producing

a discontinuity that fails to allow the system to continue the migration of c through P
and raises significant questions of the biological efficacy of this system when coupled
to assumptions of equal mitosis. Again, this results from the binding and production of
these species occurring at far higher rates than the unbinding or degradation of these
species.

The y-waves actually caused a resultant x-resolved profile, C(t, x), which was
itself not smooth (Fig. 1); this is a ramification of the proliferative contribution to
the replication of steep gradient profiles. One must observe that, within the discrete
space, the proliferative term necessarily means that any gradient is replicated with a
proliferative constant, μc.
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Fig. 6 Numerical 2D-spatial 1D-structural results for (3) for heterogeneous ECM, plotted at times t ∈
{30, 50}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane (Color figure online)

Further, one observes an sharp spiking behaviour that occurs only at the boundary,
which can be directly observed for t = 50 (Fig. 1c). The source of this spiking is not
clear, since it occurs to a lesser extent for other values of (t, x), but could be due to
the gradient-guided dissipation occurring only one side of the spike. In other words,
the accuracy of the estimate of the double derivative is lessened by the fact that the
peak occurs on the boundary and one can obtain information about the local features
on only one side of the peak. It is also possible that this results from the contribution
of the chemotaxis to the molecular species, on the bulk of the population, and the
haptotaxis, on the exterior of the population.

There exists, however, some biological evidence to corroborate this behaviour as
a natural process occurring due to the difference between forces between cell-cell
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Fig. 7 Numerical 2D-spatial 2D-structural results for (3) for heterogeneous ECM, plotted at times t ∈
{3, 9}: mb,1 (row 1), m f,1 (row 2), v (row 3), C (row 4),

∫
[0,1] c dy2 (row 5) and

∫
[0,1] c dy1 (row 6) as

isosurfaces on the 2D x-plane (Color figure online)
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Fig. 8 Numerical 2D-spatial 2D-structural results for (3) for heterogeneous ECM, plotted at times t ∈
{12, 20}: v (row 1), C (row 2),

∫
[0,1] c dy2 (row 3) and

∫
[0,1] c dy1 (row 4) as isosurfaces on the 2D x-plane

(Color figure online)
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Fig. 9 Numerical 2D-spatial 2D-structural results for (3) for heterogeneous ECM, plotted at times t ∈
{25, 35}: v (row 1), C (row 2),

∫
[0,1] c dy2 (row 3) and

∫
[0,1] c dy1 (row 4) as isosurfaces on the 2D x-plane

(Color figure online)
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junctions and cell-ECM based motility. For instance, Yamaguchi et al. (2015) report
the phenomenonof differential behaviours between ‘leader’ and ‘follower’ cells during
collective cell migration, often resulting in a clustered cell subpopulation leading the
migration of the tumour’s boundary. Likewise, in vivo experimentation (necessarily
invoking the heterogeneity of the underlying migratory substrate) has demonstrated
breakaway clusters of cells which develop anterior to the invasive front (Chapman
et al. 2014).

5 Numerical Results in 2D-Spatial Cases

Proceeding in a similar manner to the 1D-spatial case, also in the 2D-spatial cases,
with the appropriate 1D- or 2D-structural domain P , we assume equal spatial and
structural step size δxi := δy j := δx , i, j ∈ {1, 2} and an equal number r ∈ N

∗ of
collocation points in both spatial and structural dimensions, and in the following we
will proceed to discretise c, v, and m at any given time node nδt , with n ∈ N.

For the 2D-spatial 1D-structural model, numerical results have been obtained for
the initial condition for c(t, x, y) which are the extension of (62), and in this case are
given by

c0(x, y) := c(0, x, y) = exp
[−100

(‖ x ‖2
2

+4(y − 1
4 )

2
)]

, (64)

Furthermore, for the ECM, we use both the homogeneous initial conditions given
in (63) and a new set of heterogeneous initial conditions given as in Andasari et al.
(2011), namely:

(x1, x2) := 1

3

(

x + 3

2

)

∈ [0, 1]2 for x ∈ D, ζ := 6π,

h(x1, x2) := 1

2
+ 1

2
sin

(
ζ x1

x2 + 1

)

sin (ζ x1x2) sin

(
ζ(1 − x1)

x2 + 1

)

sin (ζ(x1 − 1)(x2 − 1)) ,

v0(x) := v(0, x) = min

{

h(x1, x2),
1 − vcC(0, x)

vv

}

. (65)

Finally, for the 2D-spatial 2D-structural model, numerical results have been
obtained for the appropriate extension of the initial conditions for c(t, x, y) considered
in (62) and (64) which in this case recast as follows:

c0(x, y) := c(0, x, y) = exp
[−100

(‖ x ‖2 +4 ‖ (y − [ 14 , 1
4 ]T
) ‖2)] , (66)

as well as the homogeneous and heterogeneous ECM initial conditions given in (63)
and (65).

5.1 uPA in the Absence of PAI-1: 2D-Spatial 1D-Structural Results

Results from the simulations were consistent with the 1D-spatial 1D-structural case
but varied widely due to the effect of the ECM on the cancer species.

Results for the 2D-spatial 1D-structural system for lower binding values are given
(Figs. 2, 3). For c, the spatial distribution of the tumour in 2-spatial dimensions and
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isosurface figure in a 2D-spatial 1D-structural domain (in the absence of PAI-1) are
displayed to attempt to give the fullest impression of the progress of the cancer through
the spatial and structural domains in time. One can see, again, the y-wave behaviour
in the 2D-spatial systemwith mushroom-like forms replicating themselves at progres-
sively lower values for y. A typical symmetric cancer cluster grows into the spatial
domain, giving higher values for concentration at the upper boundary of P towards
the epicentre of the cancer cluster.

In biological terms, this indicates that the more established, inner, portion of the
tumour will likely have a higher bound population of molecules that the boundary,
outer, portion. This result is counter-intuitive since, given that these bound species are
more effective at degrading the extracellular matrix, a theoretical postulation might
lead one to believe that these species would exist to a greater extent on the boundary.
This is either a flaw within the application of the model or may provide an interesting
observation about the efficiency of natural biological cancers.

Biological evidence does exist, on the other hand, to support the claim that both
uPAR, and consequently surface bound uPA, are more highly concentrated towards
the interior of invasive cell structures. Invading T lymphocytes have been reported to
exhibit such internally high expression levels, with only individuated exterior cells
expressing high levels of uPARs (Bianchi et al. 1996). A biological spatio-temporal
model of tumour invasion reported high levels of uPA of the tumour’s leading edge but
also found extremely high levels on the invading mass’ interior (Adam et al. 2001).

The y-waves occur within the 2D-spatial model also (Figs. 2, 3), where one may
observe graduated levels of binding for c. One can observe that the largest concentra-
tion of c begins and remains at the epicentre of the population.

All results show a significant correlative relationship between the ECM levels,
v(t, x), and the destructivemolecular species,m f,1(t, x), and therefore awave of ECM
destruction follows closely behind the travelling wave of the cancer cell population.
This is an indicator of the indirect relationship between the cancer growth mecha-
nism and the cancer population itself (i.e., acting through the intermediate degradative
protein species m f,1).

Results generated using a heterogeneous initial ECM density (Figs. 4, 5, 6) var-
ied from the previously observed results with similar behaviour, nonetheless. One
observes the spiking behaviours developing into a particularly defined wave front for
the growing cancer population. Here, the boundary wave-like solution may be caused
by the high affinity between the cancer cell population and the ECM.

Although it is difficult to depict this behaviour, one again observes y-waves in the
numerics for the behaviour at the interior of the cancer population. This is masked
by the isosurface for the spiking shell of the cancer population. The y-waves play an
important role in determining the initial behaviour of the cancer population, during
growth and establishment of the perimeter. It is unclear whether thesewaves contribute
to the dramatic change in behaviour and form t ∈ (9, 15).

Just as in the 1D- and 2D-spatial homogeneous ECM cases, one can observe the
initial spatial splitting of the cancer population. Unlike in the homogeneous case
(Figs. 2, 3), however, the heterogeneity appears to mediate the consolidation of the
cancer subpopulations (Figs. 4b, 5b) into the characteristic tumour that one associates
with the biological paradigm.
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Given that a periodic function is used to generate the ECM heterogeneity, it is
not terribly surprising that the result produced (t ≤ 20) resembles that of a cyclic
environment, with 180◦ turn symmetry. Further results (not shown) were generated
with an asymmetric, or with non-radial symmetrywith respect to the initial positioning
of the tumour. These results again displayed an asymmetric splitting of the population
(typically into two spatially distinct subpopulations) with the larger portion of the
subpopulation migrating to those regions with the steepest ECM gradients. Given that
all of these environments were normalised with respect to their overall nutritional
capacity, the underlying ECM patterning has no significant bearing on the invasive
success of the tumour.

Moreover, the cancer, in this 2D-spatial 1D-structural heterogeneous case, is par-
ticularly exploitative of its environment, protruding into areas of low ECM density
before the diffusion of the molecular species through the more dense sections of the
ECM allows the remainder of the population to follow. This feature of the cancer
behaviour is repeated until total permeation of the spatial domain occurs. This also
leads to the boundary of the cancer population becoming somewhat amorphous, as
one observes with cancer in the natural, biological environment of the human tissue.
It may be interesting to consider the case in which molecular species are more free to
diffuse into areas of lower ECM density.

5.2 uPA in the Presence of Inhibitor PAI-1: 2D-Spatial 2D-Structural Results

Results generated using a heterogeneous initial ECM density were similar to those
generated for the system with 1-structural dimension (in the absence of PAI-1, Figs. 7,
8, 9). One observes again that the spiking behaviours developing into a particularly
defined wave front for the growing cancer population. Again, this is likely to be due
to the attractive forces, leading to haptotaxis, between the cellular population and the
ECM, causing cells to chemotactically self-aggregate on the boundary of the tumour.
This is also likely accentuated by the local inhibition of invasion (through PAI-1
binding), which contrasts the advancement of the tumour boundary and encourages
hyper-localised behaviours.

All of those significant features, appearing in the case of 1D-structural dimension
(in the absence of PAI-1), appear in those for 2-structural dimensions (in the presence
of PAI-1), with the important difference being that the nature of the tumour in this 2D-
structural case develops at amuch slower rate. This is expected behaviour given that the
introduction of a 2nd structural dimension, in this case, corresponds to the introduction
of an inhibitor to the degradative activation protein, uPA. The apparent rate of change
in tumour growth can be approximately given by αm f,1 − γm f,1 such that the rate by
which the tumour is slowed down is equal to the binding ability of the inhibitor. This
can be clearly seen in the differences in morphology at t < 20 (Figs. 7, 8).

6 Discussion and Conclusions

In the case where we consider a homogeneous cancer population and ECM density
(Figs. 2, 3), one observes a logistic boundary that expands, unimpeded, to its maximal
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radius within the given domain. Within this one observes a lower peak that clearly
continues to expand throughout the space with the y-wave behaviour (which can be
observed within the raw data), although at much lower values for C . This is likely due
to the initial conditions remaining constant with the addition of a spatial dimension,
causing values for c to be distributed and for C to be reduced. Overall, these solutions
were in line with the 1D-spatial test-systems but not indicative of natural cancer
behaviour.

Oncewe endow the cancer specieswith its natural habitat (the heterogeneousECM),
one observes behaviours absolutely characteristic of the biological system. These
behaviours included the volume filling properties for the inside of the tumour, the
aggressive behaviour of the cancer’s perimeter, and the primary invasion into areas of
lower tissue density. It is not clear whether or not the initial splitting of the cancer into
two subpopulations is characteristic of nature but certainly is of the model, which is
again likely a consequence of the initial conditions.

It can also be directly observed that the numerical solution is stable in its spatial
dynamics but unstable in structural dynamics, which can be seen from the total perme-
ation of P on the boundary of c whilst the spatially considered cancer population, C ,
does not exhibit uncontrolled migration in D. The areas of higher values for C (Fig.
6) can be attributed to the fact that y-waves continue to exist within the body of the
tumour and behave as in the 1D-spatial model.

The largest errors arise from the structural differentiation in the second term of
the equation for ∂c

∂t , where we incur second-order errors as a result of the symmetric
difference quotient approximation. This method is commonly used, and there are no
clear contenders to be used in its place since reaching a higher-order approximation
is far more difficult than incurring computational and processing penalties as a result
of increasing the number of required arithmetic calculations.

We then have a third-order error that results from the trapezoidal approximation
on the local integral. This could, potentially, be improved by, for example, taking a
higher-order approximation, such as Simpson’s rule polynomial approximation, but
one necessarily has a trade-off between accuracy and computational intensity.

On the whole, these errors tend to be small so long as δx and δy are kept sufficiently
small, δx , δy ≤ 10−2.

The result of stability analysis was to confirm the conclusions of the numerical
simulations that, notwithstanding ones ability to compensate for the errors produced,
the system is unstable in y. Any perturbation induced with nonzero y-component will
result in the exponential growth of the perturbation through the structure space.

This simply implies that for fine perturbations in x , one must have sufficiently low
migration in y so as to allow the profile to remain stable. This is particularly interesting
when taken in combination with the numerical solutions which revealed explosive
instabilities upon rapid migration to the y boundary, or the boundary of P̄ , ∂P̄ .

Given that, for stability, one considers the magnitude (or absolute values) of the
parameters involved, one has that m is unstable under all conditions and for small
perturbation around any hypothetical stable solution. We also find that v is stable at
the cancer-ECM equilibrium such that, since we are interested in the cancer growth
and destruction of its local environment, the system is stable, notwithstanding the
instability inm.
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Numerical results show interesting behaviours, particularly with the introduction
of y-waves, resulting from the structural considerations in c. One sees the expected
characteristics of the aggressive cancer species considered, with smooth degradation
of the ECM and concurrent advancement of the cancer species to encroach on the
healthy tissue. One shows how various considerations as to how one could amend the
system result in more reasonable and expected behaviours in the cancer species but
how, ultimately, the results that most closely correlate with the biological paradigm
require a rethink of the underlying assumptions for the system, as a whole.

The numerical results for the system may elucidate an interesting propensity of the
biological cancer system to utilise unconventional mechanisms of invasion, under the
influence of chemical inhibitors. Inhibiting the uPA system appears, in some way, to
impede the uniform invasion of the stroma by this aggressive cancer species, whilst
allowing the ECM to remain intact by reducing the cancer’s ability to degrade collagen
has allowed the cancer to more readily utilise haptotactic behaviours. Therefore, what
one observes in the inhibitor system, in comparison with its counterpart, is a more
sporadic distribution of cancer cells who invade but do not degrade the ECM (growing
in areas where competition for space is reduced).

This gives rise to important biological questions about how one treats and pre-
vents the spread of these cells, since inhibition may cause greater clinical issues. The
inhibitors fail to inhibit the initial devastation of the ECM by uPA but leave the ECM
open to exploitation. This may be a survival mechanism utilised by cancer and may
have been evolutionarily beneficial to it propensity to arise in the human body, rather
than acting to the detriment of its progression.

A Parameter Set

c : Dc = 10−4 ξv = 5 × 10−2 ξ1 = 1 × 10−3 μc = 0.1

Scc = 10−4 Scv = 10−4 vc = 0.524 vv = 0.476

i-state : ε = 0.1 β = 0.5 γy = 0

v : γv = 10 μv = 0.05

mb,1 : Dmb,1 = 10−3 αmb,1 = 0.1 γmb,1 = 0.1

mb,1 : Dmb,1 = 10−3 αmb,1 = 0.1 γmb,2 = 0.1

m f,1 : Dm f,1 = 10−3 αm f,1 = 0.5 γm f,1 = 0.1
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